JP5928705B2 - Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide - Google Patents

Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide Download PDF

Info

Publication number
JP5928705B2
JP5928705B2 JP2012088345A JP2012088345A JP5928705B2 JP 5928705 B2 JP5928705 B2 JP 5928705B2 JP 2012088345 A JP2012088345 A JP 2012088345A JP 2012088345 A JP2012088345 A JP 2012088345A JP 5928705 B2 JP5928705 B2 JP 5928705B2
Authority
JP
Japan
Prior art keywords
polyimide
polyimide precursor
solvent
organic compound
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012088345A
Other languages
Japanese (ja)
Other versions
JP2013216776A (en
Inventor
齋藤 秀明
秀明 齋藤
菅原 潤
潤 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012088345A priority Critical patent/JP5928705B2/en
Publication of JP2013216776A publication Critical patent/JP2013216776A/en
Application granted granted Critical
Publication of JP5928705B2 publication Critical patent/JP5928705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、低誘電率の多孔質ポリイミドを形成できるポリイミド前駆体溶液、及びその製造方法に関し、さらには、ポリイミド前駆体合成用組成物、多孔質ポリイミド、及び多孔質ポリイミドの製造方法に関する。   The present invention relates to a polyimide precursor solution capable of forming a porous polyimide having a low dielectric constant, and a method for producing the same, and further relates to a composition for synthesizing a polyimide precursor, a porous polyimide, and a method for producing a porous polyimide.

ポリイミド樹脂は、その高い耐熱性、絶縁性、機械的強度、耐溶剤性、寸法安定性等の特性を有することから、電子部品用基材の絶縁膜や半導体素子の層間絶縁膜として広く用いられている。近年、電子部品の高機能化、高集積化に伴い、デバイスの信号転送速度の高速化が要求されており、配線周辺部材にも高速化対応が求められている。絶縁膜として用いられるポリイミド樹脂にも、高速化に対応した電気特性として、低誘電率化、低誘電正接化が要求されている。   Polyimide resin has high heat resistance, insulation, mechanical strength, solvent resistance, dimensional stability, and other properties, so it is widely used as an insulating film for electronic parts and for semiconductor devices. ing. In recent years, with the increase in functionality and integration of electronic components, it has been required to increase the signal transfer speed of devices, and the peripheral members of the wiring are also required to support high speed. A polyimide resin used as an insulating film is also required to have a low dielectric constant and a low dielectric loss tangent as electrical characteristics corresponding to high speed.

ポリイミド樹脂膜を低誘電化する方法としては、膜の多孔質化が考えられる。多孔質のポリイミド樹脂膜を得る方法としては、例えば、特開2000−44719号公報(特許文献1)に、有機溶媒に可溶性のポリイミド前駆体及び親水性ポリマーを溶解させた原料液を調製し、その原料液を乾燥させて得られた前駆体を焼成することにより、前記親水性ポリマーを分解除去して、多孔質ポリイミドを製造する方法が提案されている。ここでは、親水性ポリマーを利用することにより、ポリイミド中に親水性ポリマーの微細な分散相が容易に形成でき、親水性ポリマーを焼失させることで微細孔を形成できるというものである。具体的には、親水性ポリマーとして、分子量200〜400万のポリエチレングリコール等のアルキレングリコールを使用し、溶剤としてはポリイミドの溶剤である1,2−ジクロロエタン、N−メチルピロリドン、γ−ブチロラクトン、メチルエチルケトン、ジメチルアセトアミド等の極性溶媒が挙げられている(段落0018)。   As a method for reducing the dielectric of the polyimide resin film, it is conceivable to make the film porous. As a method for obtaining a porous polyimide resin film, for example, in JP-A 2000-44719 (Patent Document 1), a raw material solution in which a polyimide precursor soluble in an organic solvent and a hydrophilic polymer are dissolved is prepared, There has been proposed a method for producing a porous polyimide by decomposing and removing the hydrophilic polymer by firing a precursor obtained by drying the raw material liquid. Here, by using the hydrophilic polymer, a fine dispersed phase of the hydrophilic polymer can be easily formed in the polyimide, and fine pores can be formed by burning off the hydrophilic polymer. Specifically, an alkylene glycol such as polyethylene glycol having a molecular weight of 2 to 4 million is used as a hydrophilic polymer, and a solvent of polyimide is 1,2-dichloroethane, N-methylpyrrolidone, γ-butyrolactone, methyl ethyl ketone. And polar solvents such as dimethylacetamide (paragraph 0018).

また、特開2003−26850号公報(特許文献2)では、ポリイミド樹脂前駆体に対して分散可能な分散性化合物と溶媒とを含有する樹脂溶液を原料として被膜を作成し、得られた被膜から前記分散性化合物を抽出溶媒により抽出除去することが提案されている。ここで、分散性化合物としては、ポリエチレングリコール、ポリプロピレングリコール、及びそれらの片末端又は両末端メチル封鎖物などが用いられる。実施例では重量平均分子量500のポリエチレングリコールジメチルエーテルをポリイミド前駆体溶液に配合して得られた樹脂溶液を用いて、ポリイミド前駆体の被膜を形成した後、加圧下で二酸化炭素を注入し、次いで加熱によりポリエチレングリコールジメチルエーテルを抽出除去している(段落0051−段落0055)。   Moreover, in Unexamined-Japanese-Patent No. 2003-26850 (patent document 2), a film is produced from the resin solution containing the dispersible compound and solvent which can be disperse | distributed with respect to a polyimide resin precursor as a raw material, From the obtained film It has been proposed to extract and remove the dispersible compound with an extraction solvent. Here, as the dispersible compound, polyethylene glycol, polypropylene glycol, and one or both end methyl-blocked products thereof are used. In Examples, a resin solution obtained by blending polyethylene glycol dimethyl ether having a weight average molecular weight of 500 with a polyimide precursor solution was used to form a polyimide precursor film, and then carbon dioxide was injected under pressure, followed by heating. Thus, polyethylene glycol dimethyl ether is extracted and removed (paragraph 0051-paragraph 0055).

また、特開2011−140580号公報(特許文献3)では、熱分解温度が350℃以下の有機ポリマーとジイソシアネートとを反応させてなるイソシアネート修飾有機ポリマー存在下で、テトラカルボン酸二無水物とジアミンの縮合重合を行うことで、分子鎖中に熱分解性ポリマー基が導入されたポリイミド前駆体を得、得られた熱分解性基含有ポリイミド前駆体の被膜を加熱イミド化することにより、熱分解性ポリマー基に基づく空孔が形成された多孔質ポリイミド膜を形成する方法が提案されている。   Japanese Patent Application Laid-Open No. 2011-140580 (Patent Document 3) discloses a tetracarboxylic dianhydride and a diamine in the presence of an isocyanate-modified organic polymer obtained by reacting an organic polymer having a thermal decomposition temperature of 350 ° C. or less with a diisocyanate. By carrying out the condensation polymerization, a polyimide precursor having a thermally decomposable polymer group introduced into the molecular chain is obtained, and the resulting thermally decomposable group-containing polyimide precursor film is thermally imidized to thermally decompose. A method for forming a porous polyimide film in which pores based on a functional polymer group are formed has been proposed.

特開2000−44719号公報JP 2000-44719 A 特開2003−26850号公報JP 2003-26850 A 特開2011−140580号公報JP 2011-140580 A

しかしながら、特許文献1に記載の方法は、特開2003−26850号公報の段落0005で説明されているように、親水性ポリマーをそのまま焼成あるいは溶媒抽出によって除去した後、イミド化すると、孔が扁平あるいは閉塞してしまい、親水性ポリマー量に対応した空孔率を達成できないという不具合がある。   However, in the method described in Patent Document 1, as described in paragraph 0005 of JP2003-26850A, when the hydrophilic polymer is directly removed by baking or solvent extraction and then imidized, the pores become flat. Or there is a problem that the porosity corresponding to the amount of the hydrophilic polymer cannot be achieved due to clogging.

また、特許文献2に記載の方法では、有機ポリマーの抽出除去に、超臨界二酸化炭素を使用するなど、加熱イミド化の過程で、特別な装置が別途必要となり、大量生産への適用が困難である。   In addition, the method described in Patent Document 2 requires a special device separately in the process of heating imidization, such as using supercritical carbon dioxide for extraction and removal of the organic polymer, and is difficult to apply to mass production. is there.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、特別な装置を別途要することなく、大量生産への適用が容易なレベルで、且つ低誘電率化に好適な微細孔がほぼ均等に分布した多孔質ポリイミド膜を製造できる方法、これに用いるポリイミド前駆体溶液及びその製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to achieve a low dielectric constant at a level that can be easily applied to mass production without requiring a special apparatus. It is an object of the present invention to provide a method capable of producing a porous polyimide film having suitable fine pores distributed almost uniformly, a polyimide precursor solution used therefor, and a method for producing the same.

