JP2007064228A - ガスタービンエンジンを動作させる装置 - Google Patents

ガスタービンエンジンを動作させる装置 Download PDF

Info

Publication number
JP2007064228A
JP2007064228A JP2006237264A JP2006237264A JP2007064228A JP 2007064228 A JP2007064228 A JP 2007064228A JP 2006237264 A JP2006237264 A JP 2006237264A JP 2006237264 A JP2006237264 A JP 2006237264A JP 2007064228 A JP2007064228 A JP 2007064228A
Authority
JP
Japan
Prior art keywords
gas turbine
turbine engine
manifold
coupled
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006237264A
Other languages
English (en)
Inventor
Thomas Ory Moniz
トーマス・オーリー・モニズ
Kattlaicheri Srinivasan Venkataramani
カットライチェリ・スリニヴァサン・ヴェンカタラマニ
Justin Paul Stephenson
ジャスティン・ポール・スティーブンソン
Erich A Krammer
エリック・アロイス・クラマー
William Dwight Gerstler
ウィリアム・ドゥワイト・ガーストラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2007064228A publication Critical patent/JP2007064228A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/02De-icing means for engines having icing phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/047Heating to prevent icing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/207Heat transfer, e.g. cooling using a phase changing mass, e.g. heat absorbing by melting or boiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/208Heat transfer, e.g. cooling using heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract


【課題】エンジン動作中のタービンエンジンへの着氷の防止を補助するように、タービンエンジンを組み立てる方法の提供。
【解決手段】タービンエンジンを組み立てる方法は、マニホルド102が熱源と熱伝達するように、マニホルドをガスタービンエンジンに結合することと、第1のヒートパイプ100がガスタービンエンジンを時計回りの向きに部分的に取り囲むように、第1のヒートパイプをマニホルドに結合することと、第2のヒートパイプがガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、第2のヒートパイプをマニホルドに結合することとを含む。
【選択図】図2

