JP2007064028A - Variable displacement compressor - Google Patents

Variable displacement compressor Download PDF

Info

Publication number
JP2007064028A
JP2007064028A JP2005248488A JP2005248488A JP2007064028A JP 2007064028 A JP2007064028 A JP 2007064028A JP 2005248488 A JP2005248488 A JP 2005248488A JP 2005248488 A JP2005248488 A JP 2005248488A JP 2007064028 A JP2007064028 A JP 2007064028A
Authority
JP
Japan
Prior art keywords
pressure
chamber
valve
suction chamber
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005248488A
Other languages
Japanese (ja)
Other versions
JP4436295B2 (en
JP2007064028A5 (en
Inventor
Yukihiko Taguchi
幸彦 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005248488A priority Critical patent/JP4436295B2/en
Publication of JP2007064028A publication Critical patent/JP2007064028A/en
Publication of JP2007064028A5 publication Critical patent/JP2007064028A5/ja
Application granted granted Critical
Publication of JP4436295B2 publication Critical patent/JP4436295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable displacement compressor for improving refrigerant discharge performance of a crankcase more than conventional performance. <P>SOLUTION: This variable displacement compressor controls a refrigerant quantity by changing crankcase pressure. A capacity control valve has a first member having a pressure sensitive member expanding-contracting in response to a change in suction chamber pressure or the crankcase pressure and a second member having a valve element opening and closing an air supply passage. A valve mechanism is formed for controlling the suction chamber pressure in a predetermined value for self-sustaining by connecting the first member and the second member. A connecting part of the first member and the second member is arranged in a pressure sensitive chamber communicating with one of a suction chamber or a crankcase and storing the pressure sensitive member. The second member is formed with a pressure chamber communicating with the other of the suction chamber or the crankcase and a communicating hole communicating with the pressure chamber and the connecting part. When the suction chamber pressure is higher than a predetermined value, the pressure sensitive member contracts, and the valve element closes the air supply passage. The first member and the second member separate, and a second pressure releasing passage is formed for communicating the crankcase with the suction chamber by communicating the pressure sensitive chamber with the pressure chamber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両空調装置に使用される可変容量圧縮機に関するものである。   The present invention relates to a variable capacity compressor used in a vehicle air conditioner.

ハウジング内に区画形成された吐出室と吸入室とクランク室と複数のシリンダボアと、シリンダボアに配設されたピストンと、クランク室を横断して配設された駆動軸と、傾角可変の斜板を有し駆動軸の回転をピストンの往復運動に変換する変換機構と、吐出室をクランク室に連通させる給気通路と、給気通路に配設された容量制御弁と、クランク室を吸入室に連通させる第1放圧通路と、第1放圧通路に配設された絞りとを備え、容量制御弁の開度を調整してクランク室圧力を変化させ、ピストンのストロークを調整して吸入室からシリンダボアに吸入される冷媒量を制御する可変容量圧縮機が、特許文献1、2等に開示されている。絞りの口径は、ブローバイガスを排出するのに十分な1.5〜1.7mmに設定されている。
特開昭62−282182 特公平4−74549
A discharge chamber, a suction chamber, a crank chamber, a plurality of cylinder bores, a piston disposed in the cylinder bore, a drive shaft disposed across the crank chamber, and a swash plate with a variable tilt angle are formed in the housing. A conversion mechanism for converting the rotation of the drive shaft into the reciprocating motion of the piston, an air supply passage for communicating the discharge chamber with the crank chamber, a capacity control valve disposed in the air supply passage, and the crank chamber as the suction chamber A suction chamber having a first pressure release passage communicating with the throttle disposed in the first pressure release passage, adjusting a degree of opening of the capacity control valve to change a crank chamber pressure, and adjusting a stroke of the piston; Patent Documents 1, 2 and the like disclose variable capacity compressors that control the amount of refrigerant sucked into a cylinder bore. The aperture diameter is set to 1.5 to 1.7 mm sufficient to discharge blow-by gas.
JP-A-62-282182 JP 4-74549

上記可変容量圧縮機においては、クランク室と吸入室とが常時連通しているので、圧縮機が長時間停止すると冷凍回路側の冷媒が吸入室を介してクランク室へ流入する。車室内温度が高くエンジンルーム内温度が低い場合には、多量の冷媒が吸入室を介してクランク室へ流入し、クランク室に多量の液冷媒が溜まる。圧縮機が起動すると、絞りの開口面積が不足してクランク室内の液冷媒を迅速に吸入室へ排出できず、クランク室圧力が上昇して斜板の傾角が最小値に維持される。この結果、クランク室の液冷媒が十分に吸入室へ排出されるまで長時間に亙って所望の空調が得られないという問題を生ずる。
本発明は上記問題に鑑みてなされたものであり、クランク室の冷媒排出性能が従来に比べて向上した可変容量圧縮機を提供することを目的とする。
In the variable capacity compressor, since the crank chamber and the suction chamber are always in communication, when the compressor is stopped for a long time, the refrigerant on the refrigeration circuit side flows into the crank chamber through the suction chamber. When the passenger compartment temperature is high and the engine compartment temperature is low, a large amount of refrigerant flows into the crank chamber via the suction chamber, and a large amount of liquid refrigerant accumulates in the crank chamber. When the compressor is started, the opening area of the throttle is insufficient, so that the liquid refrigerant in the crank chamber cannot be quickly discharged to the suction chamber, the crank chamber pressure rises, and the inclination angle of the swash plate is maintained at the minimum value. As a result, there arises a problem that a desired air conditioning cannot be obtained for a long time until the liquid refrigerant in the crank chamber is sufficiently discharged to the suction chamber.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a variable capacity compressor in which the refrigerant discharge performance of the crank chamber is improved as compared with the conventional one.

上記課題を解決するために、本発明においては、ハウジング内に区画形成された吐出室と吸入室とクランク室と複数のシリンダボアと、シリンダボアに配設されたピストンと、クランク室を横断して配設された駆動軸と、傾角可変の斜板を有し駆動軸の回転をピストンの往復運動に変換する変換機構と、吐出室をクランク室に連通させる給気通路と、給気通路に配設された容量制御弁と、クランク室を吸入室に連通させる第1放圧通路と、第1放圧通路に配設された絞りとを備え、容量制御弁の開度を調整してクランク室圧力を変化させ、ピストンのストロークを調整して吸入室からシリンダボアに吸入される冷媒量を制御する可変容量圧縮機であって、容量制御弁は、吸入室圧力又はクランク室圧力の変化に応じて伸縮する感圧部材を有する第1部材と、給気通路を開閉する弁体を有する第2部材とを備え、第1部材と第2部材とが連結することにより吸入室圧力を所定値に自立制御する弁機構を形成し、第1部材と第2部材との連結部は、吸入室又はクランク室の一方に連通すると共に感圧部材を収容する感圧室に配設され、第2部材には、吸入室又はクランク室の他方に連通する圧力室と前記連結部とに連通する連通孔が形成され、吸入室圧力が所定値より高い場合には、感圧部材が収縮して弁体が給気通路を閉じると共に、第1部材と第2部材とが離間し、感圧室と圧力室とが連通してクランク室を吸入室に連通させる第2放圧通路が形成されることを特徴とする可変容量圧縮機を提供する。
本発明に係る可変容量圧縮機においては、弁体が給気通路を閉じると共に、第1部材と第2部材とが離間して、クランク室を吸入室に連通させる第2放圧通路が形成されるので、クランク室内の冷媒は第1放圧通路と第2放圧通路とを介して吸入室へ排出される。この結果、クランク室の冷媒排出性能が従来に比べて向上する。第2放圧通路は、圧縮機が最大吐出容量で動作すべき時のみに形成されるので、圧縮機の容量制御動作に支障を来さない。
容量制御弁内部に第2放圧通路が形成されるので、圧縮機本体に新たな放圧通路を形成する必要がなく、圧縮機構造の複雑化が防止される。
In order to solve the above problems, in the present invention, a discharge chamber, a suction chamber, a crank chamber, a plurality of cylinder bores, a piston disposed in the cylinder bore, and a piston disposed across the crank chamber are arranged in the housing. A drive shaft provided, a conversion mechanism that converts the rotation of the drive shaft into a reciprocating movement of the piston, and a supply passage that communicates the discharge chamber with the crank chamber, and a supply passage. A capacity control valve, a first pressure release passage for communicating the crank chamber with the suction chamber, and a throttle disposed in the first pressure release passage, and adjusting the opening of the capacity control valve to adjust the crank chamber pressure. Is a variable capacity compressor that adjusts the stroke of the piston to control the amount of refrigerant sucked into the cylinder bore from the suction chamber, and the capacity control valve expands and contracts according to changes in the suction chamber pressure or the crank chamber pressure. With pressure sensitive material A first member and a second member having a valve body for opening and closing the air supply passage are formed, and the first member and the second member are connected to form a valve mechanism for independently controlling the suction chamber pressure to a predetermined value. The connecting portion between the first member and the second member communicates with one of the suction chamber and the crank chamber and is disposed in the pressure sensing chamber that houses the pressure sensing member. The second member includes the suction chamber or the crank chamber. A communication hole communicating with the other of the pressure chamber and the connecting portion is formed, and when the suction chamber pressure is higher than a predetermined value, the pressure sensitive member contracts and the valve body closes the air supply passage, A variable displacement compressor characterized in that a first member and a second member are separated from each other, and a second pressure relief passage is formed in which a pressure sensing chamber and a pressure chamber communicate with each other and a crank chamber communicates with a suction chamber. provide.
In the variable capacity compressor according to the present invention, the valve body closes the air supply passage, and the first member and the second member are separated to form a second pressure release passage for communicating the crank chamber with the suction chamber. Therefore, the refrigerant in the crank chamber is discharged to the suction chamber via the first pressure release passage and the second pressure release passage. As a result, the refrigerant discharge performance of the crank chamber is improved as compared with the conventional case. Since the second pressure relief passage is formed only when the compressor is to operate at the maximum discharge capacity, it does not hinder the capacity control operation of the compressor.
Since the second pressure relief passage is formed inside the capacity control valve, it is not necessary to form a new pressure relief passage in the compressor body, and the compressor structure is prevented from becoming complicated.

本発明の好ましい態様においては、第2放圧通路の最小流路断面積は、第1放圧通路に配設された絞りの流路断面積よりも大きな値に設定されている。
上記構成により、冷媒排出性能が大幅に向上する。
In a preferred aspect of the present invention, the minimum flow passage cross-sectional area of the second pressure relief passage is set to a value larger than the flow passage cross-sectional area of the throttle disposed in the first pressure relief passage.
With the above configuration, the refrigerant discharge performance is greatly improved.

本発明の好ましい態様においては、第1部材と第2部材との連結部において、第1部材と第2部材とが当接しており、当接部は第2部材の連通孔よりも大径に形成されている。
上記構成により、第1部材と第2部材とが離間した時に、両者間の隙間が微小でも第2部材の連通孔と同等の流路断面積を確保できる。
In a preferred aspect of the present invention, the first member and the second member are in contact with each other at the connecting portion between the first member and the second member, and the contact portion has a larger diameter than the communication hole of the second member. Is formed.
With the above configuration, when the first member and the second member are separated from each other, a flow path cross-sectional area equivalent to the communication hole of the second member can be ensured even if the gap between the two is small.

本発明の好ましい態様においては、第1部材と第2部材との連結部は、漏斗状凹部と、当該凹部に嵌合する円錐台状凸部とを有している。
漏斗状凹部と円錐台状凸部とが嵌合することにより、確実に連結部が形成される。
In the preferable aspect of this invention, the connection part of a 1st member and a 2nd member has a funnel-shaped recessed part and the truncated cone-shaped convex part fitted to the said recessed part.
By connecting the funnel-shaped concave portion and the truncated cone-shaped convex portion, the connecting portion is reliably formed.

