JP2007067042A - Manufacturing method of substrate - Google Patents

Manufacturing method of substrate Download PDF

Info

Publication number
JP2007067042A
JP2007067042A JP2005248980A JP2005248980A JP2007067042A JP 2007067042 A JP2007067042 A JP 2007067042A JP 2005248980 A JP2005248980 A JP 2005248980A JP 2005248980 A JP2005248980 A JP 2005248980A JP 2007067042 A JP2007067042 A JP 2007067042A
Authority
JP
Japan
Prior art keywords
substrate
circuit pattern
led
resin
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005248980A
Other languages
Japanese (ja)
Inventor
Tetsuya Tsumura
哲也 津村
Kimiharu Nishiyama
公治 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005248980A priority Critical patent/JP2007067042A/en
Publication of JP2007067042A publication Critical patent/JP2007067042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide an LED substrate whose heat dissipation and irradiation efficiency can be enhanced. <P>SOLUTION: In a manufacturing method of the substrate for bonding a circuit pattern 3 which has a surface of high reflection factor, and is formed of a conductive metal plate to a surface of an insulator 2 made of a resin structure having a recess 2a; low cost is realized by high heat dissipation and the circuit pattern as a reflection plate. Desired characteristics can be obtained freely, by selecting a material of resin structure and changing the area and the thickness of the circuit pattern, according to the requirement of heat dissipation and luminescence, or selecting the type of plating on the surface and changing the reflection factor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、LED発光機器に用い、LEDを装着して、LEDから生ずる熱を放熱するとともに、LEDから生ずる光の照射効率を高めた基板の製造方法に関するものである。   The present invention relates to, for example, a method for manufacturing a substrate that is used in an LED light-emitting device, mounts the LED, radiates heat generated from the LED, and increases the irradiation efficiency of light generated from the LED.

近年、電子機器の高性能化、小型化の要求に従い、電子部品の高密度、高機能化が一層叫ばれている。そのため、電子部品の小型化、高機能化、また高密度実装により、電子部品の温度上昇が大きな問題となり、電子部品の放熱を高める方法が重要な課題となってきている。   In recent years, in accordance with demands for higher performance and smaller size of electronic devices, higher density and higher functionality of electronic components have been screamed. Therefore, due to downsizing, higher functionality, and high-density mounting of electronic components, the temperature rise of electronic components has become a major problem, and a method for increasing heat dissipation of electronic components has become an important issue.

電子部品の中でもLEDは温度が上がりすぎると発光量が減少するという特性があり、発光量を上げるためには放熱が不可欠である。   Among electronic components, LEDs have a characteristic that the amount of light emission decreases when the temperature rises too much, and heat dissipation is indispensable for increasing the amount of light emission.

LEDの放熱を高める技術として、LEDを金属基板に装着し、LEDの背面から熱を拡散する方式が知られている。   As a technique for increasing the heat dissipation of the LED, a method of attaching the LED to a metal substrate and diffusing heat from the back surface of the LED is known.

図12は従来の金属基板30にLEDを装着した状態の断面図である。図12において、従来の構成では、LED5aが、金属基板30上の配線パターン32に装着されている。金属板31と配線パターン32の間には絶縁層33がある。LED5aは配線パターン32と絶縁層33を介して金属板31へ放熱を行うことができる。   FIG. 12 is a cross-sectional view of an LED mounted on a conventional metal substrate 30. In FIG. 12, in the conventional configuration, the LED 5 a is mounted on the wiring pattern 32 on the metal substrate 30. There is an insulating layer 33 between the metal plate 31 and the wiring pattern 32. The LED 5 a can radiate heat to the metal plate 31 through the wiring pattern 32 and the insulating layer 33.

また、金属基板30上には円錐形の穴を持つ樹脂ブロック34が積層されており、この円錐形の穴の内側には光沢めっき35が施されている。これはLED5aの側面から出る光を反射させて上面に出すための反射板の役目をするものである。   A resin block 34 having a conical hole is laminated on the metal substrate 30, and a bright plating 35 is applied to the inside of the conical hole. This serves as a reflector for reflecting the light emitted from the side surface of the LED 5a to the upper surface.

なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2005−159045号公報
As prior art document information relating to this application, for example, Patent Document 1 is known.
JP-A-2005-159045

上記従来の構成では、配線パターン32は50μm程度の厚さの銅箔であり、また絶縁層33は樹脂フィルムであり熱伝導率が低いため十分な放熱ができないという問題点を有していた。また、LED5aの発光は基板に垂直方向だけでなく並行方向にも行われるため並行方向に照射される光を生かすためにわざわざ反射板の機能を持つ部分めっきされたブロックを基板上に設置しなければならずコストアップになっていた。   In the above conventional configuration, the wiring pattern 32 is a copper foil having a thickness of about 50 μm, and the insulating layer 33 is a resin film and has a problem in that sufficient heat radiation cannot be performed because of low thermal conductivity. In addition, since the light emission of the LED 5a is performed not only in the vertical direction but also in the parallel direction to the substrate, a partially plated block having the function of a reflector must be installed on the substrate in order to make use of the light irradiated in the parallel direction. It was necessary to increase the cost.

本発明は上記問題点を解決するもので、放熱性を高めるとともに照射効率を高めるLED用基板を安価に提供することを目的としている。   This invention solves the said problem, and aims at providing the board | substrate for LED which raises radiation efficiency at low cost while improving heat dissipation.

上記目的を達成するために本発明は、円錐形の凹部を有する樹脂構造物とその表面に反射率の高い表面を持つ、導電性金属板からなる回路パターンを貼り付ける基板の製造方法を特徴とするものである。   In order to achieve the above object, the present invention is characterized by a method for manufacturing a resin structure having a conical recess and a circuit board made of a conductive metal plate having a highly reflective surface on the surface thereof. To do.

上記製造方法により、凹部の底部に装着されたLEDの側面から照射された光は凹部がリフレクターとなり基板と垂直方向に反射するため照射効率を上げることができる。また、このリフレクターを構成している導電性金属板からなる回路パターンは肉厚を厚くできるため熱伝導率が大きく、放熱性を高めることができる。放熱性や発光性の必要度に応じて、凹部を有する樹脂構造物の材料を選択したり、導電性金属板からなる回路パターンの面積を変えたり厚みを変えたりあるいは表面のめっきの種類を選択して反射率を変えるなどして、所望の特性を自由に得ることができる。   According to the above manufacturing method, the light irradiated from the side surface of the LED mounted on the bottom of the concave portion becomes the reflector and is reflected in the direction perpendicular to the substrate, so that the irradiation efficiency can be increased. Moreover, since the circuit pattern which consists of an electroconductive metal plate which comprises this reflector can be thickened, thermal conductivity is large, and it can improve heat dissipation. Select the resin structure material with recesses, change the area or thickness of the circuit pattern made of conductive metal plate, or select the type of surface plating according to the degree of heat dissipation and light emission Thus, desired characteristics can be freely obtained by changing the reflectance.

以下、実施の形態を用いて、本発明の全請求項に記載の発明について、図面を参照しながら説明する。   Hereinafter, the invention described in all claims of the present invention will be described using embodiments with reference to the drawings.

(実施形態1)
図1は本発明のLED用基板にLEDを装着した状態の断面図、図2は同斜視図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a state in which an LED is mounted on an LED substrate of the present invention, and FIG. 2 is a perspective view thereof.

