JP2007067473A - Quadrature error automatic compensating circuit - Google Patents

Quadrature error automatic compensating circuit Download PDF

Info

Publication number
JP2007067473A
JP2007067473A JP2005247145A JP2005247145A JP2007067473A JP 2007067473 A JP2007067473 A JP 2007067473A JP 2005247145 A JP2005247145 A JP 2005247145A JP 2005247145 A JP2005247145 A JP 2005247145A JP 2007067473 A JP2007067473 A JP 2007067473A
Authority
JP
Japan
Prior art keywords
value
signal
output
input
quadrature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005247145A
Other languages
Japanese (ja)
Other versions
JP4520387B2 (en
Inventor
Yasushi Shirato
裕史 白戸
Hiroshi Yoshioka
博 吉岡
Kazuji Watanabe
和二 渡邊
Masatoshi Nagayasu
正俊 永安
Kazuya Kojima
和也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Japan Radio Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Japan Radio Co Ltd
Priority to JP2005247145A priority Critical patent/JP4520387B2/en
Publication of JP2007067473A publication Critical patent/JP2007067473A/en
Application granted granted Critical
Publication of JP4520387B2 publication Critical patent/JP4520387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent defect in feedback control, even if there is deviation in the input signal, and to satisfy predetermined quadrature error compensating characteristics, using a simple circuit. <P>SOLUTION: The circuit is provided with a sum of squares calculating means for calculating sum of squares of an in-phase signal and a quadrature signal to be output from a quadrature error compensating means; a code inverting means for applying code inversion on an output of the square sum calculating means; a selecting means for outputting a first input, when a third input is the same code and outputting a second input when it is a different code, where the first input is the output of the square sum calculating means, the second input is the output of the code-inverting means, a third input is code information of the output of the quadrature error compensating means; an accumulative processing means for accumulating the output of the selecting means, stopping the accumulating adding processing, if the absolute value thereof exceeds the absolute value of the threshold, and outputting an addition signal/subtraction signal according to positive/negative state of an accumulated addition value; and an accumulator for outputting a value, increased by increment according to the addition signal/subtraction signal as a control signal to the quadrature error compensating means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、QPSK(Quadri Phase Shift Keying:4相位相変調) や、多値QAM(Quadrature Amplitude Modulation:直交振幅変調)などのディジタル変調信号を復調する直交検波器における直交誤差を補償する直交誤差自動補償回路に関する。   The present invention is an automatic quadrature error compensating quadrature error in a quadrature detector that demodulates a digital modulation signal such as quadrature phase shift keying (QPSK) or multi-level QAM (quadrature amplitude modulation). The present invention relates to a compensation circuit.

QPSKや多値QAMなどのディジタル変調信号の受信器では、受信信号を同相・直交の2系統の信号成分に分離し、それぞれベースバンド信号として出力するための直交検波器が用いられる。   In a receiver of a digital modulation signal such as QPSK or multilevel QAM, a quadrature detector is used for separating the received signal into two in-phase and quadrature signal components and outputting them as baseband signals.

理想的な直交検波器では、信号空間ダイヤグラムは図5に実線で示すように円となる。しかし、一般には直交誤差・ゲイン誤差、DCオフセット等の直交検波器の不完全性により同相/直交チャネル間の直交性が崩れ、信号空間ダイヤグラムは図5に破線で示すように楕円となる(非特許文献1)。このため、特許文献1では、全ディジタル直交検波器に対する直交誤差検出回路が提案されている。なお、キャリア同期およびタイミング誤差が確立していない状態では、位相回転や符号間干渉が存在するため、直交検波器出力は楕円内部にランダムに分布することになる。したがって、直交誤差補償回路では、信号空間ダイヤグラム上の各象限における受信信号の存在確率が等しくなるように制御(直交誤差補償)を行う。   In an ideal quadrature detector, the signal space diagram is a circle as shown by the solid line in FIG. However, in general, orthogonality between in-phase / quadrature channels is lost due to incompleteness of the quadrature detector such as quadrature error / gain error and DC offset, and the signal space diagram becomes an ellipse as shown by a broken line in FIG. Patent Document 1). For this reason, Patent Document 1 proposes a quadrature error detection circuit for an all-digital quadrature detector. Note that in the state where carrier synchronization and timing error are not established, phase rotation and intersymbol interference exist, and therefore the quadrature detector output is randomly distributed within the ellipse. Therefore, in the orthogonal error compensation circuit, control (orthogonal error compensation) is performed so that the existence probabilities of the received signals in each quadrant on the signal space diagram are equal.

図4は、特許文献1に示す従来の直交誤差自動補償回路の構成例を示す。図において、同相信号入力端子10および直交信号入力端子20には、不要高調波を除去後の直交検波器出力が入力される。この同相信号および直交信号は直交誤差補償回路100に入力され、直交誤差が補償された同相信号および直交信号としてそれぞれ同相信号出力端子30および直交信号出力端子40に出力される。この直交誤差補償回路100における直交誤差補償制御は、次のようにして行われる。   FIG. 4 shows a configuration example of a conventional orthogonal error automatic compensation circuit shown in Patent Document 1. In the figure, the in-phase signal input terminal 10 and the quadrature signal input terminal 20 are inputted with the quadrature detector output after removing unnecessary harmonics. The in-phase signal and the quadrature signal are input to the quadrature error compensation circuit 100, and are output to the in-phase signal output terminal 30 and the quadrature signal output terminal 40, respectively, as the in-phase signal and the quadrature signal compensated for the quadrature error. The orthogonal error compensation control in the orthogonal error compensation circuit 100 is performed as follows.