Description

本発明は、一般に、ガスタービンエンジンに関し、特に、ガスタービンエンジンを動作させる装置に関する。
通常、ガスタービンエンジンは、入口、ファン、低圧圧縮機、高圧圧縮機、燃焼器及び少なくとも1つのタービンを含む。圧縮機は空気を圧縮し、圧縮された空気は、燃焼器へ搬送され、そこで、燃料と混合される。その後、混合物は点火され、高温燃焼ガスを生成する。燃焼ガスは、タービンへ搬送される。タービンは、圧縮機に動力を供給し且つ飛行中の航空機を推進するため又は発電機などの負荷に動力を供給するために有効な仕事を生成するためのエネルギーを燃焼ガスから抽出する。
エンジンが着氷条件の下で動作する場合、すなわち、過冷却水滴から成る雲にさらされている場合、露出したエンジン構造の上に氷が堆積することがある。特に、エンジンが長時間にわたり低出力で着氷条件の中で動作されている場合には、エンジン内部及び露出したエンジン構造の上に堆積する氷の量が著しく多くなる。時間の経過に伴って、エンジンの継続動作、低出力動作から高出力動作へのスロットルバースト及び/又は乱流又は非対称な着氷に起因する振動によって、蓄積した氷が高圧圧縮機により吸い込まれてしまうこともある。アイスシェッドとして知られるこのような状況は、圧縮機の排気温度を急激に低下させる。圧縮機排気温度の急激な低下に応答して、修正されるコア速度は、高圧圧縮機の後段で増加する。この後段修正コア速度の急激な上昇は、圧縮機失速マージンに悪影響を及ぼす。場合によっては、エンジンのフレームアウトを引き起こすこともある。
エンジン内部及びエンジンに隣接する露出面の上の着氷を防止するために、少なくともいくつかの周知のエンジンは、エンジンをより高い動作温度で動作させることができる制御システムを含む。制御システムは、露出面に熱を供給するために、エンジン圧縮機からの高温の抽気を搬送するサブシステムを含む。しかし、動作温度を上昇させ、抽気システムを使用すると、エンジンの性能が劣化する場合がある。そのようなシステムにおいては、離陸中に、弁によって高温空気の流れを遮断し、エンジンを保護するために、他のハイパワー動作を実行する必要がある。そのような弁動作は、コスト高を招くだけでなく、信頼性の問題も生じさせるであろう。従って、更に着氷の防止を補助するために、少なくともいくつかの周知のエンジンは、動作前に、氷結防止剤溶液の吹き付けを受ける。しかし、飛行中、時間の経過に伴って、氷結防止剤溶液の効果は薄れてしまう。特に、エンジンの動作中、蒸発性の冷却材は、エンジンのフロントフレームなどのエンジンの外面を凍結させ、氷を堆積させるであろう。従来の電気加熱は1つの選択肢ではあるが、氷結防止動作を実行するために大量の電気が必要であり、更に、追加の発電機、電気回路及び航空機のコンピュータとの複雑な対話論理も必要となり、それに付随して、更なるコスト高、重量増加及び性能低下を招くであろう。
米国特許第4,275,603号公報 米国特許第4,688,745号公報 米国特許第4,782,658号公報 米国特許第6,241,189号公報 米国公開特許第2005/0050877A1号公報 英国特許第2,136,880A号公報 英国特許第1,148,206号公報 英国特許第1,012,909号公報 英国特許第879,621号公報 GARY MAC HOLLOWAY ET AL.: Methods And Apparatus for Operating Gas Turbine Engines; Patent Application AT Dkt. No. 129694; Filed June 22, 2005; 16 pgs.
1つの面においては、ガスタービンエンジンの防除氷システムが提供される。防除氷システムは、熱源と熱伝達するように、ガスタービンエンジンに結合されたマニホルドと、ガスタービンエンジンを時計回りの向きに部分的に取り囲むように、マニホルドに結合された第1のヒートパイプと、ガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、マニホルドに結合された第2のヒートパイプとを含む。
別の面においては、ガスタービンエンジンが提供される。ガスタービンエンジンは、ファンアセンブリと、ファンアセンブリから下流側にあるブースタと、ブースタから下流側にある高圧圧縮機と、ブースタを取り囲むスプリッタと、防除氷システムとを含む。防除氷システムは、熱源と熱伝達するように、ガスタービンエンジンに結合されたマニホルドと、ガスタービンエンジンを時計回りの向きに部分的に取り囲むように、マニホルドに結合された第1のヒートパイプと、ガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、マニホルドに結合された第2のヒートパイプとを含む。
更に別の面においては、エンジン動作中のタービンエンジンへの着氷の防止を補助するように、タービンエンジンを組み立てる方法が提供される。方法は、マニホルドが熱源と熱伝達するように、マニホルドをガスタービンエンジンに結合することと、第1のヒートパイプがガスタービンエンジンを時計回りの向きに部分的に取り囲むように、第1のヒートパイプをマニホルドに結合することと、第2のヒートパイプがガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、第2のヒートパイプをマニホルドに結合することとを含む。
図1は、ガスタービンエンジン10の概略図である。ガスタービンエンジン10は、ファンアセンブリ12、高圧圧縮機14及び燃焼器16を含む。ガスタービンエンジン10は、高圧タービン18、低圧タービン20及びブースタ22を更に含む。ファンアセンブリ12は、回転子円板26から半径方向外側へ延出するファンブレード24のアレイを含む。ガスタービンエンジン10は、吸気側28及び排気側30を有する。一実施形態においては、ガスタービンエンジンは、オハイオ州シンシナティのGeneral Electric Companyより市販されているGE90である。別の実施形態では、ガスタービンエンジン10は、低圧圧縮機を含む。ファンアセンブリ12、ブースタ22及びタービン20は、第1の回転子軸31により互いに結合され、圧縮機14とタービン18は、第2の回転子軸32により互いに結合される。
