JP2007070377A - Method for producing resin foam, resin foam, heat insulating material and circuit board material - Google Patents

Method for producing resin foam, resin foam, heat insulating material and circuit board material Download PDF

Info

Publication number
JP2007070377A
JP2007070377A JP2005255430A JP2005255430A JP2007070377A JP 2007070377 A JP2007070377 A JP 2007070377A JP 2005255430 A JP2005255430 A JP 2005255430A JP 2005255430 A JP2005255430 A JP 2005255430A JP 2007070377 A JP2007070377 A JP 2007070377A
Authority
JP
Japan
Prior art keywords
resin
resin foam
foam
polyimide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005255430A
Other languages
Japanese (ja)
Inventor
Takashi Nogami
隆 野上
Takashi Gonda
貴司 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2005255430A priority Critical patent/JP2007070377A/en
Publication of JP2007070377A publication Critical patent/JP2007070377A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a resin foam securing heat insulating properties, with which a compression process is omitted and productivity is improved and to obtain a resin foam, a heat insulating material and a circuit board material. <P>SOLUTION: The resin foam is formed by impregnating inert gas into a molding made of a polyimide-based resin having a remaining incomplete part of imidization reaction under pressure, abruptly releasing pressure acting on the polyimide-based resin of the molding and heating the molding to expand the polyimide-based resin. Then imidization reaction is selectively advanced by heating and the produced resin foam is used as an heat insulating material for building and a circuit board material for electronic and electric equipment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気電子等の分野、特に高周波の用途等に使用される樹脂発泡体の製造方法、樹脂発泡体、断熱材料並びに回路板用材料に関するものである。   The present invention relates to a method for producing a resin foam, a resin foam, a heat insulating material, and a circuit board material used in fields such as electric and electronic fields, particularly high frequency applications.

イミド系樹脂の発泡体の製造方法については、従来より広く知られ、例えば特許文献1、2には、ポリエーテルイミドの発泡体の製造方法が開示されている。しかしながら、ポリエーテルイミドは、ガラス転移点(Tg)が217℃と低いので、エンジン周りや半田リフロー等の高温に晒される電気電子の用途に使用する場合には、不十分な耐熱性しか得ることができない。
また、特許文献3には、ガラス転移点(Tg)が300℃以上の発泡ポリイミドの製造方法が開示されている。
特開昭62‐39225号公報 特開平7‐138402号公報 特開2003‐82100号公報
About the manufacturing method of the foam of an imide-type resin, conventionally, the manufacturing method of the foam of polyetherimide is disclosed by patent document 1, 2, for example. However, polyetherimide has a glass transition point (Tg) as low as 217 ° C, so that it has insufficient heat resistance when used in electrical and electronic applications that are exposed to high temperatures such as around the engine and solder reflow. I can't.
Patent Document 3 discloses a method for producing a foamed polyimide having a glass transition point (Tg) of 300 ° C. or higher.
JP 62-39225 A Japanese Patent Laid-Open No. 7-138402 Japanese Patent Laid-Open No. 2003-82100

しかしながら、特許文献3の製造方法の場合には、発泡倍率が20倍以上となるため、適正な発泡倍率を得るために圧縮加工が必要となり、生産性の向上を図ることができないという大きな問題がある。また、係る製造方法で製造された発泡体は、ガス透過性を有しているため(連泡)、断熱性に欠けるおそれが少なくない。   However, in the case of the manufacturing method of Patent Document 3, since the expansion ratio is 20 times or more, compression processing is necessary to obtain an appropriate expansion ratio, and it is impossible to improve productivity. is there. Moreover, since the foam manufactured with the manufacturing method which concerns has gas permeability (open bubble), there is not a possibility that it lacks heat insulation.

本発明は上記に鑑みなされたもので、圧縮加工を省略して生産性の向上を図ることができ、しかも、断熱性を確保することのできる樹脂発泡体の製造方法、樹脂発泡体、断熱材料並びに回路板用材料を提供することを目的としている。   The present invention has been made in view of the above, and a method for producing a resin foam, a resin foam, and a heat insulating material that can improve productivity by omitting compression processing and can ensure heat insulation. An object of the present invention is to provide a circuit board material.

本発明においては上記課題を解決するため、イミド化反応が未完了の部分を残したポリイミド系樹脂に不活性ガスを加圧下で含浸させ、ポリイミド系樹脂に作用する圧力を開放し、その後、加熱してポリイミド系樹脂を発泡させることにより樹脂発泡体を形成することを特徴としている。   In the present invention, in order to solve the above-mentioned problems, an inert gas is impregnated under pressure into a polyimide resin that has left an incomplete imidation reaction, the pressure acting on the polyimide resin is released, and then heated. Then, a resin foam is formed by foaming a polyimide resin.

なお、ポリイミド系樹脂を溶液キャスト法により略シート状に製膜し、この製膜したポリイミド系樹脂に不活性ガスを加圧下で含浸させることができる。
また、樹脂発泡体を形成した後にイミド化反応を進行させることができる。
In addition, a polyimide resin can be formed into a substantially sheet shape by a solution casting method, and the formed polyimide resin can be impregnated with an inert gas under pressure.
In addition, the imidization reaction can proceed after the resin foam is formed.

また、本発明においては上記課題を解決するため、請求項1ないし4いずれかに記載の樹脂発泡体の製造方法により樹脂発泡体を製造したことを特徴としている。
また、本発明においては上記課題を解決するため、請求項1ないし4いずれかに記載の樹脂発泡体の製造方法により製造した樹脂発泡体を断熱材料に用いたことを特徴としている。
Moreover, in order to solve the said subject in this invention, the resin foam was manufactured by the manufacturing method of the resin foam in any one of Claim 1 thru | or 4. It is characterized by the above-mentioned.
Moreover, in order to solve the said subject in this invention, the resin foam manufactured by the manufacturing method of the resin foam in any one of Claim 1 thru | or 4 was used for the heat insulation material.

さらに、本発明においては上記課題を解決するため、請求項1ないし4いずれかに記載の樹脂発泡体の製造方法により製造した樹脂発泡体を回路板用材料に用いたことを特徴としている。   Furthermore, in order to solve the above-mentioned problems, the present invention is characterized in that a resin foam produced by the method for producing a resin foam according to any one of claims 1 to 4 is used as a circuit board material.

