JP2007060840A - Vehicle powered by fuel cell - Google Patents

Vehicle powered by fuel cell Download PDF

Info

Publication number
JP2007060840A
JP2007060840A JP2005244460A JP2005244460A JP2007060840A JP 2007060840 A JP2007060840 A JP 2007060840A JP 2005244460 A JP2005244460 A JP 2005244460A JP 2005244460 A JP2005244460 A JP 2005244460A JP 2007060840 A JP2007060840 A JP 2007060840A
Authority
JP
Japan
Prior art keywords
fuel cell
compressed air
radiator
compressor
cell vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005244460A
Other languages
Japanese (ja)
Inventor
Takamitsu Tokuoka
貴光 徳岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005244460A priority Critical patent/JP2007060840A/en
Publication of JP2007060840A publication Critical patent/JP2007060840A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle powered by fuel cell for suppressing a temperature rise of compressed air discharged from a compressor for supplying air to a fuel cell without a dedicated cooling system. <P>SOLUTION: The vehicle powered by fuel cell is provided with the fuel cell 11 for generating power using an electrochemical reaction between a fuel gas and an oxidant gas, the compressor 1 for supplying the compressed air as the oxidant gas to the fuel cell 11, a sound absorber 3 as a compressed air circuit component installed on a compressed air circuit between the compressor 1 and the fuel cell 11, and a radiator 8 for implementing a heat exchange between outside air and a fluid for cooling a component such as the fuel cell 11 to be cooled. At least one of the compressor 1 and the sound absorber 3 faces the radiator 8 viewed from the front at an installed location. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池自動車に関し、圧縮機から吐出される圧縮空気の温度を専用の冷却システムを使用することなく低減させる技術に関する。   The present invention relates to a fuel cell vehicle, and relates to a technique for reducing the temperature of compressed air discharged from a compressor without using a dedicated cooling system.

燃料電池自動車においては、燃料電池へ酸素を含む酸化剤ガス(カソードガス)を供給するための圧縮機が搭載されている。圧縮機にて圧縮された空気は、その圧縮比により高温となるが、特に、高分子型燃料電池は高分子電解質膜の耐熱温度が90℃程度である為、熱交換器(インタークーラ)で冷却して燃料電池へ供給している。また、インタークーラでは、冷却水と熱交換して圧縮空気を冷却するのが一般的である。   A fuel cell vehicle is equipped with a compressor for supplying an oxidant gas (cathode gas) containing oxygen to the fuel cell. The air compressed by the compressor becomes high temperature due to its compression ratio. In particular, since the heat resistant temperature of the polymer electrolyte membrane is about 90 ° C. in the polymer fuel cell, it is used in a heat exchanger (intercooler). It is cooled and supplied to the fuel cell. In the intercooler, the compressed air is generally cooled by exchanging heat with cooling water.

しかし、燃料電池自動車においては、燃料電池の発電に伴い発熱するが、燃料電池では発電性能の観点から発電時の燃料電池を所定温度(例えば70℃前後)に保つのが好ましく、冷却が必要となる。また、燃料電池自動車では、車両駆動用モータやそれに電力を供給するインバータ、また前記圧縮機を駆動する圧縮機モータやそれに電力を供給するインバータなど、冷却を必要とする部品が多く、一般的な内燃機関自動車に比べて大きなラジエータを必要とする(例えば、特許文献1参照)。
特開2002−298896号公報(第5頁から第7頁、第1図)
However, in a fuel cell vehicle, heat is generated with the power generation of the fuel cell. However, in the fuel cell, it is preferable to keep the fuel cell during power generation at a predetermined temperature (for example, around 70 ° C.) from the viewpoint of power generation performance, and cooling is necessary. Become. In addition, in a fuel cell vehicle, there are many parts that require cooling, such as a motor for driving a vehicle, an inverter that supplies electric power to the motor, a compressor motor that drives the compressor, and an inverter that supplies electric power to the motor. A large radiator is required as compared with an internal combustion engine automobile (see, for example, Patent Document 1).
JP 2002-298896 (pages 5 to 7, FIG. 1)

しかしながら、ラジエータを大型化すると、該ラジエータや冷却水の重量増加を招き、車両重量が増加し燃料消費が増えたり、車両の加速性が低下するなどの跳ね返りがある。また、冷却水を循環させる為のポンプの消費電力も増加し、燃料消費が大きくなるという課題がある。   However, increasing the size of the radiator causes an increase in the weight of the radiator and cooling water, resulting in a rebound such as an increase in vehicle weight and fuel consumption and a decrease in vehicle acceleration. Moreover, the power consumption of the pump for circulating the cooling water increases, and there is a problem that fuel consumption increases.

そこで、本発明は、前記課題を解決するためになされたものであって、燃料電池システムを搭載した燃料電池自動車において燃料電池へ空気を供給する圧縮機から吐出される圧縮空気の温度を、専用の冷却システムを用いずに低減することのできる燃料電池自動車を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and in a fuel cell vehicle equipped with a fuel cell system, the temperature of compressed air discharged from a compressor that supplies air to the fuel cell is exclusively used. An object of the present invention is to provide a fuel cell vehicle that can be reduced without using the above cooling system.

