JP2007001514A - Heat exchanger for fuel cell electric vehicle - Google Patents

Heat exchanger for fuel cell electric vehicle Download PDF

Info

Publication number
JP2007001514A
JP2007001514A JP2005186288A JP2005186288A JP2007001514A JP 2007001514 A JP2007001514 A JP 2007001514A JP 2005186288 A JP2005186288 A JP 2005186288A JP 2005186288 A JP2005186288 A JP 2005186288A JP 2007001514 A JP2007001514 A JP 2007001514A
Authority
JP
Japan
Prior art keywords
heat exchanger
fuel cell
air
cell vehicle
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005186288A
Other languages
Japanese (ja)
Inventor
Takayuki Terasaki
貴行 寺崎
Naohito Yamada
尚人 山田
Kenji Fushimi
憲二 伏見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005186288A priority Critical patent/JP2007001514A/en
Publication of JP2007001514A publication Critical patent/JP2007001514A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for a fuel cell electric vehicle capable of realizing compatibility between reduction of a removal heat amount heat-released to a coolant and reduction of noise as a problem inherent to the fuel cell electric vehicle. <P>SOLUTION: In the heat exchanger for the fuel cell electric vehicle for adjusting a temperature of air fed to a fuel cell stack to a suitable temperature, variation is given to thickness of a portion applied with air and a portion not applied with air and the thickness of the portion applied with air is made thinner than the thickness of the portion not applied with air. For example, the thickness of a vehicle front part F of an intake side manifold part 14 and an exhaust side manifold part 16 is made thinner than the thickness of a vehicle rear part E. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池自動車用の熱交換器に関し、詳細には、抜熱量及び騒音の低減技術に関する。   The present invention relates to a heat exchanger for a fuel cell vehicle, and more particularly, to a technique for reducing heat removal and noise.

近年の自動車の排ガスによる大気汚染や二酸化炭素による地球温暖化の問題に対処するために、クリーンな排気及び高効率のエネルギ変換を可能とする燃料電池を搭載した燃料電池自動車が注目されている。   In order to address the problems of air pollution caused by exhaust gas from automobiles and global warming caused by carbon dioxide in recent years, fuel cell automobiles equipped with fuel cells that enable clean exhaust and highly efficient energy conversion have attracted attention.

燃料電池自動車は、その環境性能とともに内燃機関を伴わないことによる静粛性も注目されており、その構成部品には、従来の内燃機関自動車向けのものよりも高い静粛性を有することが求められている。問題となっている主な騒音発生源としては、燃料電池スタックに空気を供給する空気供給部品、すなわちコンプレッサ、サイレンサ、アフタークーラ、及びそれらをつなぐ配管があげられる。   Fuel cell vehicles are attracting attention as well as their environmental performance and quietness due to the absence of an internal combustion engine, and their components are required to have higher quietness than those for conventional internal combustion engine vehicles. Yes. The main noise generating sources in question include air supply parts that supply air to the fuel cell stack, that is, a compressor, a silencer, an after cooler, and piping connecting them.

これら自動車構成部品からの発音を低減する手段としては、例えば構成部材の肉厚(厚み)を増加させること、固有振動数を変更すること、放射音を低減すること、等の発音低減手段が有効である。   As means for reducing sound from these automobile components, sound reduction means such as increasing the thickness (thickness) of components, changing the natural frequency, reducing radiated sound, etc. are effective. It is.

一方、燃料電池自動車は、内燃機関自動車に比べてシステムが複雑であり、構成部品点数が多く且つ燃料電池スタック本体及び補機類の発熱量が大きいため、それらの冷却要求が高いことが問題となっている。そのため、燃料電池自動車には、被冷却部品から冷媒へ移動する熱量である抜熱量を低減することが求められる。抜熱量低減手段としては、例えば大気への放熱を効率良く行うことが解決対策の一つとして挙げられる。   On the other hand, fuel cell vehicles have a more complex system than internal combustion engine vehicles, have a large number of components, and generate large amounts of heat in the fuel cell stack body and auxiliary machinery. It has become. Therefore, fuel cell vehicles are required to reduce the amount of heat removed, which is the amount of heat that moves from the component to be cooled to the refrigerant. As a heat extraction reduction means, for example, one of the solution measures is to efficiently dissipate heat to the atmosphere.