さらにまた、イミド化反応が未完了の部分を残したポリイミド系樹脂に超臨界流体を超臨界状態で含浸させ、ポリイミド系樹脂に作用する圧力を開放し、その後、加熱してポリイミド系樹脂を発泡させることにより樹脂発泡体を形成することを特徴としても良い。   Furthermore, the polyimide resin that has left the unfinished imidation reaction is impregnated with a supercritical fluid in a supercritical state, the pressure acting on the polyimide resin is released, and then heated to foam the polyimide resin. It is good also as forming the resin foam by making it.

ここで、特許請求の範囲におけるポリイミド系樹脂には、少なくともイミド化反応が未完了の部分を一部に残したポリイミド、ポリアミドイミド、ポリエーテルイミド等が含まれる。このポリイミド系樹脂には、上記各樹脂を変性した変性物、他の樹脂を混合した混合物が含まれる。さらに、樹脂発泡体、断熱材料、回路板用材料は、電気、電子、通信、建築、自動車等の分野で広く使用することができる。   Here, the polyimide resin in the claims includes at least a polyimide, a polyamideimide, a polyetherimide, or the like in which a portion where the imidization reaction has not been completed is left. This polyimide resin includes a modified product obtained by modifying each of the above resins and a mixture obtained by mixing other resins. Furthermore, the resin foam, the heat insulating material, and the circuit board material can be widely used in fields such as electricity, electronics, communication, architecture, and automobiles.

本発明によれば、圧縮作業を省略して生産性の向上を図ることができ、しかも、断熱性を維持向上させることができるという効果がある。
また、樹脂発泡体を形成した後に加熱してイミド化反応を進行させれば、耐熱性を向上させることができる。
According to the present invention, the productivity can be improved by omitting the compression work, and the heat insulation can be maintained and improved.
Moreover, if the imidation reaction is advanced by heating after forming the resin foam, the heat resistance can be improved.

以下、本発明の好ましい実施の形態を説明すると、本実施形態における樹脂発泡体の製造方法は、イミド化反応が未完了の部分を残したポリイミド系樹脂からなる成形体に不活性ガスを加圧下で含浸させ、この成形体のポリイミド系樹脂に作用する圧力を急激に開放するとともに、加熱してポリイミド系樹脂を発泡させることにより樹脂発泡体を形成し、その後、加熱によりイミド化反応を選択的に進行させ、製造した樹脂発泡体を建築物の断熱材料や電気電子機器の回路板用材料に適宜使用するようにしている。   Hereinafter, a preferred embodiment of the present invention will be described. A method for producing a resin foam in the present embodiment is that an inert gas is pressurized to a molded body made of a polyimide resin in which an imidation reaction is left unfinished. The pressure acting on the polyimide resin of this molded product is suddenly released, and the resin foam is formed by heating and foaming the polyimide resin, and then the imidization reaction is selectively performed by heating. The produced resin foam is appropriately used as a heat insulating material for buildings and a circuit board material for electric and electronic equipment.

ポリイミド系樹脂は、例えばポリイミド、ポリアミドイミド、ポリエーテルイミド等からなり、一般的に化学式1、2のような構造を有するとともに、化学式3、4のようなイミド化反応が未完了の部分を有しており、各種形状の成形体に形成される。   The polyimide resin is made of, for example, polyimide, polyamide imide, polyether imide, etc., and generally has a structure represented by chemical formulas 1 and 2 and a portion in which an imidation reaction such as chemical formulas 3 and 4 has not been completed. And formed into molded bodies of various shapes.

Figure 2007070377
Figure 2007070377

Figure 2007070377
Figure 2007070377

Figure 2007070377
Figure 2007070377

Figure 2007070377
Figure 2007070377

ポリイミドとポリアミドイミドは、耐熱性の観点からガラス転移点(Tg)がそれぞれ300℃以上、260℃以上であることが好ましい。ポリイミドは、芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られる分子内にポリアミド酸を有することが好ましい。また、ポリアミドイミドは、PMDA方法、酸クロリド法、あるいは脱フェノール法により得られる分子内にアミック酸を有することが好ましい。   Polyimide and polyamideimide preferably have a glass transition point (Tg) of 300 ° C. or higher and 260 ° C. or higher, respectively, from the viewpoint of heat resistance. It is preferable that a polyimide has a polyamic acid in the molecule | numerator obtained from aromatic tetracarboxylic dianhydride and aromatic diamine. The polyamideimide preferably has an amic acid in the molecule obtained by the PMDA method, the acid chloride method, or the dephenol method.

イミド化反応が未完了の部分を必要とするのは、イミド化の進行状況を調整することにより、発泡の状態を制御することができるからである。すなわち、イミド化が完結したポリイミドやポリアミドイミドは、発泡温度における貯蔵弾性率が高く、ガスの膨張を抑制して充分な発泡を得ることができない。また、貯蔵弾性率の低くなる領域が300℃以上と非常に高温であり、この領域では不活性ガスの急激な膨張により、破泡や気泡の合一を生じ、均一な樹脂発泡体を得ることができないからである。   The reason why the imidation reaction is not completed is that the foaming state can be controlled by adjusting the progress of imidization. That is, polyimide and polyamideimide having completed imidization have a high storage elastic modulus at the foaming temperature, and cannot sufficiently expand by suppressing gas expansion. In addition, the region where the storage elastic modulus is low is very high at 300 ° C. or higher, and in this region, the foaming of bubbles and coalescence of bubbles are caused by the rapid expansion of the inert gas, thereby obtaining a uniform resin foam. It is because it is not possible.

これに対し、ポリイミド系樹脂にイミド化反応が未完了の部分を残存させれば、充分かつ均一な樹脂発泡体を容易に得ることができる。イミド化の進行状況は、イミド化温度中に放置する時間により調整することができる。また、ポリイミド系樹脂の貯蔵弾性率は、良好な発泡を得る観点から105Pa〜108Paが好ましい。 On the other hand, a sufficient and uniform resin foam can be easily obtained by leaving a portion of the polyimide resin in which the imidization reaction has not been completed. The progress of imidization can be adjusted by the time of standing in the imidization temperature. Further, the storage elastic modulus of the polyimide resin is preferably 10 5 Pa to 10 8 Pa from the viewpoint of obtaining good foaming.

ポリイミド系樹脂の成形体は、キャスティング成形、押出成形、カレンダー成形、あるいは圧縮成形等の成形法により形成することができるが、押出成形、カレンダー成形、圧縮成形等の溶融成形では、成形中にイミド化反応が進行したり、イミド化の制御が困難であるため、イミド化の制御が容易なキャスティング成形が好ましい。   A molded body of polyimide resin can be formed by a molding method such as casting molding, extrusion molding, calender molding, or compression molding. In melt molding such as extrusion molding, calender molding, and compression molding, an imide is formed during molding. Casting molding that allows easy control of imidization is preferred because of the progress of the imidization reaction and the difficulty of controlling imidization.

