JP2004323715A - Foamed polyimide molded product and method for producing the same - Google Patents

Foamed polyimide molded product and method for producing the same Download PDF

Info

Publication number
JP2004323715A
JP2004323715A JP2003121373A JP2003121373A JP2004323715A JP 2004323715 A JP2004323715 A JP 2004323715A JP 2003121373 A JP2003121373 A JP 2003121373A JP 2003121373 A JP2003121373 A JP 2003121373A JP 2004323715 A JP2004323715 A JP 2004323715A
Authority
JP
Japan
Prior art keywords
foamed polyimide
foamed
heat
molded article
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121373A
Other languages
Japanese (ja)
Other versions
JP4096798B2 (en
Inventor
Ryoichi Sato
亮一 佐藤
Tatsuo Tsumiyama
龍男 積山
Yoshinobu Sakai
義信 堺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003121373A priority Critical patent/JP4096798B2/en
Priority to US10/828,772 priority patent/US20040229969A1/en
Priority to EP04009467A priority patent/EP1471106A1/en
Publication of JP2004323715A publication Critical patent/JP2004323715A/en
Application granted granted Critical
Publication of JP4096798B2 publication Critical patent/JP4096798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foamed polyimide molded product having heat resistance and molded in an arbitrary shape and to provide a method for producing the foamed polyimide molded product. <P>SOLUTION: The formed polyimide molded product is obtained by crushing previously foamed polyimide resin lumps and mixing the crushed resin with a heat-resistant binder and charging the mixture into a prescribed frame mold and pressurizing the mixture until the mixture has a prescribed density and heating the mixture. The method for producing the foamed polyimide molded product comprises crushing previously foamed polyimide resin lumps, mixing the crushed resin with the heat-resistant binder, charging the mixture into the prescribed frame mold, pressurizing the mixture until the mixture has a prescribed density to mold the mixture and heating the molded material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
この発明は、発泡ポリイミド成型体およびその製法に関し、さらに詳しくは耐熱性を有するとともに任意の形状に成型された発泡ポリイミド成型体およびその製法に関する。
【0002】
【従来技術】
従来、発泡体としては、ウレタン系、ポリスチレン系、ポリオレフィン系のものがよく知られている。これらの発泡体から成型体とする場合、発泡体をチップ化してこれを再度バインダ−によって椅子のクッションや工業用断熱材として使用されている。
これらの発泡成型体は、耐熱性が100℃程度であり、使用温度範囲が限定されていた。
【0003】
そこで、高温下、特に300℃以上の温度で使用可能な耐熱性を有する工業用断熱発泡材が求められてきた。
このため、耐熱性発泡体としてポリイミド系が種々検討され、ポリイミド成型体が提案された(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)。
【0004】
【特許文献1】
米国特許第4241193号明細書
【特許文献2】
特開昭61−195126号公報
【特許文献3】
特開平1−313537号公報
【特許文献4】
特開平2−24326号公報
【特許文献5】
特開平4−211440号公報
【0005】
しかし、これらの発泡ポリイミド成型体は、発泡と成型とを同時に行うことによって得られるものであり、形状や大きさに制限を受け、ポリイミド発泡成型体の用途に制限を受ける。
【0006】
【発明が解決しようとする課題】
この発明の目的は、耐熱性を有するとともに任意の形状に成型された発泡ポリイミド成型体およびその製法を提供することである。
【0007】
【課題を解決するための手段】
この発明は、予め発泡されたポリイミド樹脂塊を破砕し、これを耐熱性バインダ−と混合し、この混合物を所定の型枠に投入後、所定の密度まで加圧、焼成してなる発泡ポリイミド成型体に関する。
また、この発明は、予め発泡されたポリイミド樹脂塊を破砕し、これを耐熱性バインダ−と混合し、この混合物を所定の型枠に投入後、所定の密度まで加圧して成型して、焼成することを特徴とする発泡ポリイミド成型体の製法に関する。この明細書において、耐熱性バインダ−とは300℃で60分間の加熱試験後に劣化が実質的に認められないものをいう。
【0008】
【発明の実施の形態】
この発明の実施の形態を次に示す。
1)300℃で60分間の耐熱性試験を行って外観変化がなく、質量減少が1%以下の耐熱性を有する上記の発泡ポリイミド成型体。
2)密度が0.01〜0.8g/cmである上記の発泡ポリイミド成型体。
3)形状がシ−ト状、パイプ状、柱状、キュ−ブ状および箱状のいずれかである上記の発泡ポリイミド成型体。
4)パイプの形状を有し、内径が10〜1000mmで、外径が15〜2000mmである上記の発泡ポリイミド成型体。
【0009】
5)辺A、B、Cからなるブロックの形状を有し、A、B、Cが各々独立に10〜3000mmである上記の発泡ポリイミド成型体。
6)予め発泡されたポリイミド樹脂塊が、芳香族テトラカルボン酸成分として2,3,3’,4’−ビフェニルテトラカルボン酸成分を必須成分として得られるポリマ−である上記の発泡ポリイミド成型体の製法。
7)耐熱性バインダ−が、ポリアミック酸である上記の発泡ポリイミド成型体の製法。
【0010】
8)耐熱性バインダ−が、芳香族テトラカルボン酸成分として2,3,3’,4’−ビフェニルテトラカルボン酸成分を必須成分として得られるポリアミック酸である上記の発泡ポリイミド成型体の製法。
9)耐熱性バインダ−が、使用時の温度で50センチポイズ以下の溶液粘度である上記の発泡ポリイミド成型体の製法。
10)耐熱性バインダ−が、予め発泡されたポリイミド樹脂塊の破砕物に対して2〜30質量%の割合で混合される上記の発泡ポリイミド成型体の製法。
【0011】
11)予め発泡されたポリイミド樹脂塊が、0.0005〜0.1g/cmの密度を有するものである上記の発泡ポリイミド成型体の製法。
12)発泡ポリイミド成型体が、シ−ト状、パイプ状、柱状、キュ−ブ状、箱状などの任意の形状である上記の発泡ポリイミド成型体の製法。
【0012】