本発明の好ましい態様においては、容量制御弁は、感圧部材の伸縮のみに応じて動作する機械式容量制御弁である。
予め定められた吸入室圧力制御特性ラインの近傍まで吸入室圧力が低下する間、第2放圧通路が維持されるので、冷媒排出が効果的に行なわれる。
In a preferred embodiment of the present invention, the capacity control valve is a mechanical capacity control valve that operates only in response to expansion and contraction of the pressure sensitive member.
Since the second pressure relief passage is maintained while the suction chamber pressure drops to the vicinity of the predetermined suction chamber pressure control characteristic line, the refrigerant is effectively discharged.

本発明の好ましい態様においては、第1部材は、感圧部材に電磁力を作用させるソレノイドを有し、容量制御弁は、ソレノイドの電流値を変化させる外部信号と感圧部材の伸縮とに応じて動作する外部制御式容量制御弁である。
ソレノイドの電磁力は感圧部材の変位に影響して連結部の開閉動作に影響する。この結果、吸入室圧力制御特性ラインの近傍まで吸入室圧力が低下する間、第2放圧通路が維持されるので、冷媒排出が効果的に行なわれる。
In a preferred aspect of the present invention, the first member has a solenoid that applies an electromagnetic force to the pressure-sensitive member, and the capacity control valve responds to an external signal that changes the current value of the solenoid and the expansion and contraction of the pressure-sensitive member. This is an externally controlled displacement control valve that operates in
The electromagnetic force of the solenoid affects the displacement of the pressure-sensitive member and affects the opening / closing operation of the connecting portion. As a result, the second discharge passage is maintained while the suction chamber pressure is reduced to the vicinity of the suction chamber pressure control characteristic line, so that the refrigerant is effectively discharged.

本発明の好ましい態様においては、第1部材は、感圧部材を挟んで対峙する第1可動鉄心と第2可動鉄心と、第2可動鉄心を感圧部材から離間する方向へ付勢するバネとを有し、ソレノイドが励磁すると、感圧部材を挟んで第1可動鉄心と第2可動鉄心とが連結し、更に第2可動鉄心に第2部材が連結すると、吸入室圧力を所定値に自立制御する弁機構が形成され、ソレノイドが消磁すると、バネの付勢力を受けた第2可動鉄心が第1可動鉄心と感圧部材とからか離間し、第2部材を付勢して給気通路を強制開放する。
ソレノイドの消磁に伴って給気通路を強制開放することにより、圧縮機を、外部駆動源に直結したクラッチレス圧縮機とすることができる。
In a preferred aspect of the present invention, the first member includes a first movable iron core and a second movable iron core that face each other with the pressure sensitive member interposed therebetween, and a spring that biases the second movable iron core in a direction away from the pressure sensitive member. When the solenoid is excited, the first movable iron core and the second movable iron core are connected with the pressure sensitive member interposed therebetween, and when the second member is further connected to the second movable iron core, the suction chamber pressure is self-supporting at a predetermined value. When the valve mechanism to be controlled is formed and the solenoid is demagnetized, the second movable iron core that receives the biasing force of the spring is separated from the first movable iron core and the pressure-sensitive member, and the second member is biased to supply the air. Is forcibly released.
By forcibly opening the air supply passage along with the demagnetization of the solenoid, the compressor can be a clutchless compressor directly connected to an external drive source.

本発明の好ましい態様においては、第2部材の第1部材との連結部は、磁性材料で形成されている。
弁体を閉弁方向へ付勢するバネが不要になり、容量制御弁の構造が簡素化される。
In the preferable aspect of this invention, the connection part with the 1st member of the 2nd member is formed with the magnetic material.
A spring for urging the valve body in the valve closing direction becomes unnecessary, and the structure of the capacity control valve is simplified.

本発明の好ましい態様においては、ソレノイドが消磁して、バネにより給気通路が強制開放された時に、第2部材が規制部材に当接して移動を規制される。
不必要に弁体が移動するのを防止することができる。
In a preferred aspect of the present invention, when the solenoid is demagnetized and the air supply passage is forcibly opened by the spring, the second member comes into contact with the restricting member and the movement is restricted.
It is possible to prevent the valve body from moving unnecessarily.

本発明の好ましい態様においては、第2部材が規制部材に当接して移動を規制された時に、第2部材の連通孔は圧力室から遮断され且つ感圧室に連通する。
第2部材の連通孔が圧力室から遮断され且つ感圧室に連通すると、第2部材の両端に作用する圧力が同一になり弁体の開閉方向へ作用する圧力の影響がなくなるので、ソレノイドを励磁した時の弁体の動きがスムーズになる。第1部材と第2部材とが離間しても、第2部材の連通孔は圧力室から遮断されているので、最小容量の維持に支障を来さない。
In a preferred aspect of the present invention, when the movement of the second member is restricted by contacting the restriction member, the communication hole of the second member is blocked from the pressure chamber and communicates with the pressure sensing chamber.
If the communication hole of the second member is cut off from the pressure chamber and communicates with the pressure sensing chamber, the pressure acting on both ends of the second member becomes the same, and the influence of the pressure acting in the opening / closing direction of the valve body is eliminated. The valve body moves smoothly when excited. Even if the first member and the second member are separated from each other, the communication hole of the second member is blocked from the pressure chamber, so that the maintenance of the minimum capacity is not hindered.

本発明に係る可変容量圧縮機においては、弁体が給気通路を閉じると共に、第1部材と第2部材とが離間して、クランク室を吸入室に連通させる第2放圧通路が形成されるので、クランク室内の冷媒は第1放圧通路と第2放圧通路とを介して吸入室へ排出される。この結果、クランク室の冷媒排出性能が従来に比べて向上する。第2放圧通路は、圧縮機が最大吐出容量で動作すべき時のみに形成されるので、圧縮機の容量制御動作に支障を来さない。
容量制御弁内部に第2放圧通路が形成されるので、圧縮機本体に新たな放圧通路を形成する必要がなく、圧縮機構造の複雑化が防止される。
In the variable capacity compressor according to the present invention, the valve body closes the air supply passage, and the first member and the second member are separated to form a second pressure release passage for communicating the crank chamber with the suction chamber. Therefore, the refrigerant in the crank chamber is discharged to the suction chamber via the first pressure release passage and the second pressure release passage. As a result, the refrigerant discharge performance of the crank chamber is improved as compared with the conventional case. Since the second pressure relief passage is formed only when the compressor is to operate at the maximum discharge capacity, it does not hinder the capacity control operation of the compressor.
Since the second pressure relief passage is formed inside the capacity control valve, it is not necessary to form a new pressure relief passage in the compressor body, and the compressor structure is prevented from becoming complicated.

本発明の実施例に係る可変容量圧縮機を説明する。   A variable capacity compressor according to an embodiment of the present invention will be described.

図1に示すように、可変容量圧縮機100は、複数のシリンダボア101aを備えたシリンダブロック101と、シリンダブロック101の一端に設けられたフロントハウジング102と、バルブプレート103を介してシリンダブロック101の他端に設けられたリアハウジング104とを備えている。シリンダブロック101とフロントハウジング102とによって画成されるクランク室105内を横断して、駆動軸106が配設されている。駆動軸106は斜板107に挿通されている。斜板107は、駆動軸106に固定されたロータ108と連結部109とを介して結合し、駆動軸106により傾角可変に支持されている。ロータ108と斜板107との間に、斜板107を最小傾角へ向けて付勢するコイルバネ110が配設されている。
駆動軸106の一端はフロントハウジング102のボス部102aを貫通してハウジング外まで延在しており、図示しない動力伝達装置を介して図示しない外部駆動源に作動係合している。駆動軸106とボス部102aとの間に軸封装置111が配設されている。
フロントハウジング102に圧入固定されたラジアルベアリング112が駆動軸106の一端部を回転可能に支持している。シリンダブロック101に圧入固定されたラジアルベアリング113が駆動軸106の他端部を回転可能に支持している。駆動軸106は、ロータ108とフロントハウジング102との間に配設されたスラストベアリング114と、駆動軸106の他端に隣接して配設された支持部材115とにより挟持されている。駆動軸106の他端と支持部材115との間の軸方向隙間は、調整部材116により所定値に管理されている。
シリンダボア101a内に、ピストン117が配設され、ピストン117の一端部の窪み117a内に収容された一対のシュー118が斜板107の外周部を相対摺動可能に挟持している。駆動軸106の回転は、斜板107とシュー118とを介してピストン117の往復動に変換される。
リアハウジング104には、吸入室119と吐出室120とが形成されている。吸入室119はバルブプレート103に形成された連通孔103aと図示しない吸入弁とを介してシリンダボア101aに連通し、吐出室120は図示しない吐出弁とバルブプレート103に形成された連通孔103bとを介してシリンダボア101aに連通している。吸入室119は吸入ポート104aを介して空調装置の蒸発器に接続し、吐出室120は吐出ポート104bを介して空調装置の凝縮器に接続している。
フロントハウジング102、シリンダブロック101、バルブプレート103、リアハウジング104は図示しないガスケットを介して隣接し、通しボルト121を用いて一体に組付けられている。
リアハウジング104に容量制御弁200が取り付けられている。容量制御弁200は吐出室120とクランク室105との間の連通路122の開度を調整し、クランク室105への吐出ガスの導入量を制御する。
クランク室105内の冷媒は、ラジアルベアリング113のシェル開口と駆動軸106との間の隙間、支持部材115の隙間、調整部材116の隙間、シリンダブロック101に形成された空間123、固定オリフィス124が形成する第1放圧通路を介して吸入室119へ流入する。
As shown in FIG. 1, the variable capacity compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101 a, a front housing 102 provided at one end of the cylinder block 101, and a valve plate 103. And a rear housing 104 provided at the other end. A drive shaft 106 is disposed across the crank chamber 105 defined by the cylinder block 101 and the front housing 102. The drive shaft 106 is inserted through the swash plate 107. The swash plate 107 is coupled via a rotor 108 fixed to the drive shaft 106 and a connecting portion 109, and is supported by the drive shaft 106 so that the tilt angle is variable. A coil spring 110 is disposed between the rotor 108 and the swash plate 107 to urge the swash plate 107 toward the minimum inclination angle.
One end of the drive shaft 106 extends through the boss portion 102a of the front housing 102 to the outside of the housing, and is operatively engaged with an external drive source (not shown) via a power transmission device (not shown). A shaft seal device 111 is disposed between the drive shaft 106 and the boss portion 102a.
A radial bearing 112 press-fitted and fixed to the front housing 102 rotatably supports one end of the drive shaft 106. A radial bearing 113 press-fitted and fixed to the cylinder block 101 rotatably supports the other end of the drive shaft 106. The drive shaft 106 is sandwiched between a thrust bearing 114 disposed between the rotor 108 and the front housing 102 and a support member 115 disposed adjacent to the other end of the drive shaft 106. The axial gap between the other end of the drive shaft 106 and the support member 115 is managed to a predetermined value by the adjustment member 116.
A piston 117 is disposed in the cylinder bore 101a, and a pair of shoes 118 housed in a recess 117a at one end of the piston 117 sandwich the outer peripheral portion of the swash plate 107 so as to be slidable relative to each other. The rotation of the drive shaft 106 is converted into a reciprocating motion of the piston 117 via the swash plate 107 and the shoe 118.
A suction chamber 119 and a discharge chamber 120 are formed in the rear housing 104. The suction chamber 119 communicates with the cylinder bore 101a through a communication hole 103a formed in the valve plate 103 and a suction valve (not shown), and the discharge chamber 120 has a discharge valve (not shown) and a communication hole 103b formed in the valve plate 103. Via the cylinder bore 101a. The suction chamber 119 is connected to the evaporator of the air conditioner via the suction port 104a, and the discharge chamber 120 is connected to the condenser of the air conditioner via the discharge port 104b.
The front housing 102, the cylinder block 101, the valve plate 103, and the rear housing 104 are adjacent to each other via a gasket (not shown) and are integrally assembled using a through bolt 121.
A capacity control valve 200 is attached to the rear housing 104. The capacity control valve 200 adjusts the opening degree of the communication passage 122 between the discharge chamber 120 and the crank chamber 105 to control the amount of discharge gas introduced into the crank chamber 105.
The refrigerant in the crank chamber 105 includes a gap between the shell opening of the radial bearing 113 and the drive shaft 106, a gap of the support member 115, a gap of the adjustment member 116, a space 123 formed in the cylinder block 101, and a fixed orifice 124. It flows into the suction chamber 119 through the first pressure relief passage that is formed.

