WO2010041775A1 - Variable capacity compressor - Google Patents

Variable capacity compressor Download PDF

Info

Publication number
WO2010041775A1
WO2010041775A1 PCT/JP2009/067964 JP2009067964W WO2010041775A1 WO 2010041775 A1 WO2010041775 A1 WO 2010041775A1 JP 2009067964 W JP2009067964 W JP 2009067964W WO 2010041775 A1 WO2010041775 A1 WO 2010041775A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
chamber
valve
valve body
crank chamber
Prior art date
Application number
PCT/JP2009/067964
Other languages
French (fr)
Japanese (ja)
Inventor
幸彦 田口
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112009002441T priority Critical patent/DE112009002441T5/en
Priority to US13/123,043 priority patent/US20110194951A1/en
Publication of WO2010041775A1 publication Critical patent/WO2010041775A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure

Definitions

  • the present invention relates to a variable capacity compressor, and more particularly to a variable capacity compressor suitable for use in a refrigeration circuit of a vehicle air conditioner.
  • a capacity control valve that opens and closes a supply passage that communicates between the discharge chamber and the crank chamber by sensing suction pressure; and a throttle that is disposed in a bleed passage that communicates between the crank chamber and the suction chamber.
  • a variable capacity compressor is known in which the pressure in the crank chamber is changed by adjusting the opening, and the stroke of the reciprocating motion of the piston is adjusted to compress the refrigerant sucked into the cylinder bore from the suction chamber and discharge it into the discharge chamber (for example, Patent Document 1).
  • Such a variable capacity compressor is provided, for example, in a refrigeration circuit of a vehicle air conditioner and is used as a refrigerant compressor.
  • a small amount of the refrigerant gas throttled by the throttle through the extraction passage is extracted from the crank chamber, and the refrigerant gas in the discharge chamber is introduced into the crank chamber controlled by adjusting the opening of the capacity control valve.
  • the pressure is controlled to the target pressure, whereby the stroke of the piston is adjusted via the tilt angle control of the swash plate element, and the discharge capacity of the compressor is controlled to the target capacity.
  • the valve body of the capacity control valve opens and closes the air supply passage in response to the displacement of the pressure-sensitive member (for example, a diaphragm) that senses the suction pressure, but the discharge pressure is high. Since the amount of discharge gas introduced into the crank chamber is greatly different even when the discharge pressure is low, the throttle placed in the bleed passage that connects the crank chamber and the suction chamber is fixed at a fixed opening. In some cases, the pressure increase sensitivity of the crank chamber pressure (that is, the change amount of the crank chamber pressure with respect to the change amount of the suction pressure) also greatly changes.
  • the pressure-sensitive member for example, a diaphragm
  • an object of the present invention is to provide a variable displacement compressor including a displacement control valve that can easily adjust the pressure increase sensitivity of the crank chamber pressure to an optimum sensitivity.
  • a variable capacity compressor includes a housing in which a discharge chamber, a suction chamber, a crank chamber, and a cylinder bore are defined, a piston inserted into the cylinder bore, and the housing
  • the discharge shaft and the crank chamber are communicated with each other, a drive shaft rotatably supported therein, a motion conversion mechanism including a variable swash plate element that converts the rotation of the drive shaft into a reciprocating motion of the piston, and the discharge chamber.
  • a capacity control valve that opens and closes the air supply passage; and a throttle element disposed in a bleed passage that connects the crank chamber and the suction chamber, and changes the pressure in the crank chamber by adjusting the opening of the capacity control valve.
  • the capacity control valve includes a valve chamber that communicates with the discharge chamber, a valve hole that communicates with the valve chamber at one end, and a valve hole that communicates with the crank chamber at the other end.
  • a valve seat that faces the valve chamber and is formed around the valve hole; a valve body that is disposed in the valve chamber and that opens and closes the valve hole by contacting and separating from the valve seat; and the suction chamber
  • a pressure sensing chamber communicating with the pressure sensing member, a pressure sensing member disposed in the pressure sensing chamber and displaced in response to the pressure in the suction chamber, one end connected to the pressure sensing member, and the other end to the valve hole side
  • a pressure-sensitive rod connected to the valve body and driving the valve body in response to displacement of the pressure-sensitive member, and the pressure in the crank chamber is applied to the valve body from the valve hole side.
  • the crank chamber pressure By setting the chamber pressure larger than the pressure receiving area Sv, the crank chamber pressure always acts in the direction of closing the valve body.
  • the state in which the crank chamber pressure always acts in the direction in which the valve body is closed does not basically change even if the discharge pressure changes, so the crank chamber pressure increase sensitivity (that is, the crank chamber pressure relative to the amount of change in the suction pressure)
  • the crank chamber pressure increase sensitivity that is, the crank chamber pressure relative to the amount of change in the suction pressure
  • variable capacity compressor In practice, it is possible to satisfy the above Sr> Sv simply by changing the pressure receiving area of the crank chamber pressure of the pressure sensitive rod without changing other parts. It becomes possible to adjust the pressure increase sensitivity of the chamber pressure, and it is possible to stabilize the opening / closing state of the valve body and obtain a stable discharge capacity control state.
  • the pressure in the discharge chamber acts on the valve body in a direction to close the valve body, and the pressure receiving area where the pressure-sensitive member receives the pressure in the suction chamber is Sb.
  • Sr, Sv, and Sb may be set so as to satisfy Sb + Sv> 2Sr.
  • the suction pressure control accuracy can be improved particularly in the case of a capacity control valve structure in which the pressure in the discharge chamber acts in the direction of closing the valve body.
  • the capacity control valve further includes a pressure chamber communicating with the suction chamber, and one end of the valve body abuts and separates from the valve seat and the valve hole And the other end of the valve body is disposed in the pressure chamber so that the pressure in the suction chamber acts in a direction to close the valve body, and the pressure sensing member receives the pressure in the suction chamber.
  • Sr, Sv, Sp and Sb may be set so as to satisfy Sb + Sp + Sv> 2Sr.
  • Sr, Sv, Sp and Sb may be set so as to satisfy Sb + Sp + Sv> 2Sr.
  • Sp and Sv are set so that Sp> Sv is satisfied.
  • the throttle element arranged in the extraction passage can be a throttle element whose opening degree can be adjusted.
  • the present invention is particularly effective when the opening degree is a fixed orifice. That is, in the present invention, by applying the structure according to the present invention, it is possible to easily adjust the pressure increase sensitivity of the crank chamber pressure only by the capacity control valve, so that the crank chamber and the suction chamber communicate with each other.
  • the throttle element is an orifice having a fixed opening, it is possible to suppress the fluctuation in the pressure increase sensitivity of the crank chamber pressure particularly when the discharge gas introduction amount fluctuates greatly.
  • variable capacity compressor can be applied to any variable capacity compressor in which the stroke of the reciprocating motion of the piston is adjusted by changing the pressure of the crank chamber by adjusting the opening of the capacity control valve.
  • it is suitable for a compressor provided in a refrigeration circuit of a vehicle air conditioner, and can suppress the hunting phenomenon of the valve body of the capacity control valve, so that the operation of the valve body can be stabilized. The occurrence of temperature fluctuations in the room can be prevented. Further, since it is possible to suppress the torque fluctuation of the compressor, it is possible to prevent the engine control from being adversely affected particularly when the compressor drive source is an engine.
  • the relationship between the pressure receiving area Sr of the crank chamber pressure of the pressure sensing rod in the capacity control valve and the pressure receiving area Sv of the crank chamber pressure of the valve body is set to Sr> Sv. It is possible to easily adjust the pressure increase sensitivity of the crank chamber pressure, and it is possible to stably perform target capacity control while suppressing the occurrence of the hunting phenomenon of the valve body. In particular, it is possible to easily adjust the pressure increase sensitivity of the crank chamber pressure by simply changing the pressure receiving area of the crank chamber pressure of the pressure sensing rod, and the valve body opening / closing operation is stabilized to obtain a stable discharge capacity control state. be able to.
  • the suction pressure control accuracy can be improved.
  • the suction pressure control accuracy can be improved.
  • the throttle element arranged in the extraction passage that connects the crank chamber and the suction chamber is an orifice whose opening is fixed.
  • the present invention is particularly effective.
  • FIG. 3 is a relationship diagram between a suction pressure and a crank chamber pressure showing an operation at each condition of the capacity control valve of FIG. 2.
  • FIG. 3 is a relationship diagram between discharge pressure and suction pressure showing an example of control characteristics of the capacity control valve of FIG. 2.
  • FIG. 6 is a relationship diagram between a current of an electromagnetic coil and a control suction pressure showing an example of control characteristics by the capacity control valve of FIG. 5.
  • FIG. 1 to 4 are a longitudinal sectional view of a variable capacity compressor according to a first embodiment of the present invention, a longitudinal sectional view of a capacity control valve used in the variable capacity compressor, and an operation explanatory view thereof.
  • the variable capacity compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101a, a front housing 102 provided at one end of the cylinder block 101, and a rear provided via a valve plate 103 at the other end of the cylinder block 101.
  • the housing 104 is provided, and these constitute the housing referred to in the present invention.
  • a drive shaft 106 is provided across the crank chamber 105 defined by the cylinder block 101 and the front housing 102, and a swash plate 107 is disposed around the center thereof.
  • the swash plate 107 is coupled to the rotor 108 fixed to the drive shaft 106 via a connecting portion 109, and the inclination angle can be changed along the drive shaft 106.
  • a coil spring 110 is mounted between the rotor 108 and the swash plate 107 to urge the swash plate 107 toward the minimum inclination side, and the swash plate 107 is disposed on the opposite side of the swash plate 107.
  • a coil spring 111 that biases the tilt angle toward the increasing direction is mounted.
  • One end of the drive shaft 106 extends through the boss portion 102a protruding to the outside of the front housing 102 and extends to the outside, and is connected to an electromagnetic clutch (not shown).
  • a shaft seal device 112 is inserted between the drive shaft 106 and the boss portion 102a to block the inside and outside of the compressor.
  • the drive shaft 106 is supported by bearings 113, 114, 115, and 116 in the radial direction and the thrust direction, and power from an external drive source (for example, a vehicle engine) is transmitted through an electromagnetic clutch so as to be rotatable. .
  • a piston 117 is inserted into the cylinder bore 101a so as to be able to reciprocate.
  • the periphery of the outer periphery of the swash plate 107 is accommodated in a recess 117a at one end inside the piston 117.
  • the piston 117 and the swash plate 107 are configured to interlock with each other via a pair of shoes 118 that are in sliding contact. Therefore, the rotation of the drive shaft 106 enables the piston 117 to reciprocate within the cylinder bore 101a, and these series of members constitute the motion conversion mechanism referred to in the present invention.
  • a suction chamber 119 and a discharge chamber 120 are defined in the rear housing 104.
  • the suction chamber 119 is connected to the cylinder bore 101a through a communication hole 103a (suction hole) provided in the valve plate 103 and a suction valve (not shown).
  • the discharge chamber 120 communicates with the cylinder bore 101a via a discharge valve (not shown) and a communication hole 103b (discharge hole) provided in the valve plate 103.
  • the suction chamber 119 is connected to the air conditioner system side via the suction port 104a, and the discharge chamber 120 is connected to the air conditioner system side via the discharge port 104b.
  • the rear housing 104 is provided with a capacity control valve 200.
  • the capacity control valve 200 adjusts the opening of an air supply passage 121 (121a, 121b) that communicates the discharge chamber 120 and the crank chamber 105, and controls the amount of discharge gas introduced into the crank chamber 105.
  • the refrigerant in the crank chamber 105 is sucked into the suction chamber through a bleed passage through a clearance between the outer periphery of the drive shaft 106 and the bearings 115 and 116, a space 122 and a fixed orifice 103c formed in the valve plate 103 with a fixed opening. It flows to 119. Therefore, the discharge capacity can be controlled by adjusting the discharge gas introduction amount into the crank chamber 105 by the capacity control valve 200 and changing the pressure in the crank chamber 105.
  • Capacity control valve structure (Fig. 2) As shown in FIG.
  • the capacity control valve 200 includes a valve housing 210, a valve body 220, a pressure sensitive rod 230, a bellows assembly 240 as a pressure sensitive member, a spring 250, and a spring guide 260. And sealing members 270, 271 and 272.
  • the valve housing 210 includes a member 210a that accommodates the bellows assembly 240 and a member 210b in which the pressure sensitive rod 230 is slidably supported and the valve body 220 is disposed.
  • the member 210b is press-fitted and fixed to the member 210a. ing.
  • the member 210a and the member 210b define a pressure sensitive chamber 211, and the pressure sensitive chamber 211 communicates with the suction chamber 119 via the communication hole 212 and the communication passage 123 (FIG. 1).
  • a valve chamber 213 is formed in the member 210b, and one of the valve chambers 213 communicates with the discharge chamber 120 via a communication hole 261 and an air supply passage 121a formed in the spring guide 260, and the other of the valve chambers 213 is a valve
  • the crank chamber 105 communicates with the hole 214, the communication hole 215, and the air supply passage 121b.
  • a valve body 220 is disposed in the valve chamber 213, and the valve body 220 contacts and separates from a valve seat 216 formed around the valve hole 214 to open and close the valve hole 214.
  • One end of the spring 250 abuts on the valve body 220 and the other end abuts on the spring guide 260, and the valve body 220 is urged in the valve closing direction by the urging force of the spring 250.
  • the spring guide 260 is press-fitted and fixed to the peripheral wall of the valve chamber 213.
  • An insertion hole 217 that slidably supports the pressure-sensitive rod 230 is formed in the member 210b, and a gap between the outer periphery of the pressure-sensitive rod 230 and the insertion hole 217 is set to a minimum, and the pressure-sensitive chamber 211 and the valve hole 214 Is almost airtight.
  • the bellows assembly 240 is positioned on the bellows 241, the end member 242 that closes both ends of the bellows 241, the guide member 243 that receives one end of the pressure-sensitive rod 230, and the member 210a.
  • a compression coil spring 245 that is arranged inside the bellows 241 and biases the bellows assembly 240 in the extending direction.
  • the inside of the bellows assembly 240 is maintained in a substantially vacuum state.
  • the bellows assembly 240 is disposed in the pressure-sensitive chamber 211, and a positioning member 244 is fitted and fixed in a positioning hole 218 formed in the member 210a.
  • the guide member 243 receives one end of the pressure-sensitive rod 230, and the other end of the pressure-sensitive rod 230 contacts the valve body 220 from the valve hole 214 side, so that the valve body 220 corresponds to the expansion and contraction of the bellows assembly 240. Opens and closes the valve hole 214.
  • the seal member 270 ensures airtightness between the atmosphere side and the region where the pressure of the suction chamber 119 acts, and the seal member 271 is formed between the region where the pressure of the suction chamber 119 acts and the region where the pressure of the crank chamber 105 acts. Further, the seal member 272 ensures airtightness between the region where the crank chamber 105 pressure acts and the region where the discharge chamber 120 pressure acts.
  • the valve body 220 has a pressure in the discharge chamber 120 in the valve closing direction (hereinafter referred to as discharge pressure Pd) and a pressure in the crank chamber 105 in the valve opening direction (hereinafter referred to as crank chamber pressure Pc).
  • the crank chamber pressure Pc acts in the valve closing direction on the pressure sensitive rod 230, and the pressure of the suction chamber 119 (hereinafter referred to as the suction pressure Ps) acts in the valve opening direction.
  • the suction pressure Ps acts on the bellows assembly 240 in the valve closing direction.
  • the pressure receiving area Sv of the crank chamber pressure Pc acting on the valve body 220 is substantially equal to the cross-sectional area of the valve hole 214.
  • the pressure receiving area Sr of the crank chamber pressure Pc acting on the pressure sensing rod 230 is a cross-sectional area of the pressure sensing rod 230 in a region supported by the insertion hole 217, and is set to Sr> Sv.
  • the crank chamber pressure Pc always acts in the direction in which the valve body 220 is closed. If the pressure receiving area (effective area) of the suction pressure Ps acting in the expansion / contraction direction of the bellows assembly 240 is Sb, the biasing force of the spring 250 is fs, and the biasing force of the bellows assembly 240 is Fb, it acts on the valve body 220.
  • the force can be expressed by the following formula [Expression 1] (including Formula (1) and Formula (2)).
  • the coefficient (Sb ⁇ Sr) / (Sr ⁇ Sv) of Ps is the sensitivity of Pc change to Ps change.
  • the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes depending on the magnitude of (Sb ⁇ Sr) / (Sr ⁇ Sv). Changes. Since Sb, Sv, and Sr are the pressure receiving areas of the respective pressures, the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes can be adjusted by adjusting the pressure receiving areas.
  • the suction pressure Ps can be accurately controlled by setting Sb, Sr, and Sv so as to satisfy (Sb ⁇ Sr) / (Sr ⁇ Sv)> 1, that is, Sb + Sv> 2Sr.
  • Sr> Sv the crank chamber pressure Pc acts in the direction of closing the valve body 220, and as a result, as shown in [Equation 1], the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes is shown.
  • Pd constant.
  • Equation (3) shows the suction pressure control characteristic of the displacement control valve 200, and as shown in FIG. 4, the suction pressure Ps to be controlled is slightly reduced and corrected when the discharge pressure Pd increases.
  • the refrigerant pressure is balanced. For example, if the outside air temperature is high, the suction pressure Ps is significantly higher than the expression (3).
  • the bellows assembly 240 is contracted by the force of the suction pressure Ps, whereby the valve body 220 closes the valve hole 214.
  • the discharge gas is not introduced into the crank chamber 105, so that the refrigerant gas (blow-by gas) in the crank chamber 105 flows into the suction chamber 119 via the extraction passage, and the crank chamber pressure is increased.
  • Pc becomes equal to the suction pressure Ps.
  • the inclination angle of the swash plate 107 increases and the piston stroke is maintained at the maximum.
  • the bellows assembly 240 expands.
  • the degree of increase in the crank chamber pressure Pc that is, the amount of change in the crank chamber pressure Pc relative to the amount of change in the suction pressure Ps is appropriately adjusted by setting Sb, Sr, and Sv (Sb + Sv> 2Sr).
  • Sb, Sr, and Sv Sb + Sv> 2Sr.
  • the bellows assembly 240 extends again to push up the valve body 220, the amount of discharge gas introduced into the crank chamber 105 is increased, and the crank chamber pressure Pc is increased.
  • the tilt angle of the swash plate 107 is reduced and the piston stroke is reduced.
  • the piston stroke is controlled so that the suction pressure Ps approaches the suction pressure control characteristic of the above formula (3).
  • FIG. 5 shows a capacity control valve 300 in the second embodiment of the present invention.
  • the second embodiment basically differs from the first embodiment described above in that the discharge pressure Pd acts in the direction of closing the valve body in the capacity control valve 200 of FIG. 2, but the capacity control of FIG.
  • the valve 300 has a structure in which the suction pressure Ps acts in the direction in which the valve body is closed, and the discharge pressure Pd does not act on the valve body.
  • the valve 300 is a capacity control valve by a so-called external control system in which electromagnetic force is applied to the valve body. That is.
  • Capacity control valve structure Referring to FIG.
  • the capacity control valve 300 is disposed in a pressure sensing chamber 302 formed in the valve housing 301, receives the suction pressure through the communication hole 301a and the communication path 123, and evacuates the inside to be a spring.
  • a bellows assembly 303 that functions as a pressure-sensitive member, a pressure-sensitive rod 304 that has one end abutting against the bellows assembly 303 and is slidably supported by the valve housing 301, and the pressure-sensitive rod 304
  • a valve body 304a that is integrally formed and that has the other end slidably supported by the support hole 305a of the fixed core 305 and that is disposed in the valve chamber 306 and opens and closes the valve hole 301b according to the expansion and contraction of the bellows assembly 303.
  • the solenoid rod 3 has one end abutting against the other end surface of the valve body 304a and the other end fixed to the fixed core 305 and a movable core 307 disposed opposite to the fixed core 305 with a predetermined gap.
  • a spring 309 that presses the movable core 307 in the valve closing direction, an outer peripheral portion of the movable core 307 slidably supported, and a non-magnetic sleeve 311 that is fixed to the solenoid case 310 by inserting the fixed core 305.
  • the coil 312 is disposed outside the sleeve 311 and inside the solenoid case 310 and generates electromagnetic force.
  • the solenoid includes a fixed core 305, a movable core 307, a solenoid rod 308, a sleeve 311, a solenoid case 310, and an electromagnetic coil 312. Further, the end of the bellows assembly 303 opposite to the pressure-sensitive rod 304 is supported by a bellows guide 313, and the bellows guide 313 is slidably supported by the pressure setting member 314. Further, between the pressure setting member 314 and the bellows guide 313, a forced opening spring 315 that presses the bellows assembly 303 in the valve opening direction is disposed. The pressure setting member 314 is press-fitted and fixed to the valve housing 301 so that the capacity control valve 300 is set to a predetermined pressure.
  • the valve chamber 306 communicates with the discharge chamber 120 through the communication hole 301c.
  • the valve hole 301b communicates with the crank chamber 105 through a communication hole 301d. Therefore, the communication hole 301 c, the valve chamber 306, the valve hole 301 b, and the communication hole 301 d constitute a part of the air supply passage 121.
  • the space inside the sleeve 311 in which the movable core 307, the solenoid rod 308, and the surface on the other end side of the valve body 304a are disposed communicates with the pressure sensitive chamber 302 through the communication hole 301e.
  • the crank chamber pressure Pc acts on the surface on one end side (valve hole 301b side) of the valve body 304a, and the suction pressure Ps acts on the surface on the other end side of the valve body 304a. Since the sectional area Sp of the valve body 304a supported by the support hole 305a is set to be slightly larger than the sectional area Sv of the valve hole 301b, the force of the discharge pressure Pd in the valve chamber 306 in the valve opening direction of the valve body 304a. Is acting slightly. Further, the cross-sectional area Sr of the pressure-sensitive rod 304 is set larger than the cross-sectional area Sv of the valve hole 301b, and the crank chamber pressure Pc acts in the direction of closing the valve body.
  • the force acting on the valve body 304a of the capacity control valve 300 can be expressed by the following formula [Expression 3] (including Formula (4) and Formula (5)).
  • the meanings represented by the symbols in Equation 3 are as follows.
  • Sp pressure receiving area of the suction pressure acting on the valve body
  • Sr crank chamber pressure acting on the pressure sensing rod
  • Pressure receiving area Sb pressure receiving area (effective area) of suction pressure acting in the expansion / contraction direction of the bellows
  • fs1 biasing force of the spring 309
  • fs2 biasing force of the spring 315
  • Fb biasing force F (I) of the bellows assembly 303: electromagnetic force of the solenoid
  • Pc is a linear function of Ps
  • Pc decreases as Ps increases, and conversely increases as Ps decreases, and its inclination is
  • the coefficient (Sb + Sp ⁇ Sr) / (Sr ⁇ Sv) of Ps is the sensitivity of Pc change to Ps change. Since Sb, Sv, Sp, and Sr are the pressure receiving areas of the respective pressures, the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes can be adjusted by adjusting the pressure receiving areas.
  • Sp is set slightly larger than Sv. For example, if the opening degree of the valve body 304a increases and the crank chamber pressure Pc increases, the discharge capacity decreases, but the discharge pressure Pd decreases as the discharge capacity decreases. If Sp> Sv is set so that the discharge pressure Pd acts in the valve opening direction, the force in the valve opening direction due to the discharge pressure Pd acting on the valve body 304a decreases when the discharge capacity decreases. There is an effect of suppressing excessive opening of the valve body 304a, which contributes to stabilization of the open / closed state of the valve body 304a.
  • the capacity control valve shown in FIG. 2 is a mechanical control valve, but may be an externally controlled capacity control valve in which a solenoid is added thereto to apply an electromagnetic force to the valve body.
  • the present invention can be used for a variable displacement compressor driven by a swing plate type variable displacement compressor or a motor, and can be used for either a variable displacement compressor equipped with an electromagnetic clutch or a clutchless compressor. .
  • the throttle element of the bleed passage in addition to the above-mentioned orifice with a fixed opening, it is also possible to employ a variable flow rate throttle or a structure in which opening and closing is controlled by a valve body. Furthermore, the present invention can also be applied to a variable capacity compressor that uses a new refrigerant (for example, a refrigerant that has been recently announced to prevent global warming) instead of the current R134a.
  • a new refrigerant for example, a refrigerant that has been recently announced to prevent global warming
  • the present invention can be applied to any variable capacity compressor in which the stroke of the piston is adjusted by changing the pressure in the crank chamber by adjusting the opening of the capacity control valve, and particularly in a refrigeration circuit of a vehicle air conditioner. It is suitable for the variable capacity compressor provided.