このように、燃料電池自動車用の空気部品には、外気への放熱を妨げない手法により騒音低減を達成する必要がある。遮音性能と外気への放熱性能を鑑みたものとしては、例えば、特許文献1に記載された自動車用オイルパンがある。かかる自動車用オイルパンは、浅底部と深底部の二部位に分かれたオイルパンの遮音構造とし、深底部の側面のみを遮音することで、全体を覆うときに比べ90%以上の遮音性能が得られるという知見がある。
特開平8−254111号公報(第2頁および第3頁、第2図および第3図参照)
Thus, it is necessary to achieve noise reduction for air components for fuel cell vehicles by a technique that does not hinder heat dissipation to the outside air. For example, there is an oil pan for automobiles described in Patent Document 1 in view of sound insulation performance and heat dissipation performance to the outside air. Such an oil pan for automobiles has a sound insulation structure of an oil pan divided into two parts, a shallow bottom part and a deep bottom part, and by insulating only the side surface of the deep bottom part, a sound insulation performance of 90% or more is obtained compared to when covering the whole. There is knowledge that
JP-A-8-254111 (refer to page 2 and page 3, FIG. 2 and FIG. 3)

ところで、燃料電池自動車では、量産車で一般的な空冷式冷却に代わって放熱要求の大きさから水冷式冷却器を搭載することが一般的である。また、燃料電池自動車では、量産車に比べて車両構成部品全体の要求放熱量が多く、水冷式空気冷却器が冷媒へ放熱する抜熱量の低減が課題となっていた。   By the way, in a fuel cell vehicle, it is common to mount a water-cooled cooler instead of air-cooled cooling that is common in mass-produced vehicles because of the size of heat dissipation requirements. In addition, in fuel cell vehicles, the required heat dissipation amount of the entire vehicle components is larger than that of mass-produced vehicles, and reduction of the amount of heat removed from the water-cooled air cooler to the refrigerant has been an issue.

一方、燃料電池自動車特有の課題として、前記放熱の問題に加えて騒音要求が高いことが挙げられる。騒音対策としては、前記したように構成部材の肉厚を増加させ、固有振動数を変更し、放射音を低減することが有効であるが、厚肉化よる遮音は重量増大とともに断熱効果を持つため、外気への放熱が妨げられ冷媒への抜熱量が増大するという問題点を有する。そのため、燃料電池自動車特有の問題点である大気への放熱効果に着目した遮音機構を備えた熱交換器は、これまでに存在していない。   On the other hand, as a problem specific to a fuel cell vehicle, there is a high noise requirement in addition to the heat dissipation problem. As a countermeasure against noise, it is effective to increase the thickness of the constituent members, change the natural frequency, and reduce the radiated sound as described above, but the sound insulation due to the thickening has a heat insulating effect as the weight increases. Therefore, there is a problem in that heat radiation to the outside air is hindered and the amount of heat removed to the refrigerant is increased. For this reason, there has not been a heat exchanger with a sound insulation mechanism that focuses on the heat dissipation effect to the atmosphere, which is a problem peculiar to fuel cell vehicles.

そこで、本発明は、燃料電池自動車特有の問題である、冷媒へ放熱する抜熱量の低減と騒音低減を両立することのできる燃料電池自動車用の熱交換器を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a heat exchanger for a fuel cell vehicle, which is a problem specific to a fuel cell vehicle, and can achieve both a reduction in the amount of heat released to the refrigerant and a reduction in noise.

本発明は、空気流れが発生する場所に配置され、燃料電池スタックに供給する空気の温度を適切な温度に調整する燃料電池自動車用の熱交換器であって、空気が当たる部位と空気の当たらない部位の厚みに変化を持たせ、該空気が当たる部位の肉厚を、該空気の当たらない部位の肉厚よりも薄くしたことを特徴とする。   The present invention is a heat exchanger for a fuel cell vehicle which is arranged at a place where an air flow is generated and adjusts the temperature of air supplied to a fuel cell stack to an appropriate temperature. It is characterized in that the thickness of the part not exposed to air is changed, and the thickness of the part exposed to the air is made thinner than the thickness of the part not exposed to the air.

本発明の燃料電池自動車用の熱交換器によれば、空気が当たる部位の肉厚を空気の当たらない部位の肉厚よりも薄くしたことで、外気への放熱効果が効率的に得られ、熱交換器内を流れる冷媒への抜熱量を低減させることができる。   According to the heat exchanger for a fuel cell automobile of the present invention, the thickness of the portion that is exposed to air is made thinner than the thickness of the portion that is not exposed to air, thereby effectively obtaining a heat dissipation effect to the outside air, The amount of heat removed to the refrigerant flowing in the heat exchanger can be reduced.

また、本発明の燃料電池自動車用の熱交換器によれば、熱交換器の部位の厚みに変化を持たせて肉厚を不均一なものとしていることから、肉厚によって決定される固有値を持たず、気柱共鳴を低減することができる。   Further, according to the heat exchanger for a fuel cell vehicle of the present invention, since the thickness of the portion of the heat exchanger is changed to make the thickness non-uniform, the eigenvalue determined by the thickness is Without having, air column resonance can be reduced.