図2に示すように、容量制御弁200は、感圧室201内に配設され、クランク室圧力を受圧し、内部を真空にしてバネを配置した感圧手段として機能するベローズ202と、一端がベローズ202の連結部202aに当接し、他端部がボデー203に摺動可能に支持されて吸入室圧力を受圧し、吐出室120とクランク室105との連通路122に配設された弁孔204を開閉する弁形成体205と、弁形成体205を閉弁方向へ付勢するバネ206と、バネ206の一端が当接し、ボデー203に圧入固定された蓋部材207と、感圧室201を区画形成し、弁形成体205の弁体205aが当接する弁座208aが形成されてボデー203に圧入固定された弁座形成体208とから構成される。弁形成体205は、弁体205aとベローズ202の連結部202aに当接する連結部205bとから成り、連結部205bが弁体205aに圧入固定されたものである。
弁体205aが配設された弁室209は、ボデー203に形成された連通孔203aを経由して吐出室120と連通し、また弁孔204、感圧室201、弁座形成体208に形成された連通孔208bを経由してクランク室105と連通している。従って、連通孔203a、弁室209、弁孔204、感圧室201及び連通孔208bは、吐出室120とクランク室105との連通路122の一部を形成している。
弁形成体205の他端が対峙する圧力室210は、ボデー203に形成された連通孔203bを介して吸入室119に連通している。さらに弁体205aには両端を貫通する連通孔205cが形成されており、連結部202aと連結部205bとの連結部の内部空間211と圧力室210とが連通する構造となっている。連結部202aと連結部205bは接離可能に連結する構造を成しており、連結部202aと連結部205bとが離間した時は、両者間に所定の隙間212が形成されて、感圧室201と圧力室210が、内部空間211と、連通孔205cとを介して連通し、連結部202aと連結部205bが連結した時は、感圧室201と圧力室210との連通が遮断される。連結部205bの連結部202aとの当接部は漏斗形状を成し、連結部202aの連結部205bとの当接部は円錐台形状を成している。漏斗形状部と円錐台形状部とが嵌合することにより、連結部202aと連結部205bとが確実に連結する。
ベローズ202の固定端202bは、弁座形成体208に圧入され、その圧入量により容量制御弁の吸入室圧力制御特性が所定値に調整される。
As shown in FIG. 2, the capacity control valve 200 is disposed in a pressure sensing chamber 201, receives a crank chamber pressure, vacuums the inside and functions as pressure sensing means having a spring, and one end. Is in contact with the connecting portion 202a of the bellows 202, the other end is slidably supported by the body 203, receives the suction chamber pressure, and is provided in the communication passage 122 between the discharge chamber 120 and the crank chamber 105. A valve forming body 205 that opens and closes the hole 204, a spring 206 that urges the valve forming body 205 in the valve closing direction, one end of the spring 206 abuts, a lid member 207 that is press-fitted and fixed to the body 203, and a pressure sensing chamber The valve seat forming body 208 includes a valve seat forming body 208 that is formed by partitioning 201 and is formed with a valve seat 208 a with which the valve body 205 a of the valve forming body 205 abuts. The valve forming body 205 includes a valve body 205a and a connecting portion 205b that contacts the connecting portion 202a of the bellows 202, and the connecting portion 205b is press-fitted and fixed to the valve body 205a.
A valve chamber 209 in which the valve body 205 a is disposed communicates with the discharge chamber 120 via a communication hole 203 a formed in the body 203, and is formed in the valve hole 204, the pressure sensitive chamber 201, and the valve seat formation body 208. The crank chamber 105 communicates with the communication hole 208b. Therefore, the communication hole 203 a, the valve chamber 209, the valve hole 204, the pressure sensing chamber 201, and the communication hole 208 b form a part of the communication path 122 between the discharge chamber 120 and the crank chamber 105.
The pressure chamber 210 opposed to the other end of the valve forming body 205 communicates with the suction chamber 119 through a communication hole 203 b formed in the body 203. Further, the valve body 205a is formed with a communication hole 205c penetrating both ends, so that the internal space 211 of the connecting portion between the connecting portion 202a and the connecting portion 205b communicates with the pressure chamber 210. The connecting portion 202a and the connecting portion 205b are connected to each other so that they can be contacted and separated. When the connecting portion 202a and the connecting portion 205b are separated from each other, a predetermined gap 212 is formed between the two, and the pressure sensitive chamber is formed. 201 and the pressure chamber 210 communicate with each other via the internal space 211 and the communication hole 205c, and when the connecting portion 202a and the connecting portion 205b are connected, the communication between the pressure sensitive chamber 201 and the pressure chamber 210 is blocked. . The contact portion of the connection portion 205b with the connection portion 202a has a funnel shape, and the contact portion of the connection portion 202a with the connection portion 205b has a truncated cone shape. By fitting the funnel-shaped portion and the truncated cone-shaped portion, the connecting portion 202a and the connecting portion 205b are reliably connected.
The fixed end 202b of the bellows 202 is press-fitted into the valve seat forming body 208, and the suction chamber pressure control characteristic of the capacity control valve is adjusted to a predetermined value by the press-fitting amount.

容量制御弁200を用いた可変容量圧縮機100の制御動作について説明する。
吸入室圧力が所定値より高ければ、ベローズ202は収縮して連結部202aが図中下方へ移動し、同時に弁体205aが弁座208aに当接して弁孔204を閉じた状態で弁形成体205が位置決めされる。この時連結部202a及び連結部205bは離間してその間に所定の隙間212が形成される。したがって、クランク室105と吸入室119との間には、感圧室201、隙間212、空間211、連通孔205c、圧力室210及び連通孔203bを経由する、固定オリフィス124を経由する第1放圧通路とは別の第2放圧通路が形成される。
隙間212は微小なので、十分な流路面積を得るために、連結部202aと連結部205bとの当接部の径は十分大きな値に設定されており、少なくとも連通孔205cの孔径よりも大きく設定されている。
弁孔204が閉じたので、吐出室120の冷媒がクランク室105に導入されず、ピストン117が吸入冷媒を圧縮する際に発生するブローバイガスのみがクランク室105から第1放圧通路および第2放圧通路を介して吸入室119へ流れる。第1放圧通路の固定オリフィス124の流路面積は、ブローバイガスを吸入室119に流すのに必要な最小流路面積を有しており、さらに第2放圧通路の最小流路面積は固定オリフィス124の流路面積より大きく設定してあるため、クランク室105内の冷媒ガスが速やかに吸入室119に排出され、この結果、クランク室圧力が迅速に低下して吸入室圧力と略同一になり、斜板107の傾角が迅速に増大して圧縮機は最大容量に維持される。
圧縮機が最大容量運転されて吸入室圧力が徐々に低下し、容量制御弁200で設定された所定値まで低下すると、ベローズ202が伸長して図中上方へ移動し、連結部202aと連結部205bとが当接して第2放圧通路が遮断される。同時に弁形成体205を図中上方に押し上げて弁体205aが弁孔204を開き、吐出室120とクランク室105とが連通路122により連通して、吐出室120の冷媒がクランク室105に導入される。クランク室105と吸入室119との連通路は第1放圧通路のみとなるため、クランク室105から吸入室119に流れる冷媒量は固定オリフィス124で制限される。この結果、クランク室圧力が上昇し、クランク室105と吸入室119との圧力差の増加により斜板107の傾角が減少して吐出容量が減少する。
吐出容量が減少して吸入室圧力が上昇するとベローズ202が収縮して弁体205aが弁孔204を閉じる方向に移動するため、クランク室105に導入される吐出室120の冷媒量が減少してクランク室105の圧力が低下し、クランク室105と吸入室119との圧力差の減少により斜板107の傾角が増加して吐出容量が増加する。このような動作により所定の吸入室圧力を維持するように弁体205aの開度が調整されて吐出容量が制御される。
A control operation of the variable displacement compressor 100 using the displacement control valve 200 will be described.
If the suction chamber pressure is higher than a predetermined value, the bellows 202 contracts and the connecting portion 202a moves downward in the figure. At the same time, the valve body 205a contacts the valve seat 208a and the valve hole 204 is closed. 205 is positioned. At this time, the connecting portion 202a and the connecting portion 205b are separated and a predetermined gap 212 is formed therebetween. Therefore, the first release via the fixed orifice 124 via the pressure sensing chamber 201, the gap 212, the space 211, the communication hole 205c, the pressure chamber 210 and the communication hole 203b is provided between the crank chamber 105 and the suction chamber 119. A second pressure relief passage different from the pressure passage is formed.
Since the gap 212 is very small, the diameter of the contact portion between the connecting portion 202a and the connecting portion 205b is set to a sufficiently large value in order to obtain a sufficient flow path area, and is set to be at least larger than the hole diameter of the communication hole 205c. Has been.
Since the valve hole 204 is closed, the refrigerant in the discharge chamber 120 is not introduced into the crank chamber 105, and only the blow-by gas generated when the piston 117 compresses the sucked refrigerant is discharged from the crank chamber 105 to the first pressure release passage and the second pressure passage. It flows to the suction chamber 119 via the pressure relief passage. The flow area of the fixed orifice 124 of the first pressure relief passage has a minimum flow area necessary for flowing blow-by gas into the suction chamber 119, and the minimum flow area of the second pressure relief passage is fixed. Since it is set to be larger than the flow path area of the orifice 124, the refrigerant gas in the crank chamber 105 is quickly discharged to the suction chamber 119. As a result, the crank chamber pressure is quickly reduced to be substantially the same as the suction chamber pressure. Thus, the inclination angle of the swash plate 107 increases rapidly, and the compressor is maintained at the maximum capacity.
When the compressor is operated at the maximum capacity and the suction chamber pressure gradually decreases to a predetermined value set by the capacity control valve 200, the bellows 202 expands and moves upward in the figure, and the connecting portion 202a and the connecting portion The second pressure relief passage is blocked by contact with 205b. At the same time, the valve forming body 205 is pushed upward in the drawing, the valve body 205a opens the valve hole 204, the discharge chamber 120 and the crank chamber 105 communicate with each other through the communication passage 122, and the refrigerant in the discharge chamber 120 is introduced into the crank chamber 105. Is done. Since the communication passage between the crank chamber 105 and the suction chamber 119 is only the first pressure release passage, the amount of refrigerant flowing from the crank chamber 105 to the suction chamber 119 is limited by the fixed orifice 124. As a result, the crank chamber pressure increases, and the inclination difference of the swash plate 107 decreases due to an increase in the pressure difference between the crank chamber 105 and the suction chamber 119, and the discharge capacity decreases.
When the discharge capacity decreases and the suction chamber pressure increases, the bellows 202 contracts and the valve body 205a moves in the direction of closing the valve hole 204, so the amount of refrigerant in the discharge chamber 120 introduced into the crank chamber 105 decreases. The pressure in the crank chamber 105 decreases, and the inclination of the swash plate 107 increases due to a decrease in the pressure difference between the crank chamber 105 and the suction chamber 119, thereby increasing the discharge capacity. By such an operation, the opening degree of the valve body 205a is adjusted so as to maintain a predetermined suction chamber pressure, and the discharge capacity is controlled.