二乗演算回路110,120および加算回路130は、直交誤差補償回路100から出力される同相信号および直交信号を入力して二乗和(電力)を計算する。符号反転回路140は、加算回路130の出力を符号反転する。選択回路150は、直交誤差補償回路100から出力される同相信号および直交信号の各符号ビットを入力し、同符号(受信信号の信号空間ダイヤグラム上の配置が第1象限と第3象限の場合)であれば加算回路130の出力信号、異符号(受信信号の信号空間ダイヤグラム上の配置が第2象限と第4象限の場合)であれば符号反転回路140の出力信号を選択して出力する。選択回路150の出力信号は累積加算回路160で累積加算される。ここで、送信信号系列はランダムであるので、一定数の受信シンボルに対して選択回路150の出力信号を累積加算することにより、信号空間ダイヤグラム上の信号点の偏りが検出される。累積換算回路160の出力信号は、ローパスフィルタ(LPF)170で平滑化されて直交誤差補償回路100の制御信号として用いられる。このようなフィードバック制御により、直交誤差補償を自動的に行うことができる。   The square operation circuits 110 and 120 and the adder circuit 130 receive the in-phase signal and the quadrature signal output from the quadrature error compensation circuit 100 and calculate the sum of squares (power). The sign inversion circuit 140 inverts the sign of the output of the addition circuit 130. The selection circuit 150 inputs the code bits of the in-phase signal and the quadrature signal output from the quadrature error compensation circuit 100, and the same code (when the arrangement on the signal space diagram of the received signal is in the first quadrant and the third quadrant). ), The output signal of the adder circuit 130 is selected, and the output signal of the sign inverting circuit 140 is selected and output if the different sign (if the arrangement of the received signal on the signal space diagram is in the second quadrant and the fourth quadrant). . The output signal of the selection circuit 150 is cumulatively added by the cumulative addition circuit 160. Here, since the transmission signal sequence is random, the bias of the signal points on the signal space diagram is detected by cumulatively adding the output signal of the selection circuit 150 to a certain number of received symbols. The output signal of the cumulative conversion circuit 160 is smoothed by a low-pass filter (LPF) 170 and used as a control signal for the orthogonal error compensation circuit 100. By such feedback control, orthogonal error compensation can be automatically performed.

なお、信号空間ダイヤグラムの形状は、キャリア同期およびタイミング同期とは無関係である。したがって、従来の直交誤差自動補償回路では、キャリア同期およびタイミング同期が確立していなくとも、劣化なく動作する。
特開2004−248115号公報 鈴木博,吉野仁、「アフィン変換線形ひずみ補償−移動無線通信における等化を含む線形信号伝送への適用−」,電子情報通信学会論文誌B−II,Vol.J75-B-II,No.1,pp.1-9,1992年1月
The shape of the signal space diagram is independent of carrier synchronization and timing synchronization. Accordingly, the conventional orthogonal error automatic compensation circuit operates without deterioration even if carrier synchronization and timing synchronization are not established.
JP 2004-248115 A Hiroshi Suzuki, Hitoshi Yoshino, “Affine Transform Linear Distortion Compensation-Application to Linear Signal Transmission including Equalization in Mobile Radio Communications”, IEICE Transactions B-II, Vol. J75-B-II, No. 1, pp.1-9, January 1992

図4に示す従来の直交誤差自動補償回路では、累積加算回路160で累積される値は、装置の電源投入時に初期化される以外にクリアされることはない。このため、長時間にわたる運用中に発生する伝送信号の偏りがある状況、すなわち受信信号の信号点配置が特定の象限にしか現れないような状況、例えば“0" や“1" が連続する、あるいは“01" 交番等が発生する状況では、累積加算回路160の値が大きくなる場合がある。   In the conventional orthogonal error automatic compensation circuit shown in FIG. 4, the value accumulated by the accumulation adding circuit 160 is not cleared other than being initialized when the apparatus is turned on. For this reason, there is a bias in the transmission signal that occurs during long-time operation, that is, a situation in which the signal point arrangement of the received signal appears only in a specific quadrant, for example, “0” or “1” continues. Alternatively, in a situation where a “01” alternation or the like occurs, the value of the cumulative addition circuit 160 may increase.

このような原因で累積加算回路160にオーバーフローが発生すると、直交誤差補償回路100への制御信号の単調増加性(あるいは単調減少性)が失われるため、直交誤差補正のためのフィードバック制御が破綻する。このため、累積加算回路160を設計する際には、オーバーフローしないように十分に余裕をもたせる必要がある。しかし、この余裕度は、システムのフレームを構成する確定パターン自体やその長さ、データ区間で使用される誤り訂正やスクランブラの設計パラメータ等に依存するため、正確な見積りが難しく、必要以上にマージンをとることになる。   If an overflow occurs in the cumulative addition circuit 160 due to such a reason, the monotonous increase (or monotonic decrease) of the control signal to the orthogonal error compensation circuit 100 is lost, and feedback control for orthogonal error correction fails. . For this reason, when designing the cumulative addition circuit 160, it is necessary to provide a sufficient margin so as not to overflow. However, this margin depends on the deterministic pattern itself that makes up the frame of the system, its length, error correction used in the data section, scrambler design parameters, etc., so accurate estimation is difficult and more than necessary. A margin will be taken.

本発明は、入力信号に偏りがあってもフィードバック制御の破綻を防ぎ、簡易な回路で所定の直交誤差補償特性を満足させることができる直交誤差自動補償回路を提供することを目的とする。   An object of the present invention is to provide an automatic quadrature error compensation circuit that can prevent failure of feedback control even when an input signal is biased and can satisfy a predetermined quadrature error compensation characteristic with a simple circuit.