図1において、アルミ製の基台1の上には、無機フィラーを含有した熱伝導性樹脂でできた絶縁体2がすり鉢状(円錐形状)の凹み2aを有した状態で接合されており、その表面には厚さ0.5mmの銅板でできた回路パターン3が貼り付けられている。前記回路パターン3の表面にはニッケル下地の錫めっき処理が施されている。LED5はこの基板の凹み2a部の底にフェイスダウンの状態でバンプ6を介して接合されている。図1の矢印はLED5から出る光の道筋を示す。この絶縁体2は、無機フィラーを含有した絶縁樹脂からなるとともに、この無機フィラーの熱伝導率を絶縁樹脂の熱伝導率よりも大きくしたものである。   In FIG. 1, an insulator 2 made of a heat conductive resin containing an inorganic filler is joined to an aluminum base 1 with a mortar-like (conical shape) recess 2a. A circuit pattern 3 made of a copper plate having a thickness of 0.5 mm is attached to the surface. The surface of the circuit pattern 3 is tin-plated with a nickel base. The LED 5 is bonded to the bottom of the recess 2a of the substrate through bumps 6 in a face-down state. The arrows in FIG. 1 indicate the path of light emitted from the LED 5. The insulator 2 is made of an insulating resin containing an inorganic filler, and the thermal conductivity of the inorganic filler is larger than that of the insulating resin.

無機フィラーは、Al23、MgO、SiO2、BNおよびAlNから選ばれる少なくとも一つを含んでいる。無機フィラーを用いると、放熱性が優れるが、特に、MgOを用いると線膨張係数を大きくでき、SiO2を用いると誘電率を小さくでき、BNを用いると線膨張係数を小さくできる。 The inorganic filler contains at least one selected from Al 2 O 3 , MgO, SiO 2 , BN, and AlN. When an inorganic filler is used, heat dissipation is excellent. In particular, the use of MgO can increase the linear expansion coefficient, the use of SiO 2 can reduce the dielectric constant, and the use of BN can reduce the linear expansion coefficient.

無機フィラーは略球形状で、その直径は0.1〜100μmであるが、粒径が小さいほど絶縁樹脂への充填率を向上できる。絶縁体2に占める無機フィラーの充填量は、熱伝導率を上げるために、70〜95重量%と高濃度に充填している。特に、本実施の形態では、無機フィラーは、平均粒径3μmと平均粒径12μmの2種類のAl23を混合したものを用いている。この大小2種類の粒径のAl23を用いることによって、大きな粒径のAl23の隙間に小さな粒径のAl23を充填できるので、Al23を90重量%近くまで高濃度に充填できるものである。この場合、絶縁体2の熱伝導率は5W/mK程度となる。 The inorganic filler has a substantially spherical shape and a diameter of 0.1 to 100 μm. The smaller the particle size, the better the filling rate into the insulating resin. The filling amount of the inorganic filler in the insulator 2 is filled at a high concentration of 70 to 95% by weight in order to increase the thermal conductivity. In particular, in the present embodiment, the inorganic filler is a mixture of two types of Al 2 O 3 having an average particle diameter of 3 μm and an average particle diameter of 12 μm. By using the Al 2 O 3 of the large and small two types of particle size, it is possible to fill the Al 2 O 3 of small particle size in the gap Al 2 O 3 of large particle size, Al 2 O 3 90 wt% near Can be filled to a high concentration. In this case, the thermal conductivity of the insulator 2 is about 5 W / mK.

熱硬化性の絶縁樹脂は、エポキシ樹脂、フェノール樹脂およびシアネート樹脂の内、少なくとも1種類の樹脂を含んでいる。これらの樹脂は耐熱性や電気絶縁性に優れている。   The thermosetting insulating resin contains at least one resin among epoxy resin, phenol resin, and cyanate resin. These resins are excellent in heat resistance and electrical insulation.

絶縁体2の厚さは、薄くすれば、回路パターン3に装着したLED5に生じる熱を基台1に伝えやすいが、逆に絶縁耐圧が問題となり、厚すぎると、熱抵抗が大きくなるので、絶縁耐圧と熱抵抗を考慮して最適な厚さに設定すれば良い。   If the thickness of the insulator 2 is reduced, the heat generated in the LED 5 mounted on the circuit pattern 3 can be easily transferred to the base 1, but conversely, the withstand voltage becomes a problem, and if it is too thick, the thermal resistance increases. The optimum thickness may be set in consideration of the withstand voltage and thermal resistance.