本発明は、燃料ガスと酸化剤ガスとの電気化学反応によって発電する燃料電池と、前記燃料電池へ圧縮した空気を酸化剤ガスとして供給する圧縮機と、前記圧縮機と前記燃料電池間の圧縮空気回路上に設置される圧縮空気回路部品と、前記燃料電池など冷却を必要とする部品を冷却する流体と外気との間で熱交換を行うラジエータとを備えた燃料電池自動車である。   The present invention relates to a fuel cell that generates electricity by an electrochemical reaction between a fuel gas and an oxidant gas, a compressor that supplies compressed air to the fuel cell as an oxidant gas, and a compression between the compressor and the fuel cell. The fuel cell vehicle includes a compressed air circuit component installed on an air circuit, and a radiator that exchanges heat between a fluid that cools a component that needs cooling, such as the fuel cell, and the outside air.

そして、本発明の燃料電池自動車では、前記圧縮機と前記圧縮空気回路部品の少なくとも一つの部品を、車両前方から見て前記ラジエータと対向する位置に配置させている。   In the fuel cell vehicle of the present invention, at least one of the compressor and the compressed air circuit component is disposed at a position facing the radiator when viewed from the front of the vehicle.

本発明の燃料電池自動車によれば、圧縮機と圧縮空気回路部品がラジエータと対向する位置に配置されていることにより、ラジエータファンによって送風されたラジエータ後流空気が、これら圧縮機と圧縮空気回路部品に当たることで高温の圧縮空気を冷却させることができる。したがって、本発明の燃料電池自動車によれば、圧縮機から吐出された高温の圧縮空気を、専用の冷却システムを使用せずに冷却することができる。   According to the fuel cell vehicle of the present invention, the compressor and the compressed air circuit component are arranged at positions facing the radiator, so that the radiator downstream air blown by the radiator fan is supplied to the compressor and the compressed air circuit. The hot compressed air can be cooled by hitting the parts. Therefore, according to the fuel cell vehicle of the present invention, high-temperature compressed air discharged from the compressor can be cooled without using a dedicated cooling system.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

「第1の実施の形態」
図1は第1の実施の形態の燃料電池自動車をモータールーム上方から見たときの概略平面図、図2は図1の燃料電池自動車を側面から見たときの概略側面図である。
“First Embodiment”
FIG. 1 is a schematic plan view of the fuel cell vehicle according to the first embodiment as viewed from above the motor room, and FIG. 2 is a schematic side view of the fuel cell vehicle of FIG. 1 as viewed from the side.

本実施の形態の燃料電池自動車は、図1及び図2に示すように、燃料ガスと酸化剤ガスとの電気化学反応によって発電する燃料電池11と、前記燃料電池11へ圧縮した空気を酸化剤ガスとして供給する圧縮機1と、前記圧縮機1と前記燃料電池11間の圧縮空気回路上に設置される圧縮空気回路部品である消音器3と、前記燃料電池11など冷却を必要とする部品を冷却する流体と外気との間で熱交換を行うラジエータ8とを備えている。   As shown in FIGS. 1 and 2, the fuel cell vehicle according to the present embodiment includes a fuel cell 11 that generates electricity by an electrochemical reaction between a fuel gas and an oxidant gas, and an oxidant that compresses air compressed into the fuel cell 11. Compressor 1 supplied as gas, silencer 3 which is a compressed air circuit component installed on a compressed air circuit between compressor 1 and fuel cell 11, and components such as fuel cell 11 that require cooling And a radiator 8 for exchanging heat between the fluid for cooling the air and the outside air.

圧縮機1は、圧縮機駆動モータ2により駆動され、エアクリーナ(図示は省略する)を通して外気を吸い込み、その吸い込んだ空気を圧縮して、圧縮空気回路部品の一つである消音器3へ高温の圧縮空気を送り込む。消音器3は、前記圧縮機1と接続され、この圧縮機1から送り込まれた圧縮空気の騒音及び振動を低減する。   The compressor 1 is driven by a compressor drive motor 2, sucks outside air through an air cleaner (not shown), compresses the sucked air, and applies a high temperature to a silencer 3 which is one of compressed air circuit components. Feed in compressed air. The silencer 3 is connected to the compressor 1 and reduces noise and vibration of compressed air sent from the compressor 1.

圧縮空気は、その後、消音器3と燃料電池11とを結ぶ圧縮空気配管4を通り、その経路の途中に配置されたアフタークーラ7にて所定の温度まで冷却される。そして、冷却された酸素を含む酸化剤ガス(カソードガス)は、加湿器10で加湿された後に燃料電池11へと供給される。   Thereafter, the compressed air passes through a compressed air pipe 4 connecting the silencer 3 and the fuel cell 11 and is cooled to a predetermined temperature by an aftercooler 7 disposed in the middle of the route. The cooled oxygen-containing oxidant gas (cathode gas) is humidified by the humidifier 10 and then supplied to the fuel cell 11.