第1の発明は、直交検波器の出力から不要高調波を除去した同相信号および直交信号を入力し、制御信号に応じて直交誤差を補償した同相信号および直交信号を出力する直交誤差補償手段と、 直交誤差補償手段から出力される同相信号および直交信号を入力し、その二乗和を演算する二乗和演算手段と、二乗和演算手段の出力を符号反転する符号反転手段と、二乗和演算手段の出力を第1の入力とし、符号反転手段の出力を第2の入力とし、直交誤差補償手段から出力される同相信号および直交信号の符号情報を第3の入力とし、第3の入力が同符号の場合は第1の入力を出力し、第3の入力が異符号の場合は第2の入力を出力する選択手段と、外部から閾値の絶対値を入力し、選択手段の出力を累積加算し、その累積加算値の絶対値が閾値の絶対値を超える場合に累積加算処理を停止するとともに、その累積加算値が正の値であれば加算信号を出力し、負の値であれば減算信号を出力する累積処理手段と、外部から刻み幅を入力し、累積処理手段から加算信号を入力した場合に直前の値に刻み幅だけ増加させた値を制御信号として直交誤差補償手段に出力し、累積処理手段から減算信号を入力した場合に直前の値に刻み幅だけ減少させた値を制御信号として直交誤差補償手段に出力するアキュムレータとを備える。   1st invention inputs the in-phase signal and quadrature signal which removed the unnecessary harmonic from the output of a quadrature detector, and outputs the in-phase signal and quadrature signal which compensated the quadrature error according to the control signal A square sum operation means for inputting the in-phase signal and the quadrature signal output from the quadrature error compensation means and calculating a sum of squares thereof; a sign inversion means for inverting the sign of the output of the square sum operation means; and a sum of squares The output of the computing means is the first input, the output of the sign inverting means is the second input, the in-phase signal and the quadrature signal code information output from the quadrature error compensation means are the third input, When the input is the same sign, the first input is output, and when the third input is a different sign, the selection means for outputting the second input and the absolute value of the threshold value are input from the outside, and the output of the selection means And the absolute value of the cumulative addition value is the threshold value. The cumulative addition process is stopped when the absolute value exceeds the absolute value, and an addition signal is output if the cumulative addition value is positive, and a subtraction signal is output if the cumulative addition value is negative. When a step size is input and an addition signal is input from the accumulation processing means, a value obtained by increasing the step size to the previous value is output to the orthogonal error compensation means as a control signal, and a subtraction signal is input from the accumulation processing means And an accumulator that outputs a value obtained by reducing the step size to the immediately preceding value to the orthogonal error compensation means as a control signal.

第1の発明では、累積処理手段は選択手段の出力を累積加算し、その累積加算値の絶対値が外部から設定される閾値の絶対値を超える場合に累積加算処理を停止するとともに、その累積加算値が正の値であれば後段のアキュムレータに加算信号を出力し、負の値であれば減算信号を出力する。アキュムレータは、加算信号または減算信号に基づいて、直交誤差補償手段に与える制御信号を所定の刻み幅単位で増減する処理を行う。これにより、直交誤差補償手段では、直交誤差に対する補償信号出力の単調増加性または単調減少性が保証され、入力信号に偏りがあっても回路の動作が破綻することはなく、性能劣化を回避することができる。   In the first invention, the cumulative processing means cumulatively adds the outputs of the selection means, and stops the cumulative addition processing when the absolute value of the cumulative addition value exceeds the absolute value of the threshold value set from outside, If the addition value is a positive value, an addition signal is output to the subsequent accumulator, and if it is a negative value, a subtraction signal is output. The accumulator performs a process of increasing / decreasing a control signal given to the orthogonal error compensation means in units of a predetermined step based on the addition signal or the subtraction signal. As a result, the quadrature error compensation means guarantees monotonic increase or monotonic decrease of the compensation signal output for the quadrature error, and even if the input signal is biased, the circuit operation does not fail and avoids performance degradation. be able to.

第2の発明は、第1の発明における累積処理手段として、外部から閾値の絶対値を入力し、選択手段の出力を累積加算し、その累積加算値の絶対値が閾値の絶対値を超える場合に累積加算処理を停止するとともに、その累積加算値が正の値であれば+(閾値)、負の値であれば−(閾値)を出力する累積加算回路と、外部から閾値の絶対値を入力し、累積加算回路の出力が+(閾値)であれば加算信号を出力し、−(閾値)であれば減算信号を出力する閾値比較回路とを用いる構成である。   In the second invention, as the accumulation processing means in the first invention, the absolute value of the threshold value is inputted from the outside, the output of the selection means is cumulatively added, and the absolute value of the cumulative addition value exceeds the absolute value of the threshold value The cumulative addition circuit stops the cumulative addition process and outputs + (threshold) if the cumulative addition value is positive, and-(threshold) if the cumulative addition value is negative, and the absolute value of the threshold from the outside. When the output of the cumulative addition circuit is + (threshold), an addition signal is output. When the output is-(threshold), a threshold comparison circuit that outputs a subtraction signal is used.