金属製の基台1としては、熱伝導の良いアルミニウム、銅またはそれらを主成分とする合金からできている。特に、本実施の形態では、基台1の厚みを1mmとしている。また、基台1としては、単なる板状のものだけでなく、より放熱性を高めるため、絶縁体2を積層した面とは反対側の面に、表面積を広げるためにフィン部を形成しても良い。全膨張係数は8×10-6/℃〜20×10-6/℃としており、基台1やLED5の線膨張係数に近づけることにより、基板全体の反りや歪みを小さくできる。 The metal base 1 is made of aluminum, copper, or an alloy containing them as a main component, which has good thermal conductivity. In particular, in the present embodiment, the thickness of the base 1 is 1 mm. In addition, the base 1 is not only a plate-like one, but in order to increase heat dissipation, a fin portion is formed on the surface opposite to the surface on which the insulator 2 is laminated in order to increase the surface area. Also good. The total expansion coefficient is 8 × 10 −6 / ° C. to 20 × 10 −6 / ° C. By bringing the expansion coefficient close to the linear expansion coefficient of the base 1 or the LED 5, warpage and distortion of the entire substrate can be reduced.

(実施形態2)
図3は本発明の他の実施形態を示す断面図、図4は同斜視図である。
(Embodiment 2)
FIG. 3 is a sectional view showing another embodiment of the present invention, and FIG. 4 is a perspective view thereof.

図3において、アルミ製の基台1の上には、無機フィラーを含有した熱伝導性樹脂でできた絶縁体2がすり鉢状の凹み2aを有した状態で接合されており、その表面には厚さ0.5mmの銅板でできた回路パターン3が貼り付けられている。前記回路パターン3の表面にはニッケル下地の錫めっき処理が施されている。LED5はこの基板の凹み2a部の底に設置されている。図3の矢印はLED5から出る光の道筋を示す。LED5と回路パターン3との電気的配線はワイヤ7を用いたワイヤボンディング方式で形成されている。   In FIG. 3, an insulator 2 made of a heat conductive resin containing an inorganic filler is joined on an aluminum base 1 with a mortar-shaped recess 2a, A circuit pattern 3 made of a copper plate having a thickness of 0.5 mm is attached. The surface of the circuit pattern 3 is tin-plated with a nickel base. LED5 is installed in the bottom of the dent 2a part of this board | substrate. The arrows in FIG. 3 indicate the path of light emitted from the LED 5. The electrical wiring between the LED 5 and the circuit pattern 3 is formed by a wire bonding method using a wire 7.

(実施形態3)
図5は本発明の他の実施形態を示す断面図である。
(Embodiment 3)
FIG. 5 is a sectional view showing another embodiment of the present invention.

図5において、アルミ製の基台1の上には、無機フィラーを含有した熱伝導性樹脂でできた絶縁体2がすり鉢状の凹み2aを有した状態で接合されており、その表面には厚さ0.5mmの銅板でできた回路パターン3が埋め込まれている。前記回路パターン3の表面にはニッケル下地の錫めっき処理が施されている。LED5はこの基板の凹み2a部の底に設置されている。図5の矢印はLED5から出る光の道筋を示す。LED5と回路パターン3との電気的配線はワイヤ7を用いたワイヤボンディング方式で形成されている。   In FIG. 5, an insulator 2 made of a heat conductive resin containing an inorganic filler is joined on an aluminum base 1 with a mortar-shaped recess 2 a, A circuit pattern 3 made of a copper plate having a thickness of 0.5 mm is embedded. The surface of the circuit pattern 3 is tin-plated with a nickel base. LED5 is installed in the bottom of the dent 2a part of this board | substrate. The arrows in FIG. 5 indicate the path of light emitted from the LED 5. The electrical wiring between the LED 5 and the circuit pattern 3 is formed by a wire bonding method using a wire 7.

