JP2002107094A - Heat exchanger for vehicle - Google Patents

Heat exchanger for vehicle

Info

Publication number
JP2002107094A
JP2002107094A JP2000297876A JP2000297876A JP2002107094A JP 2002107094 A JP2002107094 A JP 2002107094A JP 2000297876 A JP2000297876 A JP 2000297876A JP 2000297876 A JP2000297876 A JP 2000297876A JP 2002107094 A JP2002107094 A JP 2002107094A
Authority
JP
Japan
Prior art keywords
cooling
chamber
sub
cooling section
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000297876A
Other languages
Japanese (ja)
Other versions
JP4216451B2 (en
Inventor
Kazumi Nakamura
一三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2000297876A priority Critical patent/JP4216451B2/en
Publication of JP2002107094A publication Critical patent/JP2002107094A/en
Application granted granted Critical
Publication of JP4216451B2 publication Critical patent/JP4216451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the possibility of heat injury by lowering the temperature of air passing through a radiator and a condenser, disposed overlapped longitudinally and entering inside an engine room. SOLUTION: A condenser 10 is adapted, such that a heat exchange area 11 between first and second galleries 14, 16 are divided into an upstream side cooling section 12 and a downstream side cooling section 13, and a refrigerant flows in the direction indicated by an arrow A from the first gallery, through a main cooling section and returns at the second gallery and flows through a sub-cooling section as indicated by an arrow B. A radiator 30 is adapted, such that a heat exchange area 31 between left and right first tanks 34 and a second tank 36 is divided into a main cooling section 32 and a sub-cooling section 33. Cooling water flows through the main cooling section from the first tank, as indicated by an arrow C with a part thereof being sent to a water pump from a first cooling water outlet 48 of the second tank. A remaining section flows oppositely, through the sub-cooling section from the second tank as indicated by an arrow D and is further cooled. Since the flow directions through the downstream side cooling section and the sub-cooling section are same, temperature of air passing therethrough is sharply lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両におけるエン
ジン冷却水用のラジエータおよびエアコンディショナ冷
媒のコンデンサとを併設した熱交換器の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a heat exchanger provided with a radiator for engine cooling water and a condenser for an air conditioner refrigerant in a vehicle.

【0002】[0002]

【従来の技術】車両のエンジンルーム前部には、エンジ
ン冷却水を冷却するためのラジエータと、エアコンディ
ショナの冷媒を凝縮させるためのコンデンサとが設けら
れているが、エンジンルーム内のレイアウト効率を上げ
るため、また冷却ファンの共用化のため、これらのラジ
エータとコンデンサを前後に重ねて設置する例が多い。
2. Description of the Related Art A radiator for cooling engine cooling water and a condenser for condensing refrigerant of an air conditioner are provided at a front portion of an engine room of a vehicle. In many cases, these radiators and condensers are placed one on top of the other in order to increase the power consumption and to share the cooling fan.

【0003】ここで、図9に示すように、コンデンサ1
0の構造としては、左右に第1ギャラリ14と第2ギャ
ラリ16に冷却通路18を備えて冷媒を横方向に流すも
のとするとともに、熱交換領域11を上下に2分割して
いる。これは、上部を通風面積の大きな上流側冷却部1
2、下部を通風面積の小さな下流側冷却部13とし、冷
媒がまず上流側冷却部12を矢示Aのように流れたあと
折り返して下流側冷却部13を矢示Bのように逆方向に
流れるようにして、冷媒の熱交換距離を延ばすことによ
り冷媒の確実な凝縮を図るものである。下流側冷却部1
3において冷媒は約50℃近くまで冷却される。一方、
ラジエータ60は、上下のタンク62、63間に冷却通
路64を備えて冷媒を矢示Gのように上下方向に流すよ
うにしており、冷却されて下側のタンク63に入る冷却
水はおよそ80℃になる。
Here, as shown in FIG.
In the structure of No. 0, the cooling gallery 18 is provided in the first gallery 14 and the second gallery 16 on the left and right sides to allow the refrigerant to flow in the horizontal direction, and the heat exchange area 11 is divided into two vertically. This is the upstream cooling unit 1 with a large ventilation area
2. The lower part is a downstream cooling part 13 having a small ventilation area, the refrigerant first flows through the upstream cooling part 12 as shown by arrow A, then turns back, and the downstream cooling part 13 is turned in the opposite direction as shown by arrow B. The refrigerant is surely condensed by extending the heat exchange distance of the refrigerant as it flows. Downstream cooling unit 1
At 3, the refrigerant is cooled to near 50 ° C. on the other hand,
The radiator 60 is provided with a cooling passage 64 between the upper and lower tanks 62 and 63 so as to flow the refrigerant in the vertical direction as shown by the arrow G, and the cooling water that is cooled and enters the lower tank 63 is approximately 80%. ° C.