この発明において予め発泡されたポリイミド樹脂塊は、好適には、芳香族テトラカルボン酸二無水物とアルコ−ルとを反応させた芳香族テトラカルボン酸のハ−フエステルとジアミンとアルコ−ルとを含むポリイミド発泡前駆体混合物を蒸発乾固、粉末化し、予備成型して適当なグリ−ン体を作成し、さらに加熱して発泡させることによって得られる。前記の加熱の前に、マイクロ波加熱を行ってもよい。
【0013】
前記の芳香族テトラカルボン酸二無水物としては、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エ−テル二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,2−ビス(2,5−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)スルホン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシロキサン二無水物などが挙げられる。
特に、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物を50%以上含むものが好ましい。
【0014】
前記のジアミンとしては、2芳香核ジアミンまでを主成分とすることが好ましく、これによって発泡ポリイミドのTgが300℃以上を達成することが容易になる。多置換アミン成分は高温での発泡の収縮防止、発泡強度(発泡中に割れにくい)増大のために、必須なものではないが一部含まれている方が好ましい。ジアミノジシロキサンは界面活性剤的に作用し、発泡均一化のために0.1〜10モル%の範囲、好ましくは0.2〜5モル%は必要である。少量では発泡が均一化しづらく、多量ではTg低下および熱安定性の低下をまねく。
【0015】
前記のポリイミド発泡前駆体混合物として、好適には2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(以下、a−BPDAと略記することもある。)のハ−フエステルと芳香族ジアミン、例えば、p−フェニレンジアミン(以下、PPDと略記することもある。)および/または4,4’−ジアミノジフェニルエ−テル(以下、ODAと略記することもある。)と、発泡均一化のための成分、例えばジアミノジシロキサンおよびさらに必要ならば分子内に3個以上のアミノ基を有するアミン化合物、例えば芳香族トリアミン化合物または芳香族テトラアミン化合物、特にテトラアミノビフェニルをエステル化溶媒、例えばメタノ−ル、エタノ−ル、n−プロパノ−ル、n−ブタノ−ルなどの低級一級アルコ−ル、好適にはメタノ−ルあるいはエタノ−ルと均一混合して溶解して、全量中の不揮発成分量が10%〜50%程度の混合物として得ることができる。
【0016】
前記のポリイミド発泡前駆体混合物には、1,2−ジメチルイミダゾ−ル、ベンズイミダゾ−ル、イソキノリン、置換ピリジンなどのイミド化触媒を加えてもよい。
また、他の公知の添加剤、例えば、無機フィラ−、無機あるいは有機顔料などを加えてもよい。
【0017】
上記混合物を蒸発乾固し、粉末化を行う工程においては、実験室的にはエバポレ−タ、工業的にはスプレ−ドライヤ−などが使用できる。この蒸発温度は100℃未満、好ましくは80℃以下の状態に保たれることが好ましい。高温乾燥では発泡性が極端に低下する。乾燥の際、常圧でも、加圧下でも、あるいは減圧下でもよい。
【0018】
前記の適当なグリ−ン体を成型する工程においては、例えば、室温での圧縮成形、スラリ−溶液として流延乾固、マイクロ波に不活性な容器への充填を行う。この際に、蓋はしなくともよい(すなわち、完全に固める必要はない。)。概略均一な状態のグリ−ン体であれば、発泡時の均一化は達成できる。
【0019】
前記のマイクロ波加熱による加熱においては、一般的には約2.45GHzで行うことが好ましい。これは日本の国内法(電波法)に基く。粉末重量当たりのマイクロ波出力を目安とすることが好ましい。これは実験を重ねることによって定義すべきである。例えば、100g/1kW程度で約1分で発泡を開始し、2〜3分で発泡は収束する。この状態では非常に脆い発泡体である。
【0020】
次いでマイクロ波加熱体を熱風等の加熱により、200℃程度から徐々に昇温する(一応の目安として、100℃/10分程度の昇温速度)。最終は加熱によって生成するポリイミドのガラス転位温度(Tg)+αの温度にて5〜60分間、好適には10分間程度加熱する。
上記の各工程によって加熱発泡することによって、形状は不定形とはなるが、均一な発泡状態の弾力性がありかつ復元力に優れた発泡体が得られる。
【0021】
前記の方法において、固体状態のポリイミド前駆体の加熱を、発泡のための加熱と熱固定(高分子量化)のための加熱の2段階とすることが好ましい。
また、前記の発泡ポリイミドの製法において、発泡のための加熱を、加熱均一性向上のためにマイクロ波加熱によって行うことが好ましい。
そして、熱固定(高分子量化)のための加熱を、発泡ポリイミドのガラス転移温度(Tg)以上の温度、好適には310℃より高く500℃以下の温度で5〜60分間程度加熱して行うことが好ましい。
【0022】
前記の発泡工程によって得られる発泡されたポリイミド樹脂塊は、発泡倍率を任意に調整することができるが、好適には0.0005〜0.1g/cmの密度を有するものが好ましい。
【0023】
この発明においては、前記の予め発泡されたポリイミド樹脂塊を破砕し、これを耐熱性バインダ−と混合し、この混合物を所定の形状を有する型枠に投入後、所定の密度まで加圧、焼成することによって、発泡ポリイミド成型体を得る。
【0024】
前記の方法におけるポリイミド樹脂発泡塊を破砕する方法としては、特に制限はなく、例えばプラスティック成形体の解砕機を適宜使用することができる。
前記の方法によって、ポリイミド樹脂発泡塊として球に換算してφ(直径)が1mm〜50mm程度の大きさの破砕品とすることが好ましい。
【0025】
この発明においては、前記の破砕品を耐熱性バインダ−と混合することが重要である。
前記の耐熱性バインダ−としては、ポリイミドの耐熱性を維持しつつバインダ−として機能する必要性からポリアミック酸が好適である。
特に、前記のバインダ−用ポリアミック酸として、芳香族テトラカルボン酸成分、好適には非対称性の芳香族テトラカルボン酸成分と芳香族ジアミンとから得られるポリアミック酸あるいは芳香族テトラカルボン酸成分とメタ置換の芳香族ジアミンとから得られるポリアミック酸などの、耐熱性の熱融着性ポリイミドを与えるポリアミック酸が好適である。
前記の方法において、バインダ−のポリアミック酸はポリアミック酸の粉末状で使用してもよく、あるいは溶媒溶液として使用してもよい。ポリアミック酸の溶媒溶液として使用する場合にはポリアミック酸の濃度は1〜20質量%程度であることが適当である。
【0026】
前記の芳香族テトラカルボン酸成分として、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、1,2,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,3’,4’−ジフェニルエ−テルテトラカルボン酸二無水物、1,2,3’,4’−ジフェニルメタンテトラカルボン酸二無水物やこれらの酸またはエステル、好適には非対称性芳香族テトラカルボン酸成分、例えば2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、1,2,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,3’,4’−ジフェニルエ−テルテトラカルボン酸二無水物、1,2,3’,4’−ジフェニルメタンテトラカルボン酸二無水物やこれらの酸またはエステル、特に2,3,3’,4’−ビフェニルテトラカルボン酸二無水物を挙げることができる。
【0027】
前記の芳香族テトラカルボン酸成分と反応させる芳香族ジアミンとしては、特に制限はないがベンゼン環を3〜4個有する芳香族ジアミン、例えば1,3−ビス(4−アミノフェノキシベンゼン)、1,3−ビス(4−アミノフェノキシ)ビフェニル、好適には1,3−ビス(4−アミノフェノキシベンゼン)を挙げることができる。前記の非対称性の芳香族テトラカルボン酸二無水物の80モル%以下を対称性の芳香族テトラカルボン酸成分で置き換えてもよく、また前記のベンゼン環を3〜4個有する芳香族ジアミンの80モル%以下をベンゼン環を1〜2個有する芳香族ジアミンで置き換えてもよい。
【0028】
前記の方法において、耐熱性バインダ−の使用量は、固形分換算でポリイミド樹脂発泡塊の破砕品100質量部に対して、2〜30質量部であることが好ましい。
前記のポリイミド樹脂発泡塊の破砕品と耐熱性バインダ−とを混合する方法としては特に制限はなく、例えばポリイミド樹脂発泡塊の破砕品と耐熱性バインダ−の粉末とをニ−ダ−で混合する方法、あるいはポリイミド樹脂発泡塊の破砕品に耐熱性バインダ−の溶液を噴霧する方法が挙げられる。
【0029】