(実施形態4)
図6は本発明の他の実施形態を示す断面図である。
(Embodiment 4)
FIG. 6 is a cross-sectional view showing another embodiment of the present invention.

図6において、アルミ製の基台1の上には、無機フィラーを含有した熱伝導性樹脂でできた絶縁体2がすり鉢状の凹み2aを有した状態で接合されており、その表面には無電解めっきによる回路パターン4が形成されている。この図6では図示していないが図5と同じく、LED5はこの基板の凹み2a部の底に設置され、LED5と回路パターン4との電気的配線はワイヤ7を用いたワイヤボンディング方式で接続される。   In FIG. 6, an insulator 2 made of a heat conductive resin containing an inorganic filler is joined on an aluminum base 1 with a mortar-shaped recess 2 a, A circuit pattern 4 is formed by electroless plating. Although not shown in FIG. 6, as in FIG. 5, the LED 5 is installed at the bottom of the recess 2 a portion of the substrate, and the electrical wiring between the LED 5 and the circuit pattern 4 is connected by a wire bonding method using the wire 7. The

このようなLED用基板の製造工程は次の通りである。   The manufacturing process of such an LED substrate is as follows.

図7は本発明のLED用基板の製造工程を示す図である。   FIG. 7 is a diagram showing a manufacturing process of the LED substrate of the present invention.

図7(a)において、表面にはニッケル下地の錫めっき処理が施されている厚さ0.5mmの銅板でできた回路パターン3が円錐形の凹部3aを有するように成形されており、その円錐形の凹部3aと嵌め合う凸部11aを有する下金型に固定された状態にあり、絶縁体2が積層されたアルミ製の基台1を上金型12でガイドしながら押し板13で押し込み、図7(b)のごとく金型内で加圧と加熱を行い、未硬化の絶縁体2を硬化することにより回路パターン3が絶縁体2に埋め込まれ、一体化したLED用基板が形成される。この時、絶縁体2に含まれる未硬化の熱硬化性の絶縁樹脂を上下金型11,12から取り出すに十分な硬さに硬化させるには120℃で10分以上の時間を有する。そこでこの時間を短縮して生産性を上げるためにプレゲル剤を混ぜる。プレゲル材は、熱可塑性樹脂パウダーであり、未硬化の熱硬化性の絶縁樹脂の液状成分を吸収して膨張し、未硬化の絶縁樹脂がゲルとなるように作用する働きをする。プレゲル剤は120℃の温度では1分程度で作用し、金型から取り出すに十分な硬さにすることができるため生産性を上げることができる。   In FIG. 7 (a), the circuit pattern 3 made of a copper plate having a thickness of 0.5 mm and subjected to nickel plating on the surface is formed so as to have a conical recess 3a. While being fixed to a lower mold having a convex portion 11 a that fits into a conical concave portion 3 a, an aluminum base 1 on which an insulator 2 is laminated is guided by an upper mold 12 with a push plate 13. Push in and pressurize and heat in the mold as shown in FIG. 7B to cure the uncured insulator 2 so that the circuit pattern 3 is embedded in the insulator 2 to form an integrated LED substrate. Is done. At this time, it takes 10 minutes or more at 120 ° C. to cure the uncured thermosetting insulating resin contained in the insulator 2 to a hardness sufficient to be taken out from the upper and lower molds 11 and 12. Therefore, in order to shorten this time and increase productivity, a pregel agent is mixed. The pregel material is a thermoplastic resin powder, and functions to act by absorbing the liquid component of the uncured thermosetting insulating resin and expanding the uncured insulating resin into a gel. Since the pregel agent acts at a temperature of 120 ° C. for about 1 minute and can be made sufficiently hard to be taken out from the mold, productivity can be increased.

図8は本発明のLED用基板の他の製造工程を示す図である。   FIG. 8 is a diagram showing another manufacturing process of the LED substrate of the present invention.