【0004】[0004]

【発明が解決しようとする課題】コンデンサ10および
ラジエータ60を通過してエンジンルーム内部へ入る空
気の温度はコンデンサ10あるいはラジエータ60の各
冷却通路18、64を流れる冷媒あるいは冷却水の温度
に対応する。したがって、通風領域のどの部分を通過し
たかによって空気温度は変化するが、ラジエータ60と
コンデンサ10を前後に重ねて配置した場合には、ラジ
エータ60を流れる冷却水の温度とコンデンサ10を流
れる温度が言わば混合されて、結局高温化された空気が
エンジンルーム内の種々の機器を包むこととなる。
The temperature of the air passing through the condenser 10 and the radiator 60 and entering the engine room corresponds to the temperature of the refrigerant or cooling water flowing through the cooling passages 18, 64 of the condenser 10 or the radiator 60. . Therefore, although the air temperature changes depending on which part of the ventilation area has passed, when the radiator 60 and the condenser 10 are arranged in front and back, the temperature of the cooling water flowing through the radiator 60 and the temperature flowing through the condenser 10 are reduced. So to speak, the air that has been heated and eventually heated encloses various devices in the engine room.

【0005】このような高温空気がたとえば元来高温の
ターボチャージャ付近に供給されると、種々の機器部品
に対する熱害を引き起こすおそれがある。同様の問題
は、ラジエータとコンデンサを重ねて一体化した複合型
熱交換器においても生じる。またとくに複合型熱交換器
の場合は、冷却水の冷却通路と冷媒の冷却通路を共通の
放熱フィンでつなげているので、コンデンサ側で折角5
0℃近くまで冷却された冷媒がラジエータ側の冷却水の
高温によって再度暖められる可能性があり、これによっ
てエアコンディショナの性能低下を招くおそれもある。
[0005] When such high-temperature air is supplied, for example, in the vicinity of a turbocharger which is originally high in temperature, there is a risk of causing heat damage to various equipment parts. A similar problem also occurs in a combined heat exchanger in which a radiator and a condenser are stacked and integrated. In particular, in the case of a composite heat exchanger, the cooling water cooling passage and the refrigerant cooling passage are connected by a common radiating fin.
The refrigerant cooled to near 0 ° C. may be heated again by the high temperature of the cooling water on the radiator side, which may cause a decrease in the performance of the air conditioner.

【0006】したがって本発明は、上記の問題点に鑑
み、前後に重ねて配置したラジエータとコンデンサから
なる車両用熱交換器において、熱交換してエンジンルー
ム内に入る空気の温度を顕著に低下させて熱害のおそれ
をなくした熱交換器を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above problems, and in a vehicle heat exchanger including a radiator and a condenser arranged one above the other, the temperature of air entering the engine room after heat exchange has been significantly reduced. It is intended to provide a heat exchanger that eliminates the risk of heat damage.