この発明においては、ポリイミド樹脂発泡塊の破砕品と耐熱性バインダ−との混合物を所定の形状を有する型枠に投入後、所定の密度まで加圧、焼成することによって、発泡ポリイミド成型体を得ることができる。
前記の型枠としては、耐熱性素材製、例えば金属製、好適にはステンレス製の型枠が使用できる。
【0030】
前記の加圧、焼成は、例えば型枠内に耐熱性バインダ−を混合したポリイミド樹脂発泡塊の破砕品をガス抜きを備えたステンレス製の型枠内に投入し、押さえ蓋で所定寸法(例えば高さ)に圧縮し、押さえ蓋を固定した後、250℃以上でポリイミド発泡体のガラス転位温度以下の温度、好適には300℃以上400℃以下の温度に加熱した加熱炉内に10〜120分間程度置くことによって行うことが好ましい。
【0031】
この発明のポリイミド成型体は、好適には300℃で60分間の耐熱性試験を行って外観変化がなく、質量減少が1%以下の耐熱性を有するものである。
また、この発明のポリイミド成型体は、成型条件を選択することによって、密度が0.01〜0.8g/cmである。
また、この発明の発泡ポリイミド成型体は、型枠を選択することによって、形状がシ−ト状、パイプ状、柱状、キュ−ブ状、箱状のいずれでもするることができ、特にパイプの形状を有し、内径が10〜1000mmで、外径が15〜2000mmであるもの、あるいは辺がA、B、Cからなるブロックの形状を有し、A、B、Cが各々独立に10〜3000mmである発泡ポリイミド成型体とすることができる。
【0032】
【実施例】
実施例および比較例における物性測定法を以下に示す。
ガラス転移温度:DSC(セイコ−電子工業社製、DSC220C)を用い、N雰囲気下、20℃/分の昇温速度にて測定。
発泡倍率:真密度/見かけ密度より算出。
真密度は、同組成のポリイミドフィルムを常法により作製し、密度勾配管を
用いて測定した値を用いた。
見かけ密度は、立方体または四角形シ−ト状に切断したものをノギスにより計測して体積を求め、また天秤により質量を計測し、質量/体積により求
めた。
引張強度:150mmL×25mmW×10mmTの短冊状サンプルを切り出し、テンシロン引張試験機(オリエンテック社製)を使用し、引張速度10mm/分で測定した。
引張伸び:引張強度測定試験と同様のサンプル、測定機および測定条件で測定した。
耐熱試験:オ−ブン中に60分放置後の外観、質量変化を求めた。
【0033】
以下の記載において、各略号は次の化合物を意味する。
a−BPDA:2,3,3’,4’−ビフェニルテトラカルボン酸二無水物
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
PPD:p−フェニレンジアミン
ODA:4,4’−ジアミノジフェニルエ−テル
TPE−R:1,3−ビス(4−アミノフェノキシ)ベンゼン
DADSi:1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン
DMZ:1,2−ジメチルイミダゾ−ル
【0034】
実施例1
500mlナス型フラスコにa−BPDA180mmol、メタノ−ル70g、触媒としてDMZ2.44gを仕込み、90℃オイルバス中で還流させながら90分間加熱攪拌を行い、均一溶液とした。次に、この溶液を30℃以下に冷却した後、PPD189mmol、DADSi2mmol、メタノ−ル30gを加え均一溶液とした。この溶液をエバポレ−タ−で濃縮し、60℃減圧乾燥して固形物を得た。
この固形物を粉砕粉末化して圧縮成型機を使用してグリ−ン体を成型し、このグリ−ン体をマイクロ波加熱装置を使用して、発泡倍率が130倍である発泡体を得た。この発泡体を450℃で15分間加熱し、ポリイミド発泡体を得た。
このポリイミド発泡体を解砕機で略φ5mm径の大きさに解砕したチップを得た。
【0035】
このチップに、耐熱性バインダ−としてa−BPDAと1,3−ビス(4−アミノフェノキシ)ベンゼンとをジメチルアセトアミド中で5.5質量%の濃度で重合して得た粘度が9cpのポリアミック酸溶液を使用し、該チップ15gに対して該耐熱性バインダ−溶液27gを噴霧機を使用し該チップを攪拌しながら噴霧し、約10分間混合攪拌して、チップと耐熱性バインダ−との混合物を得た。この混合物のチップを高さ250mm、幅150mm、長さ200mmのステンレス製の型に投入し、ガス抜きを備えた押さえ蓋で高さが200mmまで圧縮し、押さえ蓋を固定した。この容器をオ−ブン中に投入し、350℃で30分間焼成した。冷却後、型から発泡ポリイミド成型体を取り出した。
このポリイミド発泡成型体について、密度、引張強度、300℃オ−ブン中に60分間放置後の外観、質量変化を調べた。結果をまとめて表1に示す。
【0036】
実施例2
ジアミン成分としてDADEを使用した他は実施例1と同様にして、発泡倍率140倍の発泡ポリイミドを得た。この発泡ポリイミド発泡体を使用した他は実施例1と同様にして、発泡ポリイミド成型体を得た。
このポリイミド発泡成型体について、密度、引張強度、300℃オ−ブン中に60分間放置後の外観、質量変化を調べた。結果をまとめて表1に示す。
【0037】
実施例3
発泡倍率を変えた他は実施例1と同様にして、密度が0.015g/cmの発泡ポリイミド成型体を得た。
このポリイミド発泡成型体について、密度、引張強度、300℃オ−ブン中に60分間放置後の外観、質量変化を調べた。結果をまとめて表1に示す。
【0038】
実施例4
耐熱性バインダ−として、芳香族テトラカルボン酸成分としてa−BPDA80molとs−BPDA20mol%との組成とした他は実施例1と同様にして得られたポリアミック酸溶液を使用した他は実施例1と同様にして、発泡ポリイミド成型体を得た。
このポリイミド発泡成型体について、密度、引張強度、300℃オ−ブン中に60分間放置後の外観、質量変化を調べた。結果をまとめて表1に示す。
【0039】
実施例5
型枠の形状を変えた他は実施例1と同様にして、図2に示す寸法の発泡ポリイミド成型体を得た。
このポリイミド発泡成型体について、密度、引張強度、300℃オ−ブン中に60分間放置後の外観、質量変化を調べた。結果をまとめて表1に示す。
【0040】
比較例1
耐熱性バインダ−として、ウレタン系バインダ−を使用し、バインダ−量としてチップに対して10質量%の量で噴霧し、実施例1に記載の型枠を使用して、密度0.03g/cm3の成型体を成型し、次いで100℃のスチ−ムで加熱しウレタンバインダ−を硬化させて、ウレタンバインダ−製発泡ポリイミド成型体を得た。常法に従って60℃雰囲気下で乾燥した後、評価を行った。。結果をまとめて表1に示す。
【0041】
【表1】

Figure 2004323715
【0042】
表1から、実施例1〜5によれば、密度が0.01g/cm以上0.1g/cm以下で、300℃で60分間の耐熱試験によって、外観変化なく、質量減少が1%以下の耐熱性を有するポリイミド発泡成型体が得られたことを示している。
これに対し、耐熱性の低いバインダ−を使用した比較例1によれば、上記の耐熱性試験によって、一部炭化して外観変化があり、質量減少が1%より多い耐熱性を有さないポリイミド発泡成型体が得られたことを示している。
【0043】
【発明の効果】
この発明によれば、耐熱性を有するとともに任意の形状に成型された発泡ポリイミド成型体を得ることができる。
また、この発明の方法によれば、簡単な操作で前記の特長を有する発泡ポリイミドを製造することができる。
【図面の簡単な説明】
【図1】図1は、この発明の一例である発泡ポリイミド成型体の写真である。
【図2】図2は、この発明の一例である実施例5で得られた発泡ポリイミド成型体の寸法である。[0001]
The present invention relates to a foamed polyimide molded article and a method for producing the same, and more particularly to a foamed polyimide molded article having heat resistance and molded into an arbitrary shape, and a method for producing the same.
[0002]
[Prior art]
Conventionally, urethane-based, polystyrene-based, and polyolefin-based foams are well known. When a foam is formed from these foams, the foam is formed into chips, which are again used as binders for chairs or industrial heat insulators by means of a binder.