第3の発明は、第1の発明における累積処理手段として、外部から閾値の絶対値を入力し、選択手段の出力の符号ビットに応じて+1または−1のカウント動作を行い、そのカウント値の絶対値が閾値の絶対値を超える場合にカウント動作を停止するとともに、そのカウント値が正の値であれば+(閾値)、負の値であれば−(閾値)を出力するアップダウンカウンタと、外部から閾値の絶対値を入力し、アップダウンカウンタの出力が+(閾値)であれば加算信号を出力し、−(閾値)であれば減算信号を出力する閾値比較回路とを用いる構成である。   According to a third invention, as the accumulation processing means in the first invention, an absolute value of the threshold value is inputted from the outside, and a count operation of +1 or −1 is performed according to the sign bit of the output of the selection means. An up / down counter that stops the counting operation when the absolute value exceeds the absolute value of the threshold value, and outputs + (threshold value) if the count value is a positive value, and-(threshold value) if the count value is a negative value; A configuration using a threshold comparison circuit that inputs an absolute value of a threshold value from the outside, outputs an addition signal if the output of the up / down counter is + (threshold value), and outputs a subtraction signal if the output value is-(threshold value). is there.

なお、累積処理手段(累積加算回路またはアップダウンカウンタと閾値比較回路)およびアキュムレータは、全体として直交誤差自動補償回路のフィードバック制御におけるループフィルタとして機能する。外部から設定される閾値とアキュムレータの刻み幅は、ローパスフィルタとしての周波数特性・遅延特性に影響を与えるパラメータである。したがって、これらのパラメータの値は、ループフィルタとしての最適な値に設計される。   The accumulation processing means (cumulative addition circuit or up / down counter and threshold comparison circuit) and accumulator function as a loop filter in feedback control of the orthogonal error automatic compensation circuit as a whole. The threshold value set from the outside and the step size of the accumulator are parameters that affect the frequency characteristics and delay characteristics of the low-pass filter. Therefore, the values of these parameters are designed to be optimum values as a loop filter.

第4の発明は、直交検波器の出力から不要高調波を除去した同相信号および直交信号を入力し、制御信号に応じて直交誤差を補償した同相信号および直交信号を出力する直交誤差補償手段と、外部から閾値の絶対値を入力し、直交誤差補償手段から出力される同相信号および直交信号の符号ビットを入力し、各信号が同符号か異符号かに応じて+1または−1のカウント動作を行い、そのカウント値の絶対値が閾値の絶対値を超える場合にカウント動作を停止するとともに、そのカウント値が正の値であれば+(閾値)、負の値であれば−(閾値)を出力するアップダウンカウンタと、外部から閾値の絶対値を入力し、アップダウンカウンタの出力が+(閾値)であれば加算信号を出力し、−(閾値)であれば減算信号を出力する閾値比較回路と、外部から刻み幅を入力し、閾値比較回路から加算信号を入力した場合に直前の値に刻み幅だけ増加させた値を直交誤差補償手段に与える制御信号として出力し、閾値比較回路から減算信号を入力した場合に直前の値に刻み幅だけ減少させた値を直交誤差補償手段に与える制御信号として出力するアキュムレータとを備える。   The fourth invention is a quadrature error compensation for inputting an in-phase signal and a quadrature signal from which unnecessary harmonics are removed from the output of the quadrature detector, and outputting the in-phase signal and the quadrature signal in which the quadrature error is compensated according to the control signal. The absolute value of the threshold value is inputted from the outside and the sign signal of the in-phase signal and the quadrature signal outputted from the quadrature error compensation means, and +1 or -1 depending on whether each signal is the same sign or different sign When the absolute value of the count value exceeds the absolute value of the threshold value, the count operation is stopped, and if the count value is a positive value, + (threshold), and if the count value is negative, − An up / down counter that outputs (threshold) and an absolute value of the threshold from the outside are input. If the output of the up / down counter is + (threshold), an addition signal is output, and if it is − (threshold), a subtraction signal is output. Output threshold comparison times When a step size is input from the outside and an addition signal is input from the threshold comparison circuit, a value obtained by increasing the step size to the previous value is output as a control signal to be supplied to the orthogonal error compensation means, and subtracted from the threshold comparison circuit. And an accumulator that outputs, as a control signal, to the orthogonal error compensator, a value obtained by decreasing the step size to the previous value when the signal is input.

第4の発明では、直交誤差を入力信号の信号点配置上の象限判定のみで検出し、それをカウントして第3の発明と同様に直交誤差補償手段に与える制御信号を生成することができる。これにより、直交誤差自動補償回路の構成を大幅に簡易にすることができる。   In the fourth aspect of the invention, it is possible to detect the quadrature error only by determining the quadrant on the signal point arrangement of the input signal, and count it to generate a control signal to be supplied to the quadrature error compensation means as in the third aspect. . As a result, the configuration of the orthogonal error automatic compensation circuit can be greatly simplified.

本発明の直交誤差自動補償回路は、簡易な回路構成により、入力信号に偏りがあっても累積処理手段におけるオーバーフローに伴うフィードバック制御の破綻を防ぐことができ、所定の直交誤差補償特性を満足させることができる。   The quadrature error automatic compensation circuit of the present invention can prevent failure of feedback control due to overflow in the accumulation processing means even if the input signal is biased with a simple circuit configuration, and satisfies a predetermined quadrature error compensation characteristic. be able to.

(第1の実施形態)
図1は、本発明の第1の実施形態を示す。図において、同相信号入力端子10および直交信号入力端子20には、不要高調波を除去後の直交検波器出力が入力される。この同相信号および直交信号は直交誤差補償回路100に入力され、直交誤差が補償された同相信号および直交信号としてそれぞれ同相信号出力端子30および直交信号出力端子40に出力される。この直交誤差補償回路100における直交誤差補償制御は、次のようにして行われる。
(First embodiment)
FIG. 1 shows a first embodiment of the present invention. In the figure, the in-phase signal input terminal 10 and the quadrature signal input terminal 20 are inputted with the quadrature detector output after removing unnecessary harmonics. The in-phase signal and the quadrature signal are input to the quadrature error compensation circuit 100, and output to the in-phase signal output terminal 30 and the quadrature signal output terminal 40, respectively, as the in-phase signal and the quadrature signal in which the quadrature error is compensated. The orthogonal error compensation control in the orthogonal error compensation circuit 100 is performed as follows.