したがって、本発明によれば、外気への放熱効果が効率的に得られ、冷媒への抜熱量を低減できることに加え、効果的な遮音性能を持つ燃料電池自動車用の熱交換器を提供することができる。   Therefore, according to the present invention, it is possible to provide a heat exchanger for a fuel cell vehicle having an effective sound insulation performance in addition to efficiently obtaining a heat radiation effect to the outside air and reducing a heat extraction amount to the refrigerant. Can do.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

「実施の形態1」
先ず、燃料電池用空気供給装置のシステム構成について説明する。図1は、燃料電池用空気供給装置のシステム図である。
“Embodiment 1”
First, the system configuration of the fuel cell air supply device will be described. FIG. 1 is a system diagram of an air supply device for a fuel cell.

燃料電池スタック9に送られる空気は、消音手段である樹脂製エアダクト4から導入されて音を低減させた後、ケミカルフィルタ5によって窒素酸化物や硫黄酸化物等の不純物が除去され、空気圧縮機6によって加圧され、別の音低減装置であるサイレンサ7によって圧力脈動を低減させた後、熱交換器8によって適切な温度に調整されて燃料電池スタック9へ供給される。   The air sent to the fuel cell stack 9 is introduced from a resin air duct 4 which is a sound deadening means to reduce sound, and then impurities such as nitrogen oxides and sulfur oxides are removed by the chemical filter 5, and the air compressor 6, pressure pulsation is reduced by a silencer 7, which is another sound reduction device, and then adjusted to an appropriate temperature by a heat exchanger 8 and supplied to the fuel cell stack 9.

発熱部品である圧縮機6、燃料電池スタック9及び熱交換器8は、放熱させるために冷媒流路3を流れる冷却水を必要とする。冷却水は、上記各部品から受熱した後、ラジエータ10を介して外気へ放熱することによって冷却される。なお、図1中、符号1は空気流路、符号2は水素流路を示している。   The compressor 6, the fuel cell stack 9, and the heat exchanger 8, which are heat generating components, require cooling water flowing through the refrigerant flow path 3 in order to dissipate heat. The cooling water is cooled by receiving heat from the above components and then radiating heat to the outside air via the radiator 10. In FIG. 1, reference numeral 1 denotes an air flow path, and reference numeral 2 denotes a hydrogen flow path.

次に、前記した燃料電池用空気供給装置の車両(自動車)への搭載例を説明する。図2は、燃料電池用空気供給装置の車両への搭載例を示した概略図である。   Next, an example of mounting the above-described fuel cell air supply device on a vehicle (automobile) will be described. FIG. 2 is a schematic view showing an example of mounting the fuel cell air supply device on a vehicle.

燃料電池スタック9等の燃料電池車特有の部品以外は、基本的に量産車(内燃機関自動車)と同様の位置で、車両11に乗る搭乗者12の乗車位置も同様である。燃料電池スタック9は、搭乗者12の足元に設置される。燃料電池スタック9を除く主な部品は、量産車のエンジンルームに相当する車両前方部に搭載される。外気は、車両前方からの外気と車両の相対速度の差およびラジエータ10後方に搭載されるラジエータファン13によって強制的に導入される。   Except for the parts specific to the fuel cell vehicle such as the fuel cell stack 9, the position of the passenger 12 who rides on the vehicle 11 is basically the same as the mass production vehicle (internal combustion engine vehicle). The fuel cell stack 9 is installed at the feet of the passenger 12. The main parts excluding the fuel cell stack 9 are mounted on the front part of the vehicle corresponding to the engine room of a mass-produced vehicle. The outside air is forcibly introduced by a difference between the outside air from the front of the vehicle and the relative speed of the vehicle, and a radiator fan 13 mounted behind the radiator 10.

次に、本実施の形態の燃料電池自動車用の熱交換器(空気冷却装置)について説明する。図3は、燃料電池自動車用の熱交換器の一例を示す斜視図である。   Next, the heat exchanger (air cooling device) for the fuel cell vehicle according to the present embodiment will be described. FIG. 3 is a perspective view showing an example of a heat exchanger for a fuel cell vehicle.

本実施の形態の熱交換器8は、図2に示したように、空気流れが発生する場所である車両前方であって且つラジエータファン13の後方に配置される。この熱交換器8は、ラジエータファン13から供給される空気と、車両走行により発生する空気とを受けて冷却される。なお、空気流れの向きを、図2中矢印Xで示す。   As shown in FIG. 2, the heat exchanger 8 of the present embodiment is disposed in front of the vehicle where the air flow is generated and behind the radiator fan 13. The heat exchanger 8 is cooled by receiving air supplied from the radiator fan 13 and air generated by traveling the vehicle. The direction of air flow is indicated by an arrow X in FIG.