前記圧縮機1、圧縮機駆動モータ2及び消音器3は、車両前方から車両後方へ見たときにラジエータ8と対向する位置に配置されるように、モータールーム内に配置された車輪駆動モータ5に支持されている。すなわち、圧縮機1及び圧縮機駆動モータ2は、車輪駆動モータ5からラジエータ8へ向かって突出する圧縮機取付アーム1aの先端に当該圧縮機駆動モータ2を固定させることで、当該ラジエータ8と対向するように配置されている。消音器3も同様に、車輪駆動モータ5からラジエータ8へ向かって突出するラジエータ取付アーム1bの先端に固定されることで、当該ラジエータ8と対向するように配置されている。   The compressor 1, the compressor drive motor 2, and the silencer 3 are disposed in a motor room such that the compressor 1, the compressor drive motor 2, and the silencer 3 are disposed at positions facing the radiator 8 when viewed from the front of the vehicle to the rear of the vehicle. It is supported by. That is, the compressor 1 and the compressor drive motor 2 are opposed to the radiator 8 by fixing the compressor drive motor 2 to the tip of the compressor mounting arm 1a protruding from the wheel drive motor 5 toward the radiator 8. Are arranged to be. Similarly, the muffler 3 is also arranged so as to face the radiator 8 by being fixed to the tip of the radiator mounting arm 1b protruding from the wheel drive motor 5 toward the radiator 8.

なお、車輪駆動モータ5の出力軸には、モータ回転数を減速して車輪回転数に変換する減速機6が接続されている。   A reduction gear 6 is connected to the output shaft of the wheel drive motor 5 to reduce the motor rotation speed and convert it to wheel rotation speed.

このように、圧縮機1と消音器3を車両前方から見てラジエータ8と対向する位置に配置すれば、該圧縮機1で圧縮され高温となった空気を、当該ラジエータ8の中央部に取り付けたラジエータファン9で送風される空気によって冷却することが可能となる。つまり、ラジエータファン9によって送風されたラジエータ後流空気が圧縮機1と消音器3に当たるため、高温の圧縮空気を冷却することができる。また、圧縮機1と消音器3だけでなく、圧縮空気回路部品を構成する圧縮空気配管4も冷却されるため、圧縮機1からの圧縮空気をより一層冷却させることができる。   In this way, if the compressor 1 and the silencer 3 are disposed at a position facing the radiator 8 when viewed from the front of the vehicle, the air compressed by the compressor 1 and heated to a high temperature is attached to the center of the radiator 8. It is possible to cool by the air blown by the radiator fan 9. That is, since the radiator downstream air blown by the radiator fan 9 hits the compressor 1 and the silencer 3, the high-temperature compressed air can be cooled. Further, since not only the compressor 1 and the silencer 3 but also the compressed air pipe 4 constituting the compressed air circuit component is cooled, the compressed air from the compressor 1 can be further cooled.

また、本実施の形態では、圧縮機1を出た圧縮空気の流れ(図1中矢印で示す)をラジエータ8内を流れる冷却水と同じ方向に向けることで、消音器3の下流部で圧縮機吐出直後の温度よりも冷却された圧縮空気を、ラジエータ8で一番冷却された冷却水が流れているラジエータ8を通過した後流空気で冷却することが可能となり、熱交換効率が上がる。つまり、圧縮機1と圧縮空気回路部品(消音器3及び圧縮空気配管4)の中を流れる圧縮空気の流れ方向をラジエータ8内を流れる冷却水の流れ方向と略同じ方向にすることで、圧縮空気の温度とラジエータ8内を流れる冷却水との温度差を全域で最大にすることができるため、熱交換効率を向上させることができる。   Moreover, in this Embodiment, it compresses in the downstream part of the silencer 3 by directing the flow of the compressed air which came out of the compressor 1 (indicated by the arrow in FIG. 1) in the same direction as the cooling water flowing in the radiator 8. It becomes possible to cool the compressed air cooled from the temperature immediately after the machine discharge with the downstream air that has passed through the radiator 8 through which the cooling water most cooled by the radiator 8 flows, and the heat exchange efficiency is improved. In other words, compression is performed by setting the flow direction of the compressed air flowing through the compressor 1 and the compressed air circuit components (the silencer 3 and the compressed air pipe 4) to be substantially the same as the flow direction of the cooling water flowing through the radiator 8. Since the temperature difference between the temperature of the air and the cooling water flowing in the radiator 8 can be maximized over the entire area, the heat exchange efficiency can be improved.

図6には、ラジエータ内を流れる冷却水と空気温度の関係を示す。この図6から判るように、ラジエータ8内を流れる冷却水は、温度の低い外気との間で熱交換する事でその温度を下げる構造になっている為、実線で示すように上流側から下流側に向けて温度が下がる温度勾配を持っている。よって、ラジエータ8を通過した外気の温度も上流よりも下流側の方が温度が低い。   FIG. 6 shows the relationship between the cooling water flowing through the radiator and the air temperature. As can be seen from FIG. 6, the cooling water flowing in the radiator 8 has a structure in which the temperature is lowered by exchanging heat with the outside air having a low temperature. Therefore, as shown by the solid line, the cooling water flows downstream from the upstream side. It has a temperature gradient that decreases toward the side. Therefore, the temperature of the outside air that has passed through the radiator 8 is lower on the downstream side than on the upstream side.