車両を長時間放置した場合、つまり圧縮機が長時間停止した場合には、空調装置側の冷媒が吸入室119を介してクランク室105に流入する。特に、車室内側の温度が高く、圧縮機が設置されているエンジンルーム側の温度が低い場合には、多量の冷媒が吸入室119を介してクランク室105に流入し、クランク室105に多量の液冷媒が溜まる。このような状態で圧縮機を起動すると、従来の圧縮機ではクランク室105内の液冷媒量に対して固定オリフィス124の流路面積が不足して、固定オリフィス124前後で圧力差が生じ、クランク室圧が上昇して斜板107の傾角が最小容量域に維持されてしまう。この結果、クランク室105内の液冷媒が十分に抜けるまで長時間に亙って所望の空調が得られないという問題が発生するが、可変容量圧縮機100では第1放圧通路に加えて第2放圧通路が形成されるので液冷媒の放出が迅速に行なわれ、迅速に所望の空調を得ることができる。
容量制御弁200では、容量制御弁200の内部を経由して第2放圧通路を形成したので、弁体205aが弁孔204を閉じる動作と連動して第2放圧通路が形成できる利点がある。つまり、弁体205aが弁孔204を閉じて圧縮機が最大容量で動作すべき時にだけ第2放圧通路が形成され、圧縮機の容量制御動作に支障を来さないという利点がある。また、圧縮機本体に新たな放圧通路を形成する必要がなく、圧縮機構造の複雑化が防止されるという利点がある。
可変容量圧縮機100は図2中の式(1)及び図3に示す吸入室圧力制御特性を有する。吐出圧力が上昇すると吸入室圧力が低下するいわゆる内部制御式の可変容量圧縮機の吸入室圧力制御特性である。
容量制御弁200は、感圧部材であるベローズ202の伸縮のみに応じて動作する機械式容量制御弁である。容量制御弁200を使用することにより、予め定められた吸入室圧力制御特性ラインの近傍まで吸入室圧力が低下する間、第2放圧通路が維持されるので、クランク室105からの冷媒排出が効果的に行なわれる。
式(1)で、Sv=Sbとして、クランク室圧力に全く影響を受けない制御特性としても良い。SvをSbより僅かに小さく設定してクランク室圧力による力が開弁方向に作用する制御特性としても良いし、SvをSbより僅かに大きく設定してクランク室圧力による力が閉弁方向に作用する制御特性としても良い。
When the vehicle is left for a long time, that is, when the compressor is stopped for a long time, the refrigerant on the air conditioner side flows into the crank chamber 105 through the suction chamber 119. In particular, when the temperature on the vehicle interior side is high and the temperature on the engine room side where the compressor is installed is low, a large amount of refrigerant flows into the crank chamber 105 through the suction chamber 119 and a large amount enters the crank chamber 105. The liquid refrigerant accumulates. When the compressor is started in such a state, the conventional compressor lacks the flow passage area of the fixed orifice 124 with respect to the amount of liquid refrigerant in the crank chamber 105, and a pressure difference occurs between the fixed orifice 124 and the crank. The chamber pressure rises and the inclination angle of the swash plate 107 is maintained in the minimum capacity range. As a result, there arises a problem that the desired air conditioning cannot be obtained for a long time until the liquid refrigerant in the crank chamber 105 is sufficiently removed. However, in the variable capacity compressor 100, in addition to the first pressure release passage, Since the two pressure release passages are formed, the liquid refrigerant is quickly discharged and desired air conditioning can be obtained quickly.
In the capacity control valve 200, since the second pressure relief passage is formed via the inside of the capacity control valve 200, there is an advantage that the second pressure relief path can be formed in conjunction with the operation of the valve body 205a closing the valve hole 204. is there. That is, there is an advantage that the second pressure relief passage is formed only when the valve body 205a closes the valve hole 204 and the compressor should operate at the maximum capacity, and the capacity control operation of the compressor is not hindered. Further, it is not necessary to form a new pressure relief passage in the compressor body, and there is an advantage that complication of the compressor structure is prevented.
The variable capacity compressor 100 has the suction chamber pressure control characteristics shown in the equation (1) in FIG. 2 and FIG. This is a suction chamber pressure control characteristic of a so-called internal control type variable displacement compressor in which the suction chamber pressure decreases as the discharge pressure increases.
The capacity control valve 200 is a mechanical capacity control valve that operates only according to the expansion and contraction of the bellows 202 that is a pressure-sensitive member. By using the capacity control valve 200, the second pressure relief passage is maintained while the suction chamber pressure is reduced to the vicinity of a predetermined suction chamber pressure control characteristic line, so that the refrigerant is discharged from the crank chamber 105. Done effectively.
In equation (1), Sv = Sb may be used so that the control characteristic is not affected at all by the crank chamber pressure. Sv may be set to be slightly smaller than Sb so that the force due to the crank chamber pressure acts in the valve opening direction, or Sv may be set slightly larger than Sb to cause the force due to the crank chamber pressure to act in the valve closing direction. Control characteristics may be used.

図4に示すように、容量制御弁300は、ベローズに吸入室圧力が作用し、弁形成体の他端にクランク室圧力が作用する点を除いて、容量制御弁200と基本的に同一構造である。
容量制御弁300は、感圧室301に配設され、吸入室圧力を受圧し、内部を真空にしてバネを配置した感圧手段として機能するベローズ302と、一端がベローズ302の連結部302aに当接し、ボデー303に摺動可能に支持されて他端がクランク室圧力を受圧し、吐出室120とクランク室105との連通路122に配設された弁孔304を開閉する弁形成体305と、弁形成体305を閉弁方向に付勢するバネ306と、バネ306の一端が当接し、ボデー303に圧入固定されたバネ支持部材307と、ボデー303に圧入固定された蓋部材308とから構成される。
弁形成体305は、弁体305aと、ベローズ302の連結部302aに当接する連結部305bと、ボデー303に摺動可能に支持されるロッド305cとから成り、弁体305aと連結部305bがロッド305cに圧入固定されたものである。
弁体305aが配設された弁室(圧力室)309は、ばね支持部材307に形成された連通孔307aを経由してクランク室105と連通し、また弁孔304とボデー303に形成された連通孔303aとを経由して吐出室120と連通している。従って、連通孔307a、弁室(圧力室)309、弁孔304、連通孔303aは、吐出室120とクランク室105との連通路122の一部を形成している。また感圧室301はボデー303に形成された連通孔303bを介して吸入室119に連通している。さらにロッド305cの内部には両端を貫通する連通孔305dが形成されており、連結部302aと連結部305bとの連結部の内部空間310と弁室(圧力室)309とが連通する構造となっている。連結部302aと連結部305bとは接離可能に連結する構造を成しており、連結部302aと連結部305bとが離間した時は、所定の隙間311が形成されて、感圧室301と弁室(圧力室)309が、内部空間310、連通孔305dを介して連通し、これによりクランク室105と吸入室119とを連通する第2放圧通路が形成される。また連結部302aと連結部305bとが連結した時は、感圧室301と弁室(圧力室)309の連通が遮断され、第2放圧通路が遮断される。連結部305bの連結部302aとの当接部は漏斗形状を成し、連結部302aの連結部305bとの当接部は円錐台形状を成している。漏斗形状部と円錐台形状部とが嵌合することにより、連結部302aと連結部305bとが確実に連結する。
ベローズ302の固定端302bは、ボデー303に圧入され、その圧入量により容量制御弁の制御特性が所定値に調整される。
容量制御弁300は図4中の式(2)及び図3と同様の吸入室圧力制御特性を有する。
As shown in FIG. 4, the capacity control valve 300 has basically the same structure as the capacity control valve 200 except that the suction chamber pressure acts on the bellows and the crank chamber pressure acts on the other end of the valve forming body. It is.
The capacity control valve 300 is disposed in the pressure sensing chamber 301, receives the suction chamber pressure, vacuums the inside and functions as a pressure sensing means having a spring, and one end is connected to the connecting portion 302a of the bellows 302. A valve forming body 305 that abuts and is slidably supported by the body 303, receives the crank chamber pressure at the other end, and opens and closes a valve hole 304 disposed in the communication passage 122 between the discharge chamber 120 and the crank chamber 105. A spring 306 urging the valve forming body 305 in the valve closing direction, one end of the spring 306 abuts, a spring support member 307 press-fitted to the body 303, and a lid member 308 press-fitted to the body 303 Consists of
The valve forming body 305 includes a valve body 305a, a connecting portion 305b that contacts the connecting portion 302a of the bellows 302, and a rod 305c that is slidably supported by the body 303. The valve body 305a and the connecting portion 305b are rods. It is press-fitted and fixed to 305c.
A valve chamber (pressure chamber) 309 in which the valve body 305 a is disposed communicates with the crank chamber 105 via a communication hole 307 a formed in the spring support member 307, and is formed in the valve hole 304 and the body 303. It communicates with the discharge chamber 120 via the communication hole 303a. Therefore, the communication hole 307 a, the valve chamber (pressure chamber) 309, the valve hole 304, and the communication hole 303 a form a part of the communication path 122 between the discharge chamber 120 and the crank chamber 105. The pressure sensitive chamber 301 communicates with the suction chamber 119 through a communication hole 303 b formed in the body 303. Further, a communication hole 305d penetrating both ends is formed inside the rod 305c, and the internal space 310 of the connecting portion between the connecting portion 302a and the connecting portion 305b and the valve chamber (pressure chamber) 309 communicate with each other. ing. The connecting portion 302a and the connecting portion 305b are structured to be connected to and separated from each other. When the connecting portion 302a and the connecting portion 305b are separated from each other, a predetermined gap 311 is formed, and the pressure sensitive chamber 301 is connected to the connecting portion 302a and the connecting portion 305b. The valve chamber (pressure chamber) 309 communicates with the internal space 310 via the communication hole 305d, thereby forming a second pressure relief passage that communicates the crank chamber 105 and the suction chamber 119. When the connecting portion 302a and the connecting portion 305b are connected, the communication between the pressure sensing chamber 301 and the valve chamber (pressure chamber) 309 is cut off, and the second pressure relief passage is cut off. The contact portion of the connection portion 305b with the connection portion 302a has a funnel shape, and the contact portion of the connection portion 302a with the connection portion 305b has a truncated cone shape. By fitting the funnel-shaped portion and the truncated cone-shaped portion, the connecting portion 302a and the connecting portion 305b are reliably connected.
The fixed end 302b of the bellows 302 is press-fitted into the body 303, and the control characteristic of the capacity control valve is adjusted to a predetermined value by the amount of press-fitting.
The capacity control valve 300 has a suction chamber pressure control characteristic similar to that of the expression (2) in FIG. 4 and FIG.

図5に示すように、容量制御弁400は、吐出室への連通路をクランク室へ連通させ、クランク室への連通路を吐出室へ連通させた点、ロッド305cの連通孔305dが屈曲部305ddを介してクランク室105に連通する点を除いて、容量制御弁300と基本的に同一構造である。 As shown in FIG. 5, the capacity control valve 400 has a communication passage to the discharge chamber connected to the crank chamber, a communication passage to the crank chamber connected to the discharge chamber, and the communication hole 305 d of the rod 305 c is a bent portion. The structure is basically the same as that of the capacity control valve 300 except that it communicates with the crank chamber 105 via 305dd.