図8のように、表面にはニッケル下地の錫めっき処理が施されている厚さ0.5mmの銅板でできた回路パターン3は円錐形の凹部3aを有するように成形されており、その円錐形の凹部3aと嵌め合う凹部2aを有する、すでに硬化した状態にある絶縁体2の上に接着剤(図示せず)を介して積層することにより回路パターン3を絶縁体2の上に貼り付けるものである。   As shown in FIG. 8, a circuit pattern 3 made of a copper plate having a thickness of 0.5 mm and having a nickel base tin-plated on the surface is shaped to have a conical recess 3a. The circuit pattern 3 is affixed on the insulator 2 by laminating it on the insulator 2 that has already been cured and has a recess 2a that fits into the shape of the recess 3a, via an adhesive (not shown). Is.

図9は本発明のLED用基板の他の製造工程を示す図である。   FIG. 9 is a diagram showing another manufacturing process of the LED substrate of the present invention.

図9のように、表面にはニッケル下地の錫めっき処理が施されている厚さ0.5mmの銅板でできた回路パターン3が、円錐形の凹部3aを有するように成形されており、その円錐形の凹部3aと嵌め合う凹部2aを有する、未だ重合反応しておらずプレゲル剤によって半硬化状態にある絶縁体2の上に積層した後に加熱することにより、回路パターン3を絶縁体2の上に貼り付けるものである。   As shown in FIG. 9, the circuit pattern 3 made of a copper plate with a thickness of 0.5 mm on which the nickel base is tin-plated is formed so as to have a conical recess 3 a, The circuit pattern 3 is formed on the insulator 2 by heating after laminating on the insulator 2 having a concavity 3a and a recess 2a that fits into the conical recess 3a but not yet polymerized and pre-gelled. It will be pasted on top.

図10は本発明のLED用基板の他の製造工程を示す図である。   FIG. 10 is a diagram showing another manufacturing process of the LED substrate of the present invention.

図10のように、表面にはニッケル下地の錫めっき処理が施されている厚さ0.5mmの銅板でできた回路パターン3が円錐形の凹部3aを有するように成形されており、その円錐形の凹部3aと嵌め合う凹部2aを有する、未だ重合反応しておらずプレゲル剤によって半硬化状態にある絶縁体2の上に積層した後に加熱することにより図11のように、回路パターン3を絶縁体2の上に埋め込むものである。   As shown in FIG. 10, a circuit pattern 3 made of a copper plate having a thickness of 0.5 mm and subjected to tin plating with a nickel base is formed on the surface so as to have a conical recess 3a. The circuit pattern 3 is formed as shown in FIG. 11 by heating after laminating on the insulator 2 that has a recess 2a that fits into the shape of the recess 3a and has not yet undergone a polymerization reaction and is pre-gelled and semi-cured. It is embedded on the insulator 2.

以上のように本発明のLED用基板は、放熱性と光の反射による集光機能を持つことにより、また、回路パターンと反射板が一体となることにより低コストでLEDの性能を十分引き出すことのできる基板を提供できる。   As described above, the LED substrate of the present invention has a heat radiation function and a light collecting function by reflecting light, and the circuit pattern and the reflecting plate are integrated so that the performance of the LED can be sufficiently obtained at low cost. Can be provided.