動作中、空気は、ファンアセンブリ12を通って流れ、圧縮された空気は、ブースタ22を経て高圧圧縮機14に供給される。ブースタから吐き出された空気は、更に圧縮され、燃焼器16へ送り出される。燃焼器16からの燃焼の高温生成物(図1には図示せず)は、タービン18及び20を駆動し、タービン20は、軸31を介して、ファンアセンブリ12及びブースタ22を駆動する。ガスタービンエンジン10は、設計動作条件と設計外動作条件との間の動作条件の範囲内で動作可能である。
実施形態においては、バイパス導管40は、ファンアセンブリ12からの気流の一部がガスタービンエンジン10を迂回して流れるようにするために利用される。特に、バイパス導管40は、外側ケーシング42とブースタ22をほぼ取り囲むスプリッタ44との間に形成される。従って、ファンアセンブリ12により圧縮された気流の第1の部分は、ガスタービンエンジン10から上流側に結合されたスプリッタ44を利用して、バイパス導管40とブースタ22の入口46との間で分割される。
図2は、第1の実施形態の防除氷システム60を含む図1に示されるガスタービンエンジン10の一部の側面図である。図3は、防除氷システム60を含む図1に示されるガスタービンエンジン10の一部の側面図である。図4は、防除氷システム60の側面図である。図5は、防除氷システム60の一部の側面図である。特に、実施形態においては、防除氷システム60は、スプリッタ前縁部50に沿って着氷を防止するのを助け且つ/又は氷の形成を軽減する。
実施形態においては、防除氷システム60は、複数のヒートパイプ100を含む。ヒートパイプ100は、ほぼU字形のマニホルド102にそれぞれ結合され、ガスタービンエンジン10の周囲に沿って互いに離間して配置される。各ヒートパイプ100は、銅の有効熱伝導率より約数倍高い有効熱伝導率を有する。特に、各ヒートパイプ100は、高温側端部から熱を吸収することによって蒸発する液体を使用する。それにより発生した蒸気は、ヒートパイプ100の中心を通って進むか、又はヒートパイプ100の内部に形成された流路を通って進み、ヒートパイプ100の低温側端部で凝縮し、それにより、低温側端部へ熱を伝達する。特に、凝縮した液体が毛管作用によって高温側端部に戻され、それにより、回路が完成するように、各ヒートパイプ100は、ヒートパイプの一方の端部から他方の端部へ延出する芯(図示せず)を含む。実施形態においては、各ヒートパイプ100は、ヒートパイプ100内部の作動流体として水を利用する。ヒートパイプ100は、ブースタ22の周囲に沿って互いに離間して配置される。特に、ガスタービンエンジン10とスプリッタ44との間に複数のヒートパイプ100が動作自在に位置するように、ヒートパイプ100は、ガスタービンエンジン10に結合される。
従って、各ヒートパイプ100は、凝縮器端部110と、蒸発器端部112と、それらの間に延出する本体113とを有する。本体113は、ほぼ中空であるので、その内部に空洞114が形成される。本体113の内側は、揮発性流体又は作動流体で飽和された毛管構造又は芯115で被覆されている。実施形態においては、各ヒートパイプの蒸発器端部112は、マニホルド102に結合される。スプリッタ前縁部50及び/又はそれに沿った領域において、着氷を防止するのを助け且つ/又は氷の形成を軽減するために、各ヒートパイプの凝縮器端部110は、スプリッタ前縁部50に隣接して結合される。
実施形態においては、各ヒートパイプ100は、ほぼS字形であり、上流側端部110から所定の長さL1にわたり延出する第1の部分120と、第1の部分120から所定の長さL2にわたり延出する第2の部分122と、第2の部分122から蒸発器端部112まで所定の長さL3にわたり延出する第3の部分124とを少なくとも含む。実施形態においては、第1の部分120、第2の部分122及び第3の部分124は、一体に製造されて、1本のヒートパイプ100を形成する。例えば、ヒートパイプ100は、第1の部分120、第2の部分122及び第3の部分124をそれぞれ形成するために湾曲されるか、又はその他の方法により整形される。
別の実施形態においては、各ヒートパイプ100は、いくつかのヒートバイプ部分120、122及び124の直列アセンブリから形成され、隣接する部分は、防除氷システム60の組み立て及び取り外し及び/又は交換を容易にするように接合される。特に、各ヒートパイプ100は、一体に形成された第1の部分120、第2の部分122及び第3の部分124を含む。スプリッタ44の半径方向内側の面132をほぼ取り囲む分割リング130を形成するために、複数の第1の部分120が軸方向に方向付けられるように、複数の第1の部分120は湾曲又は整形される。更に、それぞれの第1の部分120は、それぞれ対応する第3の部分124とほぼ平行に形成され、それぞれの第2の部分122は、それぞれ対応する第1の部分120及び第3の部分124に対してほぼ斜めに形成される。