なお、圧縮空気の温度とラジエータ8内を流れる冷却水との温度差を全域で最大にするとは、ラジエータ8の入口部から出口部にかけて圧縮空気温度との温度差を積分した値が最大にできるという意味である。   In order to maximize the temperature difference between the temperature of the compressed air and the cooling water flowing in the radiator 8, the value obtained by integrating the temperature difference with the compressed air temperature from the inlet to the outlet of the radiator 8 can be maximized. It means that.

また、本実施の形態では、圧縮機1と圧縮空気回路部品(消音器3及び圧縮空気配管4)を車輪駆動モータ5の車両前方に設置させたことで、圧縮機1や圧縮空気回路部品から放射される騒音が乗員室からより遠ざかる方向に配置されることと、その騒音のうち車輪駆動モータ5により遮蔽されることにより、乗員室内の騒音を低減させることができる。   Further, in the present embodiment, the compressor 1 and the compressed air circuit components (the silencer 3 and the compressed air pipe 4) are installed in front of the vehicle of the wheel drive motor 5 so that the compressor 1 and the compressed air circuit components can be used. By arranging the radiated noise in a direction further away from the passenger compartment and by shielding the noise by the wheel drive motor 5, the noise in the passenger compartment can be reduced.

また、本実施の形態では、ラジエータ8と対向する位置に配置された圧縮空気回路に消音部材である消音器3を設置したので、圧縮機1から吐出される圧縮空気の騒音をこの消音器3にて低減できると共に、圧縮機1の表面積においてより冷却を行うことができる。つまり、圧縮機1から吐出される空気の温度は、ラジエタ8を通過して消音器3に当る空気温度と比較して高温となっているため、ラジエタ8を通過した空気と消音器表面の間で熱交換が行われ、すなわち圧縮機1から吐出される空気を冷却することができる。   Further, in the present embodiment, the silencer 3 as a silencer member is installed in the compressed air circuit disposed at a position facing the radiator 8, so that the noise of the compressed air discharged from the compressor 1 is reduced. In addition, the cooling can be performed more on the surface area of the compressor 1. That is, the temperature of the air discharged from the compressor 1 is higher than the temperature of the air that passes through the radiator 8 and impinges on the silencer 3, and therefore, between the air that has passed through the radiator 8 and the surface of the silencer. Thus, heat exchange is performed, that is, the air discharged from the compressor 1 can be cooled.

「第2の実施の形態」
図3は第2の実施の形態の燃料電池自動車を車両前方から車両後方に向かって見たときの概略正面図である。
“Second Embodiment”
FIG. 3 is a schematic front view of the fuel cell vehicle according to the second embodiment as viewed from the front of the vehicle toward the rear of the vehicle.

本実施の形態の燃料電池自動車では、大きさの異なる2つの消音器3A、3Bを、第1の実施の形態と同様に車両前方から見てラジエータ8と対向する位置に配置し、一方の消音器3Aを圧縮機1の吐出口11に直接設置させている。   In the fuel cell vehicle according to the present embodiment, two silencers 3A and 3B having different sizes are arranged at positions facing the radiator 8 when viewed from the front of the vehicle, as in the first embodiment. The apparatus 3A is directly installed at the discharge port 11 of the compressor 1.

すなわち、本実施の形態では、大きさの異なる2つの消音器3A、3Bを用い、これらのうち容積の小さい一方の消音器3A(以下、第1消音器3Aという)を圧縮機1の吐出口11に配管を使用せずに直接接続すると共に、他方の消音器3B(以下、第2消音器3Bという)を第1消音器3Aに連結管12にて接続させ、それら第1消音器3A及び第2消音器3Bを、車輪駆動モータ5の車両前方にラジエータ8と対向する位置に配置させている。   That is, in this embodiment, two silencers 3A and 3B having different sizes are used, and one of these silencers 3A (hereinafter referred to as the first silencer 3A) having a small volume is used as the discharge port of the compressor 1. 11 is connected directly without using a pipe, and the other silencer 3B (hereinafter referred to as the second silencer 3B) is connected to the first silencer 3A via the connecting pipe 12, and the first silencer 3A and The second silencer 3 </ b> B is disposed at a position facing the radiator 8 in front of the wheel drive motor 5.

すなわち、本実施の形態では、消音できる周波数が比較的高い小さい容積の第1消音器3Aを圧縮機1の吐出口11に直接接続すると共に、他方の容積が大きく、比較的周波数の低い音を消音できる第2消音器3Bを、組付けバラツキを吸収できる蛇腹状の連結菅12にて接続させ、それらを車輪駆動モータ5の上側の車両前方側に、ラジエータ8と対向する位置に配置させている。   That is, in the present embodiment, the first silencer 3A having a small volume with a relatively high frequency that can be silenced is directly connected to the discharge port 11 of the compressor 1, and the other volume is large and a sound with a relatively low frequency is produced. The second silencer 3B that can mute is connected by a bellows-like connecting rod 12 that can absorb the variation in assembly, and these are arranged on the vehicle front side above the wheel drive motor 5 at a position facing the radiator 8. Yes.