【0007】[0007]

【課題を解決するための手段】このため、請求項1の本
発明は、冷却通路を横方向に配した熱交換領域が上下の
上流側冷却部と下流側冷却部とに区画され、冷媒が上流
側冷却部を流れたあと折り返して下流側冷却部における
逆方向の流れを含むエアコンディショナのコンデンサ
と、冷却通路を横方向に配した熱交換領域を上下の主冷
却部と副冷却部とに分割して、冷却水が主冷却部におけ
る一方向への流れのあと折り返して副冷却部における逆
方向への流れを含むエンジン冷却用のラジエータとから
なり、コンデンサの熱交換領域とラジエータの熱交換領
域を重ねて配置し、ラジエータの副冷却部とコンデンサ
の下流側冷却部を対向させたものとした。ラジエータの
副冷却部における冷却水とコンデンサの下流側冷却部に
おける冷媒が同一の流れ方向の部分を含み、重ねて配置
された両副冷却部を通過してエンジンルーム内へ入る空
気の温度を顕著に低下させることができる。
According to the first aspect of the present invention, a heat exchange region in which cooling passages are arranged in a lateral direction is divided into upper and lower upstream cooling portions and downstream cooling portions, and a refrigerant is provided. The air conditioner condenser including the reverse flow in the downstream cooling section after flowing through the upstream cooling section, and the heat exchange area in which the cooling passages are arranged in the horizontal direction are divided into upper and lower main cooling sections and sub cooling sections. Radiator for cooling the engine, including cooling water flowing in one direction in the main cooling section and then turning back in the sub-cooling section.The heat exchange area of the condenser and the heat of the radiator The replacement areas were placed one on top of the other, with the sub-cooling section of the radiator and the downstream cooling section of the condenser facing each other. The cooling water in the sub-cooling section of the radiator and the refrigerant in the cooling section on the downstream side of the condenser include a portion in the same flow direction, and the temperature of the air entering the engine room through the two sub-cooling sections arranged one above the other is remarkable. Can be reduced.

【0008】請求項2の発明は、上記ラジエータの主冷
却部と副冷却部の境界を、コンデンサの上流側冷却部と
下流側冷却部の境界と同一高さに設定したものである。
According to a second aspect of the present invention, the boundary between the main cooling section and the sub-cooling section of the radiator is set at the same height as the boundary between the upstream cooling section and the downstream cooling section of the condenser.

【0009】請求項3の発明は、ラジエータがとくに冷
却通路の一端を第1タンクに接続し、冷却通路の他端を
第2タンクに接続して構成され、第1タンクは隔板によ
り主冷却部に連通する第1室と副冷却部に連通する第2
室とに区画され、第2タンク内は、絞り穴を備えるバイ
パス板により主冷却部に連通する第3室と副冷却部に連
通する第4室とに区画され、その第3室には第1の冷却
水出口が設けられ、第1タンクの第1室には冷却水入口
が設けられ、第2室には第2の冷却水出口が設けられて
いるものとした。主冷却部を流れた冷却水の多くは第1
の冷却水出口から排出され、残部が絞り穴で流速を下げ
て副冷却部で顕著に冷却される。
According to a third aspect of the present invention, the radiator is configured such that one end of the cooling passage is connected to the first tank, and the other end of the cooling passage is connected to the second tank. The first chamber communicating with the cooling section and the second chamber communicating with the sub-cooling section
The inside of the second tank is divided into a third chamber communicating with the main cooling section and a fourth chamber communicating with the sub-cooling section by a bypass plate having a throttle hole, and the third chamber has a third chamber. One cooling water outlet is provided, a cooling water inlet is provided in the first chamber of the first tank, and a second cooling water outlet is provided in the second chamber. Most of the cooling water flowing through the main cooling section is the first
The cooling water outlet is discharged from the cooling water outlet, and the remaining part is reduced in flow velocity by the throttle hole, and is cooled significantly by the sub cooling part.