このキャスティング成形により成形体を製造する場合には、先ず、ポリイミド系樹脂を極性溶剤に溶解し、その後、この溶液をダイスにより薄膜として金属製、樹脂製のエンドレスベルトあるいは二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリプロピレンフィルム等の支持体上に塗布し、乾燥し、剥離することにより、フィルムあるいはシートの成形体を製造することができる。極性溶剤としては、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン等の溶剤があげられる。   In the case of producing a molded body by this casting, first, a polyimide resin is dissolved in a polar solvent, and then the solution is made into a thin film with a die, made of metal, a resin endless belt or a biaxially stretched polyethylene terephthalate film, A coated body of a film or a sheet can be produced by coating on a support such as a biaxially stretched polypropylene film, drying and peeling. Examples of the polar solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, and γ-butyrolactone.

押出成形により成形体を製造する場合には、単軸押出機や二軸押出機にTダイスあるいは丸ダイスを取り付けた成形設備でポリイミド系樹脂を溶融混練して押出し、次いで引き取りロールにより引き取れば、フィルムあるいはシートの成形体を製造することができる。   In the case of producing a molded body by extrusion molding, if a polyimide resin is melt-kneaded and extruded in a molding facility in which a T-die or a round die is attached to a single-screw extruder or a twin-screw extruder, and then taken out by a take-up roll, A molded body of a film or sheet can be produced.

カレンダー成形により成形体を製造する場合には、逆L型、L型、直立3本型、直立2本型、傾斜2本型、Z型、傾斜Z型等のカレンダー装置を使用することができ、ポリイミド系樹脂をカレンダーロールにより圧延することにより、フィルム、シート、板形の成形体を製造することができる。   When manufacturing a molded body by calender molding, calendar devices such as inverted L type, L type, upright three type, upright two type, inclined two type, Z type and inclined Z type can be used. By rolling a polyimide resin with a calender roll, a film, sheet, or plate-shaped molded body can be produced.

圧縮成形により成形体を製造する場合には、ポリイミド系樹脂を融点以上の温度に加熱した金型内に充填し、加熱圧縮すれば、板形の成形体を製造することができる。また、ポリイミド系樹脂を一旦ミキシングロールで溶融混練し、融点以上に加熱した金型内に溶融混練物を充填すれば、板形の成形体を得ることもできる。   When a molded body is produced by compression molding, a plate-shaped molded body can be produced by filling a polyimide resin in a mold heated to a temperature equal to or higher than the melting point and heating and compressing. Moreover, if a polyimide resin is once melt-kneaded with a mixing roll and the melt-kneaded material is filled in a mold heated to a melting point or higher, a plate-shaped molded body can be obtained.

上記の方法により得られたポリイミド系樹脂製の成形体は、発泡成形を行える範囲内で熱処理し、イミド化して使用することができる。イミド化の熱処理は、ポリイミド系樹脂製の成形体の収縮を制限して行うことが望ましい。これは、自由収縮で乾燥させた場合には、部分収縮が起こるため、厚み斑となったり、さらには成形体の平面性が損なわれるおそれがあるからである。収縮を制限しつつ熱処理するには、例えばテンター乾燥機や金属枠に挟んで熱処理を行なえば良い。   The molded body made of polyimide resin obtained by the above method can be used after being heat-treated and imidized within a range where foam molding can be performed. The heat treatment for imidization is desirably performed by limiting the shrinkage of the molded body made of polyimide resin. This is because, when dried by free shrinkage, partial shrinkage occurs, which may result in thickness unevenness and further damage the flatness of the molded body. In order to perform the heat treatment while restricting the shrinkage, for example, the heat treatment may be performed with a tenter dryer or a metal frame.

成形体には、本発明の特性を損なわない範囲で無機充填剤、有機充填剤、電磁波吸収剤、熱伝導性粒子、紫外線吸収剤、熱安定剤、酸化防止剤、延伸助剤、あるいは滑剤等の添加剤を添加することができる。また、成形体の厚みは、特に限定されるものではないが、5〜5000μm以下が好ましい。   In the molded body, an inorganic filler, an organic filler, an electromagnetic wave absorber, a heat conductive particle, an ultraviolet absorber, a heat stabilizer, an antioxidant, a stretching aid, a lubricant, etc., as long as the characteristics of the present invention are not impaired. Additives can be added. Moreover, the thickness of a molded object is although it does not specifically limit, 5-5000 micrometers or less are preferable.

不活性ガスとしては、窒素、二酸化炭素、ヘリウム、アルゴン等があげられるが、ポリイミド系樹脂中への含浸量を増大させたり、含浸速度を速める状態の作りやすさの観点から二酸化炭素が好ましい。この不活性ガスの含浸の条件としては、常温やそれ以上であれば良いが、含浸速度、含浸量、圧力開放により形成される発泡核の数、気泡径、気泡径の均一性の観点から常温以上、5MPa以上、より好ましくは二酸化炭素が超臨界状態となる31℃以上、7.4MPa以上が良い。また、この段階でのイミド化を進行させないため、200℃以下、高圧ガス取り扱いの安全性から30MPa以下が良い。   Examples of the inert gas include nitrogen, carbon dioxide, helium, and argon. Carbon dioxide is preferable from the viewpoint of increasing the amount of impregnation into the polyimide resin or making the impregnation speed easy. The conditions for impregnation of the inert gas may be normal temperature or higher, but normal temperature from the viewpoint of impregnation speed, amount of impregnation, number of foam nuclei formed by releasing pressure, bubble diameter, and uniformity of bubble diameter. As described above, 5 MPa or more, more preferably 31 ° C. or more and 7.4 MPa or more where carbon dioxide is in a supercritical state. Further, in order not to proceed with imidization at this stage, 200 MPa or less and 30 MPa or less are preferable in view of safety in handling high-pressure gas.