Abstract

A variable capacity compressor provided with a capacity control valve capable of easily adjusting to an optimum level the sensitivity to a rise in the pressure in a crank chamber. A variable capacity compressor configured in such a manner that the stroke of a piston is changed by adjusting the pressure in a crank chamber, the pressure in the crank chamber being changed by adjusting the degree of opening of a capacity control valve for opening and closing a path for interconnecting a discharge chamber and a crank chamber, wherein the capacity control valve is provided with a valve chamber communicating with the discharge chamber, a valve hole, a valve element for opening and closing the valve hole, a pressure sensing chamber communicating with a suction chamber, a pressure sensing member provided in the pressure sensing chamber, and a pressure sensing rod having one end connected to the pressure sensing member and the other end connected to the valve element and driving the valve element in response to displacement of the pressure sensing member.  The pressure in the crank chamber acts on the valve element from the valve hole side in the direction of opening of the valve element, and acts on the pressure sensing rod from the valve hole side in the direction of closing of the valve element.  That area (Sr) of the pressure sensing rod which receives the pressure in the crank chamber is set to be greater than that area (Sv) of the valve element which receives the pressure in the crank chamber.

Description

可変容量圧縮機Variable capacity compressor
 本発明は、可変容量圧縮機に関し、特に車輌空調装置の冷凍回路に用いて好適な可変容量圧縮機に関する。 The present invention relates to a variable capacity compressor, and more particularly to a variable capacity compressor suitable for use in a refrigeration circuit of a vehicle air conditioner.
 吐出室とクランク室とを連通する給気通路を吸入圧力を感知して開閉する容量制御弁と、クランク室と吸入室とを連通する抽気通路に配置された絞りとを備え、容量制御弁の開度調整によりクランク室の圧力を変化させ、ピストンの往復運動のストロークを調整して吸入室からシリンダボアに吸入された冷媒を圧縮して吐出室に吐出する可変容量圧縮機が知られている(例えば、特許文献1)。このような可変容量圧縮機が例えば車両用空調装置の冷凍回路に設けられ、冷媒の圧縮機として用いられている。抽気通路を通して絞りによって絞られた少量の冷媒ガスがクランク室から抽気されつつ、吐出室内の冷媒ガスが容量制御弁の開度調整により制御された量クランク室に導入されることにより、クランク室の圧力が目標圧力に制御され、それによって斜板要素の傾角制御を介してピストンのストロークが調整され、圧縮機の吐出容量が目標容量に制御される。
特開昭62−282182号公報
A capacity control valve that opens and closes a supply passage that communicates between the discharge chamber and the crank chamber by sensing suction pressure; and a throttle that is disposed in a bleed passage that communicates between the crank chamber and the suction chamber. A variable capacity compressor is known in which the pressure in the crank chamber is changed by adjusting the opening, and the stroke of the reciprocating motion of the piston is adjusted to compress the refrigerant sucked into the cylinder bore from the suction chamber and discharge it into the discharge chamber ( For example, Patent Document 1). Such a variable capacity compressor is provided, for example, in a refrigeration circuit of a vehicle air conditioner and is used as a refrigerant compressor. A small amount of the refrigerant gas throttled by the throttle through the extraction passage is extracted from the crank chamber, and the refrigerant gas in the discharge chamber is introduced into the crank chamber controlled by adjusting the opening of the capacity control valve. The pressure is controlled to the target pressure, whereby the stroke of the piston is adjusted via the tilt angle control of the swash plate element, and the discharge capacity of the compressor is controlled to the target capacity.
Japanese Patent Laid-Open No. 62-282182
 上記のような可変容量圧縮機においては、吸入圧力を感知する感圧部材(例えば、ダイアフラム)の変位に応答して容量制御弁の弁体が給気通路を開閉するが、吐出圧力が高い場合と、吐出圧力が低い場合とで、同じ弁開度でもクランク室への吐出ガス導入量が大きく異なるため、特にクランク室と吸入室とを連通する抽気通路に配置された絞りが開度固定である場合には、クランク室圧力の昇圧感度(つまり、吸入圧力の変化量に対するクランク室圧力の変化量)も大きく変化する。
 特に、吐出圧力が高い場合、クランク室への吐出ガス導入量が増大するため、クランク室圧力の昇圧感度も増大する傾向となるが、クランク室圧力の昇圧感度が過剰に増大すると、吐出容量が過剰に減少し、上記弁体の動作が不安定となって、いわゆるハンティング現象を引き起こす場合がある。このようなハンティング現象が発生すると、例えばこの可変容量圧縮機を用いた車両用空調装置による空調制御において、車室内の温度変動が発生し、空調制御に悪影響があるばかりでなく、圧縮機のトルク変動を引き起こし、圧縮機の駆動源がエンジンである場合にはエンジン制御にも悪影響を及ぼすおそれがある。
 そこで本発明の課題は、クランク室圧力の昇圧感度を容易に最適な感度に調整可能な容量制御弁を備えた可変容量圧縮機を提供することにある。
In the variable capacity compressor as described above, the valve body of the capacity control valve opens and closes the air supply passage in response to the displacement of the pressure-sensitive member (for example, a diaphragm) that senses the suction pressure, but the discharge pressure is high. Since the amount of discharge gas introduced into the crank chamber is greatly different even when the discharge pressure is low, the throttle placed in the bleed passage that connects the crank chamber and the suction chamber is fixed at a fixed opening. In some cases, the pressure increase sensitivity of the crank chamber pressure (that is, the change amount of the crank chamber pressure with respect to the change amount of the suction pressure) also greatly changes.
In particular, when the discharge pressure is high, the amount of discharge gas introduced into the crank chamber increases, so the pressure increase sensitivity of the crank chamber pressure tends to increase, but if the pressure increase sensitivity of the crank chamber pressure increases excessively, the discharge capacity increases. It may decrease excessively and the operation of the valve body may become unstable, causing a so-called hunting phenomenon. When such a hunting phenomenon occurs, for example, in the air conditioning control by the vehicle air conditioner using this variable capacity compressor, the temperature fluctuation in the passenger compartment occurs, which not only adversely affects the air conditioning control but also the compressor torque. If the compressor is driven by an engine, the engine control may be adversely affected.
Accordingly, an object of the present invention is to provide a variable displacement compressor including a displacement control valve that can easily adjust the pressure increase sensitivity of the crank chamber pressure to an optimum sensitivity.
 上記課題を解決するために、本発明に係る可変容量圧縮機は、内部に吐出室、吸入室、クランク室及びシリンダボアが区画形成されたハウジングと、前記シリンダボア内に挿入されたピストンと、前記ハウジング内に回転可能に支持された駆動軸と、前記駆動軸の回転を前記ピストンの往復運動に変換する傾角可変の斜板要素を含む運動変換機構と、前記吐出室と前記クランク室とを連通する給気通路を開閉する容量制御弁と、前記クランク室と前記吸入室とを連通する抽気通路に配置された絞り要素とを備え、前記容量制御弁の開度調整により前記クランク室の圧力を変化させて前記ピストンの往復運動のストロークを調整し、前記ピストンの往復運動により前記吸入室から前記シリンダボアに冷媒を吸入し吸入された冷媒を圧縮して前記吐出室に吐出する可変容量圧縮機において、前記容量制御弁は、前記吐出室と連通する弁室と、一端が前記弁室と連通し、他端が前記クランク室と連通する弁孔と、前記弁室に面して前記弁孔の周囲に形成された弁座と、前記弁室に配設され、前記弁座に当接・離間して前記弁孔を開閉する弁体と、前記吸入室と連通する感圧室と、前記感圧室に配設され、前記吸入室の圧力に応答して変位する感圧部材と、一端が前記感圧部材に連結され、他端が前記弁孔側より前記弁体に連結されて、前記感圧部材の変位に応答して前記弁体を駆動する感圧ロッドと、を備え、前記弁体には前記弁孔側より前記クランク室の圧力が前記弁体を開く方向に作用し、前記感圧ロッドには前記弁孔側より前記クランク室の圧力が前記弁体を閉じる方向に作用するとともに、前記感圧ロッドが前記クランク室の圧力を受ける受圧面積をSrとし、前記弁体が前記クランク室の圧力を受ける受圧面積をSvとしたとき、Sr>Svを満足するようにSrとSvが設定されていることを特徴とするものからなる。
 このような本発明に係る可変容量圧縮機においては、弁体を閉じる方向に作用する、感圧ロッドのクランク室圧力を受ける受圧面積Srを、弁体を開く方向に作用する、弁体のクランク室圧力の受圧面積Svよりも大きく設定することにより、クランク室圧力は常に弁体を閉じる方向に作用することになる。このクランク室圧力が常に弁体を閉じる方向に作用するという状態は、吐出圧力が変化しても基本的に変化しないから、クランク室圧力の昇圧感度(つまり、吸入圧力の変化量に対するクランク室圧力の変化量)は、弁体を開閉させるための各部の受圧面積を適宜調整することにより変化させることが可能になり、該各部の受圧面積を適切に設定することにより、弁体の開閉動作の安定化(つまり、前述したようなハンティング現象を発生させない安定した動作)及び吸入圧力制御精度の向上を図ることが可能になる。そして、実際には、単に感圧ロッドのクランク室圧力の受圧面積を変更するだけで、他の部位を変更しなくても上記Sr>Svを満足させることが可能であるから、極めて容易にクランク室圧力の昇圧感度を調整することが可能となり、弁体の開閉状態を安定化させて安定な吐出容量制御状態を得ることが可能になる。
 上記本発明に係る可変容量圧縮機においては、上記弁体には上記吐出室の圧力が弁体を閉じる方向に作用し、上記感圧部材が上記吸入室の圧力を受ける受圧面積をSbとしたとき、Sb+Sv>2Srを満足するようにSr、Sv及びSbが設定されている態様とすることができる。このような態様においては、特に、吐出室の圧力が弁体を閉じる方向に作用する容量制御弁構造の場合に、吸入圧力制御精度を向上することが可能になる。
 また、上記本発明に係る可変容量圧縮機においては、上記容量制御弁は、さらに上記吸入室と連通する圧力室を備え、弁体の一端は上記弁座に当接・離間して上記弁孔を開閉し、弁体の他端は上記圧力室に配置されて、上記吸入室の圧力が弁体を閉じる方向に作用するように構成され、上記感圧部材が上記吸入室の圧力を受ける受圧面積をSbとし、弁体が上記吸入室の圧力を受ける受圧面積をSpとしたとき、Sb+Sp+Sv>2Srを満足するようにSr、Sv、Sp及びSbが設定されている態様とすることもできる。このような態様においては、特に、吸入室の圧力が弁体を閉じる方向に作用する容量制御弁構造の場合に、吸入圧力制御精度を向上することが可能になる。
 また、上記後者の態様においては、Sp>Svを満足するようにSp及びSvが設定されていることが好ましい。これにより、吐出容量減少時に弁体が過度に開くことが抑制され、弁体の開閉動作をより安定化させることが可能になる。
 さらに、上記抽気通路に配置された絞り要素は、開度調整可能な絞り要素とすることも可能であるが、開度固定のオリフィスである場合に本発明は特に有効である。すなわち、本発明では、本発明に係る構造を適用することにより、クランク室圧力の昇圧感度を容量制御弁のみにより容易に調整可能となるため、クランク室と吸入室とを連通する抽気通路に配置された絞り要素が開度固定のオリフィスである場合において、特に吐出ガス導入量が大きく変動した場合のクランク室圧力の昇圧感度の変動を小さく抑えることが可能になる。
 本発明に係る可変容量圧縮機の構造は、容量制御弁の開度調整によりクランク室の圧力を変化させてピストンの往復運動のストロークを調整するようにしたあらゆる可変容量圧縮機に適用可能である。特に、車両用空調装置の冷凍回路に設けられる圧縮機からなる場合に好適なものであり、容量制御弁の弁体のハンティング現象を抑えることができることから、弁体の動作を安定化させて車室内の温度変動の発生を防止することができる。また、圧縮機のトルク変動の抑制も可能であるので、特に圧縮機駆動源がエンジンである場合、エンジン制御に悪影響を及ぼすことも防止できる。
In order to solve the above problems, a variable capacity compressor according to the present invention includes a housing in which a discharge chamber, a suction chamber, a crank chamber, and a cylinder bore are defined, a piston inserted into the cylinder bore, and the housing The discharge shaft and the crank chamber are communicated with each other, a drive shaft rotatably supported therein, a motion conversion mechanism including a variable swash plate element that converts the rotation of the drive shaft into a reciprocating motion of the piston, and the discharge chamber. A capacity control valve that opens and closes the air supply passage; and a throttle element disposed in a bleed passage that connects the crank chamber and the suction chamber, and changes the pressure in the crank chamber by adjusting the opening of the capacity control valve. Adjusting the stroke of the reciprocating motion of the piston, and by reciprocating the piston, sucking the refrigerant from the suction chamber into the cylinder bore and compressing the sucked refrigerant, In the variable capacity compressor that discharges into the outlet chamber, the capacity control valve includes a valve chamber that communicates with the discharge chamber, a valve hole that communicates with the valve chamber at one end, and a valve hole that communicates with the crank chamber at the other end. A valve seat that faces the valve chamber and is formed around the valve hole; a valve body that is disposed in the valve chamber and that opens and closes the valve hole by contacting and separating from the valve seat; and the suction chamber A pressure sensing chamber communicating with the pressure sensing member, a pressure sensing member disposed in the pressure sensing chamber and displaced in response to the pressure in the suction chamber, one end connected to the pressure sensing member, and the other end to the valve hole side A pressure-sensitive rod connected to the valve body and driving the valve body in response to displacement of the pressure-sensitive member, and the pressure in the crank chamber is applied to the valve body from the valve hole side. Acts in the direction of opening the valve body, and the pressure in the crank chamber acts on the pressure sensitive rod in the direction of closing the valve body from the valve hole side. In both cases, Sr and Sv are satisfied so that Sr> Sv is satisfied, where Sr is a pressure receiving area where the pressure sensing rod receives the pressure of the crank chamber and Sv is a pressure receiving area where the valve body receives the pressure of the crank chamber. Is set.