These foamed molded articles had heat resistance of about 100 ° C., and the operating temperature range was limited.
[0003]
Therefore, there has been a demand for an industrial heat insulating foam material having heat resistance that can be used at high temperatures, particularly at a temperature of 300 ° C. or higher.
For this reason, various types of polyimides have been studied as heat-resistant foams, and polyimide molded articles have been proposed (Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5).
[0004]
[Patent Document 1]
US Pat. No. 4,241,193 [Patent Document 2]
JP-A-61-195126 [Patent Document 3]
Japanese Patent Application Laid-Open No. 1-313537 [Patent Document 4]
JP-A-2-24326 [Patent Document 5]
Japanese Patent Application Laid-Open No. H4-211440
However, these foamed polyimide moldings are obtained by performing foaming and molding at the same time, and are limited in shape and size, and are restricted in applications of the polyimide foam moldings.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a foamed polyimide molded article having heat resistance and molded into an arbitrary shape, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The present invention is a foamed polyimide molding obtained by crushing a foamed polyimide resin mass, mixing the same with a heat-resistant binder, charging the mixture into a predetermined mold, and then pressing and firing to a predetermined density. About the body.
Further, the present invention crushes a pre-foamed polyimide resin mass, mixes it with a heat-resistant binder, puts this mixture into a predetermined mold, presses it to a predetermined density, molds it, and fires it. And a method for producing a foamed polyimide molded article. In this specification, the term "heat-resistant binder" refers to a binder which is substantially not deteriorated after a heating test at 300 ° C. for 60 minutes.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below.
1) The above-mentioned foamed polyimide molded article which has no change in appearance when subjected to a heat resistance test at 300 ° C. for 60 minutes and has a heat resistance of 1% or less in mass loss.
2) The foamed polyimide molded article having a density of 0.01 to 0.8 g / cm 3 .
3) The above-mentioned foamed polyimide molded article having any one of a sheet shape, a pipe shape, a column shape, a cube shape, and a box shape.
4) The above foamed polyimide molded article having a pipe shape, an inner diameter of 10 to 1000 mm, and an outer diameter of 15 to 2000 mm.
[0009]
5) The above foamed polyimide molded article having a block shape composed of sides A, B, and C, wherein A, B, and C are each independently 10 to 3000 mm.
6) The foamed polyimide molded article, wherein the foamed polyimide resin mass is a polymer obtained by using a 2,3,3 ′, 4′-biphenyltetracarboxylic acid component as an essential component as an aromatic tetracarboxylic acid component Manufacturing method.
7) The method for producing the above foamed polyimide molded article in which the heat-resistant binder is a polyamic acid.
[0010]
8) The method for producing a foamed polyimide molded article described above, wherein the heat-resistant binder is a polyamic acid obtained by using a 2,3,3 ′, 4′-biphenyltetracarboxylic acid component as an essential component as an aromatic tetracarboxylic acid component.
9) The method for producing a foamed polyimide molded article in which the heat-resistant binder has a solution viscosity of 50 centipoise or less at the temperature at the time of use.
10) The above-mentioned method for producing a foamed polyimide molded article in which a heat-resistant binder is mixed at a ratio of 2 to 30% by mass based on a crushed product of a foamed polyimide resin mass.
[0011]
11) The above-mentioned method for producing a foamed polyimide molded article, wherein the preliminarily foamed polyimide resin mass has a density of 0.0005 to 0.1 g / cm 3 .