かかる熱交換器8は、図3に示す如く車両側面側(車両進行方向と直交する車両幅方向に向く面側)に向けて設置される吸気側マニホールド部14と、この吸気側マニホールド部14からその内部に空気が流入する熱交換器本体15と、この熱交換器本体15から外部へ空気を吐出(排気)させる排気側マニホールド部16とから構成されている。   As shown in FIG. 3, the heat exchanger 8 includes an intake side manifold portion 14 installed toward the vehicle side surface (the surface side facing the vehicle width direction orthogonal to the vehicle traveling direction), and the intake side manifold portion 14. The heat exchanger main body 15 into which air flows into the inside thereof, and an exhaust side manifold portion 16 for discharging (exhausting) air from the heat exchanger main body 15 to the outside.

本実施の形態の熱交換器8では、空気が当たる部位と空気の当たらない部位の厚みに変化を持たせ、該空気が当たる部位の肉厚を、該空気の当たらない部位の肉厚よりも薄くしている。具体的には、吸気側マニホールド部14及び排気側マニホールド部16のうち、空気が当る車両前方部位Fの肉厚(厚み)を、空気が当たらない車両後方部位Eの肉厚よりも薄くしている。なお、空気が当たる部位と空気が当たらない部位の境界は、空気が全く当たらない位置と空気が当たる位置を厳密に分ける位置までは要求されないものである。   In the heat exchanger 8 of the present embodiment, the thickness of the portion that is exposed to air and the portion that is not exposed to air are changed, and the thickness of the portion that is exposed to air is made larger than the thickness of the portion that is not exposed to air. It is thin. Specifically, among the intake side manifold portion 14 and the exhaust side manifold portion 16, the thickness (thickness) of the vehicle front portion F where the air hits is made thinner than the thickness of the vehicle rear portion E where the air does not hit. Yes. It should be noted that the boundary between the portion that is exposed to air and the portion that is not exposed to air is not required to a position that strictly separates a position where no air is applied and a position where the air is applied.

このように、吸気側マニホールド部14及び排気側マニホールド部16の厚みに変化を与えるには、図4に示すように、配管内径と配管外径の中心位置C1、C2を偏心させて成形することで厚みに変化を与える。すなわち、配管内径の中心位置C1に対して配管外径の中心位置C2を、車両進行方向に対して車両後方側にずらすことで、空気が当る車両前方部位Fの肉厚を、空気が当たらない車両後方部位Eの肉厚よりも薄くする。   Thus, in order to change the thickness of the intake side manifold portion 14 and the exhaust side manifold portion 16, as shown in FIG. 4, the center positions C1 and C2 of the pipe inner diameter and the pipe outer diameter are eccentrically formed. To change the thickness. That is, by shifting the center position C2 of the pipe outer diameter relative to the center position C1 of the pipe inner diameter to the vehicle rear side with respect to the vehicle traveling direction, the thickness of the vehicle front portion F where the air hits does not hit the air. It is made thinner than the thickness of the vehicle rear portion E.

ところで、熱交換器8の主な発音部位は、吸気側マニホールド部14、排気側マニホールド部16及び熱交換器本体15の平面からであることが一般的に知られている。これら吸気側マニホールド部14及び排気側マニホールド部16からの発音は、管内の流体移動による気柱共鳴、及び流体の移動に伴い発生する渦からの発音が主要因である。共鳴は、発音体が自分が振動するときに出すのと等しい振動数の音を受けると自分も振動することによって発する。配管では、その肉厚や材質によって決定される固有値を有しており、気柱共鳴を発する。   By the way, it is generally known that the main sounding portions of the heat exchanger 8 are from the planes of the intake side manifold portion 14, the exhaust side manifold portion 16 and the heat exchanger body 15. Sound generation from the intake side manifold portion 14 and the exhaust side manifold portion 16 is mainly caused by air column resonance due to fluid movement in the pipe and sound generation from vortices generated due to fluid movement. Resonance is generated when the sounding body vibrates when it receives a sound of the same frequency as that produced when it vibrates. The pipe has an eigenvalue determined by its thickness and material, and emits air column resonance.

しかし、本実施の形態の熱交換器8によれば、吸気側マニホールド部14及び排気側マニホールド部16の空気が当たる車両前方部位Fの肉厚を、空気の当たらない車両後方部位Eの肉厚よりも薄したことで、走行に伴う前方からの外気流入による放熱効果を得ることができ、空気の当たる薄肉した部位において外気への放熱効果が効率的に得られ、熱交換器8内を流れる冷媒への抜熱量を低減させることができる。   However, according to the heat exchanger 8 of the present embodiment, the thickness of the vehicle front portion F where the air in the intake side manifold portion 14 and the exhaust side manifold portion 16 hits the wall thickness of the vehicle rear portion E where the air does not hit. Since it is thinner, it is possible to obtain a heat radiation effect due to the inflow of outside air from the front accompanying traveling, and a heat radiation effect to the outside air can be efficiently obtained in a thin portion where the air hits, and the heat flows in the heat exchanger 8. The amount of heat removed to the refrigerant can be reduced.