実施形態においては、L1は、スプリッタの周囲とスプリッタ前縁部50を加熱するために利用されるヒートパイプ100の量とに基づいて判定される。特に、防除氷システム60は、複数の第1の部分120がスプリッタ44の内周部分をほぼ取り囲むように、すなわち、スプリッタ前縁部50の周囲とほぼ等しくなるように、ガスタービンエンジン10に結合される。例えば、スプリッタ44が約240インチの内周を有し、防除氷システム60が12本のヒートパイプ100、すなわち、12個の第1の部分120を含むと仮定すると、各ヒートパイプの第1の部分120は、約20インチ(240÷12の第1の部分)の長さである長さL1を有することになる。従って、スプリッタ44の内周面132に沿って端と端とをほぼ合わせるように長さL1の部分が位置決めされた場合、ヒートパイプ100は、スプリッタ前縁部50の動作温度を上昇させ、それにより、スプリッタの前縁部50及び/又はそれに沿った領域における着氷を防止するのを助け且つ/又は氷の形成を軽減する。従って、この実施形態においては、複数の第1の部分120がスプリッタ前縁部50の内面に沿って順次、ほぼ周囲全体を覆う状態で配置されるように、ヒートパイプ100は、ガスタービンエンジン10に結合される。
実施形態においては、L2は、ブースタの前端部142とブースタの後端部144との間で形成される距離140に基づいて判定される。特に、L2の長さは、各第2の部分122が、それぞれ対応する第1の部分120から第3の部分124に向かってほぼ後方へ延出するように形成される。従って、実施形態においては、各第2の部分122は、他の第2の部分の長さL2と互いにほぼ等しい長さL2を有する。
例えば、ブースタ22の幅が約40インチ、すなわち、ブースタの前端部142とブースタの後端部144との間で形成される距離が約40インチであると仮定すると、各第2の部分122は、各第2の部分122が対応する第1の部分120からブースタ22の外面に沿って対応する第3の部分まで延出するように形成された長さL2を有する。実施形態においては、距離L3は、以下に更に説明されるように、マニホルド102とそれぞれ対応する第2の部分122との間で形成される。
実施形態においては、マニホルド102は、複数の開口部150を含む。マニホルド102を貫通して形成された空洞部152の中へ各ヒートパイプ100が少なくとも部分的に延出するように、各開口部150は、それぞれ対応するヒートパイプの蒸発器端部112を受け入れる大きさに形成される。マニホルド102は、油だめ又は油タンク162と流れ連通する入口160と、油だめ162と流れ連通する出口164とを更に含む。特に、マニホルド102は、マニホルド入口160に結合され且つ第1のファンフレーム開口部171を通って油だめ162の内部へ延出する入口パイプ170と、マニホルド出口164に結合され且つ第2のファンフレーム開口部174を通って油だめ162の内部へ延出する出口パイプ173とを含む。従って、実施形態においては、ガスタービンエンジンの潤滑油は、熱源として利用され、ガスタービンエンジンの油戻しラインから、入口パイプ170を通り、その後、マニホルド102を通って搬送される。
潤滑油がマニホルド102を通って搬送される間、相対的に暖かいガスタービン戻り油は、それぞれのヒートパイプの蒸発器端部112と熱接触し、それにより、各ヒートパイプ100を加熱する。その結果、相対的に暖かい油との熱接触によって、各ヒートパイプの蒸発器端部112の動作温度が上昇する。各ヒートパイプの中の液体は、蒸発器端部112、すなわち、ヒートパイプ100の高温側端部から熱を吸収することによって蒸発する。それにより発生した蒸気は、各ヒートパイプ100の中心を通って進み、ヒートパイプの凝縮器端部110、すなわち、ヒートパイプ100の低温側端部で凝縮し、その結果、凝縮器端部110へ熱を伝達する。従って、実施形態においては、ガスタービンの戻り油の供給は、各ヒートパイプの蒸発器端部112を加熱し、スプリッタ前縁部50の動作温度を上昇させ、従って、スプリッタ前縁部50及び/又はそれに沿った領域において着氷を防止するのを助け且つ/又は氷の形成を軽減するための熱源として利用される。更に、油だめ162の外部からマニホルド102が結合されるので、保守担当者は、新たなガスタービンエンジン又は使用中のガスタービンエンジンに最小限の変形を加えるだけで、ガスタービンエンジンに防除氷システム60を後から容易に組み込むことができる。
組み立て中、マニホルド102が熱源、すなわち、油だめ162と熱伝達するように、マニホルド102は、ガスタービンエンジン10に結合される。第1のヒートパイプ180は、ガスタービンエンジン10を時計回りの向きに部分的に取り囲むように、マニホルド102に結合され、第2のヒートパイプ182は、ガスタービンエンジン10を反時計回りの向きに部分的に取り囲むように、マニホルド102に結合される。特に、実施形態においては、防除氷システム60は、n本のヒートパイプ100を含み、そのうちのn/2本のヒートパイプ100は、時計回り方向に方向付けられ、n/2本のヒートパイプは、反時計回り方向に方向付けられる。更に、ヒートパイプの第1の部分120は、スプリッタ44の内周をほぼ取り囲むように配列されるため、それぞれ対応するヒートパイプの第3の部分124は、対応する第1の部分120の位置がマニホルド102から遠ざかるにつれて大きくなる長さL3を有する。
特に、マニホルド102から最も遠い位置にあるヒートパイプの第3の部分は、マニホルドに最も近い位置にある第1の部分120に対応する第3の部分より長い長さL3を有する。従って、各第3の部分124の長さL3は、対応する第1の部分120が時計回り方向及び反時計回り方向の双方でマニホルド102から遠ざかるにつれて徐々に増加する。従って、マニホルド102から最も遠い位置にある第1の部分120を有するヒートパイプ100は、マニホルド102に最も近い位置にある第1の部分を有するヒートパイプ100より大きい全長を有する。更に、最大の全長を有するヒートパイプ100は、スプリッタ前縁部50の上面により近い位置にあるので、各ヒートパイプ100を通して作動流体を搬送するために、重力が利用される。
図6は、防除氷システム200の一例の概略図である。防除氷システム200は、図2〜図5に示される防除氷システム60にほぼ類似しており、図6において、防除氷システム60の構成要素と同一である防除氷システム200の構成要素は、図2及び図3で使用されたのと同一の図中符号を使用して示される。従って、防除氷システム200は、複数のヒートパイプ100を含む。先に説明した通り、各ヒートパイプ100は、銅の有効熱伝導率の数倍の高さの有効熱伝導率を有する。