本発明の一実施の形態における基板にLEDを装着した断面図Sectional drawing which mounted LED in the board | substrate in one embodiment of this invention 本発明の一実施の形態における基板にLEDを装着した斜視図The perspective view which mounted | wore with LED in the board | substrate in one embodiment of this invention 本発明の他の実施の形態における基板にLEDを装着した断面図Sectional drawing which mounted LED in the board | substrate in other embodiment of this invention. 本発明の他の実施の形態における基板にLEDを装着した斜視図The perspective view which mounted LED in the board | substrate in other embodiment of this invention. 本発明の他の実施の形態における基板にLEDを装着した断面図Sectional drawing which mounted LED in the board | substrate in other embodiment of this invention. 本発明の他の実施の形態における基板にLEDを装着した断面図Sectional drawing which mounted LED in the board | substrate in other embodiment of this invention. (a)(b)は、本発明の一実施形態の基板の製造工程を示す断面図(A) (b) is sectional drawing which shows the manufacturing process of the board | substrate of one Embodiment of this invention. 本発明の基板の他の製造工程を示す断面図Sectional drawing which shows the other manufacturing process of the board | substrate of this invention 本発明の基板の他の製造工程を示す断面図Sectional drawing which shows the other manufacturing process of the board | substrate of this invention 本発明の基板の他の製造工程を示す断面図Sectional drawing which shows the other manufacturing process of the board | substrate of this invention 図10の基板の製造工程を示す断面図Sectional drawing which shows the manufacturing process of the board | substrate of FIG. 従来の金属基板にLEDを装着した状態の断面図Sectional view of LED mounted on a conventional metal substrate

符号の説明Explanation of symbols

1 基台
2 絶縁体
3 回路パターン
4 めっきによる回路パターン
5 LED素子
6 バンプ
7 ワイヤ
11 下金型
12 上金型
13 押し板
DESCRIPTION OF SYMBOLS 1 Base 2 Insulator 3 Circuit pattern 4 Circuit pattern by plating 5 LED element 6 Bump 7 Wire 11 Lower mold 12 Upper mold 13 Push plate

Claims (6)

導電性金属板からなる回路パターンが凹部を有するようにあらかじめ成形されており、前記凹部と嵌め合う凸部を有する金型に固定された状態で樹脂を積層し、金型内で加圧と加熱を行い、未硬化の前記樹脂を硬化することを特徴とする基板の製造方法。 A circuit pattern made of a conductive metal plate is molded in advance so as to have a recess, and a resin is laminated in a state of being fixed to a mold having a protrusion that fits into the recess, and pressurization and heating are performed in the mold. And the uncured resin is cured. 前記樹脂がプレゲル材を含んでおり、半硬化状態にして金型から取り出すことを特徴とする請求項1に記載の基板の製造方法。 The method for manufacturing a substrate according to claim 1, wherein the resin contains a pregel material and is taken out of the mold in a semi-cured state. 樹脂を、凹部を有する樹脂構造物に成形した後硬化させ、その表面に導電性金属板からなる回路パターンを、熱伝導性接着剤を用いて貼り付けることを特徴とする基板の製造方法。 A method for producing a substrate, comprising: molding a resin into a resin structure having a concave portion and curing the resin pattern; and attaching a circuit pattern made of a conductive metal plate to the surface of the resin structure using a heat conductive adhesive. プレゲル材を含んだ樹脂を、凹部を有する樹脂構造物に、成形時に重合反応がほとんど進んでいない半硬化状態にしておき、その表面に導電性金属板からなる回路パターンを貼り付けた後加熱して硬化させることを特徴とする基板の製造方法。 A resin structure containing a pregel material is placed in a semi-cured state in which a polymerization reaction hardly proceeds at the time of molding on a resin structure having a recess, and a circuit pattern made of a conductive metal plate is attached to the surface and heated. A method for manufacturing a substrate, characterized in that the substrate is cured. 凹部を有する樹脂構造物の成形時に半硬化状態にしておき、その表面に導電性金属板からなる回路パターンを埋め込んだ後加熱して硬化させることを特徴とする基板の製造方法。 A method for producing a substrate, characterized in that a resin structure having a concave portion is made to be semi-cured at the time of molding, a circuit pattern made of a conductive metal plate is embedded in the surface, and then heated and cured. 50000Pa以下の圧力の真空雰囲気中で行う請求項1〜5のいずれか一つに記載の基板の製造方法。 The method for manufacturing a substrate according to claim 1, wherein the method is performed in a vacuum atmosphere at a pressure of 50000 Pa or less.
JP2005248980A 2005-08-30 2005-08-30 Manufacturing method of substrate Pending JP2007067042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248980A JP2007067042A (en) 2005-08-30 2005-08-30 Manufacturing method of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248980A JP2007067042A (en) 2005-08-30 2005-08-30 Manufacturing method of substrate