本発明のポリイミド前駆体溶液の製造方法は、ポリエーテルの両末端にアミンが結合したジアミン化合物からなる熱分解温度が350℃以下の熱分解性有機化合物、及び常圧での沸点が150〜210℃の非プロトン性極性溶媒と常圧での沸点が200〜300℃のエーテル系溶媒とが質量比40:60〜60:40で含有されている混合溶媒の存在下で、テトラカルボン酸二無水物とジアミンとを反応させる工程を含む。
In the method for producing a polyimide precursor solution of the present invention, a pyrolysis organic compound having a pyrolysis temperature of 350 ° C. or lower and comprising a diamine compound having amines bonded to both ends of a polyether , and a boiling point of 150 to 210 at normal pressure. Tetracarboxylic dianhydride in the presence of a mixed solvent containing an aprotic polar solvent at ℃ and an ether solvent having a boiling point of 200 to 300 ℃ at normal pressure in a mass ratio of 40:60 to 60:40 A step of reacting the product with diamine.

前記エーテル系溶媒は、トリエチレングリコールジメチルエーテル又はテトラエチレングリコールジメチルエーテルであり、前記プロトン性極性溶媒はN−メチル2−ピロリドン、ジメチルスルホキシド、またはγ−ブチロラクトンであることが好ましい。
The ether solvent may, Ri triethylene glycol dimethyl ether or tetraethylene glycol dimethyl ether der, the protic polar solvent is N- methyl-2-pyrrolidone, dimethyl sulfoxide or γ- butyrolactone der Rukoto, is preferred.

本発明の多孔質ポリイミドの製造方法は、上記本発明の製造方法により製造されるポリイミド前駆体溶液を350℃以上に加熱してイミド化する工程を含む。   The manufacturing method of the porous polyimide of this invention includes the process of imidating by heating the polyimide precursor solution manufactured by the manufacturing method of the said invention to 350 degreeC or more.

別の見地の本発明は、テトラカルボン酸二無水物、ジアミン、ポリエーテルの両末端にアミンが結合したジアミン化合物からなる熱分解温度が350℃以下の熱分解性有機化合物、及び常圧での沸点が150〜210℃の非プロトン性極性溶媒と常圧での沸点が200〜300℃のエーテル系溶媒とが質量比40:60〜60:40で含有されている混合溶媒を含有するポリイミド前駆体合成用組成物;常圧での沸点が150〜210℃の非プロトン性極性溶媒と常圧での沸点が200〜300℃のエーテル系溶媒とが質量比40:60〜60:40で含有されている混合溶媒に、テトラカルボン酸二無水物、ジアミン、及びポリエーテルの両末端にアミンが結合したジアミン化合物からなる熱分解温度が350℃以下の熱分解性有機化合物が反応してなるポリイミド前駆体が溶解しているポリイミド前駆体溶液;並びにポリイミド前駆体溶液を350℃以上で加熱して、脱水環化することにより得られる平均気孔径0.001〜0.5μmの多孔質ポリイミドを包含する。 Another aspect of the present invention relates to a thermally decomposable organic compound having a pyrolysis temperature of 350 ° C. or lower, comprising a diamine compound having amines bonded to both ends of tetracarboxylic dianhydride, diamine, and polyether , and atmospheric pressure. Polyimide precursor containing a mixed solvent in which an aprotic polar solvent having a boiling point of 150 to 210 ° C. and an ether solvent having a boiling point of 200 to 300 ° C. at normal pressure are contained in a mass ratio of 40:60 to 60:40 Composition for body synthesis: containing an aprotic polar solvent having a boiling point of 150 to 210 ° C at normal pressure and an ether solvent having a boiling point of 200 to 300 ° C at normal pressure in a mass ratio of 40:60 to 60:40 in a mixed solvent is, tetracarboxylic dianhydride, diamine, and a thermal decomposition temperature 350 ° C. or less of the thermally decomposable organic compound amine at both ends of the polyether is composed of a diamine compound bound Polyimide precursor comprising reaction with the polyimide precursor solution is dissolved; and a polyimide precursor solution is heated at 350 ° C. or higher, an average pore diameter 0.001~0.5μm obtained by cyclodehydration Of porous polyimide.

ここで、「ポリイミド前駆体」とは、加熱処理によりイミド化してポリイミドを形成できるポリマー(ポリアミック酸)をいう。   Here, the “polyimide precursor” refers to a polymer (polyamic acid) that can be imidized by heat treatment to form a polyimide.

さらに、本発明にいう「熱分解温度」とは、窒素雰囲気下で室温から10℃/minで昇温したときの質量減少率が50%となるときの温度をいう。例えば、エスアイアイ・ナノテクロノジー株式会社製のTG/DTA(示差熱熱重量同時測定装置)を用いて熱重量を測定することで測定できる。   Furthermore, the “thermal decomposition temperature” in the present invention refers to a temperature at which the mass reduction rate is 50% when the temperature is increased from room temperature to 10 ° C./min in a nitrogen atmosphere. For example, it can be measured by measuring thermogravimetry using TG / DTA (simultaneous differential thermothermal gravimetric measuring device) manufactured by SII Nanotechnology Corporation.

本発明のポリイミド前駆体の製造方法によれば、熱分解性有機化合物が微分散したポリイミド前駆体溶液を得ることができるので、加熱するだけで、微細孔がほぼ均等に分布した多孔質ポリイミドを製造することができる。   According to the method for producing a polyimide precursor of the present invention, since a polyimide precursor solution in which a thermally decomposable organic compound is finely dispersed can be obtained, a porous polyimide in which micropores are distributed substantially evenly by heating is obtained. Can be manufactured.

多孔質ポリイミドNo.2の切断面を撮像した走査顕微鏡(SEM)写真(50000倍)である。Porous polyimide no. It is a scanning microscope (SEM) photograph (50000 times) which imaged 2 cut surfaces. 多孔質ポリイミドNo.5の切断面を撮像した走査顕微鏡(SEM)写真(1000倍)である。Porous polyimide no. It is a scanning microscope (SEM) photograph (1000 times) which imaged the section of No. 5.

〔ポリイミド前駆体合成用組成物:ポリイミド前駆体溶液の原料〕
はじめに、本発明のポリイミド前駆体溶液の原料(ポリイミド前駆体合成用組成物)について説明する。
ポリイミド前駆体合成用組成物は、ポリイミド前駆体の原料となるモノマー(テトラカルボン酸二無水物及びジアミン化合物)、気孔を形成する役割を果たす熱分解性有機化合物、及びこれらを溶解する有機溶媒を含有する。以下、各順に説明する。
[Composition for polyimide precursor synthesis: Raw material for polyimide precursor solution]
First, the raw material (composition for polyimide precursor synthesis) of the polyimide precursor solution of the present invention will be described.
The composition for synthesizing a polyimide precursor includes a monomer (tetracarboxylic dianhydride and diamine compound) that is a raw material of the polyimide precursor, a thermally decomposable organic compound that plays a role of forming pores, and an organic solvent that dissolves these. contains. Hereinafter, each will be described in order.

(1)テトラカルボン酸二無水物
テトラカルボン酸二無水物としては、炭素数が2〜27の脂肪族基、炭素数4〜10の環式脂肪族基、単環式芳香族基、縮合多環式芳香族基に結合したテトラカルボン酸の二無水物を用いることができる。具体的には、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、ビシクロ(2,2,2)−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボンキシフェニル)ヘキサフルオロプロパン二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物等が挙げられ、これらは1種又は2種以上混合して用いることができる。これらのうち、芳香族テトラカルボン酸二無水物が好ましく用いられる。
(1) Tetracarboxylic dianhydride Tetracarboxylic dianhydride includes aliphatic groups having 2 to 27 carbon atoms, cyclic aliphatic groups having 4 to 10 carbon atoms, monocyclic aromatic groups, condensed poly Tetracarboxylic dianhydrides bonded to cyclic aromatic groups can be used. Specifically, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA), pyro Mellitic acid dianhydride (PMDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-diphenylsulfone Tetracarboxylic dianhydride, bicyclo (2,2,2) -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid Anhydride, 2,2-bis (3,4-dicarboxyxyphenyl) hexafluoropropane dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic Examples include acid dianhydrides Is, it may be used alone or in combination. Of these, aromatic tetracarboxylic dianhydrides are preferably used.