In such a variable capacity compressor according to the present invention, the pressure-receiving area Sr that receives the crank chamber pressure of the pressure-sensitive rod that acts in the direction in which the valve body is closed acts in the direction in which the valve body is opened. By setting the chamber pressure larger than the pressure receiving area Sv, the crank chamber pressure always acts in the direction of closing the valve body. The state in which the crank chamber pressure always acts in the direction in which the valve body is closed does not basically change even if the discharge pressure changes, so the crank chamber pressure increase sensitivity (that is, the crank chamber pressure relative to the amount of change in the suction pressure) Can be changed by appropriately adjusting the pressure receiving area of each part for opening and closing the valve body, and by appropriately setting the pressure receiving area of each part, the opening and closing operation of the valve body can be changed. It is possible to stabilize (that is, a stable operation that does not cause the hunting phenomenon as described above) and improve the suction pressure control accuracy. In practice, it is possible to satisfy the above Sr> Sv simply by changing the pressure receiving area of the crank chamber pressure of the pressure sensitive rod without changing other parts. It becomes possible to adjust the pressure increase sensitivity of the chamber pressure, and it is possible to stabilize the opening / closing state of the valve body and obtain a stable discharge capacity control state.
In the variable capacity compressor according to the present invention, the pressure in the discharge chamber acts on the valve body in a direction to close the valve body, and the pressure receiving area where the pressure-sensitive member receives the pressure in the suction chamber is Sb. In this case, Sr, Sv, and Sb may be set so as to satisfy Sb + Sv> 2Sr. In such an embodiment, the suction pressure control accuracy can be improved particularly in the case of a capacity control valve structure in which the pressure in the discharge chamber acts in the direction of closing the valve body.
In the variable capacity compressor according to the present invention, the capacity control valve further includes a pressure chamber communicating with the suction chamber, and one end of the valve body abuts and separates from the valve seat and the valve hole And the other end of the valve body is disposed in the pressure chamber so that the pressure in the suction chamber acts in a direction to close the valve body, and the pressure sensing member receives the pressure in the suction chamber. When the area is Sb and the pressure receiving area where the valve body receives the pressure of the suction chamber is Sp, Sr, Sv, Sp and Sb may be set so as to satisfy Sb + Sp + Sv> 2Sr. In such an embodiment, in particular, in the case of a capacity control valve structure in which the pressure in the suction chamber acts in the direction of closing the valve body, it is possible to improve the suction pressure control accuracy.
In the latter embodiment, it is preferable that Sp and Sv are set so that Sp> Sv is satisfied. Thereby, it is possible to suppress the valve body from opening excessively when the discharge capacity is reduced, and it is possible to further stabilize the opening / closing operation of the valve body.
Further, the throttle element arranged in the extraction passage can be a throttle element whose opening degree can be adjusted. However, the present invention is particularly effective when the opening degree is a fixed orifice. That is, in the present invention, by applying the structure according to the present invention, it is possible to easily adjust the pressure increase sensitivity of the crank chamber pressure only by the capacity control valve, so that the crank chamber and the suction chamber communicate with each other. In the case where the throttle element is an orifice having a fixed opening, it is possible to suppress the fluctuation in the pressure increase sensitivity of the crank chamber pressure particularly when the discharge gas introduction amount fluctuates greatly.
The structure of the variable capacity compressor according to the present invention can be applied to any variable capacity compressor in which the stroke of the reciprocating motion of the piston is adjusted by changing the pressure of the crank chamber by adjusting the opening of the capacity control valve. . In particular, it is suitable for a compressor provided in a refrigeration circuit of a vehicle air conditioner, and can suppress the hunting phenomenon of the valve body of the capacity control valve, so that the operation of the valve body can be stabilized. The occurrence of temperature fluctuations in the room can be prevented. Further, since it is possible to suppress the torque fluctuation of the compressor, it is possible to prevent the engine control from being adversely affected particularly when the compressor drive source is an engine.
 本発明に係る可変容量圧縮機によれば、容量制御弁における感圧ロッドのクランク室圧力の受圧面積Srと弁体のクランク室圧力の受圧面積Svとの関係をSr>Svとすることにより、クランク室圧力の昇圧感度を容易に調整することが可能になり、弁体のハンティング現象の発生等を抑えて安定して目標とする容量制御を行うことが可能になる。特に、単に感圧ロッドのクランク室圧力の圧力受圧面積を変更することによりクランク室圧力の昇圧感度を容易に調整可能となり、弁体の開閉動作を安定化させて安定な吐出容量制御状態を得ることができる。
 また、吐出室の圧力が弁体を閉じる方向に作用する容量制御弁構造においては、上記Sr及びSvと感圧部材の吸入室圧力の受圧面積Sbとの関係を、Sb+Sv>2Srを満足するように設定することにより、吸入圧力制御精度を向上することができる。
 また、吸入室の圧力が弁体を閉じる方向に作用する容量制御弁構造においては、上記Sr、Sv及びSbと弁体の吸入室圧力の受圧面積Spとの関係を、Sb+Sp+Sv>2Srを満足するように設定することにより、吸入圧力制御精度を向上することができる。特に、Sp>Svを満足するように設定すれば、吐出容量減少時に弁体が過度に開くことが抑制され、弁体の開閉動作のさらなる安定化に寄与することができる。
 本発明では、クランク室圧力の昇圧感度を容量制御弁のみにより容易に調整可能となるため、クランク室と吸入室とを連通する抽気通路に配置された絞り要素が開度固定のオリフィスである場合に、本発明は特に有効である。
According to the variable capacity compressor of the present invention, the relationship between the pressure receiving area Sr of the crank chamber pressure of the pressure sensing rod in the capacity control valve and the pressure receiving area Sv of the crank chamber pressure of the valve body is set to Sr> Sv. It is possible to easily adjust the pressure increase sensitivity of the crank chamber pressure, and it is possible to stably perform target capacity control while suppressing the occurrence of the hunting phenomenon of the valve body. In particular, it is possible to easily adjust the pressure increase sensitivity of the crank chamber pressure by simply changing the pressure receiving area of the crank chamber pressure of the pressure sensing rod, and the valve body opening / closing operation is stabilized to obtain a stable discharge capacity control state. be able to.
Further, in the capacity control valve structure in which the pressure in the discharge chamber acts in the direction of closing the valve body, the relationship between the Sr and Sv and the pressure receiving area Sb of the suction chamber pressure of the pressure sensitive member satisfies Sb + Sv> 2Sr. By setting to, the suction pressure control accuracy can be improved.
In the capacity control valve structure in which the pressure in the suction chamber acts in the direction of closing the valve body, the relationship between the above-mentioned Sr, Sv and Sb and the pressure receiving area Sp of the suction chamber pressure of the valve body satisfies Sb + Sp + Sv> 2Sr. By setting in this way, the suction pressure control accuracy can be improved. In particular, if it is set so that Sp> Sv is satisfied, it is possible to prevent the valve body from opening excessively when the discharge capacity is reduced, and to contribute to further stabilization of the opening / closing operation of the valve body.
In the present invention, since the pressure increase sensitivity of the crank chamber pressure can be easily adjusted only by the capacity control valve, the throttle element arranged in the extraction passage that connects the crank chamber and the suction chamber is an orifice whose opening is fixed. In particular, the present invention is particularly effective.
本発明の第1実施形態に係る可変容量圧縮機の縦断面図である。It is a longitudinal section of the variable capacity compressor concerning a 1st embodiment of the present invention. 図1の圧縮機における容量制御弁の縦断面図(A)、及びその容量制御弁の部分拡大縦断面図(B)である。It is the longitudinal cross-sectional view (A) of the capacity control valve in the compressor of FIG. 1, and the partial expanded longitudinal cross-sectional view (B) of the capacity control valve. 図2の容量制御弁の各条件時の動作を示す吸入圧力とクランク室圧力との関係図である。FIG. 3 is a relationship diagram between a suction pressure and a crank chamber pressure showing an operation at each condition of the capacity control valve of FIG. 2. 図2の容量制御弁による制御特性の一例を示す吐出圧力と吸入圧力との関係図である。FIG. 3 is a relationship diagram between discharge pressure and suction pressure showing an example of control characteristics of the capacity control valve of FIG. 2. 本発明の第2実施形態に係る可変容量圧縮機における容量制御弁の縦断面図である。It is a longitudinal cross-sectional view of the capacity control valve in the variable capacity compressor which concerns on 2nd Embodiment of this invention. 図5の容量制御弁による制御特性の一例を示す電磁コイルの電流と制御吸入圧力との関係図である。FIG. 6 is a relationship diagram between a current of an electromagnetic coil and a control suction pressure showing an example of control characteristics by the capacity control valve of FIG. 5.
100 可変容量圧縮機
101 シリンダーブロック
101a シリンダボア
102 フロントハウジング
102a ボス部
103 バルブプレート
103a、103b 連通孔
103c 固定オリフィス
104 リアハウジング
104a 吸入ポート
104b 吐出ポート
105 クランク室
106 駆動軸
107 斜板
108 ロータ
109 連結部
110、111 コイルばね
112 軸封装置
113、114、115、116 ベアリング
117 ピストン
118 シュー
119 吸入室
120 吐出室
121、121a、121b 給気通路
122 空間
123 連通路
200 容量制御弁
210 バルブハウジング
210a、210b バルブハウジング構成部材
211 感圧室
212 連通孔
213 弁室
214 弁孔
215 連通孔
216 弁座
217 挿通孔
218 位置決め孔
220 弁体
230 感圧ロッド
240 感圧部材としてのベローズ組立体
241 ベローズ
242 端部部材
243 ガイド部材
244 位置決め部材
245 圧縮コイルばね
250 ばね
260 ばねガイド
261 連通孔
270、271、272 シール部材
300 容量制御弁
301 バルブハウジング
301a、301c、301d、301e 連通孔
301b 弁孔
302 感圧室
303 ベローズ組立体
304 感圧ロッド
304a 弁体
305 固定コア
305a 支持孔
306 弁室
307 可動コア
308 ソレノイドロッド
309 ばね
310 ソレノイドケース
311 非磁性体のスリーブ
312 電磁コイル
313 ベローズガイド
314 圧力設定部材
315 強制開放バネ
DESCRIPTION OF SYMBOLS 100 Variable capacity compressor 101 Cylinder block 101a Cylinder bore 102 Front housing 102a Boss part 103 Valve plate 103a, 103b Communication hole 103c Fixed orifice 104 Rear housing 104a Suction port 104b Discharge port 105 Crank chamber 106 Drive shaft 107 Swash plate 108 Rotor 109 Connecting part 110, 111 Coil spring 112 Shaft seal device 113, 114, 115, 116 Bearing 117 Piston 118 Shoe 119 Suction chamber 120 Discharge chamber 121, 121a, 121b Air supply passage 122 Space 123 Communication passage 200 Capacity control valve 210 Valve housing 210a, 210b Valve housing component 211 Pressure sensing chamber 212 Communication hole 213 Valve chamber 214 Valve hole 215 Communication hole 216 Valve seat 217 Insertion hole 218 Positioning Hole 220 Valve body 230 Pressure sensitive rod 240 Bellows assembly 241 as pressure sensitive member Bellows 242 End member 243 Guide member 244 Positioning member 245 Compression coil spring 250 Spring 260 Spring guide 261 Communication holes 270, 271, 272 Seal member 300 Capacity Control valve 301 Valve housing 301a, 301c, 301d, 301e Communication hole 301b Valve hole 302 Pressure sensing chamber 303 Bellows assembly 304 Pressure sensing rod 304a Valve body 305 Fixed core 305a Support hole 306 Valve chamber 307 Movable core 308 Solenoid rod 309 Spring 310 Solenoid case 311 Non-magnetic sleeve 312 Electromagnetic coil 313 Bellows guide 314 Pressure setting member 315 Forced release spring
 以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
〔第1実施形態〕
 図1~図4は、本発明の第1実施形態に係る可変容量圧縮機の縦断面図、それに用いられている容量制御弁の縦断面図、及びそれらの動作説明図を示している。
(1)可変容量圧縮機の構造(図1)
 可変容量圧縮機100は、複数のシリンダボア101aを備えたシリンダーブロック101と、シリンダーブロック101の一端に設けられたフロントハウジング102と、シリンダーブロック101の他端にバルブプレート103を介して設けられたリアハウジング104とを備えており、これらは本発明で言うハウジングを構成している。