二乗演算回路110,120および加算回路130からなる二乗和演算手段では、直交誤差補償回路100から出力される同相信号および直交信号を入力して二乗和(電力)を計算する。符号反転回路140は、加算回路130の出力を符号反転する。選択回路150は、直交誤差補償回路100から出力される同相信号および直交信号の各符号ビットを入力し、同符号であれば加算回路130の出力信号、異符号であれば符号反転回路140の出力信号を選択して出力する。選択回路150の出力信号は累積加算回路200で累積加算される。   The sum-of-squares calculation means comprising the square calculation circuits 110 and 120 and the addition circuit 130 inputs the in-phase signal and the quadrature signal output from the quadrature error compensation circuit 100 and calculates the sum of squares (power). The sign inversion circuit 140 inverts the sign of the output of the addition circuit 130. The selection circuit 150 receives the sign bits of the in-phase signal and the quadrature signal output from the quadrature error compensation circuit 100. If the sign is the same, the selection circuit 150 outputs the output signal of the adder circuit 130. Select the output signal and output it. The output signal of the selection circuit 150 is cumulatively added by the cumulative addition circuit 200.

累積加算回路200は、外部から閾値の絶対値を入力し、その累積加算値の絶対値が閾値の絶対値を超える場合に累積加算処理を停止するとともに、その累積加算値が正の値であれば+(閾値)、負の値であれば−(閾値)を閾値比較回路210に出力する。閾値比較回路210は、外部から閾値の絶対値を入力し、累積加算回路200の出力が+(閾値)であれば加算信号、−(閾値)であれば減算信号をアキュムレータ220に出力する。アキュムレータ220は、外部から刻み幅を入力し、閾値比較回路210から入力する加算信号または減算信号に基づいて、直交誤差補償回路100に与える制御信号を現在の値から刻み幅単位で増減する処理を行う。直交誤差補償回路100では、このように刻み幅単位で増減される制御信号によるフィードバック制御が行われ、直交検波器の直交誤差に対する補償を自動的に行うことができる。   The cumulative addition circuit 200 inputs the absolute value of the threshold value from the outside, stops the cumulative addition process when the absolute value of the cumulative addition value exceeds the absolute value of the threshold value, and if the cumulative addition value is a positive value. For example, + (threshold) is output to the threshold comparison circuit 210. The threshold value comparison circuit 210 inputs the absolute value of the threshold value from the outside, and outputs an addition signal to the accumulator 220 if the output of the cumulative addition circuit 200 is + (threshold value) or-(threshold value). The accumulator 220 receives a step size from the outside, and based on the addition signal or the subtraction signal input from the threshold comparison circuit 210, performs a process of increasing / decreasing the control signal given to the orthogonal error compensation circuit 100 from the current value in increments of the step size. Do. In the orthogonal error compensation circuit 100, feedback control is performed by the control signal that is increased or decreased in increments of increments in this way, and compensation for the orthogonal error of the orthogonal detector can be automatically performed.

なお、累積加算回路200では、後段の閾値比較回路210が加算信号または減算信号を出力したタイミングで、累積加算値をクリアしてもよい。   In the cumulative addition circuit 200, the cumulative addition value may be cleared at the timing when the subsequent-stage threshold comparison circuit 210 outputs the addition signal or the subtraction signal.

(第2の実施形態)
図2は、本発明の第2の実施形態を示す。本実施形態の特徴は、第1の実施形態における累積加算回路200をアップダウンカウンタ205に置き換え、選択回路150の出力信号の符号ビットに対してカウント動作を行うようにしたところにある。その他の構成は、第1の実施形態と同様である。
(Second Embodiment)
FIG. 2 shows a second embodiment of the present invention. The feature of this embodiment is that the cumulative addition circuit 200 in the first embodiment is replaced with an up / down counter 205, and the count operation is performed on the sign bit of the output signal of the selection circuit 150. Other configurations are the same as those of the first embodiment.

アップダウンカウンタ205は、選択回路150の出力の符号ビットに応じて+1または−1のカウント動作を行い、カウント値の絶対値が閾値の絶対値を超える場合にカウント動作を停止するとともに、そのカウント値が正の値であれば+(閾値)、負の値であれば−(閾値)を閾値比較回路210に出力する。閾値比較回路210およびアキュムレータ220の動作は第1の実施形態と同様である。このようなアップダウンカウンタ205を用いることにより、簡易な構成で第1の実施形態と同等の直交誤差補償動作を実現することができる。   The up / down counter 205 performs a count operation of +1 or −1 according to the sign bit of the output of the selection circuit 150, and stops the count operation when the absolute value of the count value exceeds the absolute value of the threshold, If the value is a positive value, + (threshold value) is output to the threshold value comparison circuit 210, and if the value is negative,-(threshold value) is output. The operations of the threshold comparison circuit 210 and the accumulator 220 are the same as those in the first embodiment. By using such an up / down counter 205, an orthogonal error compensation operation equivalent to that of the first embodiment can be realized with a simple configuration.