(2)ジアミン化合物
ジアミン化合物としては、芳香族、脂肪族、又は架橋員により連結された芳香族基にアミノ基が結合した化合物であればよいが、芳香族ジアミンが好ましく用いられる。
(2) Diamine Compound The diamine compound may be a compound in which an amino group is bonded to an aromatic group, an aliphatic group, or an aromatic group linked by a cross-linking member, but an aromatic diamine is preferably used.

上記芳香族ジアミンとしては、2,2’−ジメチル4,4’−ジアミノビフェニル(mTBHG)、2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン(Bis−A−AF)パラフェニレンジアミン(PPD)、メタフェニレンジアミン、4,4’−ジアミノジフェニルエーテル(ODA)、3,4’−ジアミノジフェニルエーテル、3,3’−ジヒドロキシ4,4’−ジアミノビフェニル、4、4’−ジヒドロキシ3,3’−ジアミノビフェニル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、2,2’−ビス(4−アミノフェノキシフェニル)プロパン等が挙げられ、これらは1種又は2種以上組合せて用いてもよい。   Examples of the aromatic diamine include 2,2′-dimethyl 4,4′-diaminobiphenyl (mTBHG), 2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB), and 2,2 ′. -Bis (4-aminophenyl) hexafluoropropane (Bis-A-AF) paraphenylenediamine (PPD), metaphenylenediamine, 4,4'-diaminodiphenyl ether (ODA), 3,4'-diaminodiphenyl ether, 3, 3'-dihydroxy 4,4'-diaminobiphenyl, 4,4'-dihydroxy 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 2,2'-bis (4-aminophenoxyphenyl) propane and the like, and these may be used alone or in combination of two or more. It may be used Te.

ジアミン化合物は、テトラカルボン酸二無水物と縮合重合してポリイミド前駆体を形成する化合物であり、テトラカルボン酸二無水物と実質的に等モル比となるように、配合される。ただし、後述する熱分解性有機化合物として、アミン変性化合物を使用する場合、かかるアミン変性化合物がジアミン化合物としてテトラカルボン酸二無水物との重合反応に関与することが可能であることから、アミン変性熱分解性有機化合物とジアミン化合物の合計量が、テトラカルボン酸二無水物と等モルとなる量を配合すればよい。   The diamine compound is a compound that forms a polyimide precursor by condensation polymerization with tetracarboxylic dianhydride, and is blended so as to have a substantially equimolar ratio with tetracarboxylic dianhydride. However, when an amine-modified compound is used as a thermally decomposable organic compound to be described later, the amine-modified compound can participate in a polymerization reaction with tetracarboxylic dianhydride as a diamine compound. What is necessary is just to mix | blend the quantity from which the total amount of a thermally decomposable organic compound and a diamine compound becomes equimolar with tetracarboxylic dianhydride.

(3)熱分解性有機化合物
本発明で用いられる熱分解性有機化合物とは、半減温度350℃以下の有機化合物である。ここで、半減温度350℃以下とは、窒素雰囲気下で10℃/minで昇温したときの質量減少率が50%となるときの温度が350℃以下をいう。例えば、エスアイアイ・ナノテクノジー株式会社製のTG/DTA(示差熱熱重量同時測定装置)を用いて熱重量を測定することにより測定できる。気孔を生ぜしめる有機化合物の熱分解温度が350℃を超えると、イミド化過程での熱分解が不十分となり、その結果、ポリイミド樹脂中に十分な気孔を形成することが困難となる。
(3) Thermally decomposable organic compound The thermally decomposable organic compound used in the present invention is an organic compound having a half-temperature of 350 ° C. or lower. Here, the half temperature of 350 ° C. or lower means that the temperature when the mass reduction rate when the temperature is raised at 10 ° C./min in a nitrogen atmosphere is 50% is 350 ° C. or lower. For example, it can be measured by measuring thermogravimetry using TG / DTA (simultaneous differential thermogravimetric measuring device) manufactured by SII Nanotechnology. When the thermal decomposition temperature of the organic compound that generates pores exceeds 350 ° C., thermal decomposition in the imidization process becomes insufficient, and as a result, it becomes difficult to form sufficient pores in the polyimide resin.

上記熱分解性有機化合物は、ポリイミド前駆体の合成時、すなわちテトラカルボン酸二無水物とジアミン化合物との重縮合反応を行う際の溶媒、ポリイミド前駆体原料との相溶性との関係から、重量平均分子量10000以下であることが好ましく、より好ましくは1000〜8000であり、さらに好ましくは、2000〜5000である。重量平均分子量が1000未満では、ポリイミド前駆体の骨格又は溶媒との相溶性に優れるものの、ポリイミド前駆体被膜において、熱分解性有機化合物の凝集部分が小さくなりすぎて、熱分解させた後に、気孔が形成されにくい。一方、重量平均分子量が10000を超えると、ポリイミド前駆体の原料モノマーとの相溶性が低下し、所望の気孔サイズが得られにくい。   The thermal decomposable organic compound is a weight at the time of the synthesis of the polyimide precursor, that is, the solvent for the polycondensation reaction between the tetracarboxylic dianhydride and the diamine compound, and the compatibility with the polyimide precursor raw material. The average molecular weight is preferably 10,000 or less, more preferably 1000 to 8000, and still more preferably 2000 to 5000. When the weight average molecular weight is less than 1000, the polyimide precursor film has excellent compatibility with the skeleton or solvent. However, in the polyimide precursor film, the agglomerated portion of the thermally decomposable organic compound becomes too small, and the pores are decomposed. Is difficult to form. On the other hand, when the weight average molecular weight exceeds 10,000, the compatibility of the polyimide precursor with the raw material monomer is lowered, and it is difficult to obtain a desired pore size.

このような熱分解性有機化合物としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル;当該ポリエーテルの片末端方又は両末端をアミン変性した化合物;当該ポリエーテルの片末端又は両末端をイソシアネート若しくはエポキシ変性した化合物などが挙げられ、これらは1種又は2種以上混合して用いることができる。   Examples of such thermally decomposable organic compounds include polyethers such as polyethylene oxide and polypropylene oxide; compounds obtained by amine-modifying one or both ends of the polyether; isocyanate or epoxy at one or both ends of the polyether Examples thereof include modified compounds, and these can be used alone or in combination of two or more.

当該ポリエーテルの片末端又は両末端をアミン変性した化合物としては、市販のアミン変性品を用いることができる。例えば、三井化学ファイン株式会社製のジェファーミンD2000、D4000などを用いることができる。   A commercially available amine-modified product can be used as the compound in which one or both ends of the polyether are amine-modified. For example, Jeffamine D2000, D4000 manufactured by Mitsui Chemical Fine Co., Ltd. can be used.

当該ポリエーテルの片末端又は両末端を変性した化合物の場合、ポリイミド前駆体内に、原料モノマーの一部の代替として組み込まれることになる。例えば、アミン変性した化合物の場合、原料モノマーであるジアミンの一部の代替として、テトラカルボン酸二無水物と反応することから、ポリイミド前駆体の分子鎖に組み込まれる。イソシアネート若しくはエポキシ変性した化合物の場合、当該イソシアネート基、エポキシ基が酸無水物またはジアミンと反応し、ポリイミド前駆体の分子鎖に組み込まれる。   In the case of a compound in which one or both ends of the polyether is modified, it is incorporated into the polyimide precursor as a part of the raw material monomer. For example, in the case of an amine-modified compound, it reacts with tetracarboxylic dianhydride as an alternative to a part of the diamine that is a raw material monomer, so that it is incorporated into the molecular chain of the polyimide precursor. In the case of an isocyanate or epoxy-modified compound, the isocyanate group or epoxy group reacts with an acid anhydride or diamine and is incorporated into the molecular chain of the polyimide precursor.

以上のような熱分解性有機化合物は、ポリイミド前駆体原料(酸無水物、ジアミン、熱分解性有機化合物)100質量部に対して、10〜60質量部であることが好ましく、より好ましくは20〜50質量部である。熱分解性有機化合物は、焼失して気孔を形成することから、60質量部を超えると、気孔率が大きくなりすぎて、ポリイミド樹脂膜の強度低下の原因となりやすい。一方、10質量部未満では、気孔率が小さくなり、誘電率を十分に低下させることが困難となる傾向にある。また、アミン変性熱分解性有機化合物を用いる場合には、ポリイミド前駆体原料の一部として、ジアミン化合物の代替として用いられることから、原料のジアミンとの合計量がカルボン酸二無水物と1:1となる量であることが好ましい。   The thermally decomposable organic compound as described above is preferably 10 to 60 parts by mass, more preferably 20 to 100 parts by mass of the polyimide precursor raw material (acid anhydride, diamine, thermally decomposable organic compound). -50 mass parts. Since the thermally decomposable organic compound burns out to form pores, when it exceeds 60 parts by mass, the porosity becomes too high and the polyimide resin film tends to be reduced in strength. On the other hand, if it is less than 10 parts by mass, the porosity tends to be small, and it tends to be difficult to sufficiently reduce the dielectric constant. When an amine-modified thermally decomposable organic compound is used, it is used as a substitute for the diamine compound as a part of the polyimide precursor raw material, so that the total amount of the raw material diamine and the carboxylic dianhydride is 1: The amount is preferably 1.