 シリンダーブロック101と、フロントハウジング102とによって規定されるクランク室105内を横断して、駆動軸106が設けられ、その中心部の周囲には、斜板107が配置されている。斜板107は、駆動軸106に固着されたロータ108と連結部109を介して結合し、駆動軸106に沿ってその傾角が変化可能となっている。ロータ108と斜板107との間には斜板107をその最小傾角側に向けて付勢するコイルばね110が装着されており、また、斜板107を挟んで反対側には斜板107をその傾角を増大する方向に向けて付勢するコイルばね111が装着されている。
 駆動軸106の一端は、フロントハウジング102の外側に突出したボス部102a内を貫通して、外側まで延在しており、図示しない電磁クラッチに連結されている。駆動軸106とボス部102aとの間には、軸封装置112が挿入され、圧縮機内部と外部とを遮断している。駆動軸106はラジアル方向及びスラスト方向にベアリング113、114、115、116で支持され、外部駆動源(例えば、車両のエンジン)からの動力が電磁クラッチを介して伝達されて回転可能となっている。
 シリンダボア101a内には、ピストン117が往復動自在に挿入されており、ピストン117内側の一端のくぼみ117a内には、斜板107の外周部の周囲が収容され、斜板107の外周両側面に摺接する一対のシュー118を介して、ピストン117と斜板107とが互いに連動する構成となっている。したがって、駆動軸106の回転によりピストン117がシリンダボア101a内を往復動することが可能となり、これら一連の部材は、本発明で言う運動変換機構を構成している。
 リアハウジング104には、吸入室119及び吐出室120が区画形成され、吸入室119は、シリンダボア101aとは、バルブプレート103に設けられた連通孔103a(吸入孔)、図示しない吸入弁を介して連通し、吐出室120は、シリンダボア101aとは、図示しない吐出弁、バルブプレート103に設けられた連通孔103b(吐出孔)を介して連通している。吸入室119は吸入ポート104aを介して空調装置システム側と接続され、吐出室120は吐出ポート104bを介して空調装置システム側と接続されている。
 リアハウジング104には容量制御弁200が設けられている。容量制御弁200は吐出室120とクランク室105とを連通する給気通路121(121a、121b)の開度を調整し、クランク室105への吐出ガス導入量を制御する。また、クランク室105内の冷媒は、駆動軸106外周とベアリング115、116との隙間、空間122及び弁板103に形成された開度固定の固定オリフィス103cを経由した抽気通路を介して吸入室119に流れる。したがって、容量制御弁200によりクランク室105への吐出ガス導入量を調整してクランク室105の圧力を変化させることにより吐出容量を制御することができる。
(2)容量制御弁の構造(図2)
 図2(A)に示すように、容量制御弁200は、バルブハウジング210と、弁体220と、感圧ロッド230と、感圧部材としてのベローズ組立体240と、ばね250と、ばねガイド260と、シール部材270、271及び272とから構成されている。
 バルブハウジング210は、ベローズ組立体240を収容する部材210aと、感圧ロッド230を摺動可能に支持し弁体220が配置される部材210bとから構成され、部材210bが部材210aに圧入固定されている。部材210aと部材210bとで感圧室211が区画形成され、感圧室211は連通孔212及び連通路123(図1)を介して吸入室119と連通している。
 部材210bには弁室213が形成され、弁室213の一方はばねガイド260に形成された連通孔261及び給気通路121aを介して吐出室120と連通し、弁室213の他方は、弁孔214、連通孔215及び給気通路121bを介してクランク室105と連通している。
 弁室213には弁体220が配設され、弁体220は弁孔214の周囲に形成された弁座216に当接・離間して弁孔214を開閉する。ばね250の一端は弁体220に当接し、他端はばねガイド260に当接してばね250の付勢力により弁体220は閉弁方向に付勢されている。ばねガイド260は弁室213の周壁に圧入固定されている。
 部材210bには感圧ロッド230を摺動可能に支持する挿通孔217が形成され、感圧ロッド230の外周と挿通孔217との隙間は極小に設定されて感圧室211と弁孔214とがほぼ気密に画成されている。
 図2(B)に示すように、ベローズ組立体240は、ベローズ241と、ベローズ241の両端を閉塞する端部部材242と、感圧ロッド230の一端を受けるガイド部材243と、部材210aに位置決めされる位置決め部材244と、ベローズ241内部に配置され、ベローズ組立体240を伸張する方向に付勢する圧縮コイルばね245とから構成されている。このベローズ組立体240の内部は実質的に真空状態に保持されている。
 ベローズ組立体240は感圧室211内に配設され、位置決め部材244が部材210aに形成された位置決め孔218に嵌合固定されている。また、ガイド部材243は感圧ロッド230の一端を受けており、感圧ロッド230の他端は弁孔214側より弁体220に当接するため、ベローズ組立体240の伸縮に応じて弁体220が弁孔214を開閉する。
 シール部材270は大気側と吸入室119の圧力が作用する領域との気密を確保しており、シール部材271は吸入室119の圧力が作用する領域とクランク室105の圧力が作用する領域との気密を確保しており、さらにシール部材272はクランク室105の圧力が作用する領域と吐出室120の圧力が作用する領域との気密を確保している。
(3)容量制御弁の特性
 弁体220には閉弁方向に吐出室120の圧力(以下、吐出圧力Pdと呼ぶ)、開弁方向にクランク室105の圧力(以下、クランク室圧力Pcと呼ぶ)が作用し、感圧ロッド230には閉弁方向にクランク室圧力Pcが作用し、開弁方向に吸入室119の圧力(以下、吸入圧力Psと呼ぶ)が作用している。また、ベローズ組立体240には閉弁方向に吸入圧力Psが作用している。
 ここで弁座216は弁孔214の開口端部のエッジ部であるため、弁体220に作用するクランク室圧力Pcの受圧面積Svは弁孔214の断面積とほぼ等しい。また、感圧ロッド230に作用するクランク室圧力Pcの受圧面積Srは挿通孔217に支持されている領域の感圧ロッド230の断面積であり、Sr>Svに設定されている。これによりクランク室圧力Pcは常に弁体220を閉じる方向に作用する。ベローズ組立体240の伸縮方向に作用する吸入圧力Psの受圧面積(有効面積)をSb,ばね250の付勢力をfs、ベローズ組立体240の付勢力をFbとすれば、弁体220に作用する力は以下の数式〔数1〕(式(1)と式(2)を含む)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 上記〔数1〕における各記号の表す意味は以下の通りである。
Ps:吸入圧力
Pc:クランク室圧力
Pd:吐出圧力
Sv:弁体に作用するクランク室圧力の受圧面積
Sr:感圧ロッドに作用するクランク室圧力の受圧面積
Sb:ベローズの伸縮方向に作用する吸入圧力の受圧面積(有効面積)
fs:ばね250の付勢力
Fb:ベローズ組立体240の付勢力
 上記〔数1〕における式(2)において、Pdを一定とした場合、PcはPsの一次関数となり、PcはPsが上昇すると低下し、逆にPsが低下すると上昇する特性を持ち、その傾きは(Sb−Sr)/(Sr−Sv)で決定される。つまり、Psの係数(Sb−Sr)/(Sr−Sv)はPs変化に対するPc変化の感度である。
 例えば図3の(A)、(B)、(C)に示すように、(Sb−Sr)/(Sr−Sv)の大きさにより、吸入圧力Psが変化したときのクランク室圧力Pcの感度が変化する。Sb、Sv、Srは各圧力の受圧面積であるから、各受圧面積を調整することにより吸入圧力Psが変化したときのクランク室圧力Pcの感度を調整可能となる。
 ここで、(Sb−Sr)/(Sr−Sv)=1、つまりSb+Sv=2Srとすれば吸入圧力Psの変化量とクランク室圧力Pcの変化量が同等となり、(Sb−Sr)/(Sr−Sv)>1とすれば吸入圧力Psの変化量に対するクランク室圧力Pcの変化量が増大し、また、(Sb−Sr)/(Sr−Sv)<1とすれば吸入圧力Psの変化量に対するクランク室圧力Pcの変化量が減少する。
 したがって、(Sb−Sr)/(Sr−Sv)>1、つまりSb+Sv>2Srを満足するように、Sb、Sr、Svを設定すれば、吸入圧力Psを精度良く制御することができる。
 このようにSr>Svとすれば、クランク室圧力Pcが弁体220を閉じる方向に作用し、その結果〔数1〕に示すように、吸入圧力Psが変化したときのクランク室圧力Pcの感度をSb、Sr、Svを適宜調整することにより変化させることが可能となり、弁体220の開閉状態の安定化及び吸入圧力制御精度の向上が図れる。
 なお、上述の説明はPd=一定としたが、式(2)よりPcをPsの一次関数としたとき、Pdはパラメータに過ぎず、Pdが変化しても上述の説明に変化はない。つまり、Sr>Svとすることにより、上記の作用、効果が得られる。
(4)可変容量圧縮機の容量制御動作
 式(2)を変形すると式(3)(下記〔数2〕)になる。式(3)は容量制御弁200の吸入圧力制御特性を示しており、図4に示すように、吐出圧力Pdが上昇すると制御する吸入圧力Psを少し低下させて補正するような特性としてある。
Figure JPOXMLDOC01-appb-M000002
 可変容量圧縮機100が作動していない状態では、冷媒圧力はバランスしており、例えば外気温度が高ければ、吸入圧力Psは式(3)よりも著しく高くなっている。この場合、ベローズ組立体240は吸入圧力Psの力により収縮し、これにより弁体220は弁孔214を閉じている。
 この状態から可変容量圧縮機100を起動すると、吐出ガスがクランク室105に導入されないため、クランク室105内の冷媒ガス(ブローバイガス)は抽気通路を介して吸入室119に流出し、クランク室圧力Pcが吸入圧力Psと同等となり、その結果斜板107の傾角が増大してピストンストロークが最大に維持される。
 可変容量圧縮機100の作動により吸入圧力Psが徐々に低下すると、ベローズ組立体240が伸長し、吸入圧力Psが式(3)の特性に到達すると、感圧ロッド230が弁体220を押し上げて弁孔214が開放され、その結果吐出ガスがクランク室105に導入される。
 抽気通路の固定オリフィス103cによりクランク室105から吸入室119に流出する冷媒は制限されるため、クランク室圧力Pcが上昇し、これにより斜板107の傾角が減少してピストンストロークが減少する。
 なお、クランク室圧力Pcの上昇の程度、つまり吸入圧力Psの変化量に対するクランク室圧力Pcの変化量は、Sb、Sr、Svの設定(Sb+Sv>2Sr)により適切に調整されている。
 ピストンストロークが減少すると吸入圧力Psが上昇しようとするが、吸入圧力Psが上昇するとベローズ組立体240が収縮しようとするため、弁体220は閉じる方向に変位する。これによりクランク室105に導入される吐出ガス量が減少し、クランク室圧力Pcが低下するため、ピストンストロークの減少が止まり、弁体220が所定開度に維持される。
 何らかの外乱により吸入圧力Psが低下すれば、再びベローズ組立体240が伸長して弁体220を押し上げ、クランク室105に導入される吐出ガス量が増大されてクランク室圧力Pcが上昇し、これにより斜板107の傾角が減少してピストンストロークが減少する。
 このような動作により吸入圧力Psが上記式(3)の吸入圧力制御特性に近づくようにピストンストロークが制御される。
 このように、本発明によれば、上記式(2)からわかるように、単に感圧ロッド230の断面積Srのみ変更すれば、吸入圧力Psの変化量に対するクランク室圧力Pcの変化量を変化させることができる。したがって、流量特性に影響する弁孔214の断面積Svやベローズ組立体240の伸縮方向に作用する吸入圧力の受圧面積(有効面積)Sbといった、容量制御弁の基本構造にかかわる主要要素の設計変更をしなくても、吸入圧力Psの変化量に対するクランク室圧力Pcの変化量を変化させることができ、種々の可変容量圧縮機に合わせて容易に容量制御弁のクランク室圧力昇圧感度の最適化が図れる。これにより、容量制御弁に各種仕様が要求される場合にあっても、容量制御弁の主要要素の共通化を図ることができる。
〔第2実施形態〕
 図5は、本発明の第2の実施形態における容量制御弁300を示している。
 この第2の実施形態において前述の第1実施形態と基本的に異なる部分は、図2の容量制御弁200では弁体を閉じる方向に吐出圧力Pdが作用していたが、図5の容量制御弁300では弁体を閉じる方向に吸入圧力Psが作用し、弁体には吐出圧力Pdは作用しない構造であること、また、弁体に電磁力を作用させるいわゆる外部制御方式による容量制御弁であることである。
容量制御弁の構造:
 図5を参照すると、容量制御弁300は、バルブハウジング301に形成された感圧室302に配設され、連通孔301a及び連通路123を介して吸入圧力を受圧し、内部を真空にしてばねを配置した感圧部材として機能するベローズ組立体303と、このベローズ組立体303にその一端が当接し、バルブハウジング301に摺動可能に支持された感圧ロッド304と、この感圧ロッド304と一体形成されて、他端側が固定コア305の支持孔305aに摺動可能に支持され、弁室306に配設されてベローズ組立体303の伸縮に応じて弁孔301bを開閉する弁体304aと、弁体304aの他端側の面に一端が当接し、他端に固定コア305と所定の隙間を有して対向配置された可動コア307が固定されたソレノイドロッド308と、可動コア307を閉弁方向に押圧するばね309と、可動コア307外周部を摺動可能に支持し、固定コア305を内挿してソレノイドケース310に固定された非磁性体のスリーブ311と、スリーブ311の外周かつソレノイドケース310内部に配置され、電磁力を発生させるコイル312から構成されている。なお、ソレノイドは、固定コア305と、可動コア307と、ソレノイドロッド308と、スリーブ311と、ソレノイドケース310と、電磁コイル312で構成される。
 さらに、ベローズ組立体303の感圧ロッド304とは反対側の端部は、ベローズガイド313により支持され、このベローズガイド313は、圧力設定部材314に摺動可能に支持されている。また、圧力設定部材314とベローズガイド313の間にはベローズ組立体303を開弁方向に押圧する強制開放バネ315が配置されている。圧力設定部材314は、容量制御弁300が所定の圧力設定になるようにバルブハウジング301へ圧入固定される。
 弁室306は連通孔301cにより吐出室120と連通している。弁孔301bは連通孔301dによりクランク室105と連通している。したがって、連通孔301c、弁室306、弁孔301b、連通孔301dは給気通路121の一部を構成している。
 可動コア307と、ソレノイドロッド308及び弁体304aの他端側の面が配置されているスリーブ311内部の空間は、連通孔301eにより感圧室302と連通している。したがって、弁体304aの一端側の面(弁孔301b側)にはクランク室圧力Pcが作用し、弁体304aの他端側の面には吸入圧力Psが作用している。
 弁孔301bの断面積Svより支持孔305aに支持される弁体304aの断面積Spは僅かに大きく設定されているため、弁体304aの開弁方向に弁室306内の吐出圧力Pdの力が僅かに作用している。また、感圧ロッド304の断面積Srは、弁孔301bの断面積Svより大きく設定され、弁体を閉じる方向にクランク室圧力Pcが作用している。
 したがって、容量制御弁300の弁体304aに作用する力は以下の数式〔数3〕(式(4)、式(5)を含む)で表すことができる。
 上記数3における各記号の表す意味は以下の通りである。
Ps:吸入圧力
Pc:クランク室圧力
Pd:吐出圧力
Sv:弁体に作用するクランク室圧力の受圧面積
Sp:弁体に作用する吸入圧力の受圧面積
Sr:感圧ロッドに作用するクランク室圧力の受圧面積
Sb:ベローズの伸縮方向に作用する吸入圧力の受圧面積(有効面積)
fs1:ばね309の付勢力
fs2:ばね315の付勢力
Fb:ベローズ組立体303の付勢力
F(I):ソレノイドの電磁力
 上記式(5)において、Pd及びF(I)を一定とした場合、PcはPsの一次関数となり、PcはPsが上昇すると低下し、逆にPsが低下すると上昇する特性を持ち、その傾きは(Sb+Sp−Sr)/(Sr−Sv)で決定される。つまり、Psの係数(Sb+Sp−Sr)/(Sr−Sv)は、Ps変化に対するPc変化の感度である。
 Sb、Sv、Sp、Srは各圧力の受圧面積であるから、各受圧面積を調整することにより吸入圧力Psが変化したときのクランク室圧力Pcの感度を調整できる。
 ここで、(Sb+Sp−Sr)/(Sr−Sv)=1、つまりSb+Sp+Sv=2Srとすれば、吸入圧力Psの変化量とクランク室圧力Pcの変化量が同等となり、(Sb+Sp−Sr)/(Sr−Sv)>1とすれば吸入圧力Psの変化量に対するクランク室圧力Pcの変化量が増大し、また(Sb+Sp−Sr)/(Sr−Sv)<1とすれば吸入圧力Psの変化量に対するクランク室圧力Pcの変化量が減少する。したがって、(Sb+Sp−Sr)/(Sr−Sv)>1、つまりSb+Sp+Sv>2Srを満足するように、Sb、Sp、Sr、Svを設定すれば、吸入圧力Psを精度良く制御することができる。
 このようにSr>Svとすれば、クランク室圧力Pcが弁体304aを閉じる方向に作用し、その結果〔数3〕に示すように、吸入圧力Psが変化したときのクランク室圧力Pcの感度をSb、Sp、Sr、Svを適宜調整することにより変化させることが可能となり、弁体304aの開閉状態の安定化及び吸入圧力制御精度の向上が図れる。
 さらに容量制御弁300ではSpをSvより僅かに大きく設定している。例えば弁体304aの開度が増大してクランク室圧力Pcが上昇すれば吐出容量が減少するが、吐出容量減少に伴って吐出圧力Pdが低下することになる。Sp>Svに設定して吐出圧力Pdが開弁方向に作用するようにしておけば、吐出容量減少時においては、弁体304aに作用する吐出圧力Pdによる開弁方向の力が減少するので、弁体304aを過度に開くことを抑制する効果があり、弁体304aの開閉状態の安定化に寄与する。
 上述の説明ではPd及びF(I)一定としたが、上記式(5)よりPcをPsの一次関数としたとき、Pd及びF(I)はパラメータに過ぎず、PdやF(I)が変化しても前述の説明に変化はない。
 なお、上記式(5)を変形すれば式(6)(以下の〔数4〕)が得られる。式(6)は容量制御弁300の吸入圧力制御特性であり、図6に示すようにソレノイド(電磁コイル)の電流が増加するに従い制御吸入圧力が低下する特性となっている。
Figure JPOXMLDOC01-appb-M000004
 上記各実施形態ではベローズ組立体内部を真空圧としたが、ベローズ組立体内部は大気圧であってもよい。また、感圧部材としては、ダイアフラムを用いてもよい。また、図2に示した容量制御弁は機械式制御弁であるが、これにソレノイドを付加して弁体に電磁力を作用させる外部制御式容量制御弁としてもよい。また、図5に示した容量制御弁ではSp>Svとしたが、Sp=SvあるいはSp<Svとしてもよい。
 また、本発明は、揺動板式可変容量圧縮機やモータで駆動される可変容量圧縮機にも使用でき、また、電磁クラッチを装備した可変容量圧縮機、クラッチレス圧縮機の何れにも使用できる。また、抽気通路の絞り要素として、上述の開度固定のオリフィスの他に、流量可変の絞りや、弁体で開閉制御する構造を採用することも可能である。
 さらに、本発明は、冷媒として現状のR134aに代えて、新冷媒(例えば、地球温暖化防止のために最近公表された冷媒)を使用する可変容量圧縮機にも適用できる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
1 to 4 are a longitudinal sectional view of a variable capacity compressor according to a first embodiment of the present invention, a longitudinal sectional view of a capacity control valve used in the variable capacity compressor, and an operation explanatory view thereof.
(1) Structure of variable capacity compressor (Fig. 1)
The variable capacity compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101a, a front housing 102 provided at one end of the cylinder block 101, and a rear provided via a valve plate 103 at the other end of the cylinder block 101. The housing 104 is provided, and these constitute the housing referred to in the present invention.
A drive shaft 106 is provided across the crank chamber 105 defined by the cylinder block 101 and the front housing 102, and a swash plate 107 is disposed around the center thereof. The swash plate 107 is coupled to the rotor 108 fixed to the drive shaft 106 via a connecting portion 109, and the inclination angle can be changed along the drive shaft 106. A coil spring 110 is mounted between the rotor 108 and the swash plate 107 to urge the swash plate 107 toward the minimum inclination side, and the swash plate 107 is disposed on the opposite side of the swash plate 107. A coil spring 111 that biases the tilt angle toward the increasing direction is mounted.
One end of the drive shaft 106 extends through the boss portion 102a protruding to the outside of the front housing 102 and extends to the outside, and is connected to an electromagnetic clutch (not shown). A shaft seal device 112 is inserted between the drive shaft 106 and the boss portion 102a to block the inside and outside of the compressor. The drive shaft 106 is supported by bearings 113, 114, 115, and 116 in the radial direction and the thrust direction, and power from an external drive source (for example, a vehicle engine) is transmitted through an electromagnetic clutch so as to be rotatable. .
A piston 117 is inserted into the cylinder bore 101a so as to be able to reciprocate. The periphery of the outer periphery of the swash plate 107 is accommodated in a recess 117a at one end inside the piston 117. The piston 117 and the swash plate 107 are configured to interlock with each other via a pair of shoes 118 that are in sliding contact. Therefore, the rotation of the drive shaft 106 enables the piston 117 to reciprocate within the cylinder bore 101a, and these series of members constitute the motion conversion mechanism referred to in the present invention.