【0010】請求項4の発明は、ラジエータが冷却通路
の一端を第1タンクに接続し、冷却通路の他端を第2タ
ンクに接続して構成され、第1タンクは隔板により主冷
却部に連通する第1室と副冷却部に連通する第2室とに
区画されて、第1室には冷却水入口が設けられ、第2タ
ンク内は隔板により、副冷却部の一部と主冷却部とに連
通する第5室と副冷却部の残部に連通する第6室とに区
画され、第5室に第1の冷却水出口が設けられるととも
に、第6室には第2の冷却水出口が設けられているもの
とした。副冷却部に流れる冷却水が第1タンクの第2室
で折り返されるので、副冷却部での冷却水の流路長が2
倍になる。この際、請求項5のように、副冷却部におけ
る第5室に連通する冷却通路の断面積を第6室に連通す
る冷却通路の断面積よりも小さく設定して、流量を調整
するのが好ましい。
According to a fourth aspect of the present invention, the radiator is configured such that one end of the cooling passage is connected to the first tank and the other end of the cooling passage is connected to the second tank. Is divided into a first chamber communicating with the sub-cooling unit and a second chamber communicating with the sub-cooling unit. The first chamber is provided with a cooling water inlet. A fifth chamber communicating with the main cooling section and a sixth chamber communicating with the rest of the sub-cooling section are defined. The fifth chamber has a first cooling water outlet, and the sixth chamber has a second cooling water outlet. A cooling water outlet was provided. Since the cooling water flowing to the sub-cooling section is turned back in the second chamber of the first tank, the flow path length of the cooling water in the sub-cooling section is 2
Double. In this case, it is preferable to set the cross-sectional area of the cooling passage communicating with the fifth chamber in the sub-cooling section smaller than the cross-sectional area of the cooling passage communicating with the sixth chamber, and adjust the flow rate. preferable.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は、実施の形態におけるラジエータと
コンデンサの配置を示す平面図である。図2は、ラジエ
ータにおける冷却水の流れ方向とコンデンサにおける冷
媒の流れ方向を示すため、ラジエータとコンデンサを離
間させて示す斜視図である。コンデンサ10とラジエー
タ30は、図1に示すように、それぞれの熱交換領域1
1、31を前後に重ねて、互いにごく接近させ、エンジ
ンルーム前端部に配置されている。
Embodiments of the present invention will be described below. FIG. 1 is a plan view showing an arrangement of a radiator and a capacitor in the embodiment. FIG. 2 is a perspective view showing the radiator and the condenser separated from each other in order to show the flow direction of the cooling water in the radiator and the flow direction of the refrigerant in the condenser. The condenser 10 and the radiator 30, as shown in FIG.
1, 31 are placed one on top of the other, are very close to each other, and are arranged at the front end of the engine compartment.

【0012】コンデンサ10は、熱交換領域11の左右
両側に第1ギャラリ14と第2ギャラリ16を備え、第
1ギャラリ14と第2ギャラリ16間を複数の冷却通路
18で接続し、冷却通路間にはフィン19が設けられて
いる。コンデンサ10の熱交換領域11は、上部の通風
面積の大きな上流側冷却部12と、下部の通風面積の小
さな下流側冷却部13とに区画されている。図2の破線
aは上流側冷却部12と下流側冷却部13の区画線を示
している。
The condenser 10 includes a first gallery 14 and a second gallery 16 on both left and right sides of the heat exchange area 11. The first gallery 14 and the second gallery 16 are connected by a plurality of cooling passages 18. Are provided with fins 19. The heat exchange region 11 of the condenser 10 is divided into an upper cooling section 12 having an upper ventilation area and a lower cooling section 13 having a lower ventilation area. A broken line a in FIG. 2 indicates a division line between the upstream cooling unit 12 and the downstream cooling unit 13.

【0013】図3に示すように、第1ギャラリ14内
は、隔板15により上流側冷却部12に連通する第1室
21と下流側冷却部13に連通する第2室22とに区画
されている。コネクタ23に接続された図示しない配管
から第1ギャラリ14の第1室21に入った冷媒は、ま
ず上流側冷却部12を矢示Aのように図中左側の第1ギ
ャラリ14から右側の第2ギャラリ16へ流れ、その後
第2ギャラリ16から折り返して下流側冷却部13を矢
示Bのように上流側冷却部12における向きと逆方向に
流れる。そして、第1ギャラリ14に戻った冷媒は第2
室22のコネクタ24から図示しない配管へ送出され
る。
As shown in FIG. 3, the inside of the first gallery 14 is partitioned by a partition plate 15 into a first chamber 21 communicating with the upstream cooling section 12 and a second chamber 22 communicating with the downstream cooling section 13. ing. The refrigerant that has entered the first chamber 21 of the first gallery 14 from a pipe (not shown) connected to the connector 23 first causes the upstream cooling unit 12 to move from the first gallery 14 on the left side in the drawing to the It flows to the second gallery 16 and then returns from the second gallery 16 and flows through the downstream cooling unit 13 in the direction opposite to the direction in the upstream cooling unit 12 as shown by arrow B. And the refrigerant returned to the first gallery 14 is the second refrigerant.
The water is sent from the connector 24 of the chamber 22 to a pipe (not shown).