(4)有機溶媒
本発明のポリイミド前駆体合成用組成物に含有される有機溶媒は、ポリイミド前駆体原料の反応溶媒として用いられる有機溶媒であり、常圧での沸点が150〜210℃の非プロトン性極性溶媒と、常圧での沸点が200〜300℃でのエーテル系溶媒との混合溶媒である。
(4) Organic solvent The organic solvent contained in the composition for synthesizing the polyimide precursor of the present invention is an organic solvent used as a reaction solvent for the polyimide precursor raw material, and has a boiling point of 150 to 210 ° C. at normal pressure. It is a mixed solvent of a protic polar solvent and an ether solvent having a boiling point of 200 to 300 ° C. at normal pressure.

従来より、ポリイミド前駆体(ポリアミック酸)の合成は、原料モノマー(ジアミン、酸無水物)、及びポリアミック酸を溶解できる極性溶媒が一般に用いられている。しかしながら、気孔形成のために用いられる上記のような熱分解性有機化合物は、高分子量化した際に極性溶媒への溶解性が低くなり、微細な相分離構造の形成が不十分となるため、得られる多孔質ポリイミドの気孔は、気孔サイズが大きく、また気孔分布も不均一である。また、大きすぎる空孔は圧潰されて、所定の空孔率を達成できない場合もある。この点、150〜210℃の非プロトン性極性溶媒と、常圧での沸点が200〜300℃でのエーテル系溶媒との混合溶媒を用いることで、微小な気孔が均一的に分布した多孔質体が得られる。一方、エーテル系溶媒単独の場合には、原料モノマーが溶解しないため、重合反応自体が進行しない。   Conventionally, for the synthesis of a polyimide precursor (polyamic acid), a raw material monomer (diamine, acid anhydride) and a polar solvent capable of dissolving the polyamic acid are generally used. However, the thermally decomposable organic compound used for pore formation as described above has low solubility in a polar solvent when the molecular weight is increased, and the formation of a fine phase separation structure is insufficient. The pores of the resulting porous polyimide have a large pore size and nonuniform pore distribution. In addition, too large vacancies may be crushed and a predetermined porosity may not be achieved. In this regard, a porous medium in which minute pores are uniformly distributed by using a mixed solvent of an aprotic polar solvent at 150 to 210 ° C. and an ether solvent having a boiling point at normal pressure of 200 to 300 ° C. The body is obtained. On the other hand, in the case of an ether solvent alone, since the raw material monomer does not dissolve, the polymerization reaction itself does not proceed.

上記非プロトン性極性溶媒としては、従来より、ポリイミド前駆体の合成の際に用いられている極性溶媒を用いることができる。具体的には、N,Nジメチルアセトアミド(DMAc:沸点165℃)、N−メチル−2−ピロリドン(NMP:沸点202℃)、N,Nジメチルホルムアミド(沸点153℃)、ジメチルスルホキシド(沸点189℃)、γ−ブチロラクトン等が好ましく用いられる。沸点150℃未満では、ポリイミド前駆体を溶解する好適な溶媒が、現時点においては見当たらない。一方、210℃を超えると、溶媒が揮発しにくくなり、微細な相分離構造を得ることができない。   As said aprotic polar solvent, the polar solvent conventionally used in the case of the synthesis | combination of a polyimide precursor can be used. Specifically, N, N dimethylacetamide (DMAc: boiling point 165 ° C.), N-methyl-2-pyrrolidone (NMP: boiling point 202 ° C.), N, N dimethylformamide (boiling point 153 ° C.), dimethyl sulfoxide (boiling point 189 ° C.) ), Γ-butyrolactone and the like are preferably used. If the boiling point is less than 150 ° C., no suitable solvent for dissolving the polyimide precursor can be found at present. On the other hand, if it exceeds 210 ° C., the solvent is difficult to volatilize and a fine phase separation structure cannot be obtained.

上記エーテル系溶媒としては、トリエチレングリコールジメチルエーテル(沸点:216℃)、テトラエチレングリコールジメチルエーテル(沸点:275℃)などを用いることができる。このようなエーテル系溶媒は、本発明で使用する熱分解性有機化合物、特にポリエーテル系有機化合物の溶媒として優れている。また、沸点200℃以上のエーテルの場合には、揮発性が低く、引火の危険が少ないので、取り扱い容易である。一方、沸点300℃を超えるエーテルの場合には、イミド化反応開始時に十分蒸発されず、ポリイミド樹脂膜が形成されている間に残存するおそれがあり、微細な多孔質構造の形成を阻害する。   Examples of the ether solvent include triethylene glycol dimethyl ether (boiling point: 216 ° C.), tetraethylene glycol dimethyl ether (boiling point: 275 ° C.), and the like. Such an ether solvent is excellent as a solvent for the thermally decomposable organic compound used in the present invention, particularly a polyether organic compound. Further, in the case of ether having a boiling point of 200 ° C. or higher, it is easy to handle because it has low volatility and has a low risk of ignition. On the other hand, in the case of an ether having a boiling point higher than 300 ° C., it is not sufficiently evaporated at the start of the imidation reaction and may remain while the polyimide resin film is formed, thereby inhibiting the formation of a fine porous structure.

上記非プロトン性極性溶媒とエーテル系溶媒の混合割合は、極性溶媒:エーテル系溶媒(質量比)にて、30:70〜70:30であることが好ましく、より好ましくは40:60〜60:40、さらに好ましくは50:50である。これらの混合割合のバランスが偏りすぎると、ポリイミド前駆体の原料モノマー、熱分解性有機化合物、生成されるポリイミド前駆体のいずれかが溶解できず、合成反応が進行しなかったり、熱分解性有機化合物がポリイミド前駆体中に均一に分散、組込みがなされず、得られる多孔質ポリイミド膜の気孔が大きく、しかも不均質なものとなる。   The mixing ratio of the aprotic polar solvent and the ether solvent is preferably 30:70 to 70:30, more preferably 40:60 to 60: polar solvent: ether solvent (mass ratio). 40, more preferably 50:50. If the balance of these mixing ratios is too biased, either the raw material monomer of the polyimide precursor, the thermally decomposable organic compound, or the generated polyimide precursor cannot be dissolved, the synthesis reaction does not proceed, or the thermally decomposable organic The compound is not uniformly dispersed and incorporated in the polyimide precursor, and the resulting porous polyimide film has large pores and is inhomogeneous.

以上のような混合溶媒は、ポリイミド前駆体原料モノマー及び熱分解性化合物だけでなく、合成されたポリイミド前駆体も溶解できるので、合成反応が進行できるように、原料モノマーを溶解するのに必要量含有されていればよいが、ポリイミド樹脂膜の形成にあたり、基材への塗工液として用いる場合には、塗工作業性に支障のない粘度にまで希釈できる量を用いてもよい。
具体的には、結果物であるポリイミド前駆体の固形分濃度が10〜30質量%程度となるポリイミド前駆体溶液が得られる量とすることが好ましい。
The mixed solvent as described above can dissolve not only the polyimide precursor raw material monomer and the thermally decomposable compound but also the synthesized polyimide precursor, so that it is necessary to dissolve the raw material monomer so that the synthesis reaction can proceed. Although it should just contain, when forming as a polyimide resin film, when using as a coating liquid to a base material, you may use the quantity which can be diluted to the viscosity which does not have trouble in coating workability | operativity.
Specifically, it is preferable to set the amount of the resulting polyimide precursor solution so that the resulting polyimide precursor has a solid content concentration of about 10 to 30% by mass.