本実施の形態の燃料電池自動車によれば、消音器3を圧縮機1の吐出口11に直接設けることによって、この消音器3と圧縮機1に接続させるための配管が不要となるばかりか、放射音が一番発生し易い個所(圧縮機1から出たところ)で騒音をすぐに低減させることができるため、乗員室内の騒音を低減することができる。また、消音器3の断面積を配管の断面積よりも大きくすることで、最も高温な部分での放熱量を増加させて、圧縮空気温度を効率良く低減できる。   According to the fuel cell vehicle of the present embodiment, by providing the silencer 3 directly at the discharge port 11 of the compressor 1, not only piping for connecting the silencer 3 and the compressor 1 is required, Since the noise can be immediately reduced at the place where the radiated sound is most likely to be generated (where it comes out of the compressor 1), the noise in the passenger compartment can be reduced. Moreover, by making the cross-sectional area of the silencer 3 larger than the cross-sectional area of the pipe, the amount of heat radiation at the hottest portion can be increased, and the compressed air temperature can be efficiently reduced.

また、本実施の形態の燃料電池自動車によれば、消音器3を2つ以上設置することで表面積を大きくすることができるため、ラジエータ後流空気での冷却効果が増大し、冷却性能をより一層向上させることができる。   In addition, according to the fuel cell vehicle of the present embodiment, since the surface area can be increased by installing two or more silencers 3, the cooling effect in the air after the radiator is increased, and the cooling performance is further improved. This can be further improved.

また、本実施の形態の燃料電池自動車によれば、大きさの異なる消音器3を2つ以上設置することで、異なる周波数の騒音を低減することが可能となる。   Moreover, according to the fuel cell vehicle of the present embodiment, it is possible to reduce noise of different frequencies by installing two or more silencers 3 having different sizes.

「第3の実施の形態」
図4は第3の実施の形態の燃料電池自動車を車両前方から車両後方に向かって見たときの概略正面図である。
“Third Embodiment”
FIG. 4 is a schematic front view of the fuel cell vehicle according to the third embodiment as viewed from the front of the vehicle toward the rear of the vehicle.

本実施の形態の燃料電池自動車では、圧縮機1の吐出口11と圧縮空気回路部品である消音器3を、前記ラジエータ8を冷却するラジエータファン9のファン駆動モータ13と対向しない位置に配置させている。すなわち、この燃料電池自動車では、ラジエータファン9の中央に設けられたファン駆動モータ13と対向しない位置に、前記圧縮機1の吐出口11と第1消音器3A及び第2消音器3Bを配置させている。   In the fuel cell vehicle according to the present embodiment, the discharge port 11 of the compressor 1 and the silencer 3 that is a compressed air circuit component are arranged at positions that do not face the fan drive motor 13 of the radiator fan 9 that cools the radiator 8. ing. That is, in this fuel cell vehicle, the discharge port 11 of the compressor 1, the first silencer 3A, and the second silencer 3B are arranged at a position that does not face the fan drive motor 13 provided in the center of the radiator fan 9. ing.

本実施の形態の燃料電池自動車によれば、圧縮機1と圧縮空気回路部品をラジエータ8と対向する位置に配置する際に、ラジエータファン9の中央部に設置されているファン駆動モータ13と対向させないことで、より風量の多い空気を圧縮機1の吐出口11及び第1消音器3A及び第2消音器3Bに当てることができるため冷却性能を大幅に向上させることができる。   According to the fuel cell vehicle of the present embodiment, when the compressor 1 and the compressed air circuit component are disposed at a position facing the radiator 8, it faces the fan drive motor 13 installed at the center of the radiator fan 9. By not doing so, since air with a larger air volume can be applied to the discharge port 11 and the first silencer 3A and the second silencer 3B of the compressor 1, the cooling performance can be greatly improved.

「第4の実施の形態」
図5は第4の実施の形態の燃料電池自動車におけるラジエータファンの回転数制御を示すフローチャートである。
“Fourth Embodiment”
FIG. 5 is a flowchart showing the rotation speed control of the radiator fan in the fuel cell vehicle according to the fourth embodiment.

第4の実施の形態の燃料電池自動車では、ラジエータ8に設置されるラジエータファン9の回転数制御を、冷却水の熱交換に必要な風量に加え、圧縮空気の冷却に必要な風量も併せて制御する。   In the fuel cell vehicle according to the fourth embodiment, the rotational speed control of the radiator fan 9 installed in the radiator 8 is added to the air volume necessary for heat exchange of the cooling water, and the air volume necessary for cooling the compressed air is also included. Control.