防除氷システム200は、油だめ162の内部に結合されたほぼ直線状のマニホルド202を更に含む。マニホルド202は、複数の開口部204を含む。マニホルド202を貫通して形成された空洞部(図示せず)の内部へ、各ヒートパイプ100が少なくとも部分的に延出するように、各開口部204は、対応するヒートパイプの蒸発器端部112を受け入れる大きさに形成される。マニホルド202は、ガスタービンエンジンの油戻しライン212と流れ連通する入口210と、ガスタービンエンジンの油ドレンライン216と流れ連通する出口214とを更に含む。更に、ガスタービンエンジン10は、ファンフレーム222を貫通する複数の開口部220を含む。例えば、実施形態においては、防除氷システム200は、m本のヒートパイプを含む。従って、ガスタービンエンジン10も、ファンフレーム222を通してm本のヒートパイプ100を容易に誘導できるように、m個の開口部220を含む。別の実施形態では、ファンフレーム222は、単一の開口部を含み、複数のヒートパイプ100は、その単一の開口部を通して誘導される。従って、実施形態においては、ガスタービンエンジンの潤滑油は、熱源として利用され、ガスタービンエンジンの油戻しラインからマニホルド202を通って搬送され、ガスタービンエンジン10から油ドレンライン216を経て、例えば、外部の潤滑油調整システム(図示せず)へ排出される。
潤滑油がマニホルド202を通って搬送される間に、相対的に暖かいガスタービン戻り油は、それぞれ対応するヒートパイプの蒸発器端部112と熱接触し、それにより、各ヒートパイプ100を加熱する。その結果、相対的に暖かい潤滑油との熱接触によって、各ヒートパイプの蒸発器端部112の動作温度は上昇し、各ヒートパイプの内部の液体は、蒸発器端部112、すなわち、ヒートパイプ100の高温側端部から熱を吸収することによって蒸発する。それにより発生した蒸気は、各ヒートパイプ100の中心を通って進み、ヒートパイプの凝縮器端部110、すなわち、ヒートパイプ100の低温側端部で凝縮し、それにより、油だめ162から凝縮器端部110へ熱を伝達する。従って、この実施形態においては、ガスタービン戻り油の供給は、各ヒートパイプの蒸発器端部112の加熱を助け、スプリッタ前縁部50の動作温度を上昇させ、従って、スプリッタ前縁部50及び/又はそれに沿った領域において着氷を防止するのを助け且つ/又は氷の形成を軽減するための熱源として利用される。更に、マニホルド202を油だめ162の内部に結合することにより、潤滑油と防除氷システム200との間の熱伝達が改善され、好都合である。
以上説明した防除氷システムは、費用効率に優れ、エンジンの露出面に沿った氷の蓄積を防止するという点に関して高い信頼性を示す。特に、ヒートパイプは、エンジン動作中のあらゆる時点において、外部制御システムの使用を必要とせずに、選択された熱源から選択された構成要素に熱を伝達することを可能にする。更に、上述の防除氷システムの場合、外部から熱流束を開始又は変調する必要がない。また、圧縮機の抽気が利用されないため、ここで説明される防除氷システムにより、エンジン性能が悪影響を受けることはない。その結果、エンジンが着氷を起こしやすい条件の下で動作している場合の圧縮機の失速防止性能を改善し、それにより、圧縮機のアイスシェッド事象に続いて起こる圧縮機失速マージン不足を排除するような防除氷システムが提供される。着氷を起こしやすい領域に絶えず熱を供給することにより、防除氷システムは、大量の氷の堆積も回避できる。また、エンジン表面と氷との境界面に熱を加えることにより、氷とエンジン表面との接着が弱まるため、エンジン失速又はフレームアウトを引き起こすおそれがあるほど大量に氷が蓄積する前に、氷を落とすことができる。
以上、防除氷システムの実施形態を詳細に説明した。防除氷システムは、ここで説明された特定の実施形態に限定されず、各システムの構成要素は、ここで説明された他の構成要素とは関係なく、別個に利用されてもよい。例えば、防除氷システムの各構成要素は、他の防除氷システムの構成要素及び他のタービンエンジンと組み合わせて使用できる。
種々の特定の実施形態に関して本発明を説明したが、特許請求の範囲の趣旨の範囲内で変形を伴って本発明を実施できることは、当業者には認識されるであろう。
ガスタービンエンジンの一例を示した概略図である。 第1の実施形態の防除氷システムを含む図1に示されるガスタービンエンジンの一部を示した側面図である。 図2に示される防除氷システムを含む図1に示されるガスタービンエンジンの一部を示した側面図である。 図2に示される防除氷システムを示した側面図である。 図2に示される防除氷システムの一部を示した側面図である。 第2の実施形態の防除氷システムを含む図1に示されるガスタービンエンジンの一部を示した概略図である。 第2の実施形態の防除氷システムを含む図6に示されるガスタービンエンジンの一部を示した概略図である。
符号の説明
10…ガスタービンエンジン、12…ファンアセンブリ、14…高圧圧縮機、16…燃焼器、18…高圧タービン、20…低圧タービン、22…ブースタ、44…スプリッタ、60…防除氷システム、100…ヒートパイプ、102…マニホルド、110…凝縮器端部、112…蒸発器端部、120…(ヒートパイプの)第1の部分、122…第2の部分、124…第3の部分、130…分割リング、150…開口部、162…油だめ、170…入口パイプ、171…第1のファンフレーム開口部、173…出口パイプ、174…第2のファンフレーム開口部、180…第1のヒートパイプ、182…第2のヒートパイプ、200…防除氷システム、202…マニホルド、210…入口、214…出口、220…開口部、222…ファンフレーム