A suction chamber 119 and a discharge chamber 120 are defined in the rear housing 104. The suction chamber 119 is connected to the cylinder bore 101a through a communication hole 103a (suction hole) provided in the valve plate 103 and a suction valve (not shown). The discharge chamber 120 communicates with the cylinder bore 101a via a discharge valve (not shown) and a communication hole 103b (discharge hole) provided in the valve plate 103. The suction chamber 119 is connected to the air conditioner system side via the suction port 104a, and the discharge chamber 120 is connected to the air conditioner system side via the discharge port 104b.
The rear housing 104 is provided with a capacity control valve 200. The capacity control valve 200 adjusts the opening of an air supply passage 121 (121a, 121b) that communicates the discharge chamber 120 and the crank chamber 105, and controls the amount of discharge gas introduced into the crank chamber 105. In addition, the refrigerant in the crank chamber 105 is sucked into the suction chamber through a bleed passage through a clearance between the outer periphery of the drive shaft 106 and the bearings 115 and 116, a space 122 and a fixed orifice 103c formed in the valve plate 103 with a fixed opening. It flows to 119. Therefore, the discharge capacity can be controlled by adjusting the discharge gas introduction amount into the crank chamber 105 by the capacity control valve 200 and changing the pressure in the crank chamber 105.
(2) Capacity control valve structure (Fig. 2)
As shown in FIG. 2A, the capacity control valve 200 includes a valve housing 210, a valve body 220, a pressure sensitive rod 230, a bellows assembly 240 as a pressure sensitive member, a spring 250, and a spring guide 260. And sealing members 270, 271 and 272.
The valve housing 210 includes a member 210a that accommodates the bellows assembly 240 and a member 210b in which the pressure sensitive rod 230 is slidably supported and the valve body 220 is disposed. The member 210b is press-fitted and fixed to the member 210a. ing. The member 210a and the member 210b define a pressure sensitive chamber 211, and the pressure sensitive chamber 211 communicates with the suction chamber 119 via the communication hole 212 and the communication passage 123 (FIG. 1).
A valve chamber 213 is formed in the member 210b, and one of the valve chambers 213 communicates with the discharge chamber 120 via a communication hole 261 and an air supply passage 121a formed in the spring guide 260, and the other of the valve chambers 213 is a valve The crank chamber 105 communicates with the hole 214, the communication hole 215, and the air supply passage 121b.
A valve body 220 is disposed in the valve chamber 213, and the valve body 220 contacts and separates from a valve seat 216 formed around the valve hole 214 to open and close the valve hole 214. One end of the spring 250 abuts on the valve body 220 and the other end abuts on the spring guide 260, and the valve body 220 is urged in the valve closing direction by the urging force of the spring 250. The spring guide 260 is press-fitted and fixed to the peripheral wall of the valve chamber 213.
An insertion hole 217 that slidably supports the pressure-sensitive rod 230 is formed in the member 210b, and a gap between the outer periphery of the pressure-sensitive rod 230 and the insertion hole 217 is set to a minimum, and the pressure-sensitive chamber 211 and the valve hole 214 Is almost airtight.
2B, the bellows assembly 240 is positioned on the bellows 241, the end member 242 that closes both ends of the bellows 241, the guide member 243 that receives one end of the pressure-sensitive rod 230, and the member 210a. And a compression coil spring 245 that is arranged inside the bellows 241 and biases the bellows assembly 240 in the extending direction. The inside of the bellows assembly 240 is maintained in a substantially vacuum state.
The bellows assembly 240 is disposed in the pressure-sensitive chamber 211, and a positioning member 244 is fitted and fixed in a positioning hole 218 formed in the member 210a. The guide member 243 receives one end of the pressure-sensitive rod 230, and the other end of the pressure-sensitive rod 230 contacts the valve body 220 from the valve hole 214 side, so that the valve body 220 corresponds to the expansion and contraction of the bellows assembly 240. Opens and closes the valve hole 214.
The seal member 270 ensures airtightness between the atmosphere side and the region where the pressure of the suction chamber 119 acts, and the seal member 271 is formed between the region where the pressure of the suction chamber 119 acts and the region where the pressure of the crank chamber 105 acts. Further, the seal member 272 ensures airtightness between the region where the crank chamber 105 pressure acts and the region where the discharge chamber 120 pressure acts.
(3) Capacity Control Valve Characteristics The valve body 220 has a pressure in the discharge chamber 120 in the valve closing direction (hereinafter referred to as discharge pressure Pd) and a pressure in the crank chamber 105 in the valve opening direction (hereinafter referred to as crank chamber pressure Pc). ), The crank chamber pressure Pc acts in the valve closing direction on the pressure sensitive rod 230, and the pressure of the suction chamber 119 (hereinafter referred to as the suction pressure Ps) acts in the valve opening direction. The suction pressure Ps acts on the bellows assembly 240 in the valve closing direction.
Here, since the valve seat 216 is an edge portion of the opening end portion of the valve hole 214, the pressure receiving area Sv of the crank chamber pressure Pc acting on the valve body 220 is substantially equal to the cross-sectional area of the valve hole 214. The pressure receiving area Sr of the crank chamber pressure Pc acting on the pressure sensing rod 230 is a cross-sectional area of the pressure sensing rod 230 in a region supported by the insertion hole 217, and is set to Sr> Sv. As a result, the crank chamber pressure Pc always acts in the direction in which the valve body 220 is closed. If the pressure receiving area (effective area) of the suction pressure Ps acting in the expansion / contraction direction of the bellows assembly 240 is Sb, the biasing force of the spring 250 is fs, and the biasing force of the bellows assembly 240 is Fb, it acts on the valve body 220. The force can be expressed by the following formula [Expression 1] (including Formula (1) and Formula (2)).
Figure JPOXMLDOC01-appb-M000001
The meaning of each symbol in the above [Equation 1] is as follows.
Ps: suction pressure Pc: crank chamber pressure Pd: discharge pressure Sv: pressure receiving area of crank chamber pressure acting on the valve body Sr: pressure receiving area of crank chamber pressure acting on the pressure sensing rod Sb: suction acting in the expansion / contraction direction of the bellows Pressure receiving area (effective area)
fs: urging force of the spring 250 Fb: urging force of the bellows assembly 240 In the above equation (2), when Pd is constant, Pc is a linear function of Ps, and Pc decreases as Ps increases. On the other hand, it has a characteristic of increasing as Ps decreases, and its inclination is determined by (Sb−Sr) / (Sr−Sv). That is, the coefficient (Sb−Sr) / (Sr−Sv) of Ps is the sensitivity of Pc change to Ps change.
For example, as shown in FIGS. 3A, 3 </ b> B, and 3 </ b> C, the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes depending on the magnitude of (Sb−Sr) / (Sr−Sv). Changes. Since Sb, Sv, and Sr are the pressure receiving areas of the respective pressures, the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes can be adjusted by adjusting the pressure receiving areas.
Here, if (Sb−Sr) / (Sr−Sv) = 1, that is, Sb + Sv = 2Sr, the amount of change in the suction pressure Ps and the amount of change in the crank chamber pressure Pc become equal, and (Sb−Sr) / (Sr -Sv)> 1, the amount of change in the crank chamber pressure Pc relative to the amount of change in the suction pressure Ps increases, and if (Sb-Sr) / (Sr-Sv) <1, the amount of change in the suction pressure Ps. The amount of change in the crank chamber pressure Pc with respect to is reduced.
Therefore, the suction pressure Ps can be accurately controlled by setting Sb, Sr, and Sv so as to satisfy (Sb−Sr) / (Sr−Sv)> 1, that is, Sb + Sv> 2Sr.
Thus, if Sr> Sv, the crank chamber pressure Pc acts in the direction of closing the valve body 220, and as a result, as shown in [Equation 1], the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes is shown. Can be changed by appropriately adjusting Sb, Sr, and Sv, and the open / closed state of the valve body 220 can be stabilized and the suction pressure control accuracy can be improved.
In the above description, Pd = constant. However, when Pc is a linear function of Ps from Equation (2), Pd is only a parameter, and even if Pd changes, the above description does not change. That is, by setting Sr> Sv, the above actions and effects can be obtained.
(4) Capacity Control Operation of Variable Capacity Compressor Equation (2) is transformed into Equation (3) (the following [Equation 2]). Equation (3) shows the suction pressure control characteristic of the displacement control valve 200, and as shown in FIG. 4, the suction pressure Ps to be controlled is slightly reduced and corrected when the discharge pressure Pd increases.
Figure JPOXMLDOC01-appb-M000002
In the state where the variable capacity compressor 100 is not operating, the refrigerant pressure is balanced. For example, if the outside air temperature is high, the suction pressure Ps is significantly higher than the expression (3). In this case, the bellows assembly 240 is contracted by the force of the suction pressure Ps, whereby the valve body 220 closes the valve hole 214.
When the variable capacity compressor 100 is started from this state, the discharge gas is not introduced into the crank chamber 105, so that the refrigerant gas (blow-by gas) in the crank chamber 105 flows into the suction chamber 119 via the extraction passage, and the crank chamber pressure is increased. Pc becomes equal to the suction pressure Ps. As a result, the inclination angle of the swash plate 107 increases and the piston stroke is maintained at the maximum.
When the suction pressure Ps gradually decreases due to the operation of the variable capacity compressor 100, the bellows assembly 240 expands. When the suction pressure Ps reaches the characteristic of the expression (3), the pressure-sensitive rod 230 pushes up the valve body 220. The valve hole 214 is opened, and as a result, the discharge gas is introduced into the crank chamber 105.
Since the refrigerant flowing out from the crank chamber 105 to the suction chamber 119 is restricted by the fixed orifice 103c of the extraction passage, the crank chamber pressure Pc rises, thereby reducing the inclination angle of the swash plate 107 and reducing the piston stroke.
Note that the degree of increase in the crank chamber pressure Pc, that is, the amount of change in the crank chamber pressure Pc relative to the amount of change in the suction pressure Ps is appropriately adjusted by setting Sb, Sr, and Sv (Sb + Sv> 2Sr).
When the piston stroke decreases, the suction pressure Ps tends to increase, but when the suction pressure Ps increases, the bellows assembly 240 tends to contract, so that the valve body 220 is displaced in the closing direction. As a result, the amount of discharge gas introduced into the crank chamber 105 is reduced and the crank chamber pressure Pc is reduced, so that the reduction of the piston stroke is stopped and the valve body 220 is maintained at a predetermined opening.