また、本実施の形態の熱交換器8によれば、吸気側マニホールド部14及び排気側マニホールド部16の部位によって厚みに変化を持たせて肉厚を不均一なものとしていることから、肉厚によって決定される固有値を持たず、前記した気柱共鳴を低減することが可能となる。   Further, according to the heat exchanger 8 of the present embodiment, since the thickness is changed by the portions of the intake side manifold portion 14 and the exhaust side manifold portion 16 to make the thickness uneven, It is possible to reduce the above-described air column resonance without having the eigenvalue determined by the above.

また、本実施の形態の熱交換器8によれば、マニホールド内部の流体移動に伴い発生する渦からの放射音発音の低減代が、車室内方向(車両後方部位E)が厚肉化されていることにより効果的に低減される。一般的に、流体移動に伴う放射音発生は周波数が高く、異音として搭乗者へ捉えられる為、放射音低減の効果は大きい。   Further, according to the heat exchanger 8 of the present embodiment, the amount of reduction in sound emission from the vortex generated by the fluid movement inside the manifold is increased in the vehicle interior direction (vehicle rear portion E). Is effectively reduced. Generally, the generation of radiated sound accompanying fluid movement has a high frequency and is captured by the occupant as an abnormal noise.

また、本実施の形態の熱交換器8によれば、配管内径と配管外径の中心位置C1、C2を偏心させて成形することで厚みに変化を与えているので、肉厚が不均一な配管を簡単に製造することができる。特に、配管内径と配管外径の中心位置C1、C2を偏心させれば、円周方向に連続的に肉厚が変化するため、気柱共鳴低減効果が大きい。   Further, according to the heat exchanger 8 of the present embodiment, since the thickness is changed by decentering the center positions C1 and C2 of the pipe inner diameter and the pipe outer diameter, the thickness is not uniform. Piping can be easily manufactured. In particular, if the center positions C1 and C2 of the pipe inner diameter and the pipe outer diameter are decentered, the wall thickness continuously changes in the circumferential direction, so that the effect of reducing air column resonance is great.

以上、本実施の形態の熱交換器8によれば、冷媒への抜熱量を低減できることに加え、効果的な遮音性能を持つ車両用熱交換器を提供することができる。   As described above, according to the heat exchanger 8 of the present embodiment, it is possible to provide a vehicle heat exchanger having an effective sound insulation performance in addition to reducing the amount of heat extracted from the refrigerant.

「実施の形態2」
本実施の形態では、図5に示すように、熱交換器8をラジエータファン13の後方に配置し、このラジエータファン13から強制的に吹き付けられる空気(冷風)と、車両走行により受ける空気とで熱交換させた例である。
Embodiment 2”
In the present embodiment, as shown in FIG. 5, the heat exchanger 8 is arranged behind the radiator fan 13, and the air (cold air) forcedly blown from the radiator fan 13 and the air received by the vehicle running are This is an example of heat exchange.

この実施の形態の熱交換器8では、吸気側マニホールド部14及び排気側マニホールド部16の肉厚を不均一にした実施の形態1の構成に加えて、熱交換器本体15の空気が当たる部位と空気が当たらない部位の厚みに変化を持たせている。具体的には、車両進行方向と反対側である車室側に向く熱交換器本体15の背面部B(図5中網掛けせ示す)を除く前面部Fの厚みを、背面部Bの厚みよりも薄くしている。   In the heat exchanger 8 of this embodiment, in addition to the configuration of the first embodiment in which the thicknesses of the intake side manifold portion 14 and the exhaust side manifold portion 16 are not uniform, the portion of the heat exchanger main body 15 that is exposed to air And the thickness of the part where the air does not hit is changed. Specifically, the thickness of the front surface portion F excluding the back surface portion B (shaded in FIG. 5) of the heat exchanger body 15 facing the passenger compartment side opposite to the vehicle traveling direction is the thickness of the back surface portion B. It is thinner.

本実施の形態の熱交換器8によれば、車両走行により吹き付けられる空気に加えて、ラジエータファン13により強制的に吹き付けられる空気により、外気への放熱効果がより一層効率的に得られ、冷媒への抜熱量が低減するとに加えて、効果的な遮音性能も得られる。特に、車室内騒音への影響が大きい運転手前方に配置される熱交換器本体15の車室側に向いた部位を肉厚化することで、高い遮音性を得ることができる。   According to the heat exchanger 8 of the present embodiment, the heat radiation effect to the outside air can be obtained more efficiently by the air forcedly blown by the radiator fan 13 in addition to the air blown by traveling of the vehicle. In addition to a reduction in the amount of heat extracted, effective sound insulation performance is also obtained. In particular, by increasing the thickness of the portion of the heat exchanger body 15 that is disposed in front of the driver that has a large influence on the vehicle interior noise and that faces the vehicle interior, high sound insulation can be obtained.