(第3の実施形態)
図3は、本発明の第3の実施形態を示す。本実施形態の特徴は、第2の実施形態における二乗演算回路110,120、加算回路130、符号反転回路140、選択回路150を省き、直交誤差補償回路100から出力される同相信号および直交信号をアップダウンカウンタ207に直接入力する構成とする。その他の構成は、第2の実施形態と同様である。
(Third embodiment)
FIG. 3 shows a third embodiment of the present invention. The feature of this embodiment is that the square operation circuits 110 and 120, the adder circuit 130, the sign inversion circuit 140, and the selection circuit 150 in the second embodiment are omitted, and the in-phase signal and the quadrature signal output from the quadrature error compensation circuit 100 are omitted. Is directly input to the up / down counter 207. Other configurations are the same as those of the second embodiment.

アップダウンカウンタ207は、直交誤差補償回路100から出力される同相信号および直交信号の符号ビットを入力し、各信号が同符号か異符号かに応じて+1または−1のカウント動作を行い、そのカウント値の絶対値が閾値の絶対値を超える場合にカウント動作を停止するとともに、そのカウント値が正の値であれば+(閾値)、負の値であれば−(閾値)を閾値比較回路210に出力する。閾値比較回路210およびアキュムレータ220の動作は第2の実施形態(第1の実施形態)と同様である。すなわち、本実施形態の構成では、直交誤差を入力信号の信号点配置上の象限判定のみで検出する構成とすることにより、簡易な構成で第1の実施形態および第2の実施形態と同等の直交誤差補償動作を実現することができる。   The up / down counter 207 inputs the in-phase signal output from the quadrature error compensation circuit 100 and the sign bit of the quadrature signal, performs a count operation of +1 or −1 depending on whether each signal is the same sign or different sign, When the absolute value of the count value exceeds the absolute value of the threshold value, the count operation is stopped, and if the count value is a positive value, + (threshold value), and if the count value is a negative value,-(threshold value) is compared with the threshold value. Output to the circuit 210. The operations of the threshold comparison circuit 210 and the accumulator 220 are the same as those in the second embodiment (first embodiment). That is, in the configuration of the present embodiment, the orthogonal error is detected only by the quadrant determination on the signal point arrangement of the input signal, so that it is equivalent to the first embodiment and the second embodiment with a simple configuration. An orthogonal error compensation operation can be realized.

なお、バースト伝送の場合、送信相手が異なっても受信側の直交検波器の特性は変わらないので、第1〜第3の実施形態のいずれの構成においても信号が到来した期間のみ回路を動作させることにより対応することができる。   In the case of burst transmission, the characteristics of the quadrature detector on the receiving side do not change even if the transmission partner is different. Therefore, in any configuration of the first to third embodiments, the circuit is operated only during the period when the signal arrives. It can respond by doing.

本発明の第1の実施形態の構成例を示す図。The figure which shows the structural example of the 1st Embodiment of this invention. 本発明の第2の実施形態の構成例を示す図。The figure which shows the structural example of the 2nd Embodiment of this invention. 本発明の第3の実施形態の構成例を示す図。The figure which shows the structural example of the 3rd Embodiment of this invention. 従来の直交誤差自動補償回路の構成例を示す図。The figure which shows the structural example of the conventional orthogonal error automatic compensation circuit. 信号空間ダイヤグラムを示す図。The figure which shows a signal space diagram.

符号の説明Explanation of symbols

10 同相信号(直交検波器の同相チャネル出力)入力端子
20 直交信号(直交検波器の直交チャネル出力)入力端子
30 同相信号(直交誤差補償回路の同相チャネル出力)出力端子
40 直交信号(直交誤差補償回路の直交チャネル出力)出力端子
100 直交誤差補償回路
110,120 二乗演算回路
130 加算回路
140 符号反転回路
150 選択回路
160 累積加算回路
170 ローパスフィルタ(LPF)
200 累積加算回路
205,207 アップダウンカウンタ
210 閾値比較回路
220 アキュムレータ
10 In-phase signal (in-phase channel output of quadrature detector) input terminal 20 Quadrature signal (orthogonal channel output of quadrature detector) input terminal 30 In-phase signal (in-phase channel output of quadrature error compensation circuit) output terminal 40 Quadrature signal (quadrature) Orthogonal channel output of error compensation circuit) Output terminal 100 Orthogonal error compensation circuit 110, 120 Square operation circuit 130 Addition circuit 140 Sign inversion circuit 150 Selection circuit 160 Cumulative addition circuit 170 Low-pass filter (LPF)
200 Cumulative addition circuit 205, 207 Up / down counter 210 Threshold comparison circuit 220 Accumulator

Claims (4)