超臨界状態とは、ガスの種類で定まった温度、及び圧力(臨界点)以上になると、超臨界流体の生じる状態をいい、換言すれば、臨界点以上における物質の状態をいう。例えば二酸化炭素の場合には、臨界温度が31.0℃、臨界圧力が7.4MPa、窒素の場合には、臨界温度が−147.0℃、臨界圧力が3.4MPaである。超臨界流体は、気体と液体の中間の性質を有し、液体並の高密度、気体並の拡散性(溶融樹脂中への溶解性)を併せ持つ流体である。このため、超臨界流体を使用すれば、ポリイミド系樹脂中への含浸速度が気体状態のガス等よりも早くなり、実に好ましい。   The supercritical state refers to a state where a supercritical fluid is generated when the temperature and pressure (critical point) determined by the type of gas are exceeded, in other words, the state of a substance above the critical point. For example, in the case of carbon dioxide, the critical temperature is 31.0 ° C. and the critical pressure is 7.4 MPa, and in the case of nitrogen, the critical temperature is −147.0 ° C. and the critical pressure is 3.4 MPa. A supercritical fluid is a fluid having properties intermediate between a gas and a liquid, and having both a high density similar to a liquid and a diffusivity (solubility in a molten resin) similar to a gas. For this reason, if a supercritical fluid is used, the impregnation rate into the polyimide resin is faster than that of gas in a gaseous state, which is actually preferable.

不活性ガスの含浸時間は、特に限定されるものではなく、適宜変更すれば、発泡倍率や発泡状態を制御することも可能である。すなわち、含浸時間を短縮すれば、樹脂発泡体の熱伝導率や誘電率の調整が可能となる。また、ガス含浸量が0〜飽和状態までの間で含浸時間を任意に選択することにより、発泡倍率を調整することができ、これにより表層のみ発泡した樹脂発泡体を作成することもできる。   The impregnation time of the inert gas is not particularly limited, and the foaming ratio and the foaming state can be controlled by appropriately changing the impregnation time. That is, if the impregnation time is shortened, the thermal conductivity and dielectric constant of the resin foam can be adjusted. In addition, the foaming ratio can be adjusted by arbitrarily selecting the impregnation time between the amount of gas impregnation and 0 to the saturated state, whereby a resin foam in which only the surface layer is foamed can be produced.

ポリイミド系樹脂に作用する圧力は、1MPa/秒以上の速度で急激に開放されるが、この圧力の急激に開放に伴う熱力学的不安定性の誘発により発泡核が形成され、ポリイミド系樹脂と不活性ガスの混合物が得られる。1MPa/秒以上の速度を要するのは、1MPa/秒未満の場合には、発泡核の数が少なくなり、気泡が大きく不均一になるからである。圧力の開放速度は速ければ速いほど良い。   The pressure acting on the polyimide resin is suddenly released at a rate of 1 MPa / second or more, but foaming nuclei are formed by the induction of thermodynamic instability accompanying the sudden release of this pressure, and the polyimide resin does not react. A mixture of active gases is obtained. The reason why a speed of 1 MPa / second or more is required is that when it is less than 1 MPa / second, the number of foam nuclei is reduced, and the bubbles are greatly non-uniform. The faster the pressure release speed, the better.

ポリイミド系樹脂と不活性ガスの混合物が得られたら、これを加熱すれば、発泡核を基点としたガスの膨張が生じ、気泡が成長して樹脂発泡体を製造することができる。加熱温度は、必要とする発泡倍率や気泡径により選択すれば良いが、樹脂の貯蔵弾性率が105Pa〜108Paになる領域の温度が好ましい。これは、105Pa未満になる高温の場合には、ガスの急激な膨張により破泡、気泡の合一が生じ、均一な樹脂発泡体を得られないからである。また、108Paを超える場合には、ガスの膨張が妨げられ、発泡不足となるからである。 When a mixture of the polyimide resin and the inert gas is obtained, if this is heated, the gas expands with the foaming nucleus as a starting point, and the bubbles grow to produce a resin foam. The heating temperature may be selected depending on the required expansion ratio and cell diameter, but the temperature in the region where the storage elastic modulus of the resin is 10 5 Pa to 10 8 Pa is preferable. This is because, at a high temperature of less than 10 5 Pa, bubble breakage and bubble coalescence occur due to rapid expansion of the gas, and a uniform resin foam cannot be obtained. Further, if it exceeds 10 8 Pa, gas expansion is hindered, resulting in insufficient foaming.

樹脂発泡体に耐熱性が必要な場合には、発泡後の加熱によりイミド化反応を進行させて完全にすれば良い。   When heat resistance is required for the resin foam, the imidization reaction may be advanced by heating after foaming to complete the resin foam.

上記方法によれば、適正な発泡倍率を得るための圧縮作業が不要となり、生産性の向上を図ることができる。また、樹脂発泡体に優れた断熱性を付与することもできる。さらに、耐熱性のある均一微細な独立気泡を有する樹脂発泡体を製造することができ、280℃を超える耐熱性を要する断熱材、低誘電率・ハンダリフロー耐熱を必要とする回路板用材料の提供が可能となる。   According to the above method, a compression operation for obtaining an appropriate foaming ratio is not necessary, and productivity can be improved. Moreover, the heat insulation excellent in the resin foam can also be provided. Furthermore, it is possible to produce a resin foam having heat-resistant uniform fine closed cells, a heat insulating material that requires heat resistance exceeding 280 ° C., and a circuit board material that requires low dielectric constant and solder reflow heat resistance. Provision is possible.

以下、本発明に係る樹脂発泡体の製造方法、樹脂発泡体、断熱材料並びに回路板用材料の実施例を比較例と共に説明する。
実施例1、2、3と比較例1、2の樹脂発泡体をそれぞれ製造してその貯蔵弾性率、発泡倍率、気泡の生成状態、表面性、イミド化率、熱伝導率、及び誘電率等を測定し、その結果を表1等にまとめた。
Examples of the method for producing a resin foam, the resin foam, the heat insulating material, and the circuit board material according to the present invention will be described below together with comparative examples.
The resin foams of Examples 1, 2, and 3 and Comparative Examples 1 and 2 were produced, respectively, and their storage elastic modulus, expansion ratio, bubble generation state, surface property, imidization rate, thermal conductivity, dielectric constant, etc. And the results are summarized in Table 1.

貯蔵弾性率(E´)
幅7mm、長さ32mmの試験片と粘弾性アナライザー〔レオメトリック社製 RSA−11〕とを用い、振動周波数1Hz、昇温速度5℃/分、加重100gの条件で測定した。
発泡倍率
樹脂発泡体の密度(ρf)を水中置換法により測定し、発泡前の成形体の密度(ρ)との比ρ/ρfで算出した。
Storage elastic modulus (E ')
Using a test piece having a width of 7 mm and a length of 32 mm and a viscoelasticity analyzer [RSA-11 manufactured by Rheometric Co., Ltd.], the measurement was performed under the conditions of a vibration frequency of 1 Hz, a heating rate of 5 ° C./min, and a load of 100 g.
Foaming ratio The density (ρ f ) of the resin foam was measured by an underwater substitution method, and was calculated as a ratio ρ / ρ f with the density (ρ) of the molded body before foaming.