12) The method for producing the above-mentioned foamed polyimide molded article, wherein the foamed polyimide molded article has an arbitrary shape such as a sheet shape, a pipe shape, a column shape, a cube shape, and a box shape.
[0012]
In the present invention, the pre-foamed polyimide resin mass is preferably prepared by reacting a half ester of an aromatic tetracarboxylic acid obtained by reacting an aromatic tetracarboxylic dianhydride with an alcohol, a diamine and an alcohol. The obtained polyimide foam precursor mixture is obtained by evaporating to dryness, pulverizing, preforming to form a suitable green body, and then heating to foam. Prior to the heating, microwave heating may be performed.
[0013]
Examples of the aromatic tetracarboxylic dianhydride include 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, Mellitic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 2,3,6,7-naphthalene Tetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,4,5-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic Acid dianhydride, 2,2-bis (2,5-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3 , 4-dicarboxyphenyl) sul Emissions dianhydride, 1,3-bis (3,4-carboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride.
In particular, those containing 50% or more of 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride are preferable.
[0014]
As the diamine, it is preferable to use a diaromatic nucleus diamine as a main component, whereby it becomes easy to achieve a Tg of the foamed polyimide of 300 ° C. or higher. The polysubstituted amine component is not essential but is preferably included partially in order to prevent shrinkage of foaming at high temperature and to increase foaming strength (hard to break during foaming). Diaminodisiloxane acts as a surfactant, and is required in the range of 0.1 to 10 mol%, preferably 0.2 to 5 mol%, for uniform foaming. If the amount is small, it is difficult to make the foam uniform, and if the amount is large, the Tg decreases and the thermal stability decreases.
[0015]
As the polyimide foam precursor mixture, preferably, a half ester of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes abbreviated as a-BPDA) and an aromatic ester are used. Foam homogenization with a diamine, for example, p-phenylenediamine (hereinafter sometimes abbreviated as PPD) and / or 4,4′-diaminodiphenyl ether (hereinafter sometimes abbreviated as ODA). For example, diaminodisiloxane and, if necessary, an amine compound having three or more amino groups in the molecule, for example, an aromatic triamine compound or an aromatic tetraamine compound, especially tetraaminobiphenyl, in an esterification solvent such as methanol. -Lower primary alcohols such as ethanol, ethanol, n-propanol and n-butanol, preferably methanol Rui ethanol - dissolved by mixing le and uniform, nonvolatile component content in the total amount can be obtained as a mixture of approximately 10% to 50%.
[0016]
An imidization catalyst such as 1,2-dimethylimidazole, benzimidazole, isoquinoline, or substituted pyridine may be added to the polyimide foam precursor mixture.
Further, other known additives such as an inorganic filler, an inorganic or organic pigment, and the like may be added.
[0017]
In the step of evaporating the mixture to dryness and pulverizing it, an evaporator can be used in a laboratory, and a spray dryer can be used industrially. It is preferable that the evaporating temperature is kept at less than 100 ° C., preferably at most 80 ° C. High-temperature drying extremely reduces the foaming property. The drying may be carried out under normal pressure, under pressure, or under reduced pressure.
[0018]
In the step of molding an appropriate green body, for example, compression molding at room temperature, casting and drying as a slurry solution, and filling in a container inert to microwaves are performed. At this time, the lid does not have to be provided (that is, it is not necessary to completely harden the lid). If the green body is in a substantially uniform state, uniformity during foaming can be achieved.
[0019]
Generally, the heating by the microwave heating is preferably performed at about 2.45 GHz. This is based on Japanese domestic law (radio law). It is preferable to use the microwave output per powder weight as a standard. This should be defined by repeated experiments. For example, foaming starts at about 100 g / 1 kW in about 1 minute, and foams converge in 2 to 3 minutes. In this state, it is a very brittle foam.
[0020]
Next, the temperature of the microwave heating body is gradually raised from about 200 ° C. by heating with hot air or the like (for a rough guide, a temperature rising rate of about 100 ° C./10 minutes). The final step is heating at a temperature of glass transition temperature (Tg) + α of polyimide generated by heating for 5 to 60 minutes, preferably about 10 minutes.
By performing the heating and foaming in each of the above steps, the shape becomes irregular, but a foam having uniform elasticity in a foamed state and excellent in restoring force can be obtained.
[0021]
In the above method, the heating of the polyimide precursor in a solid state is preferably performed in two stages, that is, heating for foaming and heating for heat setting (higher molecular weight).
In the above-mentioned method for producing a foamed polyimide, it is preferable that heating for foaming is performed by microwave heating in order to improve heating uniformity.
Heating for heat setting (high molecular weight) is performed by heating at a temperature higher than the glass transition temperature (Tg) of the foamed polyimide, preferably higher than 310 ° C. and lower than 500 ° C. for about 5 to 60 minutes. Is preferred.
[0022]
The foamed polyimide resin mass obtained by the foaming step can have any desired expansion ratio, but preferably has a density of 0.0005 to 0.1 g / cm 3 .
[0023]
In the present invention, the pre-foamed polyimide resin mass is crushed, mixed with a heat-resistant binder, and the mixture is poured into a mold having a predetermined shape, and then pressurized to a predetermined density and fired. By doing so, a foamed polyimide molded body is obtained.
[0024]
The method for crushing the foamed polyimide resin in the above method is not particularly limited, and for example, a crusher for a plastic molded body can be appropriately used.
According to the method described above, it is preferable to obtain a crushed product having a diameter (diameter) of about 1 mm to 50 mm in terms of a sphere as a polyimide resin foamed mass.
[0025]
In the present invention, it is important to mix the above crushed product with a heat resistant binder.
As the above-mentioned heat-resistant binder, polyamic acid is preferable because it is necessary to function as a binder while maintaining the heat resistance of polyimide.
Particularly, as the binder polyamic acid, an aromatic tetracarboxylic acid component, preferably a polyamic acid or an aromatic tetracarboxylic acid component obtained from an asymmetric aromatic tetracarboxylic acid component and an aromatic diamine, and meta-substituted. A polyamic acid which gives a heat-resistant heat-fusible polyimide, such as a polyamic acid obtained from an aromatic diamine, is preferred.
In the above method, the polyamic acid of the binder may be used in the form of a powder of the polyamic acid, or may be used as a solvent solution. When used as a solvent solution of a polyamic acid, the concentration of the polyamic acid is suitably about 1 to 20% by mass.