【0014】図2に戻って、ラジエータ30は、熱交換
領域31の左右両側に第1タンク34と第2タンク36
を備え、その熱交換領域31を、上部の通風面積の大き
な主冷却部32と、下部の通風面積の小さな副冷却部3
3とに区画されている。図2の破線bは主冷却部32と
副冷却部33の区画線を示している。主冷却部32およ
び副冷却部33はそれぞれ第1タンク34と第2タンク
36間に複数の冷却通路38を接続して構成されてい
る。冷却通路38間にはフィン39が設けられている。
主冷却部32および副冷却部33における冷却水の流路
面積はそれぞれの冷却通路38の総断面積で求められ
る。コンデンサ10の場合と同様に、冷却水はまず主冷
却部32を矢示Cのように左側の第1タンク34から右
側の第2タンク36へ流れ、その後第2タンク36から
折り返して副冷却部33を矢示Dのように主冷却部32
における向きと逆方向に流れる。
Returning to FIG. 2, the radiator 30 includes a first tank 34 and a second tank 36 on both left and right sides of the heat exchange area 31.
The heat exchange area 31 is divided into an upper main cooling section 32 having a large ventilation area and a lower sub cooling section 3 having a small ventilation area.
It is divided into three. A broken line b in FIG. 2 indicates a division line between the main cooling unit 32 and the sub cooling unit 33. The main cooling unit 32 and the sub cooling unit 33 are configured by connecting a plurality of cooling passages 38 between the first tank 34 and the second tank 36, respectively. Fins 39 are provided between the cooling passages 38.
The flow area of the cooling water in the main cooling section 32 and the sub-cooling section 33 is determined by the total cross-sectional area of each cooling passage 38. As in the case of the condenser 10, the cooling water first flows through the main cooling section 32 from the first tank 34 on the left side to the second tank 36 on the right side as shown by arrow C, and then returns from the second tank 36 to return to the sub-cooling section. 33 is the main cooling part 32 as shown by arrow D.
Flows in the opposite direction to

【0015】図4はラジエータ30の第1タンク34と
第2タンク36内の構造を示す。第1タンク34内は、
隔板35により主冷却部32に連通する第1室41と副
冷却部33に連通する第2室42とに区画されている。
第2タンク36内は、主冷却部32に連通する第3室4
4と副冷却部33に連通する第4室45が絞り穴47を
備えるバイパス板46により区画されている。絞り穴4
7は副冷却部33に連通する第4室45への冷却水の流
量が全流量の約1/10〜1/30となるように設定す
るのが好ましい。第2タンク36の第3室44の下部に
は第1の冷却水出口48が設けられている。第1タンク
34の主冷却部32に連通する第1室41の上部には冷
却水入口43が設けられ、副冷却部33に連通する第2
室42の下部には第2の冷却水出口49が設けられてい
る。
FIG. 4 shows the structure inside the first tank 34 and the second tank 36 of the radiator 30. In the first tank 34,
The partition plate 35 is divided into a first chamber 41 communicating with the main cooling unit 32 and a second chamber 42 communicating with the sub cooling unit 33.
Inside the second tank 36, the third chamber 4 communicating with the main cooling unit 32 is provided.
A fourth chamber 45 communicating with 4 and the sub-cooling section 33 is defined by a bypass plate 46 having a throttle hole 47. Aperture 4
7 is preferably set so that the flow rate of the cooling water to the fourth chamber 45 communicating with the sub-cooling section 33 is about 1/10 to 1/30 of the total flow rate. A first cooling water outlet 48 is provided below the third chamber 44 of the second tank 36. A cooling water inlet 43 is provided at an upper portion of the first chamber 41 communicating with the main cooling unit 32 of the first tank 34, and a second cooling water inlet 43 is provided with the second cooling unit 33.
A second cooling water outlet 49 is provided at a lower portion of the chamber 42.