気泡の生成状態
樹脂発泡体の断面を走査型電子顕微鏡〔日本電子社製 JSM−5300LV〕で写真撮影し、目視によりA、B、Cの評価基準で評価した。
A: 均一(気泡径が約30μmであった)
B: 不均一(気泡径が数μm〜数十μmの気泡が混在し、気泡数が少なく、気泡の生成が
まばらであった)
C: 不均一(破泡や気泡の合一で生成した、気泡径が数mmの巨大気泡が混在し、気泡数
がごく僅かであり、気泡の生成がまばらであった)
Formation state of bubbles The cross section of the resin foam was photographed with a scanning electron microscope [JSM-5300LV, manufactured by JEOL Ltd.] and visually evaluated according to the evaluation criteria of A, B, and C.
A: Uniform (bubble diameter was about 30 μm)
B: Non-uniform (Bubble diameter was several μm to several tens of μm, the number of bubbles was small, and the generation of bubbles was sparse.)
C: Heterogeneous (a large number of bubbles with a bubble diameter of several millimeters were generated by the combination of broken bubbles and bubbles, the number of bubbles was very small, and the generation of bubbles was sparse)

表面性
樹脂発泡体の表面を目視により○、×の評価基準で評価した。
○: 樹脂発泡体の表面に膨れ等がなく、未発泡体と同等の表面を有していた
×: 樹脂発泡体の表面に数百μm〜数mmの巨大な膨れが認められた
Surface property The surface of the resin foam was visually evaluated according to the evaluation criteria of ○ and ×.
○: The surface of the resin foam did not swell and had a surface equivalent to that of the unfoamed body. ×: A huge swell of several hundred μm to several mm was observed on the surface of the resin foam.

イミド化率
フィルム化前のポリアミドイミド樹脂、及びポリアミドイミド樹脂フィルムの赤外線吸収スペクトル〔センサーテクノロジーズ社製 赤外分光分析装置マイクロATR〕を全反射吸収測定法で測定し、イミドカルボニル基の対称伸縮振動帯(1780cm-1、平行2色性)と、内部標準としてベンゼン間骨格伸縮振動体(1500cm-1、平行2色性)との吸光度比A1780/A1500で評価した。吸光度比が一定となったときにイミド化が完結した。
Imidization rate Polyamideimide resin before film formation, and infrared absorption spectrum of the polyamideimide resin film [Infrared spectroscopic analyzer Micro ATR manufactured by Sensor Technologies, Ltd.] are measured by total reflection absorption measurement method, and symmetric stretching vibration of imidecarbonyl group Evaluation was made at an absorbance ratio A 1780 / A 1500 of a band (1780 cm −1 , parallel dichroism) and an inter-benzene skeleton stretching vibration body (1500 cm −1 , parallel dichroism) as an internal standard. The imidization was completed when the absorbance ratio became constant.

イミド化率は以下の式により求めた。
イミド化率=X−Y/Z−Y×100
X: ポリアミドイミド樹脂フィルムの吸光度比A1780/A1500
Y: フィルム化前のポリアミドイミド樹脂の吸光度比A1780/A1500
Y=0.08
Z: イミド化が完結したポリアミドイミド樹脂フィルムの吸光度比A1780/A1500
Z=0.23
The imidization rate was calculated | required by the following formula | equation.
Imidation ratio = XY / ZY × 100
X: Absorbance ratio of polyamideimide resin film A 1780 / A 1500
Y: Absorbance ratio A 1780 / A 1500 of polyamideimide resin before film formation
Y = 0.08
Z: Absorbance ratio A 1780 / A 1500 of the polyamideimide resin film that has been imidized completely
Z = 0.23

熱伝導率
迅速熱伝導率計〔京都電子工業社製、QTM−500〕を用い、基準物質との比較により求めた。基準物質は、発泡ポリエチレン(熱伝導率:0.0357W/mK)、シリコーンゴム(熱伝導率:0.238W/mK)、及び石英ガラス(熱伝導率:1.409W/mK)の3種類を使用した。
誘電率
RFインピーダンスマテリアルアナライザー〔ヒューレットパッカード社製、HP4291A〕を用いて測定した。
Thermal conductivity Using a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.), the thermal conductivity was determined by comparison with a reference material. There are three types of reference materials: expanded polyethylene (thermal conductivity: 0.0357 W / mK), silicone rubber (thermal conductivity: 0.238 W / mK), and quartz glass (thermal conductivity: 1.409 W / mK). used.
Dielectric constant Measured using an RF impedance material analyzer (Hewlett Packard, HP4291A).

実施例1
先ず、ポリアミドイミド樹脂100質量部を固形分濃度が30質量%となるようにN−メチル−2−ピロリドン中に溶解してポリアミドイミド樹脂溶液を調製し、このポリアミドイミド樹脂溶液を、乾燥後の厚さが100μmとなるようバーコート法で厚さ100μmの二軸延伸ポリエチレンテレフタレートフィルム上に塗布し、150℃に加熱した熱風オーブン中に1.5時間放置して乾燥させた。
Example 1
First, a polyamide-imide resin solution is prepared by dissolving 100 parts by mass of polyamide-imide resin in N-methyl-2-pyrrolidone so that the solid content concentration is 30% by mass. The film was coated on a biaxially stretched polyethylene terephthalate film having a thickness of 100 μm by a bar coating method so as to have a thickness of 100 μm, and left to dry in a hot air oven heated to 150 ° C. for 1.5 hours.

熱風オーブンで乾燥させた後、常温まで冷却して二軸延伸ポリエチレンテレフタレートフィルムから剥離し、平均厚さが96μmの成形体であるポリアミドイミド樹脂フィルムを得た。ポリアミドイミド樹脂フィルムを得たら、その吸光度比A1780/A1500と貯蔵弾性率をそれぞれ測定し、図1に貯蔵弾性率を示した。ポリアミドイミド樹脂フィルムの吸光度比A1780/A1500は0.13であり、イミド化率は33%であった。 After drying in a hot air oven, it was cooled to room temperature and peeled off from the biaxially stretched polyethylene terephthalate film to obtain a polyamideimide resin film that was a molded article having an average thickness of 96 μm. When a polyamideimide resin film was obtained, its absorbance ratio A 1780 / A 1500 and storage elastic modulus were measured, and the storage elastic modulus is shown in FIG. The absorbance ratio A 1780 / A 1500 of the polyamideimide resin film was 0.13, and the imidization ratio was 33%.