図6に示すように、容量制御弁500は、図4の容量制御弁300に、弁体に電磁力を作用させるソレノイドを付加し、外部信号により吸入室圧力を制御する外部制御方式の容量制御弁としたものである。
図6において、図4の容量制御弁300の部材と同じ機能を果たす部材には容量制御弁300の部材と同一の番号を付している。
図4の容量制御弁300と異なる部分を説明すると、弁体305aにはソレノイドロッド501の一端が圧入固定され、ソレノイドロッド501は固定鉄心502に内挿されて、他端には固定鉄心502と対向して可動鉄心503が圧入固定され、固定鉄心502と可動鉄心503の間には可動鉄心503を開弁方向に付勢するバネ504が配設されている。固定鉄心502と可動鉄心503はソレノイドケース505に固定された筒状部材506内に収容され、筒状部材506の周囲を取り囲むようにして電磁コイル507がソレノイドケース505内に収容されている。
ソレノイド507で発生する電磁力は閉弁方向に作用し、可変容量圧縮機の吸入室圧力制御特性は図6中の式(3)及び図7で示されるような電磁コイルへの通電量が増加すると吸入室圧力が低下するものとなる。
クランク室105と吸入室119を連通する第2放圧通路は、連結部302aと連結部305bが離間して所定の隙間311が形成されて、感圧室301と弁室(圧力室)309が、内部空間310、連通孔305dを介して連通することにより形成される。また連結部302aと連結部305bとが連結した時は、感圧室301と弁室(圧力室)309の連通が遮断され、第2放圧通路が遮断される。
図6の容量制御弁500は、電磁コイル507を消磁したとき、バネ504により可動鉄心503及びソレノイドロッド501と一体化した弁体305aが弁孔304を強制開放する、いわゆるクラッチレス圧縮機に適用可能な構造となっている。
電磁コイル507を消磁すると、バネ504により弁体305aが図中上方へ移動し、この時筒状部材506の内部空間508は、ソレノイドロッド501と固定鉄心502との隙間、ソレノイドロッド501に形成された溝501a、弁体305aの内部空間509、連通孔305dを介して内部空間310に連通する。
弁孔304が強制開放されて吐出容量が最小の状態で維持されると吸入室圧力が上昇し、ベローズ302の動作点を超えると、ベローズ302が収縮して、連結部302aと連結部305bとが離間する。これにより感圧室301と弁体305aの他端側、つまり筒状部材506の内部空間508側は、同圧(吸入室圧力)となり、弁体305aに開閉方向のクランク室圧力による力が殆ど作用しなくなる。この結果、電磁コイル507を励磁した時の弁体305aの動きがスムーズになる。
弁体305aの他端305aaが固定鉄心502の図中下端502aに当接して弁体305aが位置決めされ、弁室(圧力室)309と筒状部材506の内部空間508とが遮断されるため、連結部302aと連結部305bが離間しても第2放圧通路は遮断され、最小容量の維持に支障を来さない。
As shown in FIG. 6, the capacity control valve 500 is an external control type capacity control in which a solenoid for applying an electromagnetic force to the valve body is added to the capacity control valve 300 of FIG. 4, and the suction chamber pressure is controlled by an external signal. It is a valve.
In FIG. 6, members that perform the same functions as the members of the capacity control valve 300 in FIG. 4 are assigned the same numbers as the members of the capacity control valve 300.
When a portion different from the capacity control valve 300 of FIG. 4 is described, one end of a solenoid rod 501 is press-fitted and fixed to the valve body 305a, the solenoid rod 501 is inserted into the fixed iron core 502, and the other end is fixed to the fixed iron core 502. The movable iron core 503 is press-fitted and fixed oppositely, and a spring 504 that biases the movable iron core 503 in the valve opening direction is disposed between the fixed iron core 502 and the movable iron core 503. The fixed iron core 502 and the movable iron core 503 are accommodated in a cylindrical member 506 fixed to the solenoid case 505, and an electromagnetic coil 507 is accommodated in the solenoid case 505 so as to surround the cylindrical member 506.
The electromagnetic force generated by the solenoid 507 acts in the valve closing direction, and the suction chamber pressure control characteristic of the variable capacity compressor increases the energization amount to the electromagnetic coil as shown in the equation (3) in FIG. 6 and FIG. As a result, the suction chamber pressure decreases.
In the second pressure relief passage that connects the crank chamber 105 and the suction chamber 119, the connecting portion 302a and the connecting portion 305b are separated from each other to form a predetermined gap 311 so that the pressure-sensitive chamber 301 and the valve chamber (pressure chamber) 309 are connected to each other. The inner space 310 and the communication hole 305d communicate with each other. When the connecting portion 302a and the connecting portion 305b are connected, the communication between the pressure sensing chamber 301 and the valve chamber (pressure chamber) 309 is cut off, and the second pressure relief passage is cut off.
The capacity control valve 500 of FIG. 6 is applied to a so-called clutchless compressor in which the valve body 305a integrated with the movable iron core 503 and the solenoid rod 501 is forcibly opened by the spring 504 when the electromagnetic coil 507 is demagnetized. It has a possible structure.
When the electromagnetic coil 507 is demagnetized, the valve body 305a is moved upward in the figure by the spring 504. At this time, the internal space 508 of the cylindrical member 506 is formed in the gap between the solenoid rod 501 and the fixed iron core 502, the solenoid rod 501. It communicates with the internal space 310 via the groove 501a, the internal space 509 of the valve body 305a, and the communication hole 305d.
When the valve hole 304 is forcibly opened and the discharge capacity is maintained at a minimum state, the suction chamber pressure rises. When the operating point of the bellows 302 is exceeded, the bellows 302 contracts, and the connecting portion 302a and the connecting portion 305b Are separated. As a result, the pressure sensing chamber 301 and the other end side of the valve body 305a, that is, the inner space 508 side of the tubular member 506 are at the same pressure (suction chamber pressure), and the force due to the crank chamber pressure in the opening / closing direction is hardly applied to the valve body 305a. No longer works. As a result, the movement of the valve body 305a when the electromagnetic coil 507 is excited becomes smooth.
Since the other end 305aa of the valve body 305a contacts the lower end 502a of the fixed iron core 502 in the drawing, the valve body 305a is positioned, and the valve chamber (pressure chamber) 309 and the internal space 508 of the tubular member 506 are blocked. Even if the connecting portion 302a and the connecting portion 305b are separated from each other, the second pressure relief passage is blocked and does not hinder the maintenance of the minimum capacity.

図8に示すように、容量制御弁600は、図2の容量制御弁200に、感圧部材に電磁力を作用させるソレノイドを付加し、外部信号により吸入室圧力を制御する外部制御方式の容量制御弁としたものである。図2の容量制御弁200では感圧部材はベローズとしているが、図8の容量制御弁600では感圧部材としてダイアフラムを使用している。
容量制御弁600は、感圧室601内に配設され、クランク室圧力を受圧して感圧手段として機能するダイアフラム602と、ダイアフラム602に電磁力を作用させてダイアフラム602の動作点を決定すべく配設されたソレノイド650と、ダイアフラム602に隣接して配設された連結部603に一端が当接し、他端がボデー604に摺動可能に支持されて吸入室圧力を受圧し、吐出室120とクランク室105との連通路122に配設された弁孔605を開閉する弁形成体606と、弁形成体606を閉弁方向に付勢するバネ607と、バネ607の一端が当接しボデー604に圧入固定されたバネ支持部材608と、連結部603と弁形成体606の連結部606bとの間に配設され、連結部603と連結部606bとを離間する方向に付勢するバネ609とから構成される。
弁形成体606は、弁体606aと、連結部603に当接する連結部606bとから成り、連結部606bが弁体606aに圧入固定されたものである。弁体606aが配設された弁室610は、ボデー604に形成された連通孔604aを経由して吐出室120と連通し、また弁孔605、感圧室601、ボデー604に形成された連通孔604bを経由してクランク室105と連通している。したがって、連通孔604a、弁室610、弁孔605、感圧室601及び連通孔604bは、吐出室120とクランク室105との連通路122の一部を形成している。
また弁形成体606の他端側空間(圧力室)611は、バネ支持部材608に形成された連通孔608aを介して吸入室119に連通している。弁体606aの内部には両端を貫通する連通孔606cが形成されており、連結部606bと連結部603との連結部の内部空間612が他端側空間(圧力室)611と連通する構造となっている。連結部603と連結部606bとは接離可能に連結する構造を成しており、連結部603と連結部606bが離間した時には、所定の隙間613が形成されて、感圧室601と弁形成体606の他端側空間(圧力室)611が、内部空間612と、連通孔606cとを介して連通し、これによりクランク室105と吸入室119を連通する第2放圧通路が形成される。連結部603と連結部606bとが連結した時は、感圧室601と弁形成体606の他端側空間(圧力室)611の連通が遮断され、第2放圧通路が遮断される。連結部606bの連結部603との当接部は漏斗形状を成し、連結部603の連結部606bとの当接部は円錐台形状を成している。漏斗形状部と円錐台形状部とが嵌合することにより、連結部606bと連結部603とが確実に連結する。
ソレノイド650は、ダイアフラム602に隣接して配設された可動鉄心651と所定隙間を維持して対向配置された固定鉄心652と、可動鉄心651をロッド653を介してダイアフラム602側に付勢するバネ654と、可動鉄心651と固定鉄心652を取り囲むように配設された電磁コイル655と、電磁コイル655を収容するソレノイドケース656とから構成される。ダイアフラム602の図中下側(可動鉄心側)は大気圧が導入されている。ソレノイド650で発生する電磁力は閉弁方向に作用し、可変容量圧縮機の吸入室圧力制御特性は図8中の式(4)及び図7で示されような、電磁コイルへの通電量が増加すると吸入室圧力が低下するものとなる。
容量制御弁600では、ソレノイド650の電磁力が感圧部材(ダイアフラム602)に作用するため、ソレノイド650の電磁力は感圧部材の変位に影響して連結部の開閉動作点に影響する。この結果、図7に示すようなソレノイドの通電量に応じた吸入室圧力制御点近傍まで第2放圧通路が形成される利点がある。これに対し、図6の容量制御弁500では、ソレノイドの電磁力が弁体に作用しているため、ソレノイドの電磁力は弁体の開閉には影響するものの、連結部の開閉には何ら影響しない。したがって、ソレノイドの通電量に係わらず、感圧部材(ベローズ)が一定の吸入室圧力で伸長し始めて連結部が連結され、第2放圧通路が一定の吸入室圧力で遮断されてしまう。この点で、図8の容量制御弁600は、図6の容量制御弁500よりもクランク室内圧の冷媒排出性能が優れている。
As shown in FIG. 8, the capacity control valve 600 is an external control type capacity in which a solenoid for applying an electromagnetic force to the pressure-sensitive member is added to the capacity control valve 200 of FIG. 2, and the suction chamber pressure is controlled by an external signal. It is a control valve. In the capacity control valve 200 of FIG. 2, the pressure-sensitive member is a bellows, but in the capacity control valve 600 of FIG. 8, a diaphragm is used as the pressure-sensitive member.
The capacity control valve 600 is disposed in the pressure sensing chamber 601 and receives a crank chamber pressure to function as pressure sensing means, and an electromagnetic force is applied to the diaphragm 602 to determine the operating point of the diaphragm 602. One end abuts on the solenoid 650 disposed accordingly and the connecting portion 603 disposed adjacent to the diaphragm 602, and the other end is slidably supported by the body 604 to receive the suction chamber pressure. The valve forming body 606 that opens and closes the valve hole 605 disposed in the communication path 122 between the 120 and the crank chamber 105, the spring 607 that urges the valve forming body 606 in the valve closing direction, and one end of the spring 607 are in contact with each other. The spring support member 608 press-fitted and fixed to the body 604 is disposed between the connecting portion 603 and the connecting portion 606b of the valve forming body 606, and the connecting portion 603 and the connecting portion 606b are separated from each other. Composed of a spring 609 for biasing direction.
The valve forming body 606 includes a valve body 606a and a connecting portion 606b that comes into contact with the connecting portion 603. The connecting portion 606b is press-fitted and fixed to the valve body 606a. The valve chamber 610 in which the valve body 606 a is disposed communicates with the discharge chamber 120 via a communication hole 604 a formed in the body 604, and also communicates with the valve hole 605, the pressure sensing chamber 601, and the body 604. The crank chamber 105 communicates with the hole 604b. Therefore, the communication hole 604 a, the valve chamber 610, the valve hole 605, the pressure sensing chamber 601 and the communication hole 604 b form a part of the communication path 122 between the discharge chamber 120 and the crank chamber 105.
Further, the other end side space (pressure chamber) 611 of the valve forming body 606 communicates with the suction chamber 119 via a communication hole 608 a formed in the spring support member 608. A communication hole 606c that penetrates both ends is formed inside the valve body 606a, and the internal space 612 of the connecting portion between the connecting portion 606b and the connecting portion 603 communicates with the other end side space (pressure chamber) 611. It has become. The connecting portion 603 and the connecting portion 606b are connected to each other so that the connecting portion 603 and the connecting portion 606b can be connected to and separated from each other. When the connecting portion 603 and the connecting portion 606b are separated from each other, a predetermined gap 613 is formed. A space (pressure chamber) 611 on the other end side of the body 606 communicates with the internal space 612 via the communication hole 606c, thereby forming a second pressure relief passage that communicates the crank chamber 105 and the suction chamber 119. . When the connecting portion 603 and the connecting portion 606b are connected, the communication between the pressure sensing chamber 601 and the other end side space (pressure chamber) 611 of the valve forming body 606 is blocked, and the second pressure relief passage is blocked. The contact part of the connection part 606b with the connection part 603 has a funnel shape, and the contact part of the connection part 603 with the connection part 606b has a truncated cone shape. By fitting the funnel-shaped portion and the truncated cone-shaped portion, the connecting portion 606b and the connecting portion 603 are reliably connected.
The solenoid 650 includes a fixed iron core 652 disposed opposite to the movable iron core 651 disposed adjacent to the diaphragm 602 while maintaining a predetermined gap, and a spring that biases the movable iron core 651 toward the diaphragm 602 via the rod 653. 654, an electromagnetic coil 655 disposed so as to surround the movable iron core 651 and the fixed iron core 652, and a solenoid case 656 that houses the electromagnetic coil 655. Atmospheric pressure is introduced to the lower side (movable iron core side) of the diaphragm 602 in the figure. The electromagnetic force generated by the solenoid 650 acts in the valve closing direction, and the suction chamber pressure control characteristic of the variable capacity compressor is such that the energization amount to the electromagnetic coil as shown in the equation (4) and FIG. As the pressure increases, the suction chamber pressure decreases.
In the capacity control valve 600, since the electromagnetic force of the solenoid 650 acts on the pressure-sensitive member (diaphragm 602), the electromagnetic force of the solenoid 650 affects the displacement of the pressure-sensitive member and affects the opening / closing operation point of the connecting portion. As a result, there is an advantage that the second pressure release passage is formed up to the vicinity of the suction chamber pressure control point according to the energization amount of the solenoid as shown in FIG. On the other hand, in the capacity control valve 500 of FIG. 6, since the electromagnetic force of the solenoid acts on the valve body, the electromagnetic force of the solenoid affects the opening and closing of the valve body, but does not affect the opening and closing of the connecting portion. do not do. Therefore, regardless of the energization amount of the solenoid, the pressure-sensitive member (bellows) starts to expand at a constant suction chamber pressure, the connecting portion is connected, and the second pressure relief passage is shut off at a constant suction chamber pressure. In this respect, the capacity control valve 600 of FIG. 8 is superior in the refrigerant discharge performance of the crank chamber pressure than the capacity control valve 500 of FIG.