If the suction pressure Ps decreases due to some disturbance, the bellows assembly 240 extends again to push up the valve body 220, the amount of discharge gas introduced into the crank chamber 105 is increased, and the crank chamber pressure Pc is increased. The tilt angle of the swash plate 107 is reduced and the piston stroke is reduced.
By such an operation, the piston stroke is controlled so that the suction pressure Ps approaches the suction pressure control characteristic of the above formula (3).
Thus, according to the present invention, as can be seen from the above formula (2), if only the cross-sectional area Sr of the pressure-sensitive rod 230 is changed, the change amount of the crank chamber pressure Pc with respect to the change amount of the suction pressure Ps is changed. Can be made. Therefore, the design changes of the main elements related to the basic structure of the capacity control valve, such as the cross-sectional area Sv of the valve hole 214 that affects the flow characteristics and the pressure receiving area (effective area) Sb of the suction pressure that acts in the expansion and contraction direction of the bellows assembly 240 Even if not, the change amount of the crank chamber pressure Pc with respect to the change amount of the suction pressure Ps can be changed, and the crank chamber pressure boost sensitivity of the capacity control valve can be easily optimized according to various variable capacity compressors. Can be planned. As a result, even when various specifications are required for the capacity control valve, it is possible to share the main elements of the capacity control valve.
[Second Embodiment]
FIG. 5 shows a capacity control valve 300 in the second embodiment of the present invention.
The second embodiment basically differs from the first embodiment described above in that the discharge pressure Pd acts in the direction of closing the valve body in the capacity control valve 200 of FIG. 2, but the capacity control of FIG. The valve 300 has a structure in which the suction pressure Ps acts in the direction in which the valve body is closed, and the discharge pressure Pd does not act on the valve body. In addition, the valve 300 is a capacity control valve by a so-called external control system in which electromagnetic force is applied to the valve body. That is.
Capacity control valve structure:
Referring to FIG. 5, the capacity control valve 300 is disposed in a pressure sensing chamber 302 formed in the valve housing 301, receives the suction pressure through the communication hole 301a and the communication path 123, and evacuates the inside to be a spring. A bellows assembly 303 that functions as a pressure-sensitive member, a pressure-sensitive rod 304 that has one end abutting against the bellows assembly 303 and is slidably supported by the valve housing 301, and the pressure-sensitive rod 304 A valve body 304a that is integrally formed and that has the other end slidably supported by the support hole 305a of the fixed core 305 and that is disposed in the valve chamber 306 and opens and closes the valve hole 301b according to the expansion and contraction of the bellows assembly 303. The solenoid rod 3 has one end abutting against the other end surface of the valve body 304a and the other end fixed to the fixed core 305 and a movable core 307 disposed opposite to the fixed core 305 with a predetermined gap. 8, a spring 309 that presses the movable core 307 in the valve closing direction, an outer peripheral portion of the movable core 307 slidably supported, and a non-magnetic sleeve 311 that is fixed to the solenoid case 310 by inserting the fixed core 305. The coil 312 is disposed outside the sleeve 311 and inside the solenoid case 310 and generates electromagnetic force. The solenoid includes a fixed core 305, a movable core 307, a solenoid rod 308, a sleeve 311, a solenoid case 310, and an electromagnetic coil 312.
Further, the end of the bellows assembly 303 opposite to the pressure-sensitive rod 304 is supported by a bellows guide 313, and the bellows guide 313 is slidably supported by the pressure setting member 314. Further, between the pressure setting member 314 and the bellows guide 313, a forced opening spring 315 that presses the bellows assembly 303 in the valve opening direction is disposed. The pressure setting member 314 is press-fitted and fixed to the valve housing 301 so that the capacity control valve 300 is set to a predetermined pressure.
The valve chamber 306 communicates with the discharge chamber 120 through the communication hole 301c. The valve hole 301b communicates with the crank chamber 105 through a communication hole 301d. Therefore, the communication hole 301 c, the valve chamber 306, the valve hole 301 b, and the communication hole 301 d constitute a part of the air supply passage 121.
The space inside the sleeve 311 in which the movable core 307, the solenoid rod 308, and the surface on the other end side of the valve body 304a are disposed communicates with the pressure sensitive chamber 302 through the communication hole 301e. Therefore, the crank chamber pressure Pc acts on the surface on one end side (valve hole 301b side) of the valve body 304a, and the suction pressure Ps acts on the surface on the other end side of the valve body 304a.
Since the sectional area Sp of the valve body 304a supported by the support hole 305a is set to be slightly larger than the sectional area Sv of the valve hole 301b, the force of the discharge pressure Pd in the valve chamber 306 in the valve opening direction of the valve body 304a. Is acting slightly. Further, the cross-sectional area Sr of the pressure-sensitive rod 304 is set larger than the cross-sectional area Sv of the valve hole 301b, and the crank chamber pressure Pc acts in the direction of closing the valve body.
Therefore, the force acting on the valve body 304a of the capacity control valve 300 can be expressed by the following formula [Expression 3] (including Formula (4) and Formula (5)).
The meanings represented by the symbols in Equation 3 are as follows.
Ps: suction pressure Pc: crank chamber pressure Pd: discharge pressure Sv: pressure receiving area of the crank chamber pressure acting on the valve body Sp: pressure receiving area of the suction pressure acting on the valve body Sr: crank chamber pressure acting on the pressure sensing rod Pressure receiving area Sb: pressure receiving area (effective area) of suction pressure acting in the expansion / contraction direction of the bellows
fs1: biasing force of the spring 309 fs2: biasing force of the spring 315 Fb: biasing force F (I) of the bellows assembly 303: electromagnetic force of the solenoid In the above formula (5), when Pd and F (I) are constant , Pc is a linear function of Ps, and Pc decreases as Ps increases, and conversely increases as Ps decreases, and its inclination is determined by (Sb + Sp−Sr) / (Sr−Sv). That is, the coefficient (Sb + Sp−Sr) / (Sr−Sv) of Ps is the sensitivity of Pc change to Ps change.
Since Sb, Sv, Sp, and Sr are the pressure receiving areas of the respective pressures, the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes can be adjusted by adjusting the pressure receiving areas.
Here, if (Sb + Sp−Sr) / (Sr−Sv) = 1, that is, Sb + Sp + Sv = 2Sr, the amount of change in the suction pressure Ps is equal to the amount of change in the crank chamber pressure Pc, and (Sb + Sp−Sr) / ( If Sr−Sv)> 1, the amount of change in the crank chamber pressure Pc with respect to the amount of change in the suction pressure Ps increases, and if (Sb + Sp−Sr) / (Sr−Sv) <1, the amount of change in the suction pressure Ps. The amount of change in the crank chamber pressure Pc with respect to is reduced. Therefore, if Sb, Sp, Sr, and Sv are set so as to satisfy (Sb + Sp−Sr) / (Sr−Sv)> 1, that is, Sb + Sp + Sv> 2Sr, the suction pressure Ps can be accurately controlled.
Thus, when Sr> Sv, the crank chamber pressure Pc acts in the direction of closing the valve body 304a, and as a result, as shown in [Equation 3], the sensitivity of the crank chamber pressure Pc when the suction pressure Ps changes is shown. Can be changed by appropriately adjusting Sb, Sp, Sr, and Sv, and the opening / closing state of the valve body 304a can be stabilized and the suction pressure control accuracy can be improved.
Further, in the capacity control valve 300, Sp is set slightly larger than Sv. For example, if the opening degree of the valve body 304a increases and the crank chamber pressure Pc increases, the discharge capacity decreases, but the discharge pressure Pd decreases as the discharge capacity decreases. If Sp> Sv is set so that the discharge pressure Pd acts in the valve opening direction, the force in the valve opening direction due to the discharge pressure Pd acting on the valve body 304a decreases when the discharge capacity decreases. There is an effect of suppressing excessive opening of the valve body 304a, which contributes to stabilization of the open / closed state of the valve body 304a.
In the above description, Pd and F (I) are constant, but when Pc is a linear function of Ps from the above equation (5), Pd and F (I) are only parameters, and Pd and F (I) are Even if it changes, the above description does not change.
In addition, if Formula (5) is modified, Formula (6) (the following [Equation 4]) is obtained. Expression (6) is a suction pressure control characteristic of the capacity control valve 300, and as shown in FIG. 6, the control suction pressure decreases as the current of the solenoid (electromagnetic coil) increases.
Figure JPOXMLDOC01-appb-M000004
In each of the above embodiments, the inside of the bellows assembly is set to a vacuum pressure, but the inside of the bellows assembly may be atmospheric pressure. Further, a diaphragm may be used as the pressure sensitive member. The capacity control valve shown in FIG. 2 is a mechanical control valve, but may be an externally controlled capacity control valve in which a solenoid is added thereto to apply an electromagnetic force to the valve body. Further, although Sp> Sv is set in the capacity control valve shown in FIG. 5, Sp = Sv or Sp <Sv may be set.
Further, the present invention can be used for a variable displacement compressor driven by a swing plate type variable displacement compressor or a motor, and can be used for either a variable displacement compressor equipped with an electromagnetic clutch or a clutchless compressor. . Further, as the throttle element of the bleed passage, in addition to the above-mentioned orifice with a fixed opening, it is also possible to employ a variable flow rate throttle or a structure in which opening and closing is controlled by a valve body.
Furthermore, the present invention can also be applied to a variable capacity compressor that uses a new refrigerant (for example, a refrigerant that has been recently announced to prevent global warming) instead of the current R134a.
 本発明は、容量制御弁の開度調整によりクランク室の圧力を変化させてピストンのストロークを調整するようにしたあらゆる可変容量圧縮機に適用可能であり、特に、車両用空調装置の冷凍回路に設けられる可変容量圧縮機に好適なものである。 The present invention can be applied to any variable capacity compressor in which the stroke of the piston is adjusted by changing the pressure in the crank chamber by adjusting the opening of the capacity control valve, and particularly in a refrigeration circuit of a vehicle air conditioner. It is suitable for the variable capacity compressor provided.