Publications (1)

Publication Number Publication Date
JP2007067042A true JP2007067042A (en) 2007-03-15

Family

ID=37928909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248980A Pending JP2007067042A (en) 2005-08-30 2005-08-30 Manufacturing method of substrate

Country Status (1)

Country Link
JP (1) JP2007067042A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300542A (en) * 2007-05-30 2008-12-11 Denki Kagaku Kogyo Kk Substrate for light-emitting element package, and light-emitting element package
JP2009049197A (en) * 2007-08-20 2009-03-05 Denki Kagaku Kogyo Kk Method of manufacturing substrate for light emitting element package, and light emitting element package
JP2011517092A (en) * 2008-04-03 2011-05-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for integrating heat transfer member and LED device
JP2022126684A (en) * 2020-05-01 2022-08-30 マクセル株式会社 Three-dimensional molding circuit component
US11839023B2 (en) 2016-04-27 2023-12-05 Maxell, Ltd. Three-dimensional molded circuit component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300542A (en) * 2007-05-30 2008-12-11 Denki Kagaku Kogyo Kk Substrate for light-emitting element package, and light-emitting element package
JP2009049197A (en) * 2007-08-20 2009-03-05 Denki Kagaku Kogyo Kk Method of manufacturing substrate for light emitting element package, and light emitting element package
JP2011517092A (en) * 2008-04-03 2011-05-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for integrating heat transfer member and LED device
US11839023B2 (en) 2016-04-27 2023-12-05 Maxell, Ltd. Three-dimensional molded circuit component
JP2022126684A (en) * 2020-05-01 2022-08-30 マクセル株式会社 Three-dimensional molding circuit component
JP7370421B2 (en) 2020-05-01 2023-10-27 マクセル株式会社 3D molded circuit parts

Similar Documents

Publication Publication Date Title
JP4085917B2 (en) Circuit components for high thermal conductivity light emitting devices and high heat dissipation modules
JP4925296B2 (en) Method for manufacturing high thermal conductivity circuit module and high thermal conductivity circuit module
JP2007067042A (en) Manufacturing method of substrate
JP4058933B2 (en) Manufacturing method of high thermal conductive solid substrate
JP6031642B2 (en) Power module and manufacturing method thereof
CN111132476A (en) Preparation method of double-sided circuit radiating substrate
JP2007214245A (en) Method of manufacturing substrate
JP4631785B2 (en) Metal base circuit board, manufacturing method thereof, mounted component, and module
CN111148353B (en) Preparation method of circuit board with copper-based heat sink
US20160211207A1 (en) Semiconductor assembly having wiring board with electrical isolator and moisture inhibiting cap incorporated therein and method of making wiring board
KR101235176B1 (en) Method for manufacturing high-heat dissipation circuit substrate useful to LED
JP5400290B2 (en) Light emitting device
JP2005072382A (en) Lead frame substrate for heat dissipation and manufacturing method therefor, and semiconductor device
JP2013065642A (en) Light-emitting device manufacturing method
JP5400289B2 (en) Light emitting device
JP4609441B2 (en) Manufacturing method of LED display device
KR101056903B1 (en) Board for light emitting device package and light emitting device package using same
CN110996498A (en) Method for preparing reflective circuit board
JP3969370B2 (en) Manufacturing method of high thermal conductivity circuit components
CN217933833U (en) LED chip packaging substrate and LED chip module
JP2009123823A (en) Light emitting element package, and light emitting device mounted with the same
JP4581655B2 (en) Heat sink
JP2005093582A (en) Heat radiation circuit board and method of manufacturing the same
CN209882209U (en) High-stability multilayer HDI board
JP3960280B2 (en) High thermal conductivity circuit component, manufacturing method thereof, and high heat dissipation module