[0026]
As the aromatic tetracarboxylic acid component, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 3 ′, 4′-biphenyltetracarboxylic dianhydride, 1,2,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 1,2,3 ′, 4′-diphenylethertetracarboxylic dianhydride Anhydrides, 1,2,3 ', 4'-diphenylmethanetetracarboxylic dianhydride and their acids or esters, preferably asymmetric aromatic tetracarboxylic acid components such as 2,3,3', 4'- Biphenyltetracarboxylic dianhydride, 1,2,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 1,2,3 ′, 4′-diphenylethertetracarboxylic dianhydride, 1,2 , 3 ', 4'-diphenylmethanete Rakarubon acid dianhydride and these acids or esters, in particular 2,3,3 ', may be mentioned 4'-biphenyltetracarboxylic dianhydride.
[0027]
The aromatic diamine to be reacted with the aromatic tetracarboxylic acid component is not particularly limited, but is an aromatic diamine having 3 to 4 benzene rings, for example, 1,3-bis (4-aminophenoxybenzene), Examples thereof include 3-bis (4-aminophenoxy) biphenyl, preferably 1,3-bis (4-aminophenoxybenzene). 80% by mole or less of the asymmetric aromatic tetracarboxylic dianhydride may be replaced by a symmetrical aromatic tetracarboxylic acid component, and 80% by weight of the aromatic diamine having 3 to 4 benzene rings. Up to mol% may be replaced by an aromatic diamine having 1-2 benzene rings.
[0028]
In the above method, the amount of the heat-resistant binder used is preferably 2 to 30 parts by mass based on 100 parts by mass of the crushed polyimide resin foam in terms of solid content.
The method of mixing the crushed polyimide resin foam and the heat-resistant binder is not particularly limited. For example, the crushed polyimide resin foam and the heat-resistant binder powder are mixed by a kneader. And a method of spraying a solution of a heat-resistant binder onto a crushed product of a foamed polyimide resin mass.
[0029]
In the present invention, a mixture of a crushed product of a polyimide resin foam and a heat-resistant binder is put into a mold having a predetermined shape, and then pressurized to a predetermined density and fired to obtain a foamed polyimide molded body. be able to.
As the mold, a mold made of a heat-resistant material, for example, a metal, preferably a stainless steel can be used.
[0030]
The pressurization and baking are performed, for example, by putting a crushed product of a polyimide resin foam in which a heat-resistant binder is mixed in a mold into a stainless steel mold provided with a gas vent, and pressing a predetermined size (for example, Height) and fixed the holding lid, and then placed in a heating furnace heated to a temperature of 250 ° C. or higher and the glass transition temperature of the polyimide foam or lower, preferably 300 ° C. or higher and 400 ° C. or lower. It is preferable to carry out by placing for about a minute.
[0031]
The polyimide molded article of the present invention preferably has a heat resistance test at 300 ° C. for 60 minutes with no change in appearance and a mass loss of 1% or less.
The polyimide molded article of the present invention has a density of 0.01 to 0.8 g / cm 3 by selecting molding conditions.
Further, the foamed polyimide molded article of the present invention can be formed into any of sheet, pipe, column, cube, and box by selecting a mold. It has a shape, an inner diameter of 10 to 1000 mm and an outer diameter of 15 to 2000 mm, or a side having a shape of a block consisting of A, B, C, wherein A, B, C are each independently 10 to 10 mm. A foamed polyimide molding having a size of 3000 mm can be obtained.
[0032]
【Example】
The methods for measuring physical properties in Examples and Comparative Examples are shown below.
Glass transition temperature: Measured at a heating rate of 20 ° C./min in a N 2 atmosphere using a DSC (DSC220C, manufactured by Seiko-Electronic Industries).
Expansion ratio: Calculated from true density / apparent density.
As the true density, a value obtained by preparing a polyimide film having the same composition by an ordinary method and using a density gradient tube was used.
The apparent density was obtained by measuring a volume obtained by measuring a cube or a square sheet cut with a vernier caliper, and measuring the mass with a balance, and then calculating the mass / volume.
Tensile strength: A strip-shaped sample of 150 mmL × 25 mmW × 10 mmT was cut out and measured at a tensile speed of 10 mm / min using a Tensilon tensile tester (manufactured by Orientec).
Tensile elongation: Measured with the same sample, measuring instrument and measuring conditions as in the tensile strength measurement test.
Heat resistance test: The appearance and mass change after standing in an oven for 60 minutes were determined.
[0033]
In the following description, each abbreviation means the following compound.
a-BPDA: 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride BTDA: 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride PPD: p-phenylenediamine ODA: 4 4'-Diaminodiphenyl ether TPE-R: 1,3-bis (4-aminophenoxy) benzene DADSi: 1,3-bis (3-aminopropyl) tetramethyldisiloxane DMZ: 1,2-dimethylimidazo- Le [0034]
Example 1
180 mmol of a-BPDA, 70 g of methanol and 2.44 g of DMZ were charged into a 500 ml eggplant-shaped flask, and heated and stirred for 90 minutes while refluxing in a 90 ° C. oil bath to form a homogeneous solution. Next, after cooling this solution to 30 ° C. or less, 189 mmol of PPD, 2 mmol of DADSi, and 30 g of methanol were added to obtain a uniform solution. This solution was concentrated with an evaporator and dried at 60 ° C. under reduced pressure to obtain a solid.
The solid was pulverized and powdered to form a green body using a compression molding machine, and a foam having a foaming ratio of 130 was obtained from the green body using a microwave heating device. . This foam was heated at 450 ° C. for 15 minutes to obtain a polyimide foam.
A chip obtained by crushing this polyimide foam into a size of approximately φ5 mm with a crusher was obtained.
[0035]
A polyamic acid having a viscosity of 9 cp obtained by polymerizing a-BPDA and 1,3-bis (4-aminophenoxy) benzene as a heat-resistant binder at a concentration of 5.5% by mass in dimethylacetamide was added to this chip. Using a solution, 27 g of the heat-resistant binder solution was sprayed onto 15 g of the chip while stirring the chip using a sprayer, and mixed and stirred for about 10 minutes to obtain a mixture of the chip and the heat-resistant binder. Got. A chip of this mixture was put into a stainless steel mold having a height of 250 mm, a width of 150 mm and a length of 200 mm, and was compressed to a height of 200 mm with a holding lid provided with a gas vent, and the holding lid was fixed. The container was placed in an oven and baked at 350 ° C. for 30 minutes. After cooling, the foamed polyimide molded body was taken out of the mold.
This polyimide foam was examined for density, tensile strength, appearance and mass change after standing in a 300 ° C. oven for 60 minutes. The results are summarized in Table 1.