図9に示す容量制御弁700は、図8の容量制御弁600を、ソレノイドを消磁したときに弁体が弁孔を強制開放する、いわゆるクラッチレス圧縮機に適用可能な構造としたものである。
容量制御弁700において、容量制御弁600と異なる部分は、ダイアフラム602に電磁力を作用させてダイアフラム602の動作点を決定すべく配設されたソレノイド750の構成において、ダイアフラム602に隣接して配設された連結部603を第2可動鉄心751とし、第2可動鉄心751とソレノイドケース656との間で磁路を形成する部材752と、第2可動鉄心751を弁体606aの開弁方向に付勢するバネ753を配設したことである。
ソレノイド750を励磁すると、ダイアフラム602を挟んで第1可動鉄心651に第2可動鉄心751が吸引連結され、ダイアフラム602と一体連結して、第2可動鉄心751は図8の連結部603と同じ機能を果たす。
バネ753の付勢力はバネ607の付勢力よりも大きく設定されているため、ソレノイド750を消磁すると、バネ753の付勢力により第2可動鉄心751がダイアフラム602から離間し、第2可動鉄心751と弁形成体606の連結部606bが連結して、弁体606aが図中上方へ移動し、弁孔605が強制開放されて、吐出室120とクランク室105が常時連通する。これにより最小容量が得られる。
弁形成体606の連結部606bを磁性材料で形成し、ソレノイド750を励磁したとき、第2可動鉄心751と所定の隙間を維持して連結部606bに吸引力が作用するようにすれば、弁体606aを閉弁方向に付勢する力となり、バネ607は不要となって構造の簡素化に寄与する。
The capacity control valve 700 shown in FIG. 9 has a structure applicable to a so-called clutchless compressor in which the valve body forcibly opens the valve hole when the solenoid is demagnetized. .
In the displacement control valve 700, a portion different from the displacement control valve 600 is arranged adjacent to the diaphragm 602 in the configuration of the solenoid 750 arranged to determine the operating point of the diaphragm 602 by applying an electromagnetic force to the diaphragm 602. The connecting portion 603 provided is a second movable iron core 751, and a member 752 that forms a magnetic path between the second movable iron core 751 and the solenoid case 656, and the second movable iron core 751 in the valve opening direction of the valve body 606a. This is the provision of a spring 753 for biasing.
When the solenoid 750 is excited, the second movable iron core 751 is sucked and connected to the first movable iron core 651 with the diaphragm 602 interposed therebetween, and is integrally connected to the diaphragm 602. The second movable iron core 751 has the same function as the connecting portion 603 in FIG. Fulfill.
Since the biasing force of the spring 753 is set to be larger than the biasing force of the spring 607, when the solenoid 750 is demagnetized, the second movable iron core 751 is separated from the diaphragm 602 by the biasing force of the spring 753, and The connecting portion 606b of the valve forming body 606 is connected, the valve body 606a moves upward in the figure, the valve hole 605 is forcibly opened, and the discharge chamber 120 and the crank chamber 105 are always in communication. This provides the minimum capacity.
If the connecting portion 606b of the valve forming body 606 is made of a magnetic material and the solenoid 750 is excited, a predetermined gap is maintained from the second movable iron core 751 so that a suction force acts on the connecting portion 606b. This is a force for urging the body 606a in the valve closing direction, and the spring 607 is unnecessary, which contributes to the simplification of the structure.

図10に示す容量制御弁800は、図9の容量制御弁700の弁形成体の両端の圧力を同圧として、クラッチレス圧縮機に更に好適な構造としたものである。
容量制御弁800において、ソレノイド750を消磁すると、バネ753の付勢力により、第2可動鉄心751がダイアフラム602から離間し、第2可動鉄心751と弁形成体606の連結部606bが連結して、弁体606aが図中上方へ移動し、弁孔605が強制開放されて、吐出室120とクランク室105が常時連通する。この時弁体606aの他端606aaがばね支持部材801に当接して弁体606aが位置決めされ、空間(圧力室)611と空間802とが画成される。連通孔606cは空間(圧力室)611から遮断されている。
弁体606aの他端606aaがばね支持部材801に当接することにより、不必要に弁体606aが移動するのを防止することができる。
空間802は、連通孔606cを介して空間612に連通し、空間612は連結部606bに形成されたオリフィス606bbを介して感圧室601と連通しているため、空間802は感圧室601の圧力と同圧(クランク室圧力)となり、弁体606aの開閉方向に作用する圧力による力がほとんど無くなり、ソレノイドを励磁したとき、スムーズに弁体が閉弁方向に動作することが可能となる。
連結部606bに形成されたオリフィス606bbがあるため、第2放圧通路は完全には遮断されず、微小な流れを許容している。このため第1放圧通路に配設された固定オリフィス124の流路面積は、オリフィス606bbの流路面積を考慮して小さく設定されている。
弁体606aの他端606aaがばね支持部材801に当接して、空間(圧力室)611と空間802とが画成されるため、第2可動鉄心751と連結部606bとが離間しても、第2放圧通路は遮断され、最小容量の維持に支障を来さない。
A capacity control valve 800 shown in FIG. 10 has a structure more suitable for a clutchless compressor by setting the pressures at both ends of the valve forming body of the capacity control valve 700 of FIG. 9 to the same pressure.
In the capacity control valve 800, when the solenoid 750 is demagnetized, the second movable iron core 751 is separated from the diaphragm 602 by the biasing force of the spring 753, and the second movable iron core 751 and the connecting portion 606b of the valve forming body 606 are connected. The valve body 606a moves upward in the drawing, the valve hole 605 is forcibly opened, and the discharge chamber 120 and the crank chamber 105 are always in communication. At this time, the other end 606aa of the valve body 606a abuts against the spring support member 801, the valve body 606a is positioned, and a space (pressure chamber) 611 and a space 802 are defined. The communication hole 606c is blocked from the space (pressure chamber) 611.
Since the other end 606aa of the valve body 606a contacts the spring support member 801, the valve body 606a can be prevented from moving unnecessarily.
Since the space 802 communicates with the space 612 through the communication hole 606c, and the space 612 communicates with the pressure sensing chamber 601 through the orifice 606bb formed in the coupling portion 606b, the space 802 is formed in the pressure sensing chamber 601. The pressure is the same as the pressure (crank chamber pressure), and there is almost no force due to the pressure acting in the opening / closing direction of the valve body 606a. When the solenoid is excited, the valve body can smoothly operate in the valve closing direction.
Since there is an orifice 606bb formed in the connecting portion 606b, the second pressure relief passage is not completely blocked, and a minute flow is allowed. For this reason, the flow area of the fixed orifice 124 disposed in the first pressure relief passage is set small in consideration of the flow area of the orifice 606bb.
Since the other end 606aa of the valve body 606a abuts against the spring support member 801 and the space (pressure chamber) 611 and the space 802 are defined, even if the second movable iron core 751 and the connecting portion 606b are separated from each other, The second pressure relief passage is blocked and does not hinder the maintenance of the minimum capacity.