〔ポリイミド前駆体溶液及びその製造方法〕
本発明のポリイミド前駆体溶液は、上記本発明のポリイミド前駆体合成用組成物を反応させることにより得られる。
すなわち、本発明のポリイミド前駆体溶液の製造方法は、熱分解温度が350℃以下の熱分解性有機化合物、及び常圧での沸点が150〜210℃の非プロトン性極性溶媒と常圧での沸点が200〜300℃のエーテル系溶媒との混合溶媒の存在下で、テトラカルボン酸二無水物とジアミンとを反応させる工程を含む。
[Polyimide precursor solution and production method thereof]
The polyimide precursor solution of the present invention can be obtained by reacting the polyimide precursor synthesis composition of the present invention.
That is, the method for producing a polyimide precursor solution of the present invention comprises a pyrolyzable organic compound having a pyrolysis temperature of 350 ° C. or less, an aprotic polar solvent having a boiling point of 150 to 210 ° C. at normal pressure, and normal pressure. A step of reacting a tetracarboxylic dianhydride and a diamine in the presence of a mixed solvent with an ether solvent having a boiling point of 200 to 300 ° C.

上記反応工程は、通常、上記混合溶媒中にジアミン化合物を溶解させた後、室温下で攪拌しながら、テトラカルボン酸二無水物を添加することにより行われる。
開環重付加反応が進行し、ポリアミック酸が合成される。この際、熱分解性有機化合物として変性有機化合物を用いている場合には、合成されるポリアミック酸の分子鎖内に、組み込まれる。熱分解性有機化合物が原料モノマーとの反応基を有していない場合には、原料モノマーによりポリアミック酸が合成される。
The reaction step is usually carried out by dissolving the diamine compound in the mixed solvent and then adding tetracarboxylic dianhydride while stirring at room temperature.
A ring-opening polyaddition reaction proceeds and a polyamic acid is synthesized. At this time, when a modified organic compound is used as the thermally decomposable organic compound, it is incorporated in the molecular chain of the synthesized polyamic acid. When the thermally decomposable organic compound does not have a reactive group with the raw material monomer, a polyamic acid is synthesized from the raw material monomer.

このようにして反応が進んだ組成物は、熱分解性有機化合物が組み込まれたポリイミド前駆体が混合溶媒に溶解した溶液、あるいはポリイミド前駆体と熱分解性有機化合物がほぼ均一に溶解した溶液となっている。本発明のポリイミド前駆体溶液はこのようにして得られる。好ましくは、熱分解性有機化合物が組み込まれたポリイミド前駆体が混合溶媒に溶解した溶液である。   The composition having undergone the reaction in this manner is a solution in which a polyimide precursor in which a thermally decomposable organic compound is incorporated is dissolved in a mixed solvent, or a solution in which a polyimide precursor and a thermally decomposable organic compound are substantially uniformly dissolved. It has become. The polyimide precursor solution of the present invention is thus obtained. Preferably, it is a solution in which a polyimide precursor incorporating a thermally decomposable organic compound is dissolved in a mixed solvent.

尚、本発明のポリイミド前駆体溶液には、必要に応じて、例えば、消泡剤、レベリング剤等の各種界面活性剤、光重合性モノマーなどが添加されていてもよい。これらの添加物は、ポリイミド前駆体原料の配合前、配合段階、配合後(ポリイミド前駆体合成後)の適宜段階で添加することが可能であるが、ポリイミド前駆体合成後に添加することが好ましい。   In addition, for example, various surfactants such as an antifoaming agent and a leveling agent, a photopolymerizable monomer, and the like may be added to the polyimide precursor solution of the present invention. These additives can be added at appropriate stages before blending the polyimide precursor raw material, at the blending stage, and after blending (after the polyimide precursor synthesis), but are preferably added after the polyimide precursor synthesis.

以上のようにして得られるポリイミド前駆体溶液は、加熱硬化により、ポリイミド前駆体のイミド化反応がおこるとともに、熱分解性有機化合物が熱分解、揮散、焼失する。その結果、熱分解性有機化合物が存在していた部分(熱分解性有機化合物が組み込みれていた部分)が気孔となった多孔質ポリイミドを得ることができる。   The polyimide precursor solution obtained as described above undergoes an imidization reaction of the polyimide precursor by heat curing, and the thermally decomposable organic compound is thermally decomposed, volatilized, and burned out. As a result, it is possible to obtain a porous polyimide in which portions where the thermally decomposable organic compound existed (portions where the thermally decomposable organic compound was incorporated) became pores.

〔多孔質ポリイミド〕
本発明の多孔質ポリイミドは、上記本発明のポリイミド前駆体溶液を加熱処理することにより得られる。
具体的には、ポリイミド前駆体溶液を基材に塗布し、溶剤を乾燥させることにより、ポリイミド前駆体被膜を形成する。次いで、熱処理すると、ポリイミド前駆体のイミド化が起こるとともに、ポリイミド前駆体分子鎖内に含まれる熱分解性有機化合物(熱分解性有機化合物残基として存在)が熱分解、焼失して、微細な気孔を有する多孔質ポリイミドが形成される。
[Porous polyimide]
The porous polyimide of the present invention can be obtained by heat-treating the polyimide precursor solution of the present invention.
Specifically, a polyimide precursor film is formed by applying a polyimide precursor solution to a substrate and drying the solvent. Next, when heat treatment is performed, imidization of the polyimide precursor occurs, and the thermally decomposable organic compound (existing as a thermally decomposable organic compound residue) contained in the polyimide precursor molecular chain is thermally decomposed and burned down, and is fine. A porous polyimide having pores is formed.

上記熱処理は、300〜500℃で1〜24時間加熱することにより行う。熱分解性有機化合物の熱分解、揮散、焼失(多孔質化)のための熱処理条件は、熱分解性有機化合物の熱分解温度に応じて選択される。加熱時間は、熱処理温度に応じて適宜設定すればよいが、400℃を超える高温で長時間加熱すると、ポリイミドが劣化してしまう。従って、通常、200〜400℃で2〜10時間程度の加熱とすることが好ましい。   The heat treatment is performed by heating at 300 to 500 ° C. for 1 to 24 hours. The heat treatment conditions for thermal decomposition, volatilization, and burning (porosification) of the thermally decomposable organic compound are selected according to the thermal decomposition temperature of the thermally decomposable organic compound. The heating time may be appropriately set according to the heat treatment temperature. However, when heated for a long time at a high temperature exceeding 400 ° C., the polyimide deteriorates. Therefore, it is usually preferable to heat at 200 to 400 ° C. for about 2 to 10 hours.

イミド化により塗膜の熱硬化が起こるとともに、熱分解性有機化合物が熱分解、焼失することで、熱分解性有機化合物の存在していた部分が気孔となる。つまり、得られる多孔質ポリイミドにおいて、気孔は、熱分解性有機化合物に起因することから、気孔サイズのバラツキが少なくて済み、しかも気孔分布は、均質な溶解状態に基づき、分布の均質性も高い。従って、微細孔が全体に均等分布してなる多孔質ポリイミドが得られ、当該多孔質ポリイミドは、気孔に基づき、誘電率が低い。   As the coating film is thermally cured by imidization, the thermally decomposable organic compound is thermally decomposed and burned out, so that the portion where the thermally decomposable organic compound was present becomes pores. That is, in the obtained porous polyimide, since the pores are caused by the thermally decomposable organic compound, there is little variation in the pore size, and the pore distribution is based on a homogeneous dissolved state, and the uniformity of the distribution is also high. . Accordingly, a porous polyimide in which fine pores are uniformly distributed is obtained, and the porous polyimide has a low dielectric constant based on pores.

以上のようにして得られる多孔質ポリイミドは、平均気孔径が、通常、0.001μm〜1μmであり、好ましくは0.005μm〜0.5μmといった微細孔であり、機械的強度、耐熱性、耐溶剤性といったポリイミド樹脂本来の優れた特性を保持した多孔質体で、低誘電率が達成できる。   The porous polyimide obtained as described above has an average pore diameter of usually from 0.001 μm to 1 μm, preferably from 0.005 μm to 0.5 μm, and has mechanical strength, heat resistance, resistance to resistance. Low dielectric constant can be achieved with a porous body that retains the excellent properties inherent in polyimide resins such as solvent properties.

多孔質ポリイミドの気孔率は、特に限定しないが、好ましくは10〜60%、より好ましくは20〜50%である。本発明のポリイミド前駆体溶液を利用することにより、気孔率60%程度の多孔質体を形成できるととともに、気孔率60%程度でも、必要十分な強度を確保することができる。一方、熱分解性有機化合物の含有率を高めすぎても、焼失せずに一部が残存してしまい、60%を超える多孔質体の製造が困難となる傾向にある。なお、上記範囲内の気孔率であれば、ポリイミド前駆体に含有させる熱分解性有機化合物の含有量により制御できる。   The porosity of the porous polyimide is not particularly limited, but is preferably 10 to 60%, more preferably 20 to 50%. By using the polyimide precursor solution of the present invention, a porous body having a porosity of about 60% can be formed, and a necessary and sufficient strength can be secured even with a porosity of about 60%. On the other hand, even if the content of the thermally decomposable organic compound is increased too much, a part of the pyrolyzable organic compound remains without being burned out, and it tends to be difficult to produce a porous body exceeding 60%. In addition, if it is the porosity in the said range, it can control by content of the thermally decomposable organic compound contained in a polyimide precursor.