Claims (10)

  1. ファンアセンブリ(12)と、前記ファンアセンブリから下流側にあるブースタ(22)と、前記ブースタから下流側にある高圧圧縮機(14)と、前記ブースタを取り囲むスプリッタ(44)とを含むガスタービンエンジン(10)の防除氷システム(60)において、
    熱源と熱伝導するように前記ガスタービンエンジンに結合されたマニホルド(102)と;
    前記ガスタービンエンジンを時計回りの向きに部分的に取り囲むように、前記マニホルドに結合された第1のヒートパイプ(100)と;
    前記ガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、前記マニホルドに結合された第2のヒートパイプとを具備する防除氷システム(60)。
  2. 前記ガスタービンエンジン(10)を時計回りの向きに部分的に取り囲むように、前記マニホルド(102)に結合され、凝縮器端部(110)から蒸発器端部(112)までの長さを測定した場合に、前記第1のヒートパイプの対応する長さより長い第3のヒートパイプ(100)と;
    前記ガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、前記マニホルドに結合され、凝縮器端部から蒸発器端部までの長さを測定した場合に、前記第2のヒートパイプの対応する長さより長い第4のヒートパイプとを更に具備する請求項1記載の防除氷システム(60)。
  3. 前記ガスタービンエンジン(10)に結合された複数のヒートパイプ(100)を更に具備し、前記ヒートパイプの各々は、一体に形成された第1の部分(120)、第2の部分(122)及び第3の部分(124)を含み、前記複数の第1の部分は、前記スプリッタ(44)の半径方向内側の面(132)をほぼ取り囲む分割リング(130)を形成するように軸方向に方向付けられる請求項1記載の防除氷システム(60)。
  4. 前記ガスタービンエンジン(10)に結合された複数のヒートパイプ(100)を更に具備し、前記ヒートパイプの各々は、一体に形成された第1の部分(120)、第2の部分(122)及び第3の部分(124)を含み、前記第1の部分は、前記第3の部分とほぼ平行に形成され、前記第2の部分は、前記第1の部分及び前記第3の部分に対して実質的に斜めに形成される請求項1記載の防除氷システム(60)。
  5. 前記ガスタービンエンジンを時計回りの向きに部分的に取り囲むように、前記ガスタービンエンジン(10)に結合された第1の複数のヒートパイプ(180)と、前記ガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、前記ガスタービンエンジンに結合された第2の複数のヒートパイプ(182)と、を更に備え、
    前記第1の複数のヒートパイプ(180)の各々は、前記ヒートパイプの各々の凝縮器端部(110)から蒸発器端部(112)までの長さを測定した場合に、それぞれ異なる長さを有し、
    前記第2の複数のヒートパイプ(182)の各々は、前記ヒートパイプの各々の凝縮器端部から蒸発器までの長さを測定した場合に、それぞれ異なる長さを有する、請求項1記載の防除氷システム(200)。
  6. 前記ガスタービンエンジン(10)は、貫通する第1の開口部(171)及び第2の開口部(174)を含むファンフレーム(222)を更に含み、前記マニホルド(102)は、
    前記ファンフレームの第1の開口部を通って潤滑剤だめ(162)の内部へ延出するように、前記マニホルドに結合された入口パイプ(170)と;
    前記ファンフレームの第2の開口部を通って前記潤滑剤だめの内部へ延出するように、前記マニホルドに結合された出口パイプ(173)とを具備する請求項1記載の防除氷システム(200)。
  7. 前記熱源は、潤滑剤だめ(162)を具備し、前記マニホルドは、前記潤滑剤だめと結合され、前記防除氷システムは、
    前記マニホルドの第1の端部に結合された潤滑剤だめ入口ライン(210)と;
    前記マニホルドを通して潤滑流体を搬送できるように、前記マニホルドの第2の端部に結合された潤滑剤だめ排出ライン(212)とを更に具備する請求項1記載の防除氷システム(200)。
  8. ファンアセンブリ(12)と;
    前記ファンアセンブリから下流側にあるブースタ(22)と;
    前記ブースタから下流側にある高圧圧縮機(14)と;
    前記ブースタを取り囲むスプリッタ(44)と;
    防除氷システム(60)と
    を備え、
    前記防除氷システム(60)が、熱源と熱伝達するように、前記ガスタービンエンジンに結合されたマニホルド(102)と、前記ガスタービンエンジンを時計回りの向きに部分的に取り囲むように、前記マニホルドに結合された第1のヒートパイプ(100)と、前記ガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、前記マニホルドに結合された第2のヒートパイプと、を具備する、ガスタービンエンジン(10)。
  9. 前記防除氷システム(60)は、
    前記ガスタービンエンジンを時計回りの向きに部分的に取り囲むように、前記マニホルド(102)に結合され、凝縮器端部(110)から蒸発器端部(112)までの長さを測定した場合に、前記第1のヒートパイプの対応する長さより長い第3のヒートパイプ(100)と;
    前記ガスタービンエンジンを反時計回りの向きに部分的に取り囲むように、前記マニホルドに結合され、凝縮器端部から蒸発器端部までの長さを測定した場合に、前記第2のヒートパイプの対応する長さより長い第4のヒートパイプとを更に具備する請求項8記載のガスタービンエンジン(10)。
  10. 前記防除氷システム(60)は、前記ガスタービンエンジンに結合された複数のヒートパイプ(100)を更に具備し、前記ヒートパイプの各々は、一体に形成された第1の部分(120)、第2の部分(122)及び第3の部分(124)を含み、前記複数の第1の部分は、前記スプリッタ(44)の半径方向内側の面をほぼ取り囲む分割リング(130)を形成するように軸方向に方向付けられる、請求項8記載のガスタービンエンジン(10)。
JP2006237264A 2005-09-01 2006-09-01 ガスタービンエンジンを動作させる装置 Pending JP2007064228A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/217,640 US20070234704A1 (en) 2005-09-01 2005-09-01 Methods and apparatus for operating gas turbine engines