なお、フィルム化前のポリアミドイミド樹脂の吸光度比A1780/A1500は、0.08であり、イミド化が完結したポリアミドイミド樹脂フィルムの吸光度比A1780/A1500は、0.23であった。 Incidentally, the absorbance ratio A 1780 / A 1500 of a film before the polyamide-imide resin is 0.08, absorbance ratio A 1780 / A 1500 polyamide-imide resin film imidization is complete was 0.23 .

次いで、ポリアミドイミド系樹脂フィルムを20cm×20cmに切り出して質量を測定し、耐圧容器中に封入して温度40℃、圧力8MPaの超臨界状態の二酸化炭素中に1時間静置し、二酸化炭素を含浸させた。二酸化炭素を含浸させたら、直ちにポリアミドイミド系樹脂フィルムの質量を測定し、二酸化炭素の含浸量を測定してその結果を表1にまとめた。   Next, the polyamideimide resin film is cut into 20 cm × 20 cm, and the mass is measured. The polyamideimide resin film is sealed in a pressure vessel, and left in supercritical carbon dioxide at a temperature of 40 ° C. and a pressure of 8 MPa for 1 hour. Impregnated. Immediately after impregnation with carbon dioxide, the mass of the polyamide-imide resin film was measured, the amount of carbon dioxide impregnation was measured, and the results are summarized in Table 1.

次いで、二酸化炭素を含浸させたポリアミドイミド系樹脂フィルムを温度160℃に加熱したオイルバス中に1分間浸漬、発泡させ、樹脂発泡体を製造するとともに、発泡倍率を測定してその結果を表1にまとめた。得られた発泡体の密度は0.39g/cm3であった。
なお、ポリアミドイミド樹脂の密度は、1.29g/cm3であった。また、樹脂発泡体の断面を走査型電子顕微鏡で写真撮影し、図2とした。
Next, the polyamideimide resin film impregnated with carbon dioxide was immersed in an oil bath heated to a temperature of 160 ° C. for 1 minute and foamed to produce a resin foam, and the foaming ratio was measured. Summarized in The density of the obtained foam was 0.39 g / cm 3 .
The density of the polyamideimide resin was 1.29 g / cm 3 . Further, a cross-section of the resin foam was photographed with a scanning electron microscope to obtain FIG.

実施例2
実施例1で得られたポリアミドイミド系樹脂フィルムを金属製枠に固定して温度260℃の熱風オーブン中に30分間放置し、得られたポリアミドイミド樹脂フィルムの吸光度比A1780/A1500及び貯蔵弾性率をそれぞれ測定し、図3に貯蔵弾性率を示した。ポリアミドイミド樹脂フィルムの吸光度比A1780/A1500は0.15であり、イミド化率は47%であった。
Example 2
The polyamideimide resin film obtained in Example 1 was fixed to a metal frame and left in a hot air oven at a temperature of 260 ° C. for 30 minutes. The absorbance ratio A 1780 / A 1500 of the obtained polyamideimide resin film and storage were obtained. Each elastic modulus was measured, and the storage elastic modulus is shown in FIG. The absorbance ratio A 1780 / A 1500 of the polyamideimide resin film was 0.15, and the imidization ratio was 47%.

次いで、得られたポリアミドイミドフィルム樹脂フィルムを20cm×20cmに切り出してその質量を測定し、耐圧容器中に封入して温度60℃、圧力10MPaの超臨界状態の二酸化炭素中に30分間静置し、二酸化炭素を含浸させた。こうして二酸化炭素を含浸させたら、直ちにポリアミドイミド系樹脂フィルムの質量を測定し、二酸化炭素含浸量を測定してその結果を表1にまとめた。   Next, the obtained polyamideimide film resin film was cut out to 20 cm × 20 cm, and its mass was measured, sealed in a pressure vessel, and left in a supercritical carbon dioxide at a temperature of 60 ° C. and a pressure of 10 MPa for 30 minutes. Impregnated with carbon dioxide. When carbon dioxide was impregnated in this way, the mass of the polyamide-imide resin film was immediately measured, the amount of carbon dioxide impregnation was measured, and the results are summarized in Table 1.

次いで、二酸化炭素を含浸させたポリアミドイミド系樹脂フィルムを温度200℃に加熱した隙間0.2mmに金属製金型に1分間入れ、発泡させて樹脂発泡体を製造し、発泡倍率を測定してその結果を表1にまとめた。得られた発泡体の密度は0.47g/cm3であった。なお、ポリアミドイミド樹脂の密度は、1.32g/cm3であった。 Next, a polyamide-imide resin film impregnated with carbon dioxide was placed in a metal mold for 1 minute in a gap of 0.2 mm heated to a temperature of 200 ° C. and foamed to produce a resin foam, and the expansion ratio was measured. The results are summarized in Table 1. The density of the obtained foam was 0.47 g / cm 3 . The density of the polyamideimide resin was 1.32 g / cm 3 .

実施例3
実施例2で得られたポリアミドイミド系樹脂フィルムを金属製枠に固定して温度315℃の熱風オーブン中に10分間放置し、ポリアミドイミド樹脂フィルムの吸光度比A1780/A1500及び貯蔵弾性率をそれぞれ測定し、図4に貯蔵弾性率を示した。ポリアミドイミド樹脂フィルムの吸光度比A1780/A1500は0.20であり、イミド化率は80%であった。
Example 3
The polyamideimide resin film obtained in Example 2 was fixed to a metal frame and left in a hot air oven at a temperature of 315 ° C. for 10 minutes, and the absorbance ratio A 1780 / A 1500 and the storage elastic modulus of the polyamideimide resin film were determined. Each was measured, and the storage elastic modulus is shown in FIG. The absorbance ratio A 1780 / A 1500 of the polyamideimide resin film was 0.20, and the imidization ratio was 80%.

次いでポリアミドイミドフィルム樹脂フィルムを20cm×20cmに切り出してその質量を測定し、耐圧容器中に封入して温度25℃、圧力6MPaの超臨界状態の二酸化炭素中に3時間静置し、二酸化炭素を含浸させた。含浸後、直ちにポリアミドイミド系樹脂フィルムの質量を測定し、二酸化炭素含浸量を測定してその結果を表1にまとめた。   Next, the polyamideimide film resin film is cut into 20 cm × 20 cm, the mass thereof is measured, sealed in a pressure vessel, and left in supercritical carbon dioxide at a temperature of 25 ° C. and a pressure of 6 MPa for 3 hours. Impregnated. Immediately after the impregnation, the mass of the polyamide-imide resin film was measured, the amount of carbon dioxide impregnation was measured, and the results are summarized in Table 1.