また、本実施の形態の熱交換器8によれば、車両アイドル停止時に比べて冷却要求の大きくなる走行中の冷媒への抜熱量を低減できる。   Further, according to the heat exchanger 8 of the present embodiment, it is possible to reduce the amount of heat removed to the running refrigerant that requires a greater cooling request than when the vehicle is idle.

なお、図5では、車室側に向く熱交換器本体15の背面部Bのみを肉厚にし、その他の部位を薄肉としたが、図6に示すように、車両走行によって発生する空気及びラジエータファン13によって強制的に吹き付けられる空気を受ける車両前方部位Fの厚みを薄くし、その他の部位の厚みを厚くするようにしてもよい。こうすれば、より一層、車室内騒音を低減させることができる。   In FIG. 5, only the back portion B of the heat exchanger body 15 facing the passenger compartment is thickened and the other portions are thinned. However, as shown in FIG. The thickness of the vehicle front portion F that receives air forcedly blown by the fan 13 may be reduced, and the thickness of other portions may be increased. By so doing, vehicle interior noise can be further reduced.

「実施の形態3」
本実施の形態では、図7に示すように、吸気側マニホールド部14を車両進行方向に向けると共に排気側マニホールド部16を車両進行方向とは反対の後方へ向けるようにして熱交換器8を配置した例である。
“Embodiment 3”
In the present embodiment, as shown in FIG. 7, the heat exchanger 8 is arranged such that the intake side manifold portion 14 is directed in the vehicle traveling direction and the exhaust side manifold portion 16 is directed to the rear opposite to the vehicle traveling direction. This is an example.

本実施の形態の熱交換器8では、空気が当たる吸気側マニホールド部14と熱交換器本体15の車両前方部位Fのみを薄肉とし、それ以外の熱交換器本体15の車両後方部位E(図7中網掛けで示す)を厚肉としている。冷却装置の特性上、冷却前の流体が流入する吸気側と冷却後の空気が流れる吐出側の熱交換器外表面は温度差が大きい。   In the heat exchanger 8 of the present embodiment, only the vehicle front portion F of the intake side manifold portion 14 and the heat exchanger main body 15 to which the air hits is made thin, and the vehicle rear portion E (see FIG. 7 (shown by shading) is thick. Due to the characteristics of the cooling device, there is a large temperature difference between the outer surface of the heat exchanger on the intake side where the fluid before cooling flows in and the discharge side where the air after cooling flows.

本実施の形態の熱交換器8によれば、熱交換器本体15の表面温度が高温となる部位、すなわち吸気側マニホールド部14及びその周辺部(熱交換器本体15の車両前方部位F)を空冷効果が効率的に得られる車両前方へ向けて設置することで、空冷効果が効率的に得られ、冷媒への抜熱量を減少させることができる。   According to the heat exchanger 8 of the present embodiment, the portion where the surface temperature of the heat exchanger main body 15 becomes high, that is, the intake side manifold portion 14 and its peripheral portion (the vehicle front portion F of the heat exchanger main body 15) are arranged. By installing toward the front of the vehicle where the air cooling effect can be obtained efficiently, the air cooling effect can be obtained efficiently, and the amount of heat removed to the refrigerant can be reduced.

なお、図7の吸気側マニホールド部14をラジエータファン13の後方に向けて配置するようにしてもよい。そうすれば、空冷効果がより一層効率的に得られ、冷媒への抜熱が少ない車両用熱交換器を得ることができる。   Note that the intake side manifold portion 14 of FIG. 7 may be disposed toward the rear of the radiator fan 13. If it does so, the air-cooling effect can be obtained much more efficiently and the heat exchanger for vehicles with little heat removal to a refrigerant can be obtained.

以上、本発明を適用した具体的な実施の形態について説明したが、本実施の形態は一例であり、これら実施の形態に本発明が制限されることはない。   The specific embodiments to which the present invention is applied have been described above. However, the present embodiment is merely an example, and the present invention is not limited to these embodiments.