具体的な制御は、始めにステップS1の処理で、圧縮機1から吐出された圧縮空気温度(Tc)を計測する。次のステップS2の処理では、計測された圧縮空気温度があるしきい値(Tx)よりも高いか否かを判断する。ステップS2の判断処理で圧縮空気温度がしきい値よりも低い場合(NOの場合)は、次のステップS3の処理で、冷却水の温調に必要なラジエータファン9の回転数(図5のフローチャートではラジファン回転数と記載している)を算出する。   Specifically, first, in step S1, the compressed air temperature (Tc) discharged from the compressor 1 is measured. In the process of the next step S2, it is determined whether or not the measured compressed air temperature is higher than a certain threshold value (Tx). If the compressed air temperature is lower than the threshold value in the determination process of step S2 (in the case of NO), the rotation speed of the radiator fan 9 (in FIG. 5) required for temperature control of the cooling water is processed in the next step S3. In the flowchart, it is described as the number of rotations of the radio fan).

また、ステップS2の判断処理で圧縮空気温度がしきい値よりも高い場合(YESの場合)は、次のステップS4で、外気温度とラジエタ入口水温から圧縮空気温度をあるしきい値以下にするのに必要なラジエータファン9の回転数を算出する。   Further, when the compressed air temperature is higher than the threshold value in the determination process in step S2 (in the case of YES), in the next step S4, the compressed air temperature is set to a certain threshold value or less from the outside air temperature and the radiator inlet water temperature. The number of revolutions of the radiator fan 9 necessary for the calculation is calculated.

そして、ステップS3の処理とステップS4の処理が終了したら、次のステップS5の処理で、ステップS3とステップS4から算出されたラジファン回転数のうち大きい方の回転数を選択しラジエータファン9に指令を送る。   When the processing of step S3 and the processing of step S4 are completed, in the next processing of step S5, the larger one of the fan rotation speeds calculated from step S3 and step S4 is selected and the radiator fan 9 is commanded. Send.

このように、本実施の形態によれば、圧縮機1から吐出された圧縮空気の温度に合わせてラジエータファン9の回転数を制御することができるため、燃料電池システム全体の効率が最も良い運転を実現できる。   As described above, according to the present embodiment, since the rotational speed of the radiator fan 9 can be controlled in accordance with the temperature of the compressed air discharged from the compressor 1, the operation with the best efficiency of the entire fuel cell system is performed. Can be realized.

また、本実施の形態の燃料電池自動車では、ラジエータファン9の回転数は冷却システムから要求される風量だけでなく、圧縮空気を冷却するのに必要な風量も考慮に入れて制御するため、循環する冷却水量を低減したりして、冷却水ポンプの消費電力を低減するなど、燃料電池自動車全体での効率の良い運転が可能となる。   Further, in the fuel cell vehicle according to the present embodiment, the rotation speed of the radiator fan 9 is controlled not only by the air volume required from the cooling system but also by taking into consideration the air volume necessary for cooling the compressed air. This makes it possible to efficiently operate the fuel cell vehicle as a whole, for example, by reducing the amount of cooling water to be used and reducing the power consumption of the cooling water pump.

以上、本発明を適用した具体的な実施の形態について説明したが、上述の実施の形態は本発明の一例であり、本発明は、これら実施の形態に制限されることはない。   Although specific embodiments to which the present invention is applied have been described above, the above-described embodiments are examples of the present invention, and the present invention is not limited to these embodiments.

第1の実施の形態の燃料電池自動車をモータールーム上方から見たときの概略平面図である。It is a schematic plan view when the fuel cell automobile of the first embodiment is viewed from above the motor room. 図1の燃料電池自動車を側面から見たときの概略側面図である。It is a schematic side view when the fuel cell vehicle of FIG. 1 is seen from the side. 第2の実施の形態の燃料電池自動車を車両前方から車両後方に向かって見たときの概略正面図である。It is a schematic front view when the fuel cell vehicle of 2nd Embodiment is seen toward the vehicle rear from the vehicle front. 第3の実施の形態の燃料電池自動車を車両前方から車両後方に向かって見たときの概略正面図である。It is a schematic front view when the fuel cell vehicle of 3rd Embodiment is seen toward the vehicle rear from the vehicle front. 第4の実施の形態の燃料電池自動車におけるラジエータファンの回転数制御を示すフローチャートである。It is a flowchart which shows the rotation speed control of the radiator fan in the fuel cell vehicle of 4th Embodiment. ラジエータ内を流れる冷却水と空気温度の関係を示す特性図である。It is a characteristic view which shows the relationship between the cooling water which flows the inside of a radiator, and air temperature.