次いで、二酸化炭素を含浸させたポリアミドイミド系樹脂フィルムを温度300℃に加熱した隙間0.2mmに金属製金型に1分間入れ、発泡させて樹脂発泡体を製造し、発泡倍率を測定してその結果を表1にまとめた。得られた樹脂発泡体の密度は0.55g/cm3であった。なお、ポリアミドイミド樹脂の密度は、1.34g/cm3であった。 Next, a polyamide-imide resin film impregnated with carbon dioxide was placed in a metal mold for 1 minute in a gap of 0.2 mm heated to a temperature of 300 ° C. and foamed to produce a resin foam, and the foaming ratio was measured. The results are summarized in Table 1. The density of the obtained resin foam was 0.55 g / cm 3 . The density of the polyamideimide resin was 1.34 g / cm 3 .

比較例1
実施例2で得られたポリアミドイミド系樹脂フィルムを金属製枠に固定して温度315℃の熱風オーブン中に1時間放置し、完全にイミド化させた。得られたポリアミドイミド樹脂フィルムの吸光度比A1780/A1500及び貯蔵弾性率をそれぞれ測定し、貯蔵弾性率の測定結果を図5に示した。ポリアミドイミド樹脂フィルムの吸光度比A1780/A1500は0.23であり、イミド化率は100%であった。
Comparative Example 1
The polyamideimide resin film obtained in Example 2 was fixed to a metal frame and left in a hot air oven at a temperature of 315 ° C. for 1 hour to completely imidize it. The absorbance ratio A 1780 / A 1500 and the storage elastic modulus of the obtained polyamideimide resin film were measured, and the measurement results of the storage elastic modulus are shown in FIG. The absorbance ratio A 1780 / A 1500 of the polyamideimide resin film was 0.23, and the imidization ratio was 100%.

ポリアミドイミド系樹脂フィルムを20cm×20cmに切り出してその質量を測定し、耐圧容器中に封入して温度40℃、圧力8MPaの超臨界状態の二酸化炭素中に1時間静置し、二酸化炭素を含浸させた。含浸後、直ちにポリアミドイミド系樹脂フィルムの質量を測定し、二酸化炭素含浸量を測定してその結果を表1にまとめた。また、樹脂発泡体の断面を走査型電子顕微鏡で写真撮影し、図6とした。   A polyamide-imide resin film is cut into a 20 cm × 20 cm, its mass is measured, sealed in a pressure vessel, and left in supercritical carbon dioxide at a temperature of 40 ° C. and a pressure of 8 MPa for 1 hour, impregnated with carbon dioxide. I let you. Immediately after the impregnation, the mass of the polyamide-imide resin film was measured, the amount of carbon dioxide impregnation was measured, and the results are summarized in Table 1. Further, a cross-section of the resin foam was photographed with a scanning electron microscope to obtain FIG.

比較例2
先ず、ポリアミドイミド系樹脂をミキシングロールにより温度340℃で5分間溶融混練し、ミキシングロールからポリアミドイミド樹脂を剥離し、ポリアミドイミド樹脂混練物を作製した。こうしてポリアミドイミド樹脂混練物を作製したら、このポリアミドイミド樹脂混練物を冷却して金属製の金型に入れ、350℃で予熱し、引き続き350℃、20MPaの圧力を加えて5分間圧縮成形し、20MPaの圧力を加えた状態で常温により冷却し、厚み530μmの板状成形物を作製した。ポリアミドイミド樹脂の板状成形物の貯蔵弾性率を図7に示した。
Comparative Example 2
First, a polyamide-imide resin was melt-kneaded with a mixing roll at a temperature of 340 ° C. for 5 minutes, and the polyamide-imide resin was peeled off from the mixing roll to prepare a polyamide-imide resin kneaded product. After preparing the polyamideimide resin kneaded material in this way, the polyamideimide resin kneaded material is cooled and placed in a metal mold, preheated at 350 ° C., and then compression molded for 5 minutes by applying a pressure of 350 ° C. and 20 MPa, A plate-shaped molded product having a thickness of 530 μm was prepared by cooling at room temperature with a pressure of 20 MPa applied. The storage elastic modulus of the plate-like molded product of polyamideimide resin is shown in FIG.

次いで、得られたポリアミドイミドフィルム樹脂の板状成形物を20cm×20cmに切り出してその質量を測定し、耐圧容器中に封入して温度25℃、圧力6MPaの二酸化炭素中に3日間静置し、二酸化炭素を含浸させた。含浸後、直ちにポリアミドイミド樹脂の板状成形物の質量を測定し、二酸化炭素含浸量を測定してその結果を表1にまとめた。   Next, the obtained plate-like molded product of polyamideimide film resin was cut into 20 cm × 20 cm, and its mass was measured. The mass was sealed in a pressure-resistant container and allowed to stand in carbon dioxide at a temperature of 25 ° C. and a pressure of 6 MPa for 3 days. Impregnated with carbon dioxide. Immediately after impregnation, the mass of the polyamide-imide resin plate-like molded product was measured, the amount of carbon dioxide impregnation was measured, and the results are summarized in Table 1.

そして、二酸化炭素を含浸させたポリアミドイミド系樹脂フィルムを温度300℃に加熱した金属製金型に1分間入れ、発泡させてその結果を表1にまとめた。   The polyamideimide resin film impregnated with carbon dioxide was placed in a metal mold heated to a temperature of 300 ° C. for 1 minute and foamed, and the results are summarized in Table 1.