直交検波器の出力から不要高調波を除去した同相信号および直交信号を入力し、制御信号に応じて直交誤差を補償した同相信号および直交信号を出力する直交誤差補償手段と、
前記直交誤差補償手段から出力される同相信号および直交信号を入力し、その二乗和を演算する二乗和演算手段と、
前記二乗和演算手段の出力を符号反転する符号反転手段と、
前記二乗和演算手段の出力を第1の入力とし、前記符号反転手段の出力を第2の入力とし、前記直交誤差補償手段から出力される同相信号および直交信号の符号情報を第3の入力とし、第3の入力が同符号の場合は第1の入力を出力し、第3の入力が異符号の場合は第2の入力を出力する選択手段と、
外部から閾値の絶対値を入力し、前記選択手段の出力を累積加算し、その累積加算値の絶対値が閾値の絶対値を超える場合に累積加算処理を停止するとともに、その累積加算値が正の値であれば加算信号を出力し、負の値であれば減算信号を出力する累積処理手段と、
外部から刻み幅を入力し、前記累積処理手段から前記加算信号を入力した場合に直前の値に刻み幅だけ増加させた値を前記制御信号として前記直交誤差補償手段に出力し、前記累積処理手段から前記減算信号を入力した場合に直前の値に刻み幅だけ減少させた値を前記制御信号として前記直交誤差補償手段に出力するアキュムレータと
を備えたことを特徴とする直交誤差自動補償回路。
Quadrature error compensation means for inputting an in-phase signal and a quadrature signal from which unnecessary harmonics have been removed from the output of the quadrature detector, and outputting an in-phase signal and a quadrature signal in which quadrature error is compensated according to the control signal;
A sum-of-squares calculation means for inputting the in-phase signal and the quadrature signal output from the quadrature error compensation means and calculating the sum of squares thereof;
Sign inverting means for inverting the output of the sum of squares calculating means;
The output of the sum of squares computing means is a first input, the output of the sign inverting means is a second input, and the code information of the in-phase signal and quadrature signal output from the quadrature error compensation means is a third input. Selecting means for outputting the first input when the third input has the same sign, and outputting the second input when the third input has a different sign;
The absolute value of the threshold value is input from the outside, and the output of the selection means is cumulatively added. When the absolute value of the cumulative added value exceeds the absolute value of the threshold value, the cumulative addition process is stopped and the cumulative added value is correct. A cumulative processing means for outputting an addition signal if the value is negative, and outputting a subtraction signal if the value is negative;
When the step size is input from the outside and the addition signal is input from the accumulation processing unit, a value obtained by increasing the step size to the previous value is output to the orthogonal error compensation unit as the control signal, and the accumulation processing unit And an accumulator that outputs, as the control signal, a value obtained by reducing the step size to the previous value when the subtraction signal is input to the orthogonal error compensation means.
請求項1に記載の直交誤差自動補償回路において、
前記累積処理手段は、
外部から閾値の絶対値を入力し、前記選択手段の出力を累積加算し、その累積加算値の絶対値が閾値の絶対値を超える場合に累積加算処理を停止するとともに、その累積加算値が正の値であれば+(閾値)、負の値であれば−(閾値)を出力する累積加算回路と、
外部から前記閾値の絶対値を入力し、前記累積加算回路の出力が+(閾値)であれば加算信号を出力し、−(閾値)であれば減算信号を出力する閾値比較回路と
を備えたことを特徴とする直交誤差自動補償回路。
In the orthogonal error automatic compensation circuit according to claim 1,
The cumulative processing means includes
The absolute value of the threshold value is input from the outside, and the output of the selection means is cumulatively added. When the absolute value of the cumulative added value exceeds the absolute value of the threshold value, the cumulative addition process is stopped and the cumulative added value is correct. A cumulative addition circuit that outputs + (threshold value) if the value is negative, and-(threshold value) if the value is negative;
A threshold comparison circuit for inputting an absolute value of the threshold from the outside, outputting an addition signal if the output of the cumulative addition circuit is + (threshold), and outputting a subtraction signal if the output is-(threshold). An automatic orthogonal error compensation circuit characterized by the above.
請求項1に記載の直交誤差自動補償回路において、
前記累積処理手段は、
外部から閾値の絶対値を入力し、前記選択手段の出力の符号ビットに応じて+1または−1のカウント動作を行い、そのカウント値の絶対値が閾値の絶対値を超える場合にカウント動作を停止するとともに、そのカウント値が正の値であれば+(閾値)、負の値であれば−(閾値)を出力するアップダウンカウンタと、
外部から前記閾値の絶対値を入力し、前記アップダウンカウンタの出力が+(閾値)であれば加算信号を出力し、−(閾値)であれば減算信号を出力する閾値比較回路と
を備えたことを特徴とする直交誤差自動補償回路。
In the orthogonal error automatic compensation circuit according to claim 1,
The cumulative processing means includes
An absolute value of the threshold value is input from the outside, and a count operation of +1 or -1 is performed according to the sign bit of the output of the selection means, and the count operation is stopped when the absolute value of the count value exceeds the absolute value of the threshold value And an up / down counter that outputs + (threshold value) if the count value is a positive value, and-(threshold value) if the count value is a negative value,
A threshold comparison circuit for inputting an absolute value of the threshold value from the outside, outputting an addition signal if the output of the up / down counter is + (threshold value), and outputting a subtraction signal if the output value is-(threshold value). An automatic orthogonal error compensation circuit characterized by the above.
直交検波器の出力から不要高調波を除去した同相信号および直交信号を入力し、制御信号に応じて直交誤差を補償した同相信号および直交信号を出力する直交誤差補償手段と、
外部から閾値の絶対値を入力し、前記直交誤差補償手段から出力される同相信号および直交信号の符号ビットを入力し、各信号が同符号か異符号かに応じて+1または−1のカウント動作を行い、そのカウント値の絶対値が閾値の絶対値を超える場合にカウント動作を停止するとともに、そのカウント値が正の値であれば+(閾値)、負の値であれば−(閾値)を出力するアップダウンカウンタと、
外部から前記閾値の絶対値を入力し、前記アップダウンカウンタの出力が+(閾値)であれば加算信号を出力し、−(閾値)であれば減算信号を出力する閾値比較回路と、
外部から刻み幅を入力し、前記閾値比較回路から前記加算信号を入力した場合に直前の値に刻み幅だけ増加させた値を前記直交誤差補償手段に与える前記制御信号として出力し、前記閾値比較回路から前記減算信号を入力した場合に直前の値に刻み幅だけ減少させた値を前記直交誤差補償手段に与える前記制御信号として出力するアキュムレータと
を備えたことを特徴とする直交誤差自動補償回路。
Quadrature error compensation means for inputting an in-phase signal and a quadrature signal from which unnecessary harmonics have been removed from the output of the quadrature detector, and outputting an in-phase signal and a quadrature signal in which quadrature error is compensated according to the control signal;
The absolute value of the threshold is input from the outside, the in-phase signal output from the quadrature error compensation means and the sign bit of the quadrature signal are input, and a count of +1 or −1 is made depending on whether each signal is the same sign or different sign When the absolute value of the count value exceeds the absolute value of the threshold value, the count operation is stopped, and if the count value is a positive value, + (threshold value), if the count value is a negative value,-(threshold value) ) Output up / down counter,
A threshold comparison circuit for inputting an absolute value of the threshold from the outside, outputting an addition signal if the output of the up / down counter is + (threshold), and outputting a subtraction signal if-(threshold);
When the step size is input from the outside and the addition signal is input from the threshold value comparison circuit, a value obtained by increasing the step size to the previous value is output as the control signal to be supplied to the orthogonal error compensation unit, and the threshold value comparison is performed. An accumulator that outputs an accumulator as a control signal that gives a value obtained by decreasing the step size to the previous value when the subtraction signal is input from the circuit to the quadrature error compensation means. .
JP2005247145A 2005-08-29 2005-08-29 Quadrature error automatic compensation circuit Active JP4520387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247145A JP4520387B2 (en) 2005-08-29 2005-08-29 Quadrature error automatic compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247145A JP4520387B2 (en) 2005-08-29 2005-08-29 Quadrature error automatic compensation circuit