Claims (6)

  1.  内部に吐出室、吸入室、クランク室及びシリンダボアが区画形成されたハウジングと、前記シリンダボア内に挿入されたピストンと、前記ハウジング内に回転可能に支持された駆動軸と、前記駆動軸の回転を前記ピストンの往復運動に変換する傾角可変の斜板要素を含む運動変換機構と、前記吐出室と前記クランク室とを連通する給気通路を開閉する容量制御弁と、前記クランク室と前記吸入室とを連通する抽気通路に配置された絞り要素とを備え、前記容量制御弁の開度調整により前記クランク室の圧力を変化させて前記ピストンの往復運動のストロークを調整し、前記ピストンの往復運動により前記吸入室から前記シリンダボアに冷媒を吸入し吸入された冷媒を圧縮して前記吐出室に吐出する可変容量圧縮機において、
     前記容量制御弁は、前記吐出室と連通する弁室と、一端が前記弁室と連通し、他端が前記クランク室と連通する弁孔と、前記弁室に面して前記弁孔の周囲に形成された弁座と、前記弁室に配設され、前記弁座に当接・離間して前記弁孔を開閉する弁体と、前記吸入室と連通する感圧室と、前記感圧室に配設され、前記吸入室の圧力に応答して変位する感圧部材と、一端が前記感圧部材に連結され、他端が前記弁孔側より前記弁体に連結されて、前記感圧部材の変位に応答して前記弁体を駆動する感圧ロッドと、を備え、
    前記弁体には前記弁孔側より前記クランク室の圧力が前記弁体を開く方向に作用し、前記感圧ロッドには前記弁孔側より前記クランク室の圧力が前記弁体を閉じる方向に作用するとともに、前記感圧ロッドが前記クランク室の圧力を受ける受圧面積をSrとし、前記弁体が前記クランク室の圧力を受ける受圧面積をSvとしたとき、Sr>Svを満足するようにSrとSvが設定されていることを特徴とする可変容量圧縮機。
    A housing having a discharge chamber, a suction chamber, a crank chamber and a cylinder bore defined therein, a piston inserted into the cylinder bore, a drive shaft rotatably supported in the housing, and rotation of the drive shaft A motion conversion mechanism including a variable swash plate element that converts the piston into a reciprocating motion; a capacity control valve that opens and closes an air supply passage communicating the discharge chamber and the crank chamber; the crank chamber and the suction chamber; A throttle element disposed in a bleed passage communicating with the valve, and adjusting the stroke of the piston by changing the pressure of the crank chamber by adjusting the opening of the capacity control valve to reciprocate the piston. In the variable capacity compressor that sucks the refrigerant from the suction chamber into the cylinder bore and compresses the sucked refrigerant and discharges it to the discharge chamber.
    The capacity control valve includes a valve chamber communicating with the discharge chamber, a valve hole having one end communicating with the valve chamber, and the other end communicating with the crank chamber, and facing the valve chamber and surrounding the valve hole. A valve seat that is disposed in the valve chamber, opens and closes the valve hole in contact with and away from the valve seat, a pressure sensing chamber that communicates with the suction chamber, and the pressure sensing A pressure-sensitive member disposed in the chamber and displaced in response to the pressure in the suction chamber; one end connected to the pressure-sensitive member; the other end connected to the valve body from the valve hole side; A pressure-sensitive rod that drives the valve body in response to displacement of the pressure member,
    The pressure in the crank chamber is applied to the valve body from the valve hole side in the direction of opening the valve body, and the pressure of the crank chamber is applied to the pressure sensitive rod in the direction of closing the valve body from the valve hole side. In addition, when the pressure receiving area where the pressure sensing rod receives the pressure of the crank chamber is Sr and the pressure receiving area where the valve body receives the pressure of the crank chamber is Sv, Sr> Sv is satisfied. And Sv are set, the variable capacity compressor.
  2.  前記弁体には前記吐出室の圧力が前記弁体を閉じる方向に作用し、前記感圧部材が前記吸入室の圧力を受ける受圧面積をSbとしたとき、Sb+Sv>2Srを満足するようにSr、Sv及びSbが設定されていることを特徴とする、請求項1に記載の可変容量圧縮機。 When the pressure of the discharge chamber acts on the valve body in the direction of closing the valve body, and the pressure receiving area where the pressure sensing member receives the pressure of the suction chamber is Sb, Sr + Sv> 2Sr is satisfied. , Sv and Sb are set, The variable capacity compressor according to claim 1.
  3.  前記容量制御弁は、さらに前記吸入室と連通する圧力室を備え、前記弁体の一端は前記弁座に当接・離間して前記弁孔を開閉し、前記弁体の他端は前記圧力室に配置されて、前記吸入室の圧力が前記弁体を閉じる方向に作用するように構成され、前記感圧部材が前記吸入室の圧力を受ける受圧面積をSbとし、前記弁体が前記吸入室の圧力を受ける受圧面積をSpとしたとき、Sb+Sp+Sv>2Srを満足するようにSr、Sv、Sp及びSbが設定されていることを特徴とする、請求項1に記載の可変容量圧縮機。 The capacity control valve further includes a pressure chamber communicating with the suction chamber, one end of the valve body abuts and separates from the valve seat to open and close the valve hole, and the other end of the valve body is the pressure chamber The suction chamber is arranged so that the pressure of the suction chamber acts in the direction of closing the valve body, the pressure receiving area where the pressure-sensitive member receives the pressure of the suction chamber is Sb, and the valve body is the suction chamber 2. The variable capacity compressor according to claim 1, wherein Sr, Sv, Sp, and Sb are set so as to satisfy Sb + Sp + Sv> 2Sr, where Sp is the pressure-receiving area that receives the pressure of the chamber.
  4.  Sp>Svを満足するようにSp及びSvが設定されていることを特徴とする、請求項3に記載の可変容量圧縮機。 4. The variable capacity compressor according to claim 3, wherein Sp and Sv are set so as to satisfy Sp> Sv.
  5.  前記抽気通路に配置された絞り要素は開度固定のオリフィスであることを特徴とする、請求項1~4のいずれかに記載の可変容量圧縮機。 5. The variable capacity compressor according to claim 1, wherein the throttle element disposed in the extraction passage is an orifice having a fixed opening.
  6.  車両用空調装置の冷凍回路に設けられる圧縮機からなる、請求項1~5のいずれかに記載の可変容量圧縮機。 The variable capacity compressor according to any one of claims 1 to 5, comprising a compressor provided in a refrigeration circuit of a vehicle air conditioner.
PCT/JP2009/067964 2008-10-09 2009-10-09 Variable capacity compressor WO2010041775A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112009002441T DE112009002441T5 (en) 2008-10-09 2009-10-09 Variable Displacement Compressor
US13/123,043 US20110194951A1 (en) 2008-10-09 2009-10-09 Variable Displacement Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008262768A JP5142212B2 (en) 2008-10-09 2008-10-09 Variable capacity compressor
JP2008-262768 2008-10-09