Publications (1)

Publication Number Publication Date
JP2007064228A true JP2007064228A (ja) 2007-03-15

Family

ID=37575260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237264A Pending JP2007064228A (ja) 2005-09-01 2006-09-01 ガスタービンエンジンを動作させる装置

Country Status (5)

Country Link
US (1) US20070234704A1 (ja)
EP (1) EP1760291A2 (ja)
JP (1) JP2007064228A (ja)
CN (1) CN1924320B (ja)
CA (1) CA2557066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025108A (ja) * 2008-07-18 2010-02-04 General Electric Co <Ge> 排気ガスから熱エネルギーを除去するためのヒートパイプ

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8205426B2 (en) * 2006-07-31 2012-06-26 General Electric Company Method and apparatus for operating gas turbine engines
US7823374B2 (en) 2006-08-31 2010-11-02 General Electric Company Heat transfer system and method for turbine engine using heat pipes
US8015788B2 (en) * 2006-12-27 2011-09-13 General Electric Company Heat transfer system for turbine engine using heat pipes
EP2075194B1 (fr) * 2007-12-27 2017-08-16 Techspace Aero Echangeur de chaleur air-huile pour turboréacteur, turboréacteur associé et utilisation dudit échangeur
EP2123884B1 (en) * 2008-05-13 2015-03-04 Rolls-Royce Corporation Dual clutch arrangement
US20100005810A1 (en) * 2008-07-11 2010-01-14 Rob Jarrell Power transmission among shafts in a turbine engine
US8186152B2 (en) * 2008-07-23 2012-05-29 General Electric Company Apparatus and method for cooling turbomachine exhaust gas
US8015790B2 (en) * 2008-07-29 2011-09-13 General Electric Company Apparatus and method employing heat pipe for start-up of power plant
US8359824B2 (en) * 2008-07-29 2013-01-29 General Electric Company Heat recovery steam generator for a combined cycle power plant
US20100024424A1 (en) * 2008-07-29 2010-02-04 General Electric Company Condenser for a combined cycle power plant
US8425223B2 (en) * 2008-07-29 2013-04-23 General Electric Company Apparatus, system and method for heating fuel gas using gas turbine exhaust
US8157512B2 (en) * 2008-07-29 2012-04-17 General Electric Company Heat pipe intercooler for a turbomachine
US20100043442A1 (en) * 2008-08-19 2010-02-25 General Electric Company Dimpled serrated fintube structure
US8480527B2 (en) * 2008-08-27 2013-07-09 Rolls-Royce Corporation Gearing arrangement
US20100064655A1 (en) * 2008-09-16 2010-03-18 General Electric Company System and method for managing turbine exhaust gas temperature
US20100095648A1 (en) * 2008-10-17 2010-04-22 General Electric Company Combined Cycle Power Plant
US8075438B2 (en) * 2008-12-11 2011-12-13 Rolls-Royce Corporation Apparatus and method for transmitting a rotary input into counter-rotating outputs
US8021267B2 (en) * 2008-12-11 2011-09-20 Rolls-Royce Corporation Coupling assembly
US8505273B2 (en) * 2009-11-03 2013-08-13 General Electric Company System for ice and/or frost prevention using guided wave energy
GB2498006B (en) 2011-12-22 2014-07-09 Rolls Royce Plc Gas turbine engine systems
US9478896B2 (en) 2011-12-22 2016-10-25 Rolls-Royce Plc Electrical connectors
GB2497807B (en) 2011-12-22 2014-09-10 Rolls Royce Plc Electrical harness
GB2497809B (en) 2011-12-22 2014-03-12 Rolls Royce Plc Method of servicing a gas turbine engine
US9945252B2 (en) 2012-07-05 2018-04-17 United Technologies Corporation Gas turbine engine oil tank with integrated packaging configuration
US9518513B2 (en) 2012-10-12 2016-12-13 General Electric Company Gas turbine engine two degree of freedom variable bleed valve for ice extraction
US9982598B2 (en) 2012-10-22 2018-05-29 General Electric Company Gas turbine engine variable bleed valve for ice extraction
CN103628984B (zh) * 2013-12-06 2015-07-08 中国电力工程顾问集团西南电力设计院有限公司 一种燃机防冰冻装置的循环加热系统及其工作方法
FR3041703B1 (fr) * 2015-09-29 2019-08-16 Safran Nacelles Dispositif de degivrage pour levre d’entree d’air de nacelle de turboreacteur d’aeronef
US10132323B2 (en) 2015-09-30 2018-11-20 General Electric Company Compressor endwall treatment to delay compressor stall
US10323571B2 (en) 2015-12-16 2019-06-18 General Electric Company Method and system for inlet guide vane heating
US20170184026A1 (en) * 2015-12-28 2017-06-29 General Electric Company System and method of soakback mitigation through passive cooling
US10173780B2 (en) * 2016-01-26 2019-01-08 The Boeing Company Aircraft liquid heat exchanger anti-icing system
CN105736145A (zh) * 2016-01-28 2016-07-06 南京航空航天大学 采用轴向旋转热管的航空发动机整流帽罩防冰装置及方法
US11060457B2 (en) * 2016-12-02 2021-07-13 Pratt & Whitney Canada Corp. Cooling system and method for gas turbine engine
US10450957B2 (en) * 2017-01-23 2019-10-22 United Technologies Corporation Gas turbine engine with heat pipe system
US20180229850A1 (en) * 2017-02-15 2018-08-16 Pratt & Whitney Canada Corp. Anti-icing system for gas turbine engine
US11053848B2 (en) 2018-01-24 2021-07-06 General Electric Company Additively manufactured booster splitter with integral heating passageways
US11255264B2 (en) 2020-02-25 2022-02-22 General Electric Company Frame for a heat engine
US11326519B2 (en) 2020-02-25 2022-05-10 General Electric Company Frame for a heat engine
US11560843B2 (en) 2020-02-25 2023-01-24 General Electric Company Frame for a heat engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067299A (ja) * 1983-09-22 1985-04-17 新明和工業株式会社 航空機の着氷防止装置
US20050050877A1 (en) * 2003-09-05 2005-03-10 Venkataramani Kattalaicheri Srinivasan Methods and apparatus for operating gas turbine engines