燃料電池用空気供給装置のシステム図である。It is a system diagram of an air supply device for a fuel cell. 燃料電池用空気供給装置の車両への搭載例を示した概略図である。It is the schematic which showed the example of mounting to the vehicle of the air supply apparatus for fuel cells. 燃料電池自動車用の熱交換器の一例を示し、(A)は熱交換器の斜視図、(B)はマニホールド部の断面図である。An example of the heat exchanger for fuel cell vehicles is shown, (A) is a perspective view of a heat exchanger, and (B) is a sectional view of a manifold part. 配管内径と配管外径の中心位置を偏心させて成形することでマニホールド部の厚みに変化を与えた例を示す断面図である。It is sectional drawing which shows the example which gave the change to the thickness of the manifold part by shape | molding eccentrically the center position of piping inner diameter and piping outer diameter. 実施の形態2の熱交換器の斜視図である。It is a perspective view of the heat exchanger of Embodiment 2. 実施の形態2の熱交換器の他の例を示す断面図である。It is sectional drawing which shows the other example of the heat exchanger of Embodiment 2. FIG. 実施の形態3の熱交換器の斜視図である。FIG. 6 is a perspective view of a heat exchanger according to Embodiment 3.

符号の説明Explanation of symbols

1…空気流路
2…水素流路
3…冷媒流路
4…エアダクト
5…ケミカルフィルタ
6…圧縮機
7…サイレンサ
8…熱交換器
9…燃料電池スタック
10…ラジエータ
13…ラジエータファン
14…吸気側マニホールド部
15…熱交換器本体
16…排気側マニホールド部
DESCRIPTION OF SYMBOLS 1 ... Air flow path 2 ... Hydrogen flow path 3 ... Refrigerant flow path 4 ... Air duct 5 ... Chemical filter 6 ... Compressor 7 ... Silencer 8 ... Heat exchanger 9 ... Fuel cell stack 10 ... Radiator 13 ... Radiator fan 14 ... Intake side Manifold part 15 ... Heat exchanger body 16 ... Exhaust side manifold part

Claims (10)

空気流れが発生する場所に配置され、燃料電池スタックに供給する空気の温度を適切な温度に調整する燃料電池自動車用の熱交換器であって、
前記空気が当たる部位と空気の当たらない部位の厚みに変化を持たせ、該空気が当たる部位の肉厚を、該空気の当たらない部位の肉厚よりも薄くした
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle, which is disposed in a place where an air flow is generated and adjusts the temperature of air supplied to the fuel cell stack to an appropriate temperature,
A fuel cell vehicle characterized in that the thickness of the portion that is exposed to air and the portion that is not exposed to air are changed, and the thickness of the portion that is exposed to air is made thinner than the thickness of the portion that is not exposed to air. Heat exchanger.
請求項1に記載の燃料電池自動車用の熱交換器であって、
前記空気流れを発生させる手段がラジエータファンである
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to claim 1,
The means for generating the air flow is a radiator fan. A heat exchanger for a fuel cell vehicle.
請求項1に記載の燃料電池自動車用の熱交換器であって、
前記空気流れを発生させる手段が車両走行による
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to claim 1,
The heat exchanger for a fuel cell vehicle, characterized in that the means for generating the air flow is traveling by a vehicle.
少なくとも請求項1から請求項3の何れか一つに記載される燃料電池自動車用の熱交換器であって、
前記空気が当たる部位を、表面温度分布を有する熱交換器の表面温度が高温となる部位とした
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to any one of claims 1 to 3, comprising:
The part which the air hits is a part where the surface temperature of the heat exchanger having a surface temperature distribution becomes high. A heat exchanger for a fuel cell vehicle.
少なくとも請求項1から請求項3の何れか一つに記載される燃料電池自動車用の熱交換器であって、
前記空気が当たる部位が熱交換器本体、給気側マニホールド部及び排気側マニホールド部である
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to any one of claims 1 to 3, comprising:
The heat exchanger for a fuel cell vehicle, characterized in that the portions where the air hits are a heat exchanger main body, an air supply side manifold portion, and an exhaust side manifold portion.
少なくとも請求項1から請求項5の何れか一つに記載される燃料電池自動車用の熱交換器であって、
車両搭載時に車室側に向く部位がそれ以外の部位に比べ厚肉化されている
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to any one of claims 1 to 5, comprising:
A heat exchanger for a fuel cell vehicle, characterized in that a portion facing toward the passenger compartment when mounted on a vehicle is thicker than other portions.
請求項5に記載の燃料電池自動車用の熱交換器であって、
前記吸気側マニホールド部及び排気側マニホールド部の配管内径と配管外径の中心位置を偏心させて厚みに変化を与えた
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to claim 5,
A heat exchanger for a fuel cell vehicle characterized in that the center position of the pipe inner diameter and the pipe outer diameter of the intake manifold section and the exhaust manifold section is decentered to change the thickness.
請求項5に記載の燃料電池自動車用の熱交換器であって、
前記吸気側マニホールド部を車両進行方向の前方に向けて配置した
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to claim 5,
A heat exchanger for a fuel cell vehicle, characterized in that the intake side manifold portion is arranged forward in the vehicle traveling direction.
請求項8に記載の燃料電池自動車用の熱交換器であって、
前記吸気側マニホールド部の肉厚を少なくとも前記排気側マニホールド部の肉厚よりも薄くした
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to claim 8,
A heat exchanger for a fuel cell vehicle, characterized in that a thickness of the intake side manifold portion is at least thinner than a thickness of the exhaust side manifold portion.
少なくとも請求項5から請求項9の何れか一つに記載の燃料電池自動車用の熱交換器であって、
前記吸気側マニホールド部をラジエータファン後方に向けて配置した
ことを特徴とする燃料電池自動車用の熱交換器。
A heat exchanger for a fuel cell vehicle according to any one of claims 5 to 9, comprising:
A heat exchanger for a fuel cell vehicle, characterized in that the intake side manifold portion is disposed toward the rear of the radiator fan.
JP2005186288A 2005-06-27 2005-06-27 Heat exchanger for fuel cell electric vehicle Pending JP2007001514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186288A JP2007001514A (en) 2005-06-27 2005-06-27 Heat exchanger for fuel cell electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186288A JP2007001514A (en) 2005-06-27 2005-06-27 Heat exchanger for fuel cell electric vehicle