以上のような多孔質ポリイミドは、1GHzで3.2以下、好ましくは3.0以下という低誘電率化を達成可能であり、しかもポリイミド樹脂の優れた特性、機械的強度、耐熱性、耐溶剤性も保持できる。
具体的には、また、ポリイミド前駆体の分子骨格に剛直な構造を導入することによって、線熱膨張係数(CTE)が30ppm/K以下とすることができる。樹脂の線熱膨張係数を上記範囲内で調整することにより、金属やシリコンからなる基材及び導体層との熱膨張係数の差を小さくすることが可能となり、ポリイミド層と金属層との間に残留応力が蓄積することにより生じるクラックや層間剥離などの問題を解決できる。
The porous polyimide as described above can achieve a low dielectric constant of 3.2 or less, preferably 3.0 or less at 1 GHz, and has excellent properties, mechanical strength, heat resistance, and solvent resistance. Sex can be maintained.
Specifically, the linear thermal expansion coefficient (CTE) can be reduced to 30 ppm / K or less by introducing a rigid structure into the molecular skeleton of the polyimide precursor. By adjusting the linear thermal expansion coefficient of the resin within the above range, it becomes possible to reduce the difference in thermal expansion coefficient between the base material and the conductor layer made of metal or silicon, and between the polyimide layer and the metal layer. Problems such as cracks and delamination caused by accumulation of residual stress can be solved.

多孔質ポリイミドの応用品も本発明の範囲内に含まれる。
多孔質ポリイミドの応用品としては、例えば、ポリイミド基材の片面に銅等の金属からなる導体配線を有し、その導体配線上に、多孔質ポリイミド膜をカバーレイフィルム(保護膜)として有する片面フレキシブルプリント配線板を例示できる。
また、ステンレス等の金属箔基材上にポリイミド等の絶縁層を有し、その上に銅等の金属からなる導体配線(回路)を有し、その導体配線上に多孔質ポリイミド膜を保護膜として有する回路付きサスペンション基板などを例示できる。
さらに、前記プリント配線板、サスペンション基板において、ポリイミド基材や絶縁層としてのポリイミド膜にも、本発明の多孔質ポリイミドを用いてもよい。
Applications of porous polyimide are also within the scope of the present invention.
As an application product of porous polyimide, for example, one side of a polyimide base material having a conductor wiring made of a metal such as copper, and having a porous polyimide film as a coverlay film (protective film) on the conductor wiring A flexible printed wiring board can be illustrated.
In addition, an insulating layer such as polyimide is provided on a metal foil base material such as stainless steel, and a conductor wiring (circuit) made of a metal such as copper is provided thereon, and a porous polyimide film is provided on the conductor wiring as a protective film. A suspension board with a circuit as shown in FIG.
Further, in the printed wiring board and suspension board, the porous polyimide of the present invention may be used for a polyimide base material or a polyimide film as an insulating layer.

本発明を実施するための形態を実施例により説明する。下記実施例は、本発明の範囲を限定するものではない。   The form for implementing this invention is demonstrated by an Example. The following examples are not intended to limit the scope of the invention.

〔測定評価方法〕
(1)平均気孔径(μm)
作製したポリイミド樹脂膜の切断面を、走査型電子顕微鏡(SEM)で観察して、平均気孔径を算出した。
[Measurement evaluation method]
(1) Average pore diameter (μm)
The cut surface of the produced polyimide resin film was observed with a scanning electron microscope (SEM), and the average pore diameter was calculated.

(2)気孔率(%)
作製したポリイミド樹脂膜の厚み及び重量を測定し、次の式から気孔率を算出した。式中のSは樹脂膜サンプルの面積、Tは膜厚、Wは測定した樹脂の重量、Dはポリイミドの密度を表す。ポリイミドの密度は気孔のないポリイミドフィルムから算出した。
気孔率(%)= 100−100×(W/D)/(S×T)
(2) Porosity (%)
The thickness and weight of the produced polyimide resin film were measured, and the porosity was calculated from the following formula. In the formula, S represents the area of the resin film sample, T represents the film thickness, W represents the weight of the measured resin, and D represents the density of the polyimide. The density of the polyimide was calculated from a polyimide film having no pores.
Porosity (%) = 100-100 × (W / D) / (S × T)

(3)誘電率
インピーダンスアナライザの容量法により、測定周波数1GHzで測定した。低誘電率膜としては、誘電率3.2以下であることが望まれる。
(3) Dielectric constant The dielectric constant was measured at a measurement frequency of 1 GHz by the capacitance method of an impedance analyzer. The low dielectric constant film is desired to have a dielectric constant of 3.2 or less.

(4)熱分解性有機化合物の熱分解温度
エスアイアイ・ナノテクノジー株式会社製のTG/DTA(示差熱熱重量同時測定装置)を用いて、窒素雰囲気下で室温から10℃/minで昇温し、熱重量を測定した。質量減少率が50%となるときの温度を熱分解温度とした。
(4) Thermal decomposition temperature of thermally decomposable organic compounds Using TG / DTA (simultaneous differential thermogravimetric measuring device) manufactured by SII NanoTechnology Co., Ltd., the temperature was increased from room temperature to 10 ° C / min in a nitrogen atmosphere. The thermogravimetry was measured. The temperature at which the mass reduction rate was 50% was defined as the thermal decomposition temperature.

〔ポリイミド前駆体溶液及び多孔質ポリイミド膜の製造〕
(1)ポリイミド前駆体溶液No.1−No.4
非プロトン性極性溶媒として、N,N−ジメチルアセトアミド(DMAc:沸点165℃)を使用し、エーテル系溶媒としてトリエチレングリコールジメチルエーテル(沸点:216℃)又はテトラエチレングリコールジメチルエーテル(沸点:275℃)を用いた。非プロトン性極性溶媒とエーテル系溶媒とを1:1(質量比)で混合して、混合溶媒とした。
[Production of polyimide precursor solution and porous polyimide film]
(1) Polyimide precursor solution No. 1-No. 4
N, N-dimethylacetamide (DMAc: boiling point 165 ° C.) is used as the aprotic polar solvent, and triethylene glycol dimethyl ether (boiling point: 216 ° C.) or tetraethylene glycol dimethyl ether (boiling point: 275 ° C.) is used as the ether solvent. Using. The aprotic polar solvent and the ether solvent were mixed at 1: 1 (mass ratio) to obtain a mixed solvent.

混合溶媒に、表1に示す量の4,4’−ジアミノジフェニルエーテル(ODA)及び熱分解性有機化合物(重量平均分子量2000又は4000のジアミン変性ポリプロピレングリコール)を、それぞれ表1に示す量を添加し、窒素雰囲気下80℃で攪拌し完全に溶解させた。その後、反応液を40℃まで冷却した後、ピロメリット酸二無水物(PMDA)100gを5時間かけて攪拌しながら添加し、固形分濃度23質量%のポリイミド前駆体溶液を得た。   To the mixed solvent, add 4,4′-diaminodiphenyl ether (ODA) in the amount shown in Table 1 and a thermally decomposable organic compound (diamine-modified polypropylene glycol having a weight average molecular weight of 2000 or 4000) in the amounts shown in Table 1, respectively. The mixture was stirred at 80 ° C. in a nitrogen atmosphere to completely dissolve the mixture. Then, after cooling a reaction liquid to 40 degreeC, pyromellitic dianhydride (PMDA) 100g was added over 5 hours, stirring, and the polyimide precursor solution with a solid content concentration of 23 mass% was obtained.

なお、使用した熱分解性有機化合物は以下のとおりである。
アミン変性PPG1:重量平均分子量2000の両末端をジアミンで変性したポリプロピレングリコール、熱分解温度300℃
アミン変性PPG2:重量平均分子量4000の両末端をジアミンで変性したポリプロピレングリコール、熱分解温度300℃
The thermally decomposable organic compounds used are as follows.
Amine-modified PPG1: Polypropylene glycol modified with diamine at both ends having a weight average molecular weight of 2000, thermal decomposition temperature of 300 ° C.
Amine-modified PPG2: Polypropylene glycol modified with diamine at both ends with a weight average molecular weight of 4000, thermal decomposition temperature of 300 ° C.