Publications (1)

Publication Number Publication Date
WO2010041775A1 true WO2010041775A1 (en) 2010-04-15

Family

ID=42100715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067964 WO2010041775A1 (en) 2008-10-09 2009-10-09 Variable capacity compressor

Country Status (4)

Country Link
US (1) US20110194951A1 (en)
JP (1) JP5142212B2 (en)
DE (1) DE112009002441T5 (en)
WO (1) WO2010041775A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112762874A (en) * 2021-01-26 2021-05-07 中广核核电运营有限公司 Corrugated pipe expansion joint displacement measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340501B2 (en) * 2014-06-19 2018-06-13 株式会社テージーケー Control valve for variable capacity compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190579U (en) * 1987-05-27 1988-12-08
JP2007064028A (en) * 2005-08-29 2007-03-15 Sanden Corp Variable displacement compressor
JP2007107538A (en) * 2007-01-26 2007-04-26 Sanden Corp Variable displacement compressor
JP2008202480A (en) * 2007-02-19 2008-09-04 Sanden Corp Capacity control valve for variable displacement compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282182A (en) 1986-05-30 1987-12-08 Saginomiya Seisakusho Inc Capacity control mechanism for variable capacity compressor
JP3591234B2 (en) * 1997-08-27 2004-11-17 株式会社豊田自動織機 Control valve for variable displacement compressor
JP4316955B2 (en) * 2003-08-11 2009-08-19 イーグル工業株式会社 Capacity control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190579U (en) * 1987-05-27 1988-12-08
JP2007064028A (en) * 2005-08-29 2007-03-15 Sanden Corp Variable displacement compressor
JP2007107538A (en) * 2007-01-26 2007-04-26 Sanden Corp Variable displacement compressor
JP2008202480A (en) * 2007-02-19 2008-09-04 Sanden Corp Capacity control valve for variable displacement compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112762874A (en) * 2021-01-26 2021-05-07 中广核核电运营有限公司 Corrugated pipe expansion joint displacement measurement method

Also Published As

Publication number Publication date
US20110194951A1 (en) 2011-08-11
JP5142212B2 (en) 2013-02-13
DE112009002441T5 (en) 2012-02-02
JP2010090834A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP6663227B2 (en) Displacement control valve for variable displacement compressor
JP4436295B2 (en) Variable capacity compressor
JP4695032B2 (en) Volume control valve for variable capacity compressor
EP1059443A2 (en) Displacement control valve
JP4162419B2 (en) Variable capacity compressor
EP0928898B1 (en) Control valve for variable displacement compressors
WO2010030040A1 (en) Capacity control valve, variable capacity compressor and capacity control system of variable capacity compressor
US20060165534A1 (en) Displacement control valve for variable displacement compressor
US6672844B2 (en) Apparatus and method for controlling variable displacement compressor
JP2009057855A (en) Variable displacement compressor
JP5142212B2 (en) Variable capacity compressor
US6783332B2 (en) Control valve of variable displacement compressor with pressure sensing member
US8500415B2 (en) Variable displacement compressor
JP5075425B2 (en) Volume control valve for variable capacity compressor
JP5025294B2 (en) Control valve and variable displacement compressor with control valve
JP4599327B2 (en) Variable capacity compressor
JP2008128091A (en) Clutch-less variable displacement compressor
JP4091968B2 (en) Capacity control valve mechanism and variable capacity compressor having the same
EP0908624A2 (en) Displacement control valve for use in a variable displacement compressor
JP2007064056A (en) Control valve of variable displacement type compressor
JP4663579B2 (en) Volume control valve for variable capacity compressor
JP5164679B2 (en) Variable capacity compressor
JP5053740B2 (en) Volume control valve for variable capacity compressor
JP2010144638A (en) Variable displacement compressor
JP2002242827A (en) Capacity control valve and variable displacement compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13123043

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090024416

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819302

Country of ref document: EP

Kind code of ref document: A1