符号の説明Explanation of symbols

1…圧縮機
2‥圧縮機駆動モータ
3…消音器(圧縮空気回路部品)
3A…第1消音器(圧縮空気回路部品)
3B…第2消音器(圧縮空気回路部品)
4…圧縮空気配管
5‥車輪駆動モータ
6…減速機
7…アフタークーラ
8…ラジエータ
9‥ラジエータファン
10‥過湿器
11…燃料電池
13…ファン駆動モータ
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Compressor drive motor 3 ... Silencer (compressed air circuit components)
3A ... First silencer (compressed air circuit component)
3B ... 2nd silencer (compressed air circuit parts)
4 ... Compressed air piping 5 ... Wheel drive motor 6 ... Reducer 7 ... After cooler 8 ... Radiator 9 ... Radiator fan 10 ... Super humidifier 11 ... Fuel cell 13 ... Fan drive motor

Claims (9)

燃料ガスと酸化剤ガスとの電気化学反応によって発電する燃料電池と、前記燃料電池へ圧縮した空気を酸化剤ガスとして供給する圧縮機と、前記圧縮機と前記燃料電池間の圧縮空気回路上に設置される圧縮空気回路部品と、前記燃料電池など冷却を必要とする部品を冷却する流体と外気との間で熱交換を行うラジエータとを備えた燃料電池自動車において、
前記圧縮機と前記圧縮空気回路部品の少なくとも一つの部品を、車両前方から見て前記ラジエータと対向する位置に配置した
ことを特徴とする燃料電池自動車。
A fuel cell that generates electricity by an electrochemical reaction between a fuel gas and an oxidant gas; a compressor that supplies compressed air to the fuel cell as an oxidant gas; and a compressed air circuit between the compressor and the fuel cell. In a fuel cell vehicle comprising a compressed air circuit component to be installed, and a radiator that exchanges heat between a fluid that cools a component that requires cooling, such as the fuel cell, and outside air,
At least one component of the compressor and the compressed air circuit component is disposed at a position facing the radiator when viewed from the front of the vehicle.
請求項1に記載の燃料電池自動車であって、
前記圧縮機の吐出口と前記圧縮空気回路部品を、前記ラジエータを冷却するラジエータファンのファン駆動モータと対向しない位置に配置した
ことを特徴とする燃料電池自動車。
The fuel cell vehicle according to claim 1,
The fuel cell vehicle, wherein the discharge port of the compressor and the compressed air circuit component are disposed at a position not facing a fan drive motor of a radiator fan that cools the radiator.
請求項1又は請求項2に記載の燃料電池自動車であって、
前記圧縮機から吐出された圧縮空気が、前記ラジエータと対向する位置に配置した圧縮空気回路部品内で、該ラジエータ内を流れる冷却水の流れ方向と略同じ方向に流れる
ことを特徴とする燃料電池自動車。
The fuel cell vehicle according to claim 1 or 2,
Compressed air discharged from the compressor flows in substantially the same direction as the flow direction of cooling water flowing in the radiator in a compressed air circuit component disposed at a position facing the radiator. Car.
少なくとも請求項1から請求項3の何れか一つに記載の燃料電池自動車であって、
前記圧縮機と前記圧縮空気回路部品を、モータールーム内に配置された駆動モータユニットの車両前方に支持させた
ことを特徴とする燃料電池自動車。
A fuel cell vehicle according to at least one of claims 1 to 3,
The fuel cell automobile, wherein the compressor and the compressed air circuit component are supported in front of a drive motor unit disposed in a motor room.
少なくとも請求項1から請求項4の何れか一つに記載の燃料電池自動車であって、
前記ラジエータと対向する位置に配置された圧縮空気回路に消音部材を設置した
ことを特徴とする燃料電池自動車。
A fuel cell vehicle according to at least one of claims 1 to 4,
A fuel cell vehicle, wherein a silencer member is installed in a compressed air circuit disposed at a position facing the radiator.
少なくとも請求項1から請求項5の何れか一つに記載の燃料電池自動車であって、
前記ラジエータと対向する位置に配置された圧縮機の吐出口に直接消音部材を設置した
ことを特徴とする燃料電池自動車。
A fuel cell vehicle according to at least one of claims 1 to 5,
A fuel cell vehicle, wherein a silencer member is directly installed at a discharge port of a compressor disposed at a position facing the radiator.
請求項6に記載の燃料電池自動車であって、
前記消音部材を少なくとも2つ以上配置した
ことを特徴とする燃料電池自動車。
The fuel cell vehicle according to claim 6,
At least two or more of the sound deadening members are arranged. A fuel cell vehicle.
請求項7に記載の燃料電池自動車であって、
前記2つの消音部材の大きさが異なる
ことを特徴とする燃料電池自動車。
The fuel cell vehicle according to claim 7,
A fuel cell vehicle characterized in that the two sound deadening members have different sizes.
少なくとも請求項1から請求項8の何れか一つに記載の燃料電池自動車であって、
前記ラジエータに設置されるラジエータファンの回転数制御を、冷却水の熱交換に必要な風量に加え、圧縮空気の冷却に必要な風量も併せて制御する
ことを特徴とする燃料電池自動車。
A fuel cell vehicle according to at least one of claims 1 to 8,
A fuel cell vehicle characterized by controlling the rotational speed of a radiator fan installed in the radiator in addition to an air volume necessary for heat exchange of cooling water and an air volume necessary for cooling compressed air.
JP2005244460A 2005-08-25 2005-08-25 Vehicle powered by fuel cell Pending JP2007060840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244460A JP2007060840A (en) 2005-08-25 2005-08-25 Vehicle powered by fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244460A JP2007060840A (en) 2005-08-25 2005-08-25 Vehicle powered by fuel cell

Publications (1)