厚み40μmの銅箔上に、上記で合成したポリイミド前駆体溶液をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して厚み20μmのポリイミド前駆体の被膜を形成した。次いで、窒素雰囲気下で120℃で1時間、250℃で2時間、370℃で5時間の熱処理を行ってイミド化させ、多孔質のポリイミド樹脂膜(多孔質ポリイミド)を作製した。
得られた多孔質ポリイミドの断面を走査電子顕微鏡SEMで観察し、平均気孔径を求めた。さらに、誘電率を上記方法に従って、測定、算出した。結果を表1に示す。また、撮像したNo.2の顕微鏡写真を図1に示す。写真において、黒色部分が気孔である。
The polyimide precursor solution synthesized above was applied onto a copper foil having a thickness of 40 μm by a spin coating method, followed by heating and drying at 90 ° C. for 30 minutes to form a polyimide precursor film having a thickness of 20 μm. Subsequently, heat treatment was performed at 120 ° C. for 1 hour, 250 ° C. for 2 hours, and 370 ° C. for 5 hours in a nitrogen atmosphere to imidize, thereby producing a porous polyimide resin film (porous polyimide).
The cross section of the obtained porous polyimide was observed with a scanning electron microscope SEM, and the average pore diameter was determined. Further, the dielectric constant was measured and calculated according to the above method. The results are shown in Table 1. In addition, the imaged No. A photomicrograph of 2 is shown in FIG. In the photograph, the black portions are pores.

(2)ポリイミド前駆体溶液No.5
混合溶媒に代えて、非プロトン極性溶媒のみを使用し、4,4’−ジアミノジフェニルエーテル(ODA)及び熱分解性有機化合物の配合量を表1のようにした以外は、ポリイミド前駆体溶液No.1と同様にして合成したポリイミド前駆体溶液を用いて、ポリイミド樹脂膜(多孔質ポリイミド)を作製した。得られた多孔質ポリイミドの断面を走査電子顕微鏡(SEM)で観察したところ、平均気孔径は1μm〜10μmと大きく、また、気孔の分布が偏っていた。さらに、誘電率を上記方法に従って、測定した。結果を表1に示す。また、撮像した顕微鏡写真を図2に示す。
(3)ポリイミド前駆体溶液No.6
混合溶媒に代えて、テトラエチレングリコールジメチルエーテルのみを使用し、4,4’−ジアミノジフェニルエーテル(ODA)及び熱分解性有機化合物の配合量を表1のようにし、さらにピロメリット酸二無水物(PMDA)を滴下したところ、ODA、PMDAが溶解せず、重合反応が進行しなかった。
(2) Polyimide precursor solution No. 5
In place of the mixed solvent, only the aprotic polar solvent was used, and the amounts of 4,4′-diaminodiphenyl ether (ODA) and the thermally decomposable organic compound were changed as shown in Table 1. A polyimide resin film (porous polyimide) was prepared using a polyimide precursor solution synthesized in the same manner as in 1. When the cross section of the obtained porous polyimide was observed with a scanning electron microscope (SEM), the average pore diameter was as large as 1 μm to 10 μm, and the pore distribution was uneven. Further, the dielectric constant was measured according to the above method. The results are shown in Table 1. Moreover, the imaged micrograph is shown in FIG.
(3) Polyimide precursor solution No. 6
Instead of the mixed solvent, only tetraethylene glycol dimethyl ether is used, the amount of 4,4′-diaminodiphenyl ether (ODA) and the thermally decomposable organic compound is as shown in Table 1, and pyromellitic dianhydride (PMDA) ) Was dropped, ODA and PMDA did not dissolve, and the polymerization reaction did not proceed.

(4)参考例
非プロトン極性溶媒存在下で、熱分解有機化合物は添加配合せずに、4,4’−ジアミノジフェニルエーテル(ODA)にピロメリット酸二無水物(PMDA)を滴下することで環化付加重合反応を進行させ、ポリイミド前駆体溶液を合成した。得られたポリイミド前駆体溶液を、No.1と同様にして、銅箔上に塗工し、得られたポリイミド前駆体被膜を同様に加熱硬化させて、気孔のないポリイミド樹脂膜を得た。このポリイミド樹脂膜の誘電率を測定した結果を表1に示す。
(4) Reference Example In the presence of an aprotic polar solvent, pyromellitic dianhydride (PMDA) was dropped into 4,4′-diaminodiphenyl ether (ODA) without adding a pyrolytic organic compound and adding a ring. The polyimide addition solution was advanced to synthesize a polyimide precursor solution. The obtained polyimide precursor solution is referred to In the same manner as in Example 1, coating was performed on a copper foil, and the obtained polyimide precursor film was similarly cured by heating to obtain a polyimide resin film having no pores. The results of measuring the dielectric constant of this polyimide resin film are shown in Table 1.

表1からわかるように、極性溶媒とエーテル系溶媒との混合溶媒を用いて合成したポリイミド前駆体溶液から形成される多孔質ポリイミド(No.1−4)は、いずれも、図1に示すような気孔径が10〜200nmの微小気孔が満遍なく分布していて、誘電率も3.1以下であった。これに対して、極性溶媒のみを用いて合成したポリイミド前駆体溶液から形成される多孔質ポリイミド(No.5)では、図2に示すように、気孔に該当するものは大きな島状、ひも状などで、気孔サイズは1000〜10000nmであり、気孔分布もまばら不均一であるため、誘電率も3.3であった。非多孔質ポリイミド(参考例)と比べて、誘電率が低下しているものの、その低下のレベルは満足できるものではない。
一方、熱分解性有機化合物及びエーテル系溶媒の存在下で、ポリイミド原料モノマー及び熱分解性有機化合物を添加配合しても、ポリイミド原料モノマーが溶解しないため、懸濁液となり、重合反応自体が進行せず、ポリイミド前駆体溶液を合成できなかった(No.6)。
As can be seen from Table 1, all of the porous polyimides (No. 1-4) formed from the polyimide precursor solution synthesized using a mixed solvent of a polar solvent and an ether solvent are as shown in FIG. Fine pores having a pore size of 10 to 200 nm were evenly distributed, and the dielectric constant was 3.1 or less. On the other hand, in the porous polyimide (No. 5) formed from the polyimide precursor solution synthesized using only the polar solvent, as shown in FIG. 2, the pores are large islands and strings. The pore size was 1000 to 10,000 nm, and the pore distribution was sparse and non-uniform, so that the dielectric constant was 3.3. Although the dielectric constant is reduced as compared with non-porous polyimide (reference example), the level of the reduction is not satisfactory.
On the other hand, even if the polyimide raw material monomer and the thermally decomposable organic compound are added and blended in the presence of the thermally decomposable organic compound and the ether solvent, the polyimide raw material monomer does not dissolve, so it becomes a suspension and the polymerization reaction itself proceeds. The polyimide precursor solution could not be synthesized (No. 6).

本発明のポリイミド前駆体溶液の製造方法、本発明のポリイミド前駆体溶液を用いることにより、非多孔質ポリイミドの塗布・製膜・焼成と同様の方法で、微細な空孔がほぼ均等に分布した多孔質ポリイミドを製造することができるので、非多孔質ポリイミドの製造設備を援用して、低誘電率の多孔質ポリイミドを製造することができ、生産上有用である。   By using the method for producing a polyimide precursor solution of the present invention and the polyimide precursor solution of the present invention, fine pores were distributed almost evenly in the same manner as coating, film-forming and firing of non-porous polyimide. Since porous polyimide can be produced, a low-permittivity porous polyimide can be produced with the aid of non-porous polyimide production equipment, which is useful in production.