Figure 2007070377
Figure 2007070377

本発明に係る樹脂発泡体の製造方法の実施例1における貯蔵弾性率を示すグラフである。It is a graph which shows the storage elastic modulus in Example 1 of the manufacturing method of the resin foam which concerns on this invention. 本発明に係る樹脂発泡体の製造方法の実施例1における樹脂発泡体の断面を示す写真である。It is a photograph which shows the cross section of the resin foam in Example 1 of the manufacturing method of the resin foam which concerns on this invention. 本発明に係る樹脂発泡体の製造方法の実施例2における貯蔵弾性率を示すグラフである。It is a graph which shows the storage elastic modulus in Example 2 of the manufacturing method of the resin foam which concerns on this invention. 本発明に係る樹脂発泡体の製造方法の実施例3における貯蔵弾性率を示すグラフである。It is a graph which shows the storage elastic modulus in Example 3 of the manufacturing method of the resin foam which concerns on this invention. 本発明に係る樹脂発泡体の製造方法の比較例1における貯蔵弾性率を示すグラフである。It is a graph which shows the storage elastic modulus in the comparative example 1 of the manufacturing method of the resin foam which concerns on this invention. 本発明に係る樹脂発泡体の製造方法の比較例1における樹脂発泡体の断面を示す写真である。It is a photograph which shows the cross section of the resin foam in the comparative example 1 of the manufacturing method of the resin foam which concerns on this invention. 本発明に係る樹脂発泡体の製造方法の比較例2における貯蔵弾性率を示すグラフである。It is a graph which shows the storage elastic modulus in the comparative example 2 of the manufacturing method of the resin foam which concerns on this invention.

Claims (6)

イミド化反応が未完了の部分を残したポリイミド系樹脂に不活性ガスを加圧下で含浸させ、ポリイミド系樹脂に作用する圧力を開放し、その後、加熱してポリイミド系樹脂を発泡させることにより樹脂発泡体を形成することを特徴とする樹脂発泡体の製造方法。   Resin by impregnating an inert gas under pressure to a polyimide resin that has left unfinished imidation reaction, releasing the pressure acting on the polyimide resin, and then heating to foam the polyimide resin A method for producing a resin foam, comprising forming a foam. ポリイミド系樹脂を溶液キャスト法により略シート状に製膜し、この製膜したポリイミド系樹脂に不活性ガスを加圧下で含浸させる請求項1記載の樹脂発泡体の製造方法。   The method for producing a resin foam according to claim 1, wherein a polyimide resin is formed into a substantially sheet shape by a solution casting method, and the formed polyimide resin is impregnated with an inert gas under pressure. 樹脂発泡体を形成した後にイミド化反応を進行させる請求項1又は2記載の樹脂発泡体の製造方法。   The method for producing a resin foam according to claim 1 or 2, wherein the imidization reaction is advanced after the resin foam is formed. 請求項1ないし3いずれかに記載の樹脂発泡体の製造方法により製造されたことを特徴とする樹脂発泡体。   A resin foam produced by the method for producing a resin foam according to claim 1. 請求項1ないし3いずれかに記載の樹脂発泡体の製造方法により製造した樹脂発泡体を用いたことを特徴とする断熱材料。   A heat insulating material using a resin foam produced by the method for producing a resin foam according to any one of claims 1 to 3. 請求項1ないし3いずれかに記載の樹脂発泡体の製造方法により製造した樹脂発泡体を用いたことを特徴とする回路板用材料。




A circuit board material using a resin foam produced by the method for producing a resin foam according to any one of claims 1 to 3.




JP2005255430A 2005-09-02 2005-09-02 Method for producing resin foam, resin foam, heat insulating material and circuit board material Pending JP2007070377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255430A JP2007070377A (en) 2005-09-02 2005-09-02 Method for producing resin foam, resin foam, heat insulating material and circuit board material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255430A JP2007070377A (en) 2005-09-02 2005-09-02 Method for producing resin foam, resin foam, heat insulating material and circuit board material

Publications (1)

Publication Number Publication Date
JP2007070377A true JP2007070377A (en) 2007-03-22

Family

ID=37932130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255430A Pending JP2007070377A (en) 2005-09-02 2005-09-02 Method for producing resin foam, resin foam, heat insulating material and circuit board material

Country Status (1)

Country Link
JP (1) JP2007070377A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055464A (en) * 1999-06-07 2001-02-27 Nitto Denko Corp Heat-resistant polymer foam and its production, and foam substrate
JP2004502850A (en) * 2000-07-08 2004-01-29 ユニヴァシティート トウェンテ Membrane and its use
JP2007056148A (en) * 2005-08-25 2007-03-08 Shin Etsu Polymer Co Ltd Manufacturing process of resin foamed body and resin foamed body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055464A (en) * 1999-06-07 2001-02-27 Nitto Denko Corp Heat-resistant polymer foam and its production, and foam substrate
JP2004502850A (en) * 2000-07-08 2004-01-29 ユニヴァシティート トウェンテ Membrane and its use
JP2007056148A (en) * 2005-08-25 2007-03-08 Shin Etsu Polymer Co Ltd Manufacturing process of resin foamed body and resin foamed body

Similar Documents

Publication Publication Date Title
JP4117986B2 (en) Heat resistant polymer foam, method for producing the same, and foam substrate
JP6865687B2 (en) Method for manufacturing polyimide film using particles with pores and polyimide film with low dielectric constant
JP5641042B2 (en) Porous polyimide membrane and method for producing the same
CN105778130B (en) A kind of high-intensity high heat-resistance polyimides microporous membrane and preparation method thereof
JP2014111788A (en) Polyimide film
JP2011508017A (en) Continuous production method of polyetherimide foam material and its manufactured article
KR20010050481A (en) Porous article and process for producing porous article
JP5723580B2 (en) Polyimide film
JP2002146085A (en) Method for producing porous polyimide and porous polyimide
CN104211980A (en) Low-dielectric-constant polyimide film and preparation method thereof
JP2011508014A (en) Low density and high density polyetherimide foam materials and articles containing the same
JP2007056148A (en) Manufacturing process of resin foamed body and resin foamed body
JP6403389B2 (en) Method for producing imide-based porous film and imide-based porous film
JP2007063380A (en) Method for producing polyimide precursor powder for expansion molding use
JP4794981B2 (en) Low dielectric polyimide film, method for producing the same, and laminate for wiring board
WO2017213167A1 (en) Graphite-sheet processed article and graphite-sheet processed article manufacturing method
JP2007070377A (en) Method for producing resin foam, resin foam, heat insulating material and circuit board material
JP2016194025A (en) Method for producing polyimide film
JPH05169526A (en) Thermal treatment of thermoplastic polyimide stretched film
JP2007077275A (en) Method for producing thermoplastic polyimide foam and thermoplastic polyimide foam
JP4557376B2 (en) Method for producing porous body and porous body
JP2001068608A (en) Heat conductor and electric and electronic equipment using the same
JP2005042055A (en) Foam-polyimide-composite, polyimide porous material and method for producing them
JP2005060606A (en) Method for producing porous membrane
JP2006327022A (en) Apparatus for manufacturing polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A02