Publications (2)

Publication Number Publication Date
JP2007067473A true JP2007067473A (en) 2007-03-15
JP4520387B2 JP4520387B2 (en) 2010-08-04

Family

ID=37929230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247145A Active JP4520387B2 (en) 2005-08-29 2005-08-29 Quadrature error automatic compensation circuit

Country Status (1)

Country Link
JP (1) JP4520387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048332A (en) * 2011-08-29 2013-03-07 Fujitsu Ltd Wireless device and metric calculation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353735A (en) * 1989-07-21 1991-03-07 Fujitsu Ltd Orthogonality control system in multilevel qam demodulator
JPH0386225A (en) * 1989-08-30 1991-04-11 Toshiba Corp Vacuum device
JPH10285149A (en) * 1997-04-01 1998-10-23 Toshiba Corp Clock synchronizing method/device
JP2000106578A (en) * 1998-09-29 2000-04-11 Nec Eng Ltd Psk modulation wave carrier recovery circuit, its reproduction method and recording medium recording its control program
JP2002199039A (en) * 2000-06-23 2002-07-12 Ntt Docomo Inc Receiving method and receiver in communication system
JP2004040678A (en) * 2002-07-08 2004-02-05 Hitachi Kokusai Electric Inc Demodulator
JP2004248115A (en) * 2003-02-17 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> Timing error detection circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353735A (en) * 1989-07-21 1991-03-07 Fujitsu Ltd Orthogonality control system in multilevel qam demodulator
JPH0386225A (en) * 1989-08-30 1991-04-11 Toshiba Corp Vacuum device
JPH10285149A (en) * 1997-04-01 1998-10-23 Toshiba Corp Clock synchronizing method/device
JP2000106578A (en) * 1998-09-29 2000-04-11 Nec Eng Ltd Psk modulation wave carrier recovery circuit, its reproduction method and recording medium recording its control program
JP2002199039A (en) * 2000-06-23 2002-07-12 Ntt Docomo Inc Receiving method and receiver in communication system
JP2004040678A (en) * 2002-07-08 2004-02-05 Hitachi Kokusai Electric Inc Demodulator
JP2004248115A (en) * 2003-02-17 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> Timing error detection circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048332A (en) * 2011-08-29 2013-03-07 Fujitsu Ltd Wireless device and metric calculation method

Also Published As

Publication number Publication date
JP4520387B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP2006237819A (en) Demodulator and phase compensation method therefor
US8411797B2 (en) Frequency offset compensation in a digital frequency shift keying receiver
JPH11331300A (en) Demodulator
JP2008530951A (en) Demodulator and receiver for pre-encoded partial response signals
JP5046114B2 (en) Multilevel QAM demodulator, demodulating method thereof, and radio communication system
JP5817516B2 (en) Receiver circuit
JP4520387B2 (en) Quadrature error automatic compensation circuit
US6636570B1 (en) Phase detection apparatus for compensating phase rotation error
US8451948B2 (en) Carrier recovering apparatus and carrier recovering method
EP1755303B1 (en) Method and apparatus for wide dynamic range reduction
US20060029162A1 (en) Modular multi-bit symbol demapper
JP3498600B2 (en) Carrier phase estimator and demodulator using carrier phase estimator
JP4641927B2 (en) FSK demodulation circuit
JP2005229328A (en) Dc offset correction method and circuit of a-d converter
JP3360691B2 (en) Detection circuit
JP3832735B2 (en) Demodulator circuit
JP2861778B2 (en) Demodulator
JPH11205092A (en) Afc circuit for equalizer
JP4192110B2 (en) DC offset calibration method and circuit for A / D converter
JP3394276B2 (en) AFC circuit
JP4528148B2 (en) DC offset calibration circuit for A / D converter
JP5168111B2 (en) Demodulator having phase uncertainty elimination function and carrier slip compensation method thereof
JPH09232917A (en) Radio communication equipment provided with frequency compensating function
JP2017152799A (en) Radio receiver
JP2005191743A (en) Demodulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4520387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250