Publication Number Publication Date
JP2007060840A true JP2007060840A (en) 2007-03-08

Family

ID=37923793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244460A Pending JP2007060840A (en) 2005-08-25 2005-08-25 Vehicle powered by fuel cell

Country Status (1)

Country Link
JP (1) JP2007060840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416360B1 (en) 2012-10-17 2014-08-07 현대자동차 주식회사 Motor room of electric vehicle

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259721A (en) * 1997-03-18 1998-09-29 Toyota Motor Corp Power cooling device for hybrid car
JP2001253248A (en) * 2000-01-06 2001-09-18 General Motors Corp <Gm> Arrangement for electrochemical engine
JP2002107094A (en) * 2000-09-29 2002-04-10 Calsonic Kansei Corp Heat exchanger for vehicle
JP2002373691A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp On-vehicle fuel cell system
JP2002373687A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Noise silencing for fuel-cell-mounted equipment
JP2003118396A (en) * 2001-10-12 2003-04-23 Hitachi Ltd Fuel cell automobile
JP2003182379A (en) * 2001-09-26 2003-07-03 Honda Motor Co Ltd Fuel cell mounted battery-powered car and fuel cell system box
JP2003285647A (en) * 2002-03-28 2003-10-07 Honda Motor Co Ltd Fuel battery automobile
WO2004020237A1 (en) * 2002-08-27 2004-03-11 Toyota Jidosha Kabushiki Kaisha Motor vehicle mounted with fuel cell
JP2004125204A (en) * 2002-09-30 2004-04-22 Nissan Motor Co Ltd Heat exchanger and automobile equipped with heat exchanger
JP2004194389A (en) * 2002-12-09 2004-07-08 Nissan Motor Co Ltd Mounting structure of oil cooler for driving motor unit
JP2005153853A (en) * 2003-08-26 2005-06-16 Toyota Motor Corp Moving body
JP2005153852A (en) * 2003-08-26 2005-06-16 Toyota Motor Corp Moving body

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259721A (en) * 1997-03-18 1998-09-29 Toyota Motor Corp Power cooling device for hybrid car
JP2001253248A (en) * 2000-01-06 2001-09-18 General Motors Corp <Gm> Arrangement for electrochemical engine
JP2002107094A (en) * 2000-09-29 2002-04-10 Calsonic Kansei Corp Heat exchanger for vehicle
JP2002373691A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp On-vehicle fuel cell system
JP2002373687A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Noise silencing for fuel-cell-mounted equipment
JP2003182379A (en) * 2001-09-26 2003-07-03 Honda Motor Co Ltd Fuel cell mounted battery-powered car and fuel cell system box
JP2003118396A (en) * 2001-10-12 2003-04-23 Hitachi Ltd Fuel cell automobile
JP2003285647A (en) * 2002-03-28 2003-10-07 Honda Motor Co Ltd Fuel battery automobile
WO2004020237A1 (en) * 2002-08-27 2004-03-11 Toyota Jidosha Kabushiki Kaisha Motor vehicle mounted with fuel cell
JP2004125204A (en) * 2002-09-30 2004-04-22 Nissan Motor Co Ltd Heat exchanger and automobile equipped with heat exchanger
JP2004194389A (en) * 2002-12-09 2004-07-08 Nissan Motor Co Ltd Mounting structure of oil cooler for driving motor unit
JP2005153853A (en) * 2003-08-26 2005-06-16 Toyota Motor Corp Moving body
JP2005153852A (en) * 2003-08-26 2005-06-16 Toyota Motor Corp Moving body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416360B1 (en) 2012-10-17 2014-08-07 현대자동차 주식회사 Motor room of electric vehicle

Similar Documents

Publication Publication Date Title
JP4557738B2 (en) Fuel cell vehicle cooling system
JP6668161B2 (en) Turbocharger
JP2011116347A (en) Environment-friendly cooling system for vehicle
US20200166050A1 (en) Air compressor
JP2015214324A (en) Cooling system of automobile
WO2013111367A1 (en) Fuel cell vehicle
JPWO2013031287A1 (en) Waste heat utilization equipment
JP4323307B2 (en) Vehicle heat exchanger system
JP5205041B2 (en) air compressor
JP2008267257A (en) Supercharger
JP2010274675A (en) Fuel cell system
JP4103887B2 (en) Hybrid vehicle
JP2003118396A (en) Fuel cell automobile
CN112943436B (en) Air duct type cooling frequency conversion unit and layout method thereof
JP2003288908A (en) Fuel cell automobile
JP2000097040A (en) Engine-driven power generating set
KR20180126280A (en) Electric super-charger and supercharger system using the thereof
JP2007060840A (en) Vehicle powered by fuel cell
JP2007001514A (en) Heat exchanger for fuel cell electric vehicle
JP2020149778A (en) vehicle
JP5760386B2 (en) Electric assist turbocharger cooling device
JP5656554B2 (en) Inverter-integrated electric compressor
JP4831817B2 (en) Turbine power generator using EGR gas
JP6561595B2 (en) Fuel cell system
JP2007090962A (en) Arrangement configuration of radiator peripheral part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206