Claims (7)

ポリエーテルの両末端にアミンが結合したジアミン化合物からなる熱分解温度が350℃以下の熱分解性有機化合物、及び常圧での沸点が150〜210℃の非プロトン性極性溶媒と常圧での沸点が200〜300℃のエーテル系溶媒とが質量比40:60〜60:40で含有されている混合溶媒の存在下で、テトラカルボン酸二無水物とジアミンとを反応させる工程を含む、ポリイミド前駆体溶液の製造方法。 Thermally decomposable organic compound comprising a diamine compound having amines bonded to both ends of the polyether and having a pyrolysis temperature of 350 ° C. or lower, an aprotic polar solvent having a boiling point of 150 to 210 ° C. at normal pressure, and normal pressure A polyimide comprising a step of reacting a tetracarboxylic dianhydride and a diamine in the presence of a mixed solvent containing an ether solvent having a boiling point of 200 to 300 ° C. in a mass ratio of 40:60 to 60:40 A method for producing a precursor solution. 前記エーテル系溶媒は、トリエチレングリコールジメチルエーテル又はテトラエチレングリコールジメチルエーテルであり、前記プロトン性極性溶媒はN−メチル2−ピロリドン、ジメチルスルホキシド、またはγ−ブチロラクトンである請求項1に記載の製造方法。 The ether solvent may, Ri triethylene glycol dimethyl ether or tetraethylene glycol dimethyl ether der, the protic polar solvent is N- methyl-2-pyrrolidone, The process according to dimethyl sulfoxide or γ- butyrolactone der Ru claim 1, . 前記熱分解性有機化合物、前記テトラカルボン酸二無水物、および前記ジアミンの総量100質量部に対する、前記熱分解性有機化合物の配合量は、20〜50質量部である請求項1又は2に記載の製造方法。 The compounding quantity of the said thermally decomposable organic compound with respect to 100 mass parts of total amounts of the said thermally decomposable organic compound, the said tetracarboxylic dianhydride, and the said diamine is 20-50 mass parts. Manufacturing method. 請求項1〜3のいずれかに記載の方法により製造されるポリイミド前駆体溶液を350℃以上に加熱してイミド化する工程
を含む多孔質ポリイミドの製造方法。
The manufacturing method of the porous polyimide including the process of heating the polyimide precursor solution manufactured by the method in any one of Claims 1-3 to 350 degreeC or more, and imidating.
テトラカルボン酸二無水物、ジアミン、ポリエーテルの両末端にアミンが結合したジアミン化合物からなる熱分解温度が350℃以下の熱分解性有機化合物、及び常圧での沸点が150〜210℃の非プロトン性極性溶媒と常圧での沸点が200〜300℃のエーテル系溶媒とが質量比40:60〜60:40で含有されている混合溶媒を含有するポリイミド前駆体合成用組成物。 Thermally decomposable organic compound having a thermal decomposition temperature of 350 ° C. or lower, composed of a diamine compound in which amines are bonded to both ends of tetracarboxylic dianhydride, diamine, and polyether , and non-boiling point having a boiling point of 150 to 210 ° C. at normal pressure A composition for synthesizing a polyimide precursor containing a mixed solvent in which a protic polar solvent and an ether solvent having a boiling point of 200 to 300 ° C. at normal pressure are contained in a mass ratio of 40:60 to 60:40 . 常圧での沸点が150〜210℃の非プロトン性極性溶媒と常圧での沸点が200〜300℃のエーテル系溶媒とが質量比40:60〜60:40で含有されている混合溶媒に、テトラカルボン酸二無水物、ジアミン、及びポリエーテルの両末端にアミンが結合したジアミン化合物からなる熱分解温度が350℃以下の熱分解性有機化合物が反応してなるポリイミド前駆体が、溶解しているポリイミド前駆体溶液。 A mixed solvent containing an aprotic polar solvent having a boiling point of 150 to 210 ° C. at normal pressure and an ether solvent having a boiling point of 200 to 300 ° C. at normal pressure in a mass ratio of 40:60 to 60:40 The polyimide precursor formed by the reaction of a thermally decomposable organic compound having a thermal decomposition temperature of 350 ° C. or lower comprising a diamine compound in which amines are bonded to both ends of tetracarboxylic dianhydride, diamine, and polyether is dissolved. The polyimide precursor solution. 請求項6のポリイミド前駆体溶液を350℃以上で加熱して、脱水環化して、平均気孔径0.001〜0.5μmの多孔質ポリイミドを得る多孔質ポリイミドの製造方法。 A method for producing a porous polyimide, wherein the polyimide precursor solution of claim 6 is heated at 350 ° C. or higher to be dehydrated and cyclized to obtain a porous polyimide having an average pore diameter of 0.001 to 0.5 μm .
JP2012088345A 2012-04-09 2012-04-09 Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide Active JP5928705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012088345A JP5928705B2 (en) 2012-04-09 2012-04-09 Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088345A JP5928705B2 (en) 2012-04-09 2012-04-09 Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide

Publications (2)

Publication Number Publication Date
JP2013216776A JP2013216776A (en) 2013-10-24
JP5928705B2 true JP5928705B2 (en) 2016-06-01

Family

ID=49589278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088345A Active JP5928705B2 (en) 2012-04-09 2012-04-09 Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide

Country Status (1)

Country Link
JP (1) JP5928705B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110210A (en) * 2014-04-07 2018-10-08 유니티카 가부시끼가이샤 Laminated porous film and production method therefor
JP6577182B2 (en) * 2014-12-02 2019-09-18 ユニチカ株式会社 Imide polymer solution, porous imide polymer film, and production method thereof
JP2016169373A (en) * 2015-03-11 2016-09-23 ユニチカ株式会社 Polyimide solution for printed wiring board, method for production of printed wiring board, and printed wiring board
WO2016167038A1 (en) * 2015-04-15 2016-10-20 東レ株式会社 Heat-resistant resin composition, method for manufacturing heat-resistant resin film, method for manufacturing interlayer insulation film or surface protective film, and method for manufacturing electronic component or semiconductor component
JP6777308B2 (en) * 2015-10-16 2020-10-28 ユニチカ株式会社 Polyimide solution for forming a porous polyimide film, a method for producing a porous polyimide film, and a porous polyimide film
JP6666602B2 (en) * 2016-03-25 2020-03-18 日産化学株式会社 Resin composition for forming porous film and porous film
JP6923913B2 (en) * 2016-06-22 2021-08-25 ユニチカ株式会社 Polyimide solution for forming a porous polyimide film, a method for producing a porous polyimide film, and a porous polyimide film
JP6983394B2 (en) * 2016-06-23 2021-12-17 ユニチカ株式会社 Polyimide solution for forming porous polyimide film, manufacturing method of porous polyimide film and porous polyimide film
CN116102775B (en) * 2023-02-07 2023-10-17 富优特(山东)新材料科技有限公司 Porous polyimide film for lithium ion battery and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947989B2 (en) * 2006-02-09 2012-06-06 ユニチカ株式会社 Polyimide precursor solution, polyimide porous film, and production method thereof
CN102597061B (en) * 2009-11-16 2014-06-04 旭化成电子材料株式会社 Polyimide precursor and photosensitive resin composition containing the polyimide precursor
JP2011140580A (en) * 2010-01-08 2011-07-21 Sumitomo Electric Ind Ltd Polymer type thermally decomposable group-containing polyimide precursor and composition of the same and polyimide porous material using the same

Also Published As

Publication number Publication date
JP2013216776A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5928705B2 (en) Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide
CN107108926B (en) Method for producing polyimide film using porous particles and low dielectric constant polyimide film
JP4896309B2 (en) Method for producing porous polyimide resin
JP4947989B2 (en) Polyimide precursor solution, polyimide porous film, and production method thereof
CN107189436B (en) Polyimide nano foam and preparation method thereof
JP2020090681A (en) Polyamide-imide precursor, polyamide-imide film and display device including the same
TWI773889B (en) Polyimide precursor composition for improving adhesion property of polyimide film, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
CN112955497A (en) Ultrathin polyimide film with improved dimensional stability and preparation method thereof
TWI723360B (en) Polyimide precursor composition comprising crosslinkable dianhydride compound and antioxidant, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
JPH06293834A (en) Film-forming solution, porous film produced therefrom and porous coating film
KR101886244B1 (en) Nanoporous micro spherical polyimide aerogels and method for manufacturing the same
KR102121307B1 (en) Polyimide Precursor Composition for Improving Adhesion Property of Polyimide Film, and Polyimide Film Prepared Therefrom
KR102214910B1 (en) Method of manufacturing hybrid polyimide film using POSS
KR20190025072A (en) Method for preparation of polyimide film using fumed silica particles and polyimide film having low permittivity
US20220282088A1 (en) Polyamic acid composition, method for preparing polyamic acid composition and polyimide comprising the same
JP2007099842A (en) Novel polyimide resin
US20220135797A1 (en) Polyimide film and method for manufacturing same
CN113121857A (en) Low-dielectric-property polyimide film and preparation method thereof
KR101240955B1 (en) Polyimide film having excellent high temperature stability and substrate for display device using the same
JP2009221398A (en) Polyamic acid solution composition, and polyimide film
JP2011140580A (en) Polymer type thermally decomposable group-containing polyimide precursor and composition of the same and polyimide porous material using the same
KR20210037333A (en) Polyamic acid composition, method for preparing polyamic acid composition and polyimide comprising the same
WO2023058288A1 (en) Resin composition and insulated wire
JP2006022260A (en) Porous polyimide and method for producing the same
JP4449612B2 (en) Composition for forming porous carbon film and method for forming porous carbon film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5928705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250