[0036]
Example 2
A foamed polyimide having a foaming ratio of 140 was obtained in the same manner as in Example 1 except that DADE was used as the diamine component. A foamed polyimide molded body was obtained in the same manner as in Example 1 except that this foamed polyimide foam was used.
This polyimide foam was examined for density, tensile strength, appearance and mass change after standing in a 300 ° C. oven for 60 minutes. The results are summarized in Table 1.
[0037]
Example 3
A molded polyimide foam having a density of 0.015 g / cm 3 was obtained in the same manner as in Example 1 except that the expansion ratio was changed.
This polyimide foam was examined for density, tensile strength, appearance and mass change after standing in a 300 ° C. oven for 60 minutes. The results are summarized in Table 1.
[0038]
Example 4
Example 1 was repeated except that the polyamic acid solution obtained in the same manner as in Example 1 was used except that the heat-resistant binder was composed of 80 mol of a-BPDA and 20 mol% of s-BPDA as aromatic tetracarboxylic acid components. Similarly, a foamed polyimide molded body was obtained.
This polyimide foam was examined for density, tensile strength, appearance and mass change after standing in a 300 ° C. oven for 60 minutes. The results are summarized in Table 1.
[0039]
Example 5
A foamed polyimide molded article having the dimensions shown in FIG. 2 was obtained in the same manner as in Example 1 except that the shape of the mold was changed.
This polyimide foam was examined for density, tensile strength, appearance and mass change after standing in a 300 ° C. oven for 60 minutes. The results are summarized in Table 1.
[0040]
Comparative Example 1
A urethane-based binder was used as the heat-resistant binder, the amount of the binder was sprayed in an amount of 10% by mass with respect to the chip, and the density was 0.03 g / cm 3 using the mold described in Example 1. Was molded and then heated with a steam at 100 ° C. to cure the urethane binder to obtain a foamed polyimide molded article made of urethane binder. After drying in a 60 ° C. atmosphere according to a conventional method, evaluation was performed. . The results are summarized in Table 1.
[0041]
[Table 1]
Figure 2004323715
[0042]
From Table 1, according to Examples 1 to 5, the density was not less than 0.01 g / cm 3 and not more than 0.1 g / cm 3 , and the heat loss test at 300 ° C. for 60 minutes showed no change in appearance and a reduction in mass of 1%. This shows that a polyimide foam molded article having the following heat resistance was obtained.
On the other hand, according to Comparative Example 1 in which a binder having low heat resistance was used, in the heat resistance test described above, the carbonization was partially carbonized, the appearance changed, and the mass loss did not have heat resistance of more than 1%. This shows that a polyimide foam molded article was obtained.
[0043]
【The invention's effect】
According to the present invention, a foamed polyimide molded article having heat resistance and molded into an arbitrary shape can be obtained.
Further, according to the method of the present invention, a foamed polyimide having the above characteristics can be produced by a simple operation.
[Brief description of the drawings]
FIG. 1 is a photograph of a foamed polyimide molding as an example of the present invention.
FIG. 2 shows dimensions of a foamed polyimide molded article obtained in Example 5 which is an example of the present invention.

Claims (14)

予め発泡されたポリイミド樹脂塊を破砕し、これを耐熱性バインダ−と混合し、この混合物を所定の型枠に投入後、所定の密度まで加圧、焼成してなる発泡ポリイミド成型体。A foamed polyimide molded body obtained by crushing a preliminarily foamed polyimide resin mass, mixing the crushed mass with a heat-resistant binder, charging the mixture into a predetermined mold, and pressing and firing to a predetermined density. 300℃で60分間の耐熱性試験を行って外観変化がなく、質量減少が1%以下の耐熱性を有する請求項1に記載の発泡ポリイミド成型体。The foamed polyimide molded article according to claim 1, wherein the foamed polyimide molded article has no change in appearance when subjected to a heat resistance test at 300 ° C for 60 minutes and has a heat loss of 1% or less in mass loss. 密度が0.01〜0.8g/cmである請求項1に記載の発泡ポリイミド成型体。Polyimide foam molded body according to claim 1 density of 0.01~0.8g / cm 3. 形状がシ−ト状、パイプ状、柱状、キュ−ブ状および箱状のいずれかである請求項1に記載の発泡ポリイミド成型体。2. The foamed polyimide molded product according to claim 1, wherein the shape is one of a sheet shape, a pipe shape, a column shape, a cube shape, and a box shape. パイプの形状を有し、内径が10〜1000mmで、外径が15〜2000mmである請求項1に記載の発泡ポリイミド成型体。The foamed polyimide molded article according to claim 1, which has a pipe shape, and has an inner diameter of 10 to 1000 mm and an outer diameter of 15 to 2000 mm. 辺A、B、Cからなるブロックの形状を有し、A、B、Cが各々独立に10〜3000mmである請求項1に記載の発泡ポリイミド成型体。2. The foamed polyimide molded article according to claim 1, having a block shape including sides A, B, and C, wherein each of A, B, and C is independently 10 to 3000 mm. 3. 予め発泡されたポリイミド樹脂塊を破砕し、これを耐熱性バインダ−と混合し、この混合物を所定の型枠に投入後、所定の密度まで加圧して成型して、焼成することを特徴とする発泡ポリイミド成型体の製法。It is characterized by crushing a pre-foamed polyimide resin mass, mixing it with a heat-resistant binder, charging the mixture into a predetermined mold, pressurizing to a predetermined density, molding and firing. Manufacturing method of foamed polyimide molding. 予め発泡されたポリイミド樹脂塊が、芳香族テトラカルボン酸成分として2,3,3’,4’−ビフェニルテトラカルボン酸成分を必須成分として得られるポリマ−である請求項7に記載の発泡ポリイミド成型体の製法。The foamed polyimide molding according to claim 7, wherein the foamed polyimide resin mass is a polymer obtained by using 2,3,3 ', 4'-biphenyltetracarboxylic acid as an essential component as an aromatic tetracarboxylic acid component. Body making. 耐熱性バインダ−が、ポリアミック酸である請求項7に記載の発泡ポリイミド成型体の製法。The method for producing a foamed polyimide molded article according to claim 7, wherein the heat-resistant binder is a polyamic acid. 耐熱性バインダ−が、芳香族テトラカルボン酸成分として2,3,3’,4’−ビフェニルテトラカルボン酸成分を必須成分として得られるポリアミック酸である請求項7に記載の発泡ポリイミド成型体の製法。The process for producing a foamed polyimide molded article according to claim 7, wherein the heat-resistant binder is a polyamic acid obtained by using 2,3,3 ', 4'-biphenyltetracarboxylic acid component as an essential component as an aromatic tetracarboxylic acid component. . 耐熱性バインダ−が、使用時の温度で50センチポイズ以下の溶液粘度である請求項7に記載の発泡ポリイミド成型体の製法。The method for producing a foamed polyimide molded article according to claim 7, wherein the heat-resistant binder has a solution viscosity of 50 centipoise or less at a temperature at the time of use. 耐熱性バインダ−が、予め発泡されたポリイミド樹脂塊の破砕物に対して2〜30質量%の割合で混合される請求項7〜11のいずれかに記載の発泡ポリイミド成型体の製法。The method for producing a foamed polyimide molded article according to any one of claims 7 to 11, wherein the heat-resistant binder is mixed at a ratio of 2 to 30% by mass with respect to the crushed material of the foamed polyimide resin in advance. 予め発泡されたポリイミド樹脂塊が、0.0005〜0.1g/cmの密度を有するものである請求項7〜12のいずれかに記載の発泡ポリイミド成型体の製法。Previously foamed polyimide resin mass, preparation of polyimide foam molded body according to any one of claims 7 to 12 and has a density of 0.0005~0.1g / cm 3. 発泡ポリイミド成型体が、シ−ト状、パイプ状、柱状、キュ−ブ状、箱状などの任意の形状である請求項7〜13のいずれかに記載の発泡ポリイミド成型体の製法。The method for producing a foamed polyimide molded article according to any one of claims 7 to 13, wherein the foamed polyimide molded article has an arbitrary shape such as a sheet shape, a pipe shape, a column shape, a cube shape, and a box shape.