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2832528A (en) * 1953-10-01 1958-04-29 Gen Motors Corp Alcohol mist icing prevention
US3341114A (en) * 1966-03-04 1967-09-12 Gen Electric Anti-icing means
US3834157A (en) * 1973-02-05 1974-09-10 Avco Corp Spinner de-icing for gas turbine engines
US4275603A (en) * 1979-11-23 1981-06-30 The Boeing Company Indirectly heated aircraft probes and masts
US4688745A (en) * 1986-01-24 1987-08-25 Rohr Industries, Inc. Swirl anti-ice system
US4782658A (en) * 1987-05-07 1988-11-08 Rolls-Royce Plc Deicing of a geared gas turbine engine
US5114100A (en) * 1989-12-29 1992-05-19 The Boeing Company Anti-icing system for aircraft
US5683062A (en) * 1995-02-27 1997-11-04 General Electric Company Aircraft anti-insect system
FR2771451B1 (fr) * 1997-11-21 2000-04-14 Aerospatiale Dispositif de protection pour capot d'entree d'air de moteur a reaction, pourvu d'un systeme de degivrage
US6442944B1 (en) * 2000-10-26 2002-09-03 Lockheet Martin Corporation Bleed air heat exchanger integral to a jet engine
US6561760B2 (en) * 2001-08-17 2003-05-13 General Electric Company Booster compressor deicer
CN2613740Y (zh) * 2003-04-17 2004-04-28 鸿富锦精密工业(深圳)有限公司 热管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067299A (ja) * 1983-09-22 1985-04-17 新明和工業株式会社 航空機の着氷防止装置
US20050050877A1 (en) * 2003-09-05 2005-03-10 Venkataramani Kattalaicheri Srinivasan Methods and apparatus for operating gas turbine engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025108A (ja) * 2008-07-18 2010-02-04 General Electric Co <Ge> 排気ガスから熱エネルギーを除去するためのヒートパイプ

Also Published As

Publication number Publication date
CN1924320B (zh) 2010-12-22
EP1760291A2 (en) 2007-03-07
US20070234704A1 (en) 2007-10-11
CA2557066A1 (en) 2007-03-01
CN1924320A (zh) 2007-03-07

Similar Documents

Publication Publication Date Title
JP2007064228A (ja) ガスタービンエンジンを動作させる装置
US6990797B2 (en) Methods and apparatus for operating gas turbine engines
CA2597658C (en) Heat transfer system and method for turbine engine using heat pipes
JP5227013B2 (ja) ヒートパイプを用いるタービンエンジン用の熱伝達システム
JP5036433B2 (ja) ヒートパイプを使用したタービンエンジンのための熱伝達システム
CN109477434B (zh) 用于冷却在燃气涡轮发动机内的部件的系统和方法
JP5226981B2 (ja) ヒートパイプを用いたタービンエンジン用熱伝達装置
CN106917683B (zh) 燃气涡轮发动机及用于其的冷却系统
JP2017198204A (ja) ヒートパイプを使用してオイルリザーバ及び出口ガイドベーンを熱的に統合するためのシステム及び方法
JP2008144752A (ja) ガスタービンエンジン熱交換器及びガスタービンエンジン
GB2136880A (en) Anti-icing of gas turbine engine air intakes
CN117836508A (zh) 用于冷却飞行器的制冷剂且包括安全加热装置的系统以及使用这种系统的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906