Publications (1)

Publication Number Publication Date
JP2007001514A true JP2007001514A (en) 2007-01-11

Family

ID=37687486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186288A Pending JP2007001514A (en) 2005-06-27 2005-06-27 Heat exchanger for fuel cell electric vehicle

Country Status (1)

Country Link
JP (1) JP2007001514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101987A (en) * 2007-10-03 2009-05-14 Toyota Motor Corp Cooling device for vehicle
JP2010097709A (en) * 2008-10-14 2010-04-30 Honda Motor Co Ltd Cooling system for fuel cell
JP2010212121A (en) * 2009-03-11 2010-09-24 Honda Motor Co Ltd Fuel cell vehicle
WO2010117362A1 (en) * 2009-04-08 2010-10-14 Utc Power Corporation Acid fuel cell condensing heat exchanger
WO2012121069A1 (en) * 2011-03-04 2012-09-13 スズキ株式会社 Air intake device for fuel cell vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101987A (en) * 2007-10-03 2009-05-14 Toyota Motor Corp Cooling device for vehicle
JP2010097709A (en) * 2008-10-14 2010-04-30 Honda Motor Co Ltd Cooling system for fuel cell
JP2010212121A (en) * 2009-03-11 2010-09-24 Honda Motor Co Ltd Fuel cell vehicle
WO2010117362A1 (en) * 2009-04-08 2010-10-14 Utc Power Corporation Acid fuel cell condensing heat exchanger
WO2012121069A1 (en) * 2011-03-04 2012-09-13 スズキ株式会社 Air intake device for fuel cell vehicle
CN103269891A (en) * 2011-03-04 2013-08-28 铃木株式会社 Air intake device for fuel cell vehicle
GB2501995A (en) * 2011-03-04 2013-11-13 Suzuki Motor Corp Air intake device for fuel cell vehicle
CN103269891B (en) * 2011-03-04 2015-09-02 铃木株式会社 The air inlet system of fuel-cell vehicle
GB2501995B (en) * 2011-03-04 2017-07-26 Suzuki Motor Corp Intake device for fuel cell vehicle

Similar Documents

Publication Publication Date Title
US6896095B2 (en) Fan shroud with built in noise reduction
JP2011116347A (en) Environment-friendly cooling system for vehicle
US9677517B2 (en) Dual path cool air inlet system
JP2006216398A (en) Cooling device of fuel cell vehicle
JP2007001514A (en) Heat exchanger for fuel cell electric vehicle
JP2010058639A (en) Front structure of vehicle
JP4788657B2 (en) Intake device for internal combustion engine
US9157362B2 (en) Pressure release slot for fan noise improvement
KR20150073322A (en) Roof type Air Conditioning Apparatus for Motor Vehicle
US9777681B2 (en) Cold air intake circulating air jacket
JP2015128923A (en) Vehicle cooling device
JP2019108102A (en) Engine room structure
JP2009269547A (en) Hybrid vehicle
JP4710769B2 (en) Sound generator for power generation equipment
CN111075537A (en) Silencing device for cold end of automobile exhaust system
KR20130028424A (en) Carrier for motor vehicle
CN108412629B (en) Sound-absorbing cylinder cover of engine
JP2011113697A (en) Air supply system for fuel cell
JP2021160523A (en) Device arrangement structure in engine room
JP2010216348A (en) Air-cooled cooling device of internal combustion engine for vehicle
JP2009150243A (en) Turbocharged engine
JP7204608B2 (en) engine cover structure
JP2005061343A (en) Cooling device of vehicle
KR20070109491A (en) Engine cooling system of vehicle
JP2006205761A (en) Heat exchanging device for vehicle