図11に示す容量制御弁900は、図9の容量制御弁700に図6の容量制御弁500の弁形成体を組み合わせ、クラッチレス圧縮機に好適な構造としたものである。容量制御弁700とは、ダイアフラムに吸入室圧力が作用し、弁形成体の他端側にクランク室圧力が作用する点が異なる。
容量制御弁900は、感圧室901内に配設され、吸入室圧力を受圧して感圧手段として機能するダイアフラム602と、ダイアフラム602に電磁力を作用させてダイアフラム602の動作点を決定すべく配設されたソレノイド750と、ダイアフラム602に隣接して配設された第2可動鉄心751に一端が当接し、ボデー902に摺動可能に支持されて他端側がクランク室圧力を受圧し、吐出室120とクランク室105との連通路122に配設された弁孔903を開閉する弁形成体904と、弁形成体904を閉弁方向に付勢するバネ905と、バネ905の一端が当接し、ボデー902に圧入固定されたばね支持部材906とから構成される。
弁形成体904は、弁体904aと、第2可動鉄心751に当接する連結部904bとから成り、連結部904bが弁体904aに圧入固定されたものである。
弁体904aが配設された弁室(圧力室)907は、ばね支持部材906に形成された連通孔906aを経由してクランク室105と連通し、また弁孔903とボデー902に形成された連通孔902aとを経由して吐出室120と連通している。したがって、連通孔906a、弁室907、弁孔903、連通孔902aは、吐出室120とクランク室105との連通路122の一部を形成している。
感圧室901はボデー902に形成された連通孔902bを介して吸入室119に連通している。弁体904aの内部には、両端を貫通する連通孔904cが形成されており、連結部904bと第2可動鉄心751との連結部の内部空間908と弁室(圧力室)907とが連通する構造となっている。第2可動鉄心751と連結部904bは接離可能に連結する構造を成しており、第2可動鉄心751と連結部904bが離間したときには、所定の隙間909が形成されて、感圧室901と弁室(圧力室)907が、内部空間908、連通孔904cを介して連通し、これによりクランク室105と吸入室119とを連通する第2放圧通路が形成される。また第2可動鉄心751と連結部904bが連結した時は、感圧室901と弁室907の連通が遮断され、第2放圧通路が遮断される。
ソレノイド750を励磁すると、ダイアフラム602を挟んで第1可動鉄心651に第2可動鉄心751が吸引連結され、ダイアフラム602と一体連結し、さらに弁形成体904と連結することにより、可変容量圧縮機の吸入室圧力制御特性は図11中の式(5)及び図7で示されるような電磁コイルへの通電量が増加すると吸入室圧力が低下するものとなる。バネ753の付勢力はバネ905の付勢力よりも大きく設定されているのて、ソレノイド750を消磁すると、バネ753の付勢力により第2可動鉄心751がダイアフラム602から離間し、第2可動鉄心751と弁形成体904の連結部904bが連結して、弁体904aが図中上方へ移動し、弁孔903が強制開放されて、吐出室120とクランク室105が常時連通する。これにより最小容量が得られる。
A displacement control valve 900 shown in FIG. 11 has a structure suitable for a clutchless compressor by combining the displacement control valve 700 of FIG. 9 with the valve forming body of the displacement control valve 500 of FIG. The displacement control valve 700 is different from the capacity control valve 700 in that the suction chamber pressure acts on the diaphragm and the crank chamber pressure acts on the other end side of the valve forming body.
The capacity control valve 900 is disposed in the pressure sensing chamber 901, receives the suction chamber pressure and functions as a pressure sensing means, and determines the operating point of the diaphragm 602 by applying an electromagnetic force to the diaphragm 602. One end abuts against the solenoid 750 disposed accordingly and the second movable iron core 751 disposed adjacent to the diaphragm 602, is slidably supported on the body 902, and the other end receives the crank chamber pressure. A valve forming body 904 that opens and closes a valve hole 903 disposed in the communication passage 122 between the discharge chamber 120 and the crank chamber 105, a spring 905 that biases the valve forming body 904 in the valve closing direction, and one end of the spring 905 are A spring support member 906 that abuts and is press-fitted and fixed to the body 902.
The valve forming body 904 includes a valve body 904a and a connecting portion 904b that contacts the second movable iron core 751, and the connecting portion 904b is press-fitted and fixed to the valve body 904a.
A valve chamber (pressure chamber) 907 in which the valve body 904 a is disposed communicates with the crank chamber 105 through a communication hole 906 a formed in the spring support member 906, and is formed in the valve hole 903 and the body 902. The discharge chamber 120 communicates with the communication hole 902a. Therefore, the communication hole 906 a, the valve chamber 907, the valve hole 903, and the communication hole 902 a form a part of the communication path 122 between the discharge chamber 120 and the crank chamber 105.
The pressure sensitive chamber 901 communicates with the suction chamber 119 through a communication hole 902 b formed in the body 902. A communication hole 904c penetrating both ends is formed inside the valve body 904a, and the internal space 908 of the connecting portion between the connecting portion 904b and the second movable iron core 751 and the valve chamber (pressure chamber) 907 communicate with each other. It has a structure. The second movable iron core 751 and the connecting portion 904b are connected so as to be able to come into contact with and away from each other. When the second movable iron core 751 and the connecting portion 904b are separated from each other, a predetermined gap 909 is formed and the pressure sensitive chamber 901 is formed. And the valve chamber (pressure chamber) 907 communicate with each other via the internal space 908 and the communication hole 904c, thereby forming a second pressure relief passage for communicating the crank chamber 105 and the suction chamber 119. When the second movable iron core 751 and the connecting portion 904b are connected, the communication between the pressure sensing chamber 901 and the valve chamber 907 is cut off, and the second pressure relief passage is cut off.
When the solenoid 750 is excited, the second movable iron core 751 is sucked and connected to the first movable iron core 651 with the diaphragm 602 interposed therebetween, and is integrally connected to the diaphragm 602 and further connected to the valve forming body 904, thereby As for the suction chamber pressure control characteristic, the suction chamber pressure decreases as the energization amount to the electromagnetic coil as shown in the equation (5) in FIG. 11 and FIG. 7 increases. Since the biasing force of the spring 753 is set to be larger than the biasing force of the spring 905, when the solenoid 750 is demagnetized, the second movable iron core 751 is separated from the diaphragm 602 by the biasing force of the spring 753, and the second movable iron core 751. And the connecting portion 904b of the valve forming body 904 are connected, the valve body 904a moves upward in the figure, the valve hole 903 is forcibly opened, and the discharge chamber 120 and the crank chamber 105 are always in communication. This provides the minimum capacity.

本発明は、揺動板式可変容量圧縮機やモータで駆動される可変容量圧縮機にも適用可能である。
図8〜11の構造で、ダイアフラムを挟んで冷媒側と対向している内部空間を大気圧ではなく負圧としても良い。
本発明は、通電量を増加すると吸入室圧力が上昇する制御特性を有する外部制御型容量制御弁を備える可変容量圧縮機や、吐出圧力が上昇すると吸入室圧力が上昇する制御特性を有する容量制御弁を備える可変容量圧縮機にも適用可能である。
連結部が連結した時、第2放圧通路が遮断されず漏れが許容される構造にしても良い。
第1放圧通路に流量可変の絞りを配設しても良い。
第1放圧通路の絞りを第2放圧通路の内部に配設しても良い。例えば、図1の固定オリフィス124を、図10の連結部606bに形成されたオリフィス606bbにしても良い。
連結部を構成する二つの部材の材料を異種材料とし、或いは連結部を構成する二つの部材を高硬度の素材で形成し、或いは連結部を構成する二つの部材に表面硬化処理を施して、連結部の繰り返し開閉による磨耗を抑制しても良い。
冷媒として現状のR134aに代えて、CO2やR152aを使用しても良い。
The present invention can also be applied to a variable displacement compressor driven by a swing plate variable displacement compressor or a motor.
In the structure shown in FIGS. 8 to 11, the internal space facing the refrigerant side with the diaphragm interposed therebetween may be a negative pressure instead of the atmospheric pressure.
The present invention relates to a variable capacity compressor having an external control type capacity control valve having a control characteristic in which the suction chamber pressure increases when the energization amount increases, and a capacity control having a control characteristic in which the suction chamber pressure increases when the discharge pressure increases. The present invention can also be applied to a variable capacity compressor including a valve.
When the connecting portion is connected, the second pressure relief passage may not be blocked and leakage may be allowed.
A throttle with variable flow rate may be disposed in the first pressure relief passage.
The throttle of the first pressure release passage may be disposed inside the second pressure release passage. For example, the fixed orifice 124 in FIG. 1 may be an orifice 606bb formed in the connecting portion 606b in FIG.
The material of the two members constituting the connecting portion is a different material, or the two members constituting the connecting portion are formed of a high hardness material, or the two members constituting the connecting portion are subjected to surface hardening treatment, You may suppress the abrasion by repeated opening and closing of a connection part.
Instead of the current R134a, CO2 or R152a may be used as the refrigerant.

本発明は、可変容量圧縮機に広く利用可能である。 The present invention is widely applicable to variable capacity compressors.

本発明の第1実施例に係る可変容量圧縮機の断面図である。It is sectional drawing of the variable capacity compressor which concerns on 1st Example of this invention. 本発明の第1実施例に係る可変容量圧縮機が備える容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve with which the variable capacity compressor which concerns on 1st Example of this invention is provided. 図2の容量制御弁の吸入室圧力制御特性を示す図である。It is a figure which shows the suction chamber pressure control characteristic of the capacity | capacitance control valve of FIG. 本発明の第2実施例に係る可変容量圧縮機が備える容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve with which the variable capacity compressor which concerns on 2nd Example of this invention is provided. 本発明の第3実施例に係る可変容量圧縮機が備える容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve with which the variable capacity compressor which concerns on 3rd Example of this invention is provided. 本発明の第4実施例に係る可変容量圧縮機が備える容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve with which the variable capacity compressor which concerns on 4th Example of this invention is provided. 図6の容量制御弁の吸入室圧力制御特性を示す図である。It is a figure which shows the suction chamber pressure control characteristic of the capacity | capacitance control valve of FIG. 本発明の第5実施例に係る可変容量圧縮機が備える容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve with which the variable capacity compressor which concerns on 5th Example of this invention is provided. 本発明の第6実施例に係る可変容量圧縮機が備える容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve with which the variable capacity compressor which concerns on 6th Example of this invention is provided. 本発明の第7実施例に係る可変容量圧縮機が備える容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve with which the variable capacity compressor which concerns on 7th Example of this invention is provided. 本発明の第8実施例に係る可変容量圧縮機が備える容量制御弁の断面図である。It is sectional drawing of the capacity | capacitance control valve with which the variable capacity compressor which concerns on 8th Example of this invention is provided.

符号の説明Explanation of symbols

100 可変容量圧縮機
106 駆動軸
107 斜板
117 ピストン
119 吸入室
120 吐出室
122 連通路
200、300、400、500、600、700、800、900 容量制御弁
DESCRIPTION OF SYMBOLS 100 Variable capacity compressor 106 Drive shaft 107 Swash plate 117 Piston 119 Suction chamber 120 Discharge chamber 122 Communication path 200, 300, 400, 500, 600, 700, 800, 900 Capacity control valve

Claims (10)