JP2003121373A 2003-04-25 2003-04-25 Foamed polyimide molding and its production method Expired - Fee Related JP4096798B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003121373A JP4096798B2 (en) 2003-04-25 2003-04-25 Foamed polyimide molding and its production method
US10/828,772 US20040229969A1 (en) 2003-04-25 2004-04-21 Foamed polyimide shaped article and process for production of same
EP04009467A EP1471106A1 (en) 2003-04-25 2004-04-22 Foamed polyimide shaped article and process for production of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121373A JP4096798B2 (en) 2003-04-25 2003-04-25 Foamed polyimide molding and its production method

Publications (2)

Publication Number Publication Date
JP2004323715A true JP2004323715A (en) 2004-11-18
JP4096798B2 JP4096798B2 (en) 2008-06-04

Family

ID=33499964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121373A Expired - Fee Related JP4096798B2 (en) 2003-04-25 2003-04-25 Foamed polyimide molding and its production method

Country Status (1)

Country Link
JP (1) JP4096798B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063380A (en) * 2005-08-30 2007-03-15 Ube Ind Ltd Method for producing polyimide precursor powder for expansion molding use
JP2009242661A (en) * 2008-03-31 2009-10-22 Ube Ind Ltd Light-weight polyimide molded body and manufacturing method thereof
WO2011074641A1 (en) 2009-12-16 2011-06-23 宇部興産株式会社 Polyimide short fibers and heat-resistant paper comprising same
WO2012165294A1 (en) * 2011-06-01 2012-12-06 宇部興産株式会社 Polyimide powder and porous polyimide body using same
JP2014530929A (en) * 2011-10-21 2014-11-20 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik RoehmGmbH Process for producing poly (meth) acrylimide-based expansion copolymer containing adhesion promoter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063380A (en) * 2005-08-30 2007-03-15 Ube Ind Ltd Method for producing polyimide precursor powder for expansion molding use
JP2009242661A (en) * 2008-03-31 2009-10-22 Ube Ind Ltd Light-weight polyimide molded body and manufacturing method thereof
WO2011074641A1 (en) 2009-12-16 2011-06-23 宇部興産株式会社 Polyimide short fibers and heat-resistant paper comprising same
US8709205B2 (en) 2009-12-16 2014-04-29 Ube Industries, Ltd. Polyimide short fibers and heat-resistant paper comprising same
WO2012165294A1 (en) * 2011-06-01 2012-12-06 宇部興産株式会社 Polyimide powder and porous polyimide body using same
EP2716698A1 (en) * 2011-06-01 2014-04-09 Ube Industries, Ltd. Polyimide powder and porous polyimide body using same
EP2716698A4 (en) * 2011-06-01 2014-12-17 Ube Industries Polyimide powder and porous polyimide body using same
JPWO2012165294A1 (en) * 2011-06-01 2015-02-23 宇部興産株式会社 Polyimide powder and polyimide porous body using the same
JP2014530929A (en) * 2011-10-21 2014-11-20 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik RoehmGmbH Process for producing poly (meth) acrylimide-based expansion copolymer containing adhesion promoter

Also Published As

Publication number Publication date
JP4096798B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US4305796A (en) Methods of preparing polyimides and artifacts composed thereof
US4439381A (en) Methods of preparing polyimides and artifacts composed thereof
US4296208A (en) Methods of preparing polyimides and polyimide precursors
US6576683B2 (en) Aromatic polyimide foam
CN105153422B (en) A kind of Polyimide foams and preparation method thereof
CN109880096A (en) Polyimide foam and its preparation method and application
JP4096798B2 (en) Foamed polyimide molding and its production method
JP2007063380A (en) Method for producing polyimide precursor powder for expansion molding use
EP2348065B1 (en) Polyimide foam and method for producing same
JP4192451B2 (en) Foamed polyimide and process for producing the same
EP1471106A1 (en) Foamed polyimide shaped article and process for production of same
TW202140624A (en) Aromatic polyimide powder for molded body, molded body using same, method for improving mechanical strength of molded body
JP7405097B2 (en) Fiber-reinforced polyimide resin molding precursor and method for producing the same
JP5373307B2 (en) Method for producing lightweight polyimide molded body
JP2005281573A (en) Foamed polyimide molded article and method for manufacturing the same
JP2004143378A (en) Foamed polyimide structure and method for producing the same
JPH0224326A (en) Polyimide foam and its production
EP0048119A2 (en) Methods of preparing polyimides and artifacts composed thereof
JP6984804B1 (en) Polyimide resin molded product and its manufacturing method
EP0048080B1 (en) Polyimides
JP5895934B2 (en) Polyimide powder and polyimide porous body using the same
JPH04211440A (en) Polyimide foam product and its preparation
JPH1045918A (en) Polyimide powder and preparation of powder molding
JP6645232B2 (en) Method for producing polyimide foam
JP2016180077A (en) Method for producing polyimide foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees