JP2007063380A - Method for producing polyimide precursor powder for expansion molding use - Google Patents

Method for producing polyimide precursor powder for expansion molding use Download PDF

Info

Publication number
JP2007063380A
JP2007063380A JP2005250280A JP2005250280A JP2007063380A JP 2007063380 A JP2007063380 A JP 2007063380A JP 2005250280 A JP2005250280 A JP 2005250280A JP 2005250280 A JP2005250280 A JP 2005250280A JP 2007063380 A JP2007063380 A JP 2007063380A
Authority
JP
Japan
Prior art keywords
polyimide precursor
foam molding
precursor powder
polyimide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005250280A
Other languages
Japanese (ja)
Inventor
Ryoichi Sato
亮一 佐藤
Tatsuo Tsumiyama
龍男 積山
Shigeru Yamamoto
山本  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005250280A priority Critical patent/JP2007063380A/en
Publication of JP2007063380A publication Critical patent/JP2007063380A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing polyimide precursor powder for expansion molding capable of giving an expanded polyimide containing no surfactant and having good physical properties and also enabling mass production thereof. <P>SOLUTION: The method producing the polyimide precursor powder comprises spraying a surfactant-free polyimide precursor solution for expansion molding as liquid particles and making a spray drying at a drying temperature lower than the boiling point of a diluent in the solution. Specifically, this method comprises spraying a surfactant-free polyimide precursor solution for expansion molding as liquid particles and making a spray drying at a drying temperature lower than 40°C, wherein the solution consists of a mixed solution obtained from a tetracarboxylic acid diester, a diamine and methyl alcohol. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、発泡成形用ポリイミド前駆体粉末の製法に関し、さらに詳しくは大量生産が可能でしかも比較的均一な粒子径を有し界面活性剤を含有せず良好な発泡体を与え得る発泡成形用ポリイミド前駆体粉末の製法に関する。   The present invention relates to a process for producing a polyimide precursor powder for foam molding, and more particularly, for foam molding that can be mass-produced and that has a relatively uniform particle size and does not contain a surfactant and can provide a good foam. The present invention relates to a method for producing a polyimide precursor powder.

従来、合成樹脂発泡体としては、ポリウレタン系、ポリスチレン系、ポリオレフィン系の発泡体が広く使用されている。
しかし、これらの合成樹脂発泡体は耐熱性が低いため、耐熱性発泡体としてポリイミド系発泡体が種々検討されている(特許文献1、特許文献2)。
特に、ガラス転移温度が300℃以上のポリイミドからなる発泡ポリイミドが提案された(特許文献3)。
また、前記の発泡ポリイミドの発泡倍率を制御した発泡ポリイミドおよびその製法が提案された(特許文献4)。
一方、溶液から乾燥法によって粉末を得る方法として、加熱空気中に溶液を噴霧し乾燥して粉末を得る噴霧乾燥法(特許文献5)が知られている。
Conventionally, polyurethane-based, polystyrene-based, and polyolefin-based foams have been widely used as synthetic resin foams.
However, since these synthetic resin foams have low heat resistance, various polyimide foams have been studied as heat-resistant foams (Patent Documents 1 and 2).
In particular, a foamed polyimide composed of polyimide having a glass transition temperature of 300 ° C. or higher has been proposed (Patent Document 3).
Moreover, the foaming polyimide which controlled the expansion ratio of the said foaming polyimide and its manufacturing method were proposed (patent document 4).
On the other hand, as a method for obtaining a powder from a solution by a drying method, a spray drying method (Patent Document 5) is known in which a solution is sprayed in heated air and dried to obtain a powder.

特開平2−24326号公報Japanese Patent Laid-Open No. 2-24326 特開平4−211440号公報JP-A-4-21440 特開2002−012688号公報JP 2002-012688 A 特開2003−082100号公報Japanese Patent Laid-Open No. 2003-082100 特開平1−194901号公報JP-A-1-194901

しかし、これら公知文献に記載の発泡ポリイミドに用いられる発泡成形用ポリイミド前駆体粉末は、界面活性剤を含有するものであるため得られる発泡ポリイミドの物性、特に限界酸素指数などのポリイミド発泡体が本来有する耐熱性が低下するとか、エバポレ−タ−を用いて少量で得られるものであるため粉末を大量生産によって製造する場合には不向きであることが指摘されている。
また、前記の噴霧乾燥法では、100℃以上の温度での乾燥を必要とし、得られた粉末は発泡成形用には適さない。
However, the polyimide precursor powder for foam molding used in the foamed polyimide described in these known documents contains a surfactant, so that the properties of the resulting foamed polyimide, especially the polyimide foam such as the critical oxygen index, are inherently It has been pointed out that it is unsuitable for producing powders by mass production because the heat resistance of the powders is reduced or it is obtained in a small amount by using an evaporator.
Further, the spray drying method requires drying at a temperature of 100 ° C. or higher, and the obtained powder is not suitable for foam molding.

この発明の目的は、界面活性剤を含有せず良好な物性を有する発泡ポリイミドを与えることができ、しかも大量生産が可能である発泡成形用ポリイミド前駆体粉末の製法を提供することである。   An object of the present invention is to provide a process for producing a polyimide precursor powder for foam molding which can provide a foamed polyimide having no physical properties and having good physical properties and which can be mass-produced.

この発明は、界面活性剤を含有しない発泡成形用ポリイミド前駆体溶液を液体の粒子として噴霧し、溶液中の希釈剤の沸点未満の乾燥温度で噴霧乾燥することを特徴とする発泡成形用ポリイミド前駆体粉末の製法に関する。
また、この発明は、界面活性剤を含有しないテトラカルボン酸ジエステル、ジアミンおよびメチルアルコ−ルから得られる混合溶液からなる発泡成形用ポリイミド前駆体溶液を液体の粒子として噴霧し、40℃以下の乾燥温度で噴霧乾燥することを特徴とする発泡成形用ポリイミド前駆体粉末の製法に関する。
The present invention relates to a polyimide precursor for foam molding characterized by spraying a polyimide precursor solution for foam molding not containing a surfactant as liquid particles and spray drying at a drying temperature lower than the boiling point of the diluent in the solution. The present invention relates to a method for producing body powder.
The present invention also sprays a polyimide precursor solution for foam molding comprising a mixed solution obtained from a tetracarboxylic acid diester not containing a surfactant, a diamine and methyl alcohol as liquid particles, and is dried at 40 ° C. or lower. The present invention relates to a method for producing a polyimide precursor powder for foam molding characterized by spray drying at a temperature.

この発明の発泡成形用ポリイミド前駆体粉末の製法は、大量生産が可能でしかも比較的均一な粒子径を有し界面活性剤を含有せず良好な発泡ポリイミドを与え得る発泡成形用ポリイミド前駆体粉末の製造を可能とする。   The production method of the polyimide precursor powder for foam molding of the present invention is a polyimide precursor powder for foam molding that can be mass-produced and has a relatively uniform particle size and does not contain a surfactant and can provide a good foamed polyimide. It is possible to manufacture.

この発明の実施の形態を次に示す。
1)発泡成形用ポリイミド前駆体粉末が、10μm以下の一次粒子径である上記の発泡成形用ポリイミド前駆体粉末の製法。
2)ポリイミド前駆体溶液が、テトラカルボン酸ジエステル、ジアミンおよび希釈剤から得られる混合溶液からなる上記の発泡成形用ポリイミド前駆体粉末の製法。
3)ジアミンが、芳香族ジアミンとジアミン成分中0.1〜10モル%のジアミノシロキサンからなる上記の発泡成形用ポリイミド前駆体粉末の製法。
4)希釈剤が、アルコ−ルである上記の発泡成形用ポリイミド前駆体粉末の製法。
5)テトラカルボン酸ジエステルが、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物を50モル%以上含むテトラカルボン酸二無水物から導かれるものである上記の発泡成形用ポリイミド前駆体粉末の製法。
Embodiments of the present invention will be described below.
1) A process for producing the above-mentioned polyimide precursor powder for foam molding, wherein the polyimide precursor powder for foam molding has a primary particle size of 10 μm or less.
2) A process for producing the above polyimide precursor powder for foam molding, wherein the polyimide precursor solution is a mixed solution obtained from a tetracarboxylic acid diester, a diamine and a diluent.
3) A process for producing the above-mentioned polyimide precursor powder for foam molding, wherein the diamine comprises an aromatic diamine and 0.1 to 10 mol% of diaminosiloxane in the diamine component.
4) A process for producing the above-mentioned polyimide precursor powder for foam molding, wherein the diluent is alcohol.
5) The above-mentioned polyimide precursor for foam molding, wherein the tetracarboxylic acid diester is derived from a tetracarboxylic dianhydride containing 50 mol% or more of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. Body powder manufacturing method.

この発明におけるポリイミドを与えるポリイミド前駆体は、テトラカルボン酸成分、好適には芳香族テトラカルボン酸とその炭素数4以下の低級一級アルコ−ルのモノおよび/またはジエステルとの混合体であり、炭素数4以下の低級一級アルコ−ルによって一部モノエステル化および/またはジエステル化された芳香族テトラカルボン酸ジエステル、好適には芳香族テトラカルボン酸ジエステルとジアミン、好適には芳香族ジアミンとを、テトラカルボン酸成分に対してアミノ基総量が略2:1となる割合で反応させることによって得られる。 The polyimide precursor that gives the polyimide in this invention is a mixture of a tetracarboxylic acid component, preferably an aromatic tetracarboxylic acid and its mono- and / or diester of a lower primary alcohol having 4 or less carbon atoms. An aromatic tetracarboxylic acid diester partially monoesterified and / or diesterified with a lower primary alcohol having a number of 4 or less, preferably an aromatic tetracarboxylic acid diester and a diamine, preferably an aromatic diamine, It can be obtained by reacting the total amount of amino groups with the tetracarboxylic acid component at a ratio of about 2: 1.

前記のテトラカルボン酸成分として、2,3,3’、4’−ビフェニルテトラカルボン酸誘導体(以下、a−BPDA誘導体と略記することもある。)あるいは2,2’,3,3’−ビフェニルテトラカルボン酸誘導体(以下、i−BPDA誘導体と略記することもある。)が50%以上であることが好ましい。テトラカルボン酸成分として、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、s−BPDAと略記することもある)あるいは、ピロメリット酸二無水物(以下、PMDAと略記することもある)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAと略記することもある)、ビス(3,4−ジカルボキシフェニル)エ−テル二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,2−ビス(2,5−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)スルホン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシロキサン二無水物などの芳香族テトラカルボン酸二無水物をテトラカルボン酸成分100モル%中の0〜50モル%程度の量で、得られるポリイミドのTgの調整、発泡倍率(使用量が増大すると低下する)の調整などを目的として使用してもよい。Tgが大幅に変化しない限り一般的に使用されているテトラカルボン酸成分はすべて使用可能である。 As the tetracarboxylic acid component, 2,3,3 ′, 4′-biphenyltetracarboxylic acid derivative (hereinafter sometimes abbreviated as a-BPDA derivative) or 2,2 ′, 3,3′-biphenyl The tetracarboxylic acid derivative (hereinafter sometimes abbreviated as i-BPDA derivative) is preferably 50% or more. As the tetracarboxylic acid component, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes abbreviated as s-BPDA) or pyromellitic dianhydride (hereinafter abbreviated as PMDA). 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter sometimes abbreviated as BTDA), bis (3,4-dicarboxyphenyl) ether dianhydride 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,4,5-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,2-bis (2,5-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane Dianhydride, 1,1-bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane Aromatic tetracarboxylic dianhydrides such as dianhydrides in amounts of about 0 to 50 mol% in 100 mol% of tetracarboxylic acid components, adjustment of Tg of the resulting polyimide, expansion ratio (decreases as the amount used increases) May be used for the purpose of adjustment. Any commonly used tetracarboxylic acid component can be used as long as Tg does not change significantly.

前記のジアミン成分としては、ベンゼン環が2つ(2核)のジアミンまでを主成分としジアミノポリシロキサンと併用することが好ましく、これによって発泡ポリイミドのTg300℃以上を達成することが容易になる。多置換アミン成分は高温での発泡の収縮防止、発泡強度(発泡中に割れにくい)増大のために、必須なものではないが一部含まれている方が好ましい。ジアミノジシロキサンは界面活性剤的に作用し、発泡均一化のために0.1〜10モル%の範囲、特に0.2〜5モル%使用することが好ましい。少量では発泡が均一化しづらく、多量ではTg低下および熱安定性の低下をまねく。ジアミノポリシロキサンでも発泡の均一性は達成されるが海島構造をとり、高温下では分解しやすく耐熱性が低下し好ましくない。 As the diamine component, it is preferable to use a diaminopolysiloxane having a benzene ring having up to two (binuclear) diamine as a main component, and this makes it easy to achieve Tg of 300 ° C. or higher of the foamed polyimide. The multi-substituted amine component is not essential, but it is preferable that it is partially contained in order to prevent foam shrinkage at high temperatures and increase foam strength (hard to break during foaming). Diaminodisiloxane acts as a surfactant and is preferably used in the range of 0.1 to 10 mol%, particularly 0.2 to 5 mol% for uniform foaming. A small amount makes it difficult to make the foam uniform, and a large amount leads to a decrease in Tg and thermal stability. Even with diaminopolysiloxane, evenness of foaming is achieved, but it is not preferable because it has a sea-island structure and easily decomposes at high temperatures, resulting in a decrease in heat resistance.

前記のポリイミド前駆体は、好適には次の工程によって得ることができる。
すなわち、先ずテトラカルボン酸二無水物のハ−フエステルであるテトラカルボン酸ジエステルとジアミン、例えば、p−フェニレンジアミン(以下、PPDと略記することもある。)、4,4’−ジアミノジフェニルエ−テル(以下、ODAと略記することもある。)などの芳香族ジアミンを主とし、発泡均一化のための成分としてのジアミノジシロキサンおよびさらに必要ならばテトラアミノビフェニルのような分子内に3個以上のアミノ基を有するアミン化合物、例えば芳香族トリアミン化合物または芳香族テトラアミン化合物を高分子量のポリイミドとなるような組成比でエステル化溶媒、例えばメタノ−ル、エタノ−ル、n−プロパノ−ル、n−ブタノ−ルなどの低級一級アルコ−ル、好適にはメタノ−ルあるいはエタノ−ルと均一混合し、溶解する第一の工程からなる。この際に、各成分の濃度はジアミン類等の溶解度限界までは可能であるが、全量中の溶媒を除く固形分量は10%〜50%程度までである。前記の組成を有するポリイミドは、耐熱性および耐放射線性が良好である。
The polyimide precursor can be preferably obtained by the following steps.
That is, first, a tetracarboxylic acid diester which is a half ester of tetracarboxylic dianhydride and a diamine, for example, p-phenylenediamine (hereinafter sometimes abbreviated as PPD), 4,4′-diaminodiphenyl ether. It is mainly composed of aromatic diamines such as ter (hereinafter sometimes abbreviated as ODA), and 3 in the molecule such as diaminodisiloxane as a component for uniform foaming and, if necessary, tetraaminobiphenyl. An amine compound having an amino group as described above, for example, an aromatic triamine compound or an aromatic tetraamine compound in a composition ratio so as to become a high molecular weight polyimide, such as methanol, ethanol, n-propanol, Uniform with lower primary alcohols such as n-butanol, preferably methanol or ethanol It consists of the first step of mixing and dissolving. At this time, the concentration of each component is possible up to the solubility limit of diamines and the like, but the solid content excluding the solvent in the total amount is about 10% to 50%. The polyimide having the above composition has good heat resistance and radiation resistance.

この混合物には、1,2−ジメチルイミダゾ−ル、ベンズイミダゾ−ル、イソキノリン、置換ピリジンなどのイミド化触媒を加えてもよい。
また、他の公知の添加剤、例えば、無機フィラ−、無機あるいは有機顔料などを加えてもよい。
この発明においては、上記のようにして得られる発泡成形用ポリイミド前駆体溶液に界面活性剤を含有させないことが必要である。有機あるいは無機のいずれであっても界面活性剤を含有させることは発泡ポリイミドの特性が低下するため適当ではない。
To this mixture, an imidation catalyst such as 1,2-dimethylimidazole, benzimidazole, isoquinoline, substituted pyridine or the like may be added.
Further, other known additives such as inorganic fillers, inorganic or organic pigments may be added.
In the present invention, it is necessary that the foam precursor for polyimide molding obtained as described above does not contain a surfactant. Whether it is organic or inorganic, it is not appropriate to contain a surfactant because the properties of the foamed polyimide are deteriorated.

この発明においては、前記の発泡成形用ポリイミド前駆体溶液を液体の粒子として噴霧し、40℃以下の温度で噴霧乾燥して、発泡成形用ポリイミド前駆体粉末を製造する。
前記の噴霧乾燥に好適な装置として、例えば特開平8−299701号公報に記載された噴霧乾燥装置を挙げることができる。前記の発泡成形用ポリイミド前駆体溶液はポリイミド前駆体(固形分)の溶液中の割合が20〜60質量%であることが好ましく、特に発泡成形用ポリイミド前駆体溶液は、粘度(25℃)が1〜100cp、特に1〜60cpであることが好ましい。
前記の噴霧乾燥装置は、好適にはミストドライヤ−として藤崎電機株式会社から製造販売されている装置(例えばMDP−050)を使用することができる。
この発明においては、噴霧乾燥温度を溶液中の希釈剤の沸点未満とすることが必要であり、この温度より高い温度で噴霧乾燥すると、良好な発泡体が得られない。
In this invention, the polyimide precursor solution for foam molding is sprayed as liquid particles and spray-dried at a temperature of 40 ° C. or less to produce a polyimide precursor powder for foam molding.
As an apparatus suitable for the spray drying, for example, a spray drying apparatus described in JP-A-8-299701 can be exemplified. The ratio of the polyimide precursor solution for foam molding in the solution of the polyimide precursor (solid content) is preferably 20 to 60% by mass. In particular, the polyimide precursor solution for foam molding has a viscosity (25 ° C.). It is preferably 1 to 100 cp, particularly 1 to 60 cp.
As the spray drying apparatus, an apparatus (for example, MDP-050) manufactured and sold by Fujisaki Electric Co., Ltd. as a mist dryer can be used.
In the present invention, the spray drying temperature needs to be lower than the boiling point of the diluent in the solution, and if the spray drying is performed at a temperature higher than this temperature, a good foam cannot be obtained.

この発明の方法によって得られる発泡成形用ポリイミド前駆体粉末は、好適には平均粒子径が10μm以下で粒子径が揃っており、好適には20μm以上の粒径のものが5%以下、特に1%未満である。
この発明によれば、前記の発泡成形用ポリイミド前駆体粉末を連続的に製造することができる。
なお、前記の発泡成形用ポリイミド前駆体は、ジエステルとジアミンとが結合した塩である。従って、発泡成形用ポリイミド前駆体粉末中にはイミド化によって生成する(脱離する)約10〜20質量%のアルコ−ルと約5〜10質量%の水が含まれていることになる。
The polyimide precursor powder for foam molding obtained by the method of the present invention preferably has an average particle size of 10 μm or less and a uniform particle size, preferably 5 μm or less, particularly 1 %.
According to this invention, the said polyimide precursor powder for foam molding can be manufactured continuously.
The polyimide precursor for foam molding is a salt in which a diester and a diamine are bonded. Accordingly, the polyimide precursor powder for foam molding contains about 10 to 20% by mass of alcohol and about 5 to 10% by mass of water generated (desorbed) by imidization.

この発明の発泡成形用ポリイミド前駆体粉末は、好適には予備成形体であるグリ−ン体を作製する工程、例えば、室温での圧縮成形に行い、次いで、好適にはマイクロ波加熱によって加熱し、最終的には(Tg+α)℃の温度にて5〜60分間、好適には10分間程度加熱することによって、発泡ポリイミドを得ることができる。 The polyimide precursor powder for foam molding according to the present invention is preferably subjected to a step of producing a green body which is a preform, for example, compression molding at room temperature, and then preferably heated by microwave heating. Finally, the foamed polyimide can be obtained by heating at a temperature of (Tg + α) ° C. for 5 to 60 minutes, preferably about 10 minutes.

前記の予備成形体であるグリ−ン体の作製工程において、概略均一な状態のグリ−ン体であれば発泡時の均一化は達成できる。
また、前記のマイクロ波加熱による加熱においては、粉末重量当たりのマイクロ波出力を目安とし、例えば、100g/1kW程度で約1分で発泡を開始し、2〜3分で発泡は収束する。
上記発泡体はこの状態では非常に脆い発泡体であり、次いで熱風等の加熱により、200℃程度から徐々に昇温し(一応の目安として、100℃/10分程度の昇温速度)、最終は(Tg+α)℃の温度にて5〜60分間、好適には10分間程度加熱する。
In the production process of the green body as the preform, the green body can be made uniform during foaming if the green body is in a substantially uniform state.
Moreover, in the heating by the above microwave heating, the microwave output per weight of powder is used as a guide, for example, foaming starts at about 100 g / 1 kW in about 1 minute, and foaming converges in 2 to 3 minutes.
The foam is a very brittle foam in this state, and then gradually heated from about 200 ° C. by heating with hot air or the like (as a guideline, a rate of temperature increase of about 100 ° C./10 minutes). Is heated at a temperature of (Tg + α) ° C. for 5 to 60 minutes, preferably about 10 minutes.

前記の工程において、固体状態のポリイミド前駆体の加熱を、発泡のための加熱と熱固定(高分子量化)のための加熱の2段階である。
また、前記の発泡ポリイミドの製法において、マイクロ波加熱により加熱均一性向上が達成される。この発泡の際に、ガスが通過する遮蔽版を置いて圧縮力を加えることにより、機械的緻密化を併せて行い発泡倍率を制御することが好ましい。
次工程である熱固定(高分子量化)のための加熱を、発泡ポリイミドのガラス転移温度(Tg)以上の温度で行うことによってポリイミド発泡体のアウトガス量を低減させることができる。
In the above-described process, the heating of the solid state polyimide precursor is performed in two stages: heating for foaming and heating for heat setting (high molecular weight).
Moreover, in the manufacturing method of the said foaming polyimide, a heating uniformity improvement is achieved by microwave heating. In the foaming, it is preferable to control the foaming ratio by placing a shielding plate through which gas passes and applying a compressive force to perform mechanical densification.
The outgas amount of the polyimide foam can be reduced by performing heating for heat fixation (high molecular weight), which is the next step, at a temperature equal to or higher than the glass transition temperature (Tg) of the foamed polyimide.

前記の各工程によって加熱発泡することによって、均一な発泡状態の弾力性がありかつ復元力に優れた発泡体が得られる。この発泡体は連続孔を形成している。適当な形状に切断する事により各種用途向けの部材となり得る。
また、前記の方法によれば、ガラス転移温度が300℃より高いポリイミドからなり、発泡倍率が1.5〜200倍(密度900〜7.5kg/mに相当する。)であり、任意の形状を有する発泡ポリイミド、好適には厚みが0.1〜50mmのシ−ト状の発泡ポリイミド成形体、特に引張強度が0.05〜3MPaである発泡ポリイミド成形体を得ることができる。
By foaming by heating in the above steps, a foam having a uniform foamed state elasticity and excellent restoring force can be obtained. This foam forms continuous pores. By cutting into an appropriate shape, it can be a member for various uses.
Moreover, according to the said method, it consists of a polyimide whose glass transition temperature is higher than 300 degreeC, and a foaming magnification is 1.5-200 times (it corresponds to a density of 900-7.5 kg / m < 3 >), Arbitrary A foamed polyimide having a shape, preferably a sheet-like foamed polyimide molded body having a thickness of 0.1 to 50 mm, particularly a foamed polyimide molded body having a tensile strength of 0.05 to 3 MPa can be obtained.

以下の記載において、各略号は次の化合物を意味する。
a−BPDA:2,3,3’,4’−ビフェニルテトラカルボン酸二無水物
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
PPD:p−フェニレンジアミン
ODA:4,4’−ジアミノジフェニルエ−テル
DADSi:1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン
DMZ:1,2−ジメチルイミダゾ−ル
In the following description, each abbreviation means the following compound.
a-BPDA: 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride PPD: p-phenylenediamine ODA: 4, 4'-diaminodiphenyl ether DADSi: 1,3-bis (3-aminopropyl) tetramethyldisiloxane DMZ: 1,2-dimethylimidazole

参考例1
ポリイミド前駆体溶液の製造
2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(以下a−BPDA)55.31kg(188モル)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(以下BTDA)15.14kg(47モル)とメタノ−ル100kgを500L反応釜に仕込み、攪拌しながら加熱昇温し、約65℃で2時間還流下で攪拌を行って、2種類の芳香族テトラカルボン酸のジエステルを生成させた。反応終了後、溶液を冷却し、20℃以下の温調下でp−フェニレンジアミン(以下PPD)25.16kg(232.65モル)を添加し完溶させた。ついで、1,3−ビス(3−アミノプロピル)テトラジメチルシロキサン0.63kg(2.35モル)を添加した。更に、1,2−ジメチルイミダゾ−ル2.90kg(モル)を添加し、メタノ−ル40kgを加え45質量%のポリイミド前駆体溶液(粘度:約50cp、25℃)を得た。
Reference example 1
Production of polyimide precursor solution 55,31 kg (188 mol) of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (hereinafter a-BPDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic An acid dianhydride (hereinafter referred to as BTDA) 15.14 kg (47 mol) and methanol 100 kg were charged into a 500 L reaction kettle, heated to a temperature while stirring, and stirred at reflux at about 65 ° C. for 2 hours. Diesters of various aromatic tetracarboxylic acids were produced. After completion of the reaction, the solution was cooled, and 25.16 kg (232.65 mol) of p-phenylenediamine (hereinafter referred to as PPD) was added at a temperature of 20 ° C. or lower to complete dissolution. Then, 0.63 kg (2.35 mol) of 1,3-bis (3-aminopropyl) tetradimethylsiloxane was added. Furthermore, 2.90 kg (mol) of 1,2-dimethylimidazole was added, and 40 kg of methanol was added to obtain a 45% by mass polyimide precursor solution (viscosity: about 50 cp, 25 ° C.).

参考例1で得たポリイミド前駆体溶液を図1に示すミストドライヤ−(MDP−050:藤崎電機株式会社製)(以下MDP−050)を用いて、送液量0.43L/分、送風量26m/分、温度35℃で、噴霧乾燥し、ポリイミド前駆体粉末を得た。
このポリイミド前駆体粉末は、理論上イミド化によって生成する(脱離する)13.5質量%のアルコ−ルと9質量%の水を含む。
この処理条件で行ったところ、13kg/Hrの処理量であり生産性も良好であった。
この粉末は、平均粒径6μmであり20μmを超えるものはなかった。
この粉末を用いて、マイクロ波加熱装置(MOH−3000:ミクロ電子株式会社製)を用い、3kWで6分間発泡成形を行った。次に、この発泡成形品を熱風オ−ブン(STPH−201:タバイエスペック株式会社製)で窒素雰囲気下、段階的に昇温し、最終温度400℃で10分間加熱処理を行いポリイミド発泡体を得た。
この発泡体断面を、マイクロスコ−プ(以下MS)(VH−5000C:株式会社キ−エンス社製)で観察したところ、気泡径のバラツキの少ない良好なポリイミド発泡体であった。
Using the mist dryer (MDP-050: manufactured by Fujisaki Electric Co., Ltd.) (hereinafter referred to as MDP-050) shown in FIG. 1, the polyimide precursor solution obtained in Reference Example 1 was fed at a rate of 0.43 L / min, and the blowing rate. Spray drying was performed at 26 m 3 / min and a temperature of 35 ° C. to obtain a polyimide precursor powder.
This polyimide precursor powder contains 13.5% by mass of alcohol and 9% by mass of water which are theoretically generated (desorbed) by imidization.
When the treatment was performed under these treatment conditions, the treatment amount was 13 kg / Hr and the productivity was good.
This powder had an average particle size of 6 μm and none exceeded 20 μm.
Using this powder, foam molding was performed at 3 kW for 6 minutes using a microwave heating apparatus (MOH-3000: manufactured by Micro Electronics Co., Ltd.). Next, this foamed molded product is heated stepwise in a nitrogen atmosphere with a hot air oven (STPH-201: manufactured by Tabai Espec Co., Ltd.), and heat-treated at a final temperature of 400 ° C. for 10 minutes to obtain a polyimide foam. Obtained.
When the cross section of the foam was observed with a microscope (hereinafter referred to as MS) (VH-5000C: manufactured by Keyence Corporation), it was a good polyimide foam with little variation in bubble diameter.

参考例1で得たポリイミド前駆体溶液を図1に示すMDP−050を用いて、送液量0.43L/分、送風量26m/分、温度50℃で噴霧乾燥し、ポリイミド前駆体粉末を得た。
この粉末は、平均粒径6μmであり、20μmを超えるものはなかった。
この処理条件で行ったところ、12kg/Hrの処理量であり生産性も良好であった。
この粉末を用いて、実施例1と同様に発泡成形し、ポリイミド発泡体を得た。
この発泡体断面をMSで観察したところ、気泡径のバラツキの少ない良好なポリイミド発泡体であった。
The polyimide precursor solution obtained in Reference Example 1 was spray-dried at a temperature of 50 ° C. using a MDP-050 shown in FIG. 1 at a liquid feed rate of 0.43 L / min, a blowing rate of 26 m 3 / min, and a polyimide precursor powder. Got.
This powder had an average particle size of 6 μm and none exceeded 20 μm.
When the treatment was performed under these treatment conditions, the treatment amount was 12 kg / Hr and the productivity was good.
Using this powder, foam molding was carried out in the same manner as in Example 1 to obtain a polyimide foam.
When this foam cross section was observed by MS, it was a good polyimide foam with little variation in cell diameter.

参考例1で得たポリイミド前駆体溶液を図1に示すMDP−050を用いて、送液量0.43L/分、送風量32m/分、温度35℃で噴霧乾燥し、ポリイミド前駆体粉末を得た。
この粉末は、平均粒径6μmであり20μmを超えるものはなかった。
この処理条件で行ったところ、13kg/Hrの処理量であり生産性も良好であった。
この粉末を用いて、実施例1と同様に発泡成形し、ポリイミド発泡体を得た。
この発泡体断面をMSで観察したところ、気泡径のバラツキの少ない良好なポリイミド発泡体であった。
The polyimide precursor solution obtained in Reference Example 1 was spray-dried at a temperature of 35 ° C. using a MDP-050 shown in FIG. 1 at a liquid feed rate of 0.43 L / min, a blowing rate of 32 m 3 / min, and a polyimide precursor powder. Got.
This powder had an average particle size of 6 μm and none exceeded 20 μm.
When the treatment was performed under these treatment conditions, the treatment amount was 13 kg / Hr and the productivity was good.
Using this powder, foam molding was carried out in the same manner as in Example 1 to obtain a polyimide foam.
When this foam cross section was observed by MS, it was a good polyimide foam with little variation in cell diameter.

比較例1
参考例1で得たポリイミド前駆体溶液をスプレ−ドライヤ−(GS310:ヤマト科学株式会社製)を用い、噴霧乾燥を行ったが、80℃以下では粉末を得ることが出来なかった。
そこで、粉末が出来る条件、送液量0.02L/分、送風量0.5m/分、温度120℃でポリイミド前駆体粉末を得た。
この粉末は、平均粒径13μmであり、40μmを超えるものもあった。
この処理条件で行ったところ、0.6kg/Hrの処理量であり、生産性に問題があった。
この粉末を用いて、実施例1と同様に発泡成形したが、発泡体を形成することが出来なかった。
Comparative Example 1
The polyimide precursor solution obtained in Reference Example 1 was spray dried using a spray dryer (GS310: manufactured by Yamato Scientific Co., Ltd.), but no powder could be obtained at 80 ° C. or lower.
Therefore, a polyimide precursor powder was obtained under conditions where powder can be produced, a liquid feeding amount of 0.02 L / min, a blowing rate of 0.5 m / min, and a temperature of 120 ° C.
This powder had an average particle size of 13 μm, and some exceeded 40 μm.
When the treatment was performed under these treatment conditions, the treatment amount was 0.6 kg / Hr, and there was a problem in productivity.
Using this powder, foam molding was performed in the same manner as in Example 1, but a foam could not be formed.

比較例2
参考例1で得たポリイミド前駆体溶液を混合乾燥機(タナベウィルテック株式会社製)を用い、温度35℃、50rpmで攪拌しながら減圧して乾燥を行ってポリイミド前駆体粉末を得た。
この粉末は、平均粒径18μmであったが、250μmを超えるものも存在し、分布の広いものであった。
この処理条件では、バッチ式の処理になるため、10kg処理するのに6Hrを要し、生産性に問題があった。
この粉末を用いて、実施例1と同様に発泡成形し、ポリイミド発泡体を得た。
この発泡体断面をMS(マイクロスコ−プ)で観察したところ、気泡径のバラツキが多いポリイミド発泡体であった。
MSの測定法:5〜40倍の倍率ズ−ムレンズで観察
Comparative Example 2
The polyimide precursor solution obtained in Reference Example 1 was dried using a mixing dryer (manufactured by Tanabe Wiltech Co., Ltd.) while stirring at a temperature of 35 ° C. and 50 rpm to obtain a polyimide precursor powder.
Although this powder had an average particle size of 18 μm, some of the powder exceeded 250 μm and had a wide distribution.
Under this processing condition, since it is a batch-type processing, 6 Hr was required to process 10 kg, and there was a problem in productivity.
Using this powder, foam molding was carried out in the same manner as in Example 1 to obtain a polyimide foam.
When the cross section of the foam was observed with MS (microscope), it was a polyimide foam with a large variation in bubble diameter.
MS measurement method: Observation with 5 to 40 times magnification zoom lens

図1は、この発明の一例の実施例1においてポリイミド前駆体溶液をミストドライヤ−を用いて噴霧乾燥する状況を示す概略図である。FIG. 1 is a schematic view showing a situation in which a polyimide precursor solution is spray-dried using a mist dryer in Example 1 of one example of the present invention.

符号の説明Explanation of symbols

1 ノズル
2 処理液
3 吐出Air
4 乾燥用Air
5 フィルタ−
6 取り出し口
7 排気ライン
10 ポリイミド前駆体溶液の噴霧物
1 Nozzle 2 Treatment liquid 3 Discharge Air
4 Air for drying
5 Filter
6 Outlet 7 Exhaust line 10 Spray of polyimide precursor solution

Claims (8)

界面活性剤を含有しない発泡成形用ポリイミド前駆体溶液を液体の粒子として噴霧し、溶液中の希釈剤の沸点未満の乾燥温度で噴霧乾燥することを特徴とする発泡成形用ポリイミド前駆体粉末の製法。 A method for producing a polyimide precursor powder for foam molding, characterized in that a polyimide precursor solution for foam molding not containing a surfactant is sprayed as liquid particles and spray-dried at a drying temperature lower than the boiling point of the diluent in the solution. . 発泡成形用ポリイミド前駆体粉末が、10μm以下の一次粒子径である請求項1記載の発泡成形用ポリイミド前駆体粉末の製法。 The method for producing a polyimide precursor powder for foam molding according to claim 1, wherein the polyimide precursor powder for foam molding has a primary particle size of 10 µm or less. ポリイミド前駆体溶液が、テトラカルボン酸ジエステル、ジアミンおよび希釈剤から得られる混合溶液からなる請求項1記載の発泡成形用ポリイミド前駆体粉末の製法。 The method for producing a polyimide precursor powder for foam molding according to claim 1, wherein the polyimide precursor solution is a mixed solution obtained from a tetracarboxylic acid diester, a diamine and a diluent. 希釈剤がメチルアルコ−ルであり、乾燥温度が40℃以下である請求項1記載の発泡成形用ポリイミド前駆体粉末の製法。 The method for producing a polyimide precursor powder for foam molding according to claim 1, wherein the diluent is methyl alcohol and the drying temperature is 40 ° C or lower. ジアミンが、芳香族ジアミンとジアミン成分中0.1〜10モル%のジアミノシロキサンからなる請求項1記載の発泡成形用ポリイミド前駆体粉末の製法。 The method for producing a polyimide precursor powder for foam molding according to claim 1, wherein the diamine comprises an aromatic diamine and 0.1 to 10 mol% of diaminosiloxane in the diamine component. 希釈剤が、アルコ−ルである請求項4記載の発泡成形用ポリイミド前駆体粉末の製法。 The method for producing a polyimide precursor powder for foam molding according to claim 4, wherein the diluent is alcohol. テトラカルボン酸ジエステルが、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物を50モル%以上含むテトラカルボン酸二無水物から導かれるものである請求項4記載の発泡成形用ポリイミド前駆体粉末の製法。 5. The polyimide for foam molding according to claim 4, wherein the tetracarboxylic acid diester is derived from a tetracarboxylic dianhydride containing 50 mol% or more of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. Production method of precursor powder. 界面活性剤を含有しないテトラカルボン酸ジエステル、ジアミンおよびメチルアルコ−ルから得られる混合溶液からなる発泡成形用ポリイミド前駆体溶液を液体の粒子として噴霧し、40℃以下の乾燥温度で噴霧乾燥することを特徴とする発泡成形用ポリイミド前駆体粉末の製法。 Spraying a polyimide precursor solution for foam molding comprising a mixed solution obtained from a tetracarboxylic acid diester not containing a surfactant, a diamine and methyl alcohol as liquid particles, followed by spray drying at a drying temperature of 40 ° C. or less. A process for producing a polyimide precursor powder for foam molding characterized by the following:
JP2005250280A 2005-08-30 2005-08-30 Method for producing polyimide precursor powder for expansion molding use Pending JP2007063380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005250280A JP2007063380A (en) 2005-08-30 2005-08-30 Method for producing polyimide precursor powder for expansion molding use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250280A JP2007063380A (en) 2005-08-30 2005-08-30 Method for producing polyimide precursor powder for expansion molding use

Publications (1)

Publication Number Publication Date
JP2007063380A true JP2007063380A (en) 2007-03-15

Family

ID=37925944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250280A Pending JP2007063380A (en) 2005-08-30 2005-08-30 Method for producing polyimide precursor powder for expansion molding use

Country Status (1)

Country Link
JP (1) JP2007063380A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008499A1 (en) * 2007-07-11 2009-01-15 Ube Industries, Ltd. Method for production of polyimide foam, and polyimide foam
JP2009019107A (en) * 2007-07-11 2009-01-29 Ube Ind Ltd Polyimide foam comprising 3,3',4,4'-biphenyltetracarboxylic acid component and method for producing the same
JP2009108243A (en) * 2007-10-31 2009-05-21 Ube Ind Ltd New polyimide foam and method for producing the same
KR100963647B1 (en) 2008-08-28 2010-06-15 한국화학연구원 Polyimide particle and its process for producing
US10844173B2 (en) 2016-08-03 2020-11-24 Sabic Global Technologies B.V. Method for the manufacture of a poly(imide) prepolymer powder and varnish, poly(imide) prepolymer powder and varnish prepared thereby, and poly(imide) prepared therefrom
CN117304562A (en) * 2023-11-27 2023-12-29 宁波市嘉化新材料科技有限公司 Synthetic resin layered material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515897A (en) * 2000-12-14 2004-05-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High density polyimide foam insulator
JP2004323715A (en) * 2003-04-25 2004-11-18 Ube Ind Ltd Foamed polyimide molded product and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515897A (en) * 2000-12-14 2004-05-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High density polyimide foam insulator
JP2004323715A (en) * 2003-04-25 2004-11-18 Ube Ind Ltd Foamed polyimide molded product and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008499A1 (en) * 2007-07-11 2009-01-15 Ube Industries, Ltd. Method for production of polyimide foam, and polyimide foam
JP2009019107A (en) * 2007-07-11 2009-01-29 Ube Ind Ltd Polyimide foam comprising 3,3',4,4'-biphenyltetracarboxylic acid component and method for producing the same
JP2009108243A (en) * 2007-10-31 2009-05-21 Ube Ind Ltd New polyimide foam and method for producing the same
KR100963647B1 (en) 2008-08-28 2010-06-15 한국화학연구원 Polyimide particle and its process for producing
US10844173B2 (en) 2016-08-03 2020-11-24 Sabic Global Technologies B.V. Method for the manufacture of a poly(imide) prepolymer powder and varnish, poly(imide) prepolymer powder and varnish prepared thereby, and poly(imide) prepared therefrom
CN117304562A (en) * 2023-11-27 2023-12-29 宁波市嘉化新材料科技有限公司 Synthetic resin layered material and preparation method thereof
CN117304562B (en) * 2023-11-27 2024-02-20 宁波市嘉化新材料科技有限公司 Synthetic resin layered material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3687496B2 (en) Foamed polyimide and process for producing the same
CN105778130B (en) A kind of high-intensity high heat-resistance polyimides microporous membrane and preparation method thereof
TWI714944B (en) Polyamic acid composition with improved storage stability, method for preparing polyimide film by using the same, polyimide film prepared by the same and electronic device
JP2007063380A (en) Method for producing polyimide precursor powder for expansion molding use
TW201313783A (en) Black polyimide film and method for preparing the same
JP5928705B2 (en) Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide
JP2002146085A (en) Method for producing porous polyimide and porous polyimide
KR101338328B1 (en) Manufacturing Method Of Polyamic acid Composition, Polyamic acid Composition, Polyimide Film And Substrateused For Display Device Using The Same
CN113795537A (en) Preparation method of polyimide film and polyimide film prepared by same
TWI723360B (en) Polyimide precursor composition comprising crosslinkable dianhydride compound and antioxidant, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
KR101332627B1 (en) Polyamic acid Composition, Polyimide Film And Substrateused For Display Device Using The Same
KR102500606B1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
JP2009091457A (en) New polyimide foam and method for producing the same
CN102850569A (en) Preparation method of polyimide foam
JP4192451B2 (en) Foamed polyimide and process for producing the same
JP4428034B2 (en) Foamed polyimide structure and manufacturing method thereof
JP2024512437A (en) Polyimide film for graphite sheet and graphite sheet manufactured from it
JP4096798B2 (en) Foamed polyimide molding and its production method
JP4557376B2 (en) Method for producing porous body and porous body
KR20160077479A (en) Manufacturing method of polyimide precursor solution, polyimide film manufactured using the same
JP2005042055A (en) Foam-polyimide-composite, polyimide porous material and method for producing them
JP2004143378A (en) Foamed polyimide structure and method for producing the same
JP7245504B2 (en) Method for producing polyimide precursor solution
JP2001270955A (en) Foamed polyimide
JP4449612B2 (en) Composition for forming porous carbon film and method for forming porous carbon film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Effective date: 20110228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802