ハウジング内に区画形成された吐出室と吸入室とクランク室と複数のシリンダボアと、シリンダボアに配設されたピストンと、クランク室を横断して配設された駆動軸と、傾角可変の斜板を有し駆動軸の回転をピストンの往復運動に変換する変換機構と、吐出室をクランク室に連通させる給気通路と、給気通路に配設された容量制御弁と、クランク室を吸入室に連通させる第1放圧通路と、第1放圧通路に配設された絞りとを備え、容量制御弁の開度を調整してクランク室圧力を変化させ、ピストンのストロークを調整して吸入室からシリンダボアに吸入される冷媒量を制御する可変容量圧縮機であって、容量制御弁は、吸入室圧力又はクランク室圧力の変化に応じて伸縮する感圧部材を有する第1部材と、給気通路を開閉する弁体を有する第2部材とを備え、第1部材と第2部材とが連結することにより吸入室圧力を所定値に自立制御する弁機構を形成し、第1部材と第2部材との連結部は、吸入室又はクランク室の一方に連通すると共に感圧部材を収容する感圧室に配設され、第2部材には、吸入室又はクランク室の他方に連通する圧力室と前記連結部とに連通する連通孔が形成され、吸入室圧力が所定値より高い場合には、感圧部材が収縮して弁体が給気通路を閉じると共に、第1部材と第2部材とが離間し、感圧室と圧力室とが連通してクランク室を吸入室に連通させる第2放圧通路が形成されることを特徴とする可変容量圧縮機。 A discharge chamber, a suction chamber, a crank chamber, a plurality of cylinder bores, a piston disposed in the cylinder bore, a drive shaft disposed across the crank chamber, and a swash plate with a variable tilt angle are formed in the housing. A conversion mechanism for converting the rotation of the drive shaft into the reciprocating motion of the piston, an air supply passage for communicating the discharge chamber with the crank chamber, a capacity control valve disposed in the air supply passage, and the crank chamber as the suction chamber A suction chamber having a first pressure release passage communicating with the throttle disposed in the first pressure release passage, adjusting a degree of opening of the capacity control valve to change a crank chamber pressure, and adjusting a stroke of the piston; A variable capacity compressor that controls the amount of refrigerant sucked into the cylinder bore from the first member having a pressure-sensitive member that expands and contracts in response to a change in suction chamber pressure or crank chamber pressure; Has a valve body to open and close the passage The first member and the second member are connected to form a valve mechanism that independently controls the suction chamber pressure to a predetermined value. The connecting portion between the first member and the second member is a suction chamber. Alternatively, the second member is disposed in a pressure sensing chamber that communicates with one of the crank chambers and accommodates a pressure sensing member, and the second member communicates with a pressure chamber that communicates with the other of the suction chamber or the crank chamber and the connecting portion. When the hole is formed and the suction chamber pressure is higher than the predetermined value, the pressure sensitive member contracts and the valve body closes the air supply passage, and the first member and the second member are separated from each other, and the pressure sensitive chamber and A variable capacity compressor characterized in that a second pressure release passage is formed which communicates with a pressure chamber and communicates a crank chamber with a suction chamber. 第2放圧通路の最小流路断面積は、第1放圧通路に配設された絞りの流路断面積よりも大きな値に設定されていることを特徴とする請求項1に記載の可変容量圧縮機。 2. The variable according to claim 1, wherein the minimum flow passage cross-sectional area of the second pressure relief passage is set to a value larger than the flow passage cross-sectional area of the throttle disposed in the first pressure relief passage. Capacity compressor. 第1部材と第2部材との連結部において、第1部材と第2部材とが当接しており、当接部は第2部材の連通孔よりも大径に形成されていることを特徴とする請求項1又は2に記載の可変容量圧縮機。 In the connecting portion between the first member and the second member, the first member and the second member are in contact with each other, and the contact portion is formed to have a larger diameter than the communication hole of the second member. The variable capacity compressor according to claim 1 or 2. 第1部材と第2部材との連結部は、漏斗状凹部と、当該凹部に嵌合する円錐台状凸部とを有していることを特徴とする請求項1乃至3の何れか1項に記載の可変容量圧縮機。 The connection part of the 1st member and the 2nd member has a funnel-shaped recessed part and a truncated-cone-shaped convex part fitted to the said recessed part, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. The variable capacity compressor described in 1. 容量制御弁は、感圧部材の伸縮のみに応じて動作する機械式容量制御弁であることを特徴とする請求項1乃至4の何れか1項に記載の可変容量圧縮機。 The variable capacity compressor according to any one of claims 1 to 4, wherein the capacity control valve is a mechanical capacity control valve that operates only in response to expansion and contraction of the pressure-sensitive member. 第1部材は、感圧部材に電磁力を作用させるソレノイドを有し、容量制御弁は、ソレノイドの電流値を変化させる外部信号と感圧部材の伸縮とに応じて動作する外部制御式容量制御弁であることを特徴とする請求項1乃至4の何れか1項に記載の可変容量圧縮機。 The first member has a solenoid that applies electromagnetic force to the pressure-sensitive member, and the capacity control valve operates according to an external signal that changes the current value of the solenoid and expansion and contraction of the pressure-sensitive member. The variable capacity compressor according to any one of claims 1 to 4, wherein the compressor is a valve. 第1部材は、感圧部材を挟んで対峙する第1可動鉄心と第2可動鉄心と、第2可動鉄心を感圧部材から離間する方向へ付勢するバネとを有し、ソレノイドが励磁すると、感圧部材を挟んで第1可動鉄心と第2可動鉄心とが連結し、更に第2可動鉄心に第2部材が連結すると、吸入室圧力を所定値に自立制御する弁機構が形成され、ソレノイドが消磁すると、バネの付勢力を受けた第2可動鉄心が第1可動鉄心と感圧部材とからから離間し、第2部材を付勢して給気通路を強制開放することを特徴とする請求項6に記載の可変容量圧縮機。 The first member includes a first movable iron core and a second movable iron core that are opposed to each other with the pressure-sensitive member interposed therebetween, and a spring that biases the second movable iron core in a direction away from the pressure-sensitive member. When the first movable iron core and the second movable iron core are connected to each other with the pressure sensitive member interposed therebetween, and when the second member is further connected to the second movable iron core, a valve mechanism for controlling the suction chamber pressure to a predetermined value is formed. When the solenoid is demagnetized, the second movable iron core that receives the biasing force of the spring is separated from the first movable iron core and the pressure-sensitive member, and the second member is biased to forcibly open the air supply passage. The variable capacity compressor according to claim 6. 第2部材の第1部材との連結部は、磁性材料で形成されていることを特徴とする請求項7に記載の可変容量圧縮機。 The variable capacity compressor according to claim 7, wherein the connecting portion of the second member with the first member is made of a magnetic material. ソレノイドが消磁して、バネにより給気通路が強制開放された時に、第2部材が規制部材に当接して移動を規制されることを特徴とする請求項7又は8に記載の可変容量圧縮機。 9. The variable capacity compressor according to claim 7, wherein when the solenoid is demagnetized and the air supply passage is forcibly opened by a spring, the movement of the second member is abutted against the restricting member. . 第2部材が規制部材に当接して移動を規制された時に、第2部材の連通孔は圧力室から遮断され且つ感圧室に連通することを特徴とする請求項9に記載の可変容量圧縮機。 10. The variable capacity compression according to claim 9, wherein when the movement of the second member is restricted by contact with the regulating member, the communication hole of the second member is cut off from the pressure chamber and communicated with the pressure sensing chamber. Machine.
JP2005248488A 2005-08-29 2005-08-29 Variable capacity compressor Active JP4436295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248488A JP4436295B2 (en) 2005-08-29 2005-08-29 Variable capacity compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248488A JP4436295B2 (en) 2005-08-29 2005-08-29 Variable capacity compressor

Publications (3)

Publication Number Publication Date
JP2007064028A true JP2007064028A (en) 2007-03-15
JP2007064028A5 JP2007064028A5 (en) 2009-05-21
JP4436295B2 JP4436295B2 (en) 2010-03-24

Family

ID=37926523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248488A Active JP4436295B2 (en) 2005-08-29 2005-08-29 Variable capacity compressor

Country Status (1)

Country Link
JP (1) JP4436295B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057855A (en) * 2007-08-30 2009-03-19 Sanden Corp Variable displacement compressor
WO2010041775A1 (en) * 2008-10-09 2010-04-15 サンデン株式会社 Variable capacity compressor
WO2011114841A1 (en) * 2010-03-16 2011-09-22 イーグル工業株式会社 Volume control valve
US8152482B2 (en) 2007-10-24 2012-04-10 Kabushiki Kaisha Toyota Jidoshokki Displacement control valve for variable displacement compressor
WO2012172914A1 (en) * 2011-06-15 2012-12-20 イーグル工業株式会社 Capacity control valve
JP2013087863A (en) * 2011-10-18 2013-05-13 Saginomiya Seisakusho Inc Pressure sensitive control valve
JP2014190247A (en) * 2013-03-27 2014-10-06 Tgk Co Ltd Control valve for variable capacity compressor
JP2015178795A (en) * 2014-03-19 2015-10-08 株式会社豊田自動織機 capacity control valve
JPWO2018151018A1 (en) * 2017-02-18 2019-12-12 イーグル工業株式会社 Capacity control valve
CN112379042A (en) * 2020-09-24 2021-02-19 黑龙江科技大学 Synchronous test bin for performance of multiple gas sensors
US11401922B2 (en) 2017-03-28 2022-08-02 Eagle Industry Co., Ltd. Displacement control valve
US11536389B2 (en) 2017-08-28 2022-12-27 Eagle Industry Co., Ltd. Electromagnetic valve

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057855A (en) * 2007-08-30 2009-03-19 Sanden Corp Variable displacement compressor
US8152482B2 (en) 2007-10-24 2012-04-10 Kabushiki Kaisha Toyota Jidoshokki Displacement control valve for variable displacement compressor
EP2053244A3 (en) * 2007-10-24 2014-01-22 Kabushiki Kaisha Toyota Jidoshokki Displacement control valve for variable displacement compressor
WO2010041775A1 (en) * 2008-10-09 2010-04-15 サンデン株式会社 Variable capacity compressor
JP2010090834A (en) * 2008-10-09 2010-04-22 Sanden Corp Variable displacement compressor
US8651826B2 (en) 2010-03-16 2014-02-18 Eagle Industry Co., Ltd. Volume control valve
WO2011114841A1 (en) * 2010-03-16 2011-09-22 イーグル工業株式会社 Volume control valve
JP5557901B2 (en) * 2010-03-16 2014-07-23 イーグル工業株式会社 Capacity control valve
JPWO2011114841A1 (en) * 2010-03-16 2013-06-27 イーグル工業株式会社 Capacity control valve
KR101319565B1 (en) * 2010-03-16 2013-10-23 이구루코교 가부시기가이샤 Volume control valve
WO2012172914A1 (en) * 2011-06-15 2012-12-20 イーグル工業株式会社 Capacity control valve
JPWO2012172914A1 (en) * 2011-06-15 2015-02-23 イーグル工業株式会社 Capacity control valve
US9523987B2 (en) 2011-06-15 2016-12-20 Eagle Industry Co., Ltd. Capacity control valve
JP2013087863A (en) * 2011-10-18 2013-05-13 Saginomiya Seisakusho Inc Pressure sensitive control valve
JP2014190247A (en) * 2013-03-27 2014-10-06 Tgk Co Ltd Control valve for variable capacity compressor
JP2015178795A (en) * 2014-03-19 2015-10-08 株式会社豊田自動織機 capacity control valve
JPWO2018151018A1 (en) * 2017-02-18 2019-12-12 イーグル工業株式会社 Capacity control valve
JP7051238B2 (en) 2017-02-18 2022-04-11 イーグル工業株式会社 Capacity control valve
US11401922B2 (en) 2017-03-28 2022-08-02 Eagle Industry Co., Ltd. Displacement control valve
US11536389B2 (en) 2017-08-28 2022-12-27 Eagle Industry Co., Ltd. Electromagnetic valve
CN112379042A (en) * 2020-09-24 2021-02-19 黑龙江科技大学 Synchronous test bin for performance of multiple gas sensors

Also Published As

Publication number Publication date
JP4436295B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4436295B2 (en) Variable capacity compressor
JP4695032B2 (en) Volume control valve for variable capacity compressor
JP6663227B2 (en) Displacement control valve for variable displacement compressor
WO2014091975A1 (en) Capacity control valve
JP6135521B2 (en) Variable capacity swash plate compressor
JPWO2006090760A1 (en) Capacity control valve
JP5222447B2 (en) Variable capacity compressor
KR20150005418A (en) Control valve for variable displacement compressor
JP2004003468A (en) Variable displacement compressor having displacement control valve
JPH10141223A (en) Variable displacement compressor
JP4412186B2 (en) Variable capacity compressor
JPH1182300A (en) Variable delivery compressor
US20070116578A1 (en) Control Device for a Vehicular Refrigeration, Vehicular Variable Displacement Compressor, and A Control Valve for the Vehicular Variable Displacement Compressor
JP3987269B2 (en) Control valve for variable capacity compressor
JPH10205443A (en) Variable displacement compressor
JP4501112B2 (en) Control unit for variable capacity compressor
JP5142212B2 (en) Variable capacity compressor
JP5430401B2 (en) Variable capacity compressor
JP4864657B2 (en) Clutchless variable capacity compressor
JP5075425B2 (en) Volume control valve for variable capacity compressor
JP2002021722A (en) Capacity control valve for piston type variable displacement compressor
JP4599327B2 (en) Variable capacity compressor
JP4663579B2 (en) Volume control valve for variable capacity compressor
JP4247225B2 (en) Control valve for variable capacity compressor
US7371054B2 (en) Swash-plate compression device of variable capacity type

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

R150 Certificate of patent or registration of utility model

Ref document number: 4436295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350