【0016】冷却水入口43に接続された図示しないホ
ースから第1タンク34の第1室41に入った冷却水
は、前述のように、主冷却部32を矢示Cのように流れ
る。第2タンク36の第3室44に入った冷却水の大部
分は当該室の第1の冷却水出口48から図示しないホー
スでウォータポンプへ導かれる。残りの冷却水はバイパ
ス板46の絞り穴47を経て第4室45に入り、そこか
ら副冷却部33を矢示Dのように主冷却部32における
向きと逆方向に流れて第1タンク34に入る。第1タン
ク34の第2室42に入った冷却水は第2の冷却水出口
49から排出される。この第2の冷却水出口49から排
出される冷却水は図示しないホースにより例えばオイル
冷却器へ導かれて、オイルの冷却に用いられる。
The cooling water that has entered the first chamber 41 of the first tank 34 from a hose (not shown) connected to the cooling water inlet 43 flows through the main cooling section 32 as shown by arrow C as described above. Most of the cooling water that has entered the third chamber 44 of the second tank 36 is guided from the first cooling water outlet 48 of the chamber to a water pump by a hose (not shown). The remaining cooling water enters the fourth chamber 45 through the throttle hole 47 of the bypass plate 46, and flows therefrom through the sub-cooling unit 33 in the direction opposite to the direction of the main cooling unit 32 as shown by the arrow D, to the first tank 34. to go into. The cooling water that has entered the second chamber 42 of the first tank 34 is discharged from a second cooling water outlet 49. The cooling water discharged from the second cooling water outlet 49 is guided to, for example, an oil cooler by a hose (not shown) and used for cooling the oil.

【0017】ラジエータ30とコンデンサ10がエンジ
ンルームに設置された状態において、ラジエータ30の
主冷却部32と副冷却部33間の区画線bは、コンデン
サ10における上流側冷却部12と下流側冷却部13間
の区画線aと略同一高さとなるように設定されている。
すなわち、ラジエータ30の主冷却部32とコンデンサ
10の上流側冷却部12が互いに整合して重なり、また
ラジエータ30の副冷却部33とコンデンサ10の下流
側冷却部13も互いに整合して重なっている。そして、
コンデンサ10の上流側冷却部12とラジエータ30の
主冷却部32では冷媒および冷却水が図中左側から右方
向へながれ、下流側冷却部13と副冷却部33では冷媒
および冷却水がともに右側から左方向へ流れる。
When the radiator 30 and the condenser 10 are installed in the engine room, the dividing line b between the main cooling section 32 and the sub-cooling section 33 of the radiator 30 corresponds to the upstream cooling section 12 and the downstream cooling section of the condenser 10. The height is set so as to be substantially the same as the division line a between 13.
That is, the main cooling part 32 of the radiator 30 and the upstream cooling part 12 of the condenser 10 are aligned and overlap with each other, and the sub cooling part 33 of the radiator 30 and the downstream cooling part 13 of the condenser 10 are also aligned and overlap with each other. . And
In the upstream cooling unit 12 of the condenser 10 and the main cooling unit 32 of the radiator 30, the refrigerant and the cooling water flow from the left side to the right in the figure, and in the downstream cooling unit 13 and the sub cooling unit 33, the refrigerant and the cooling water both flow from the right side. It flows to the left.

【0018】コンデンサ10の下流側冷却部13では冷
媒が約50℃近くまで冷却される。一方、ラジエータ3
0では冷却水が主冷却部32で約80℃まで冷却され
る。そして第1の冷却水出口48から排出された以外の
冷却水は副冷却部33へ流れてさらに冷却される。ここ
で、副冷却部33へ入る冷却水はバイパス板46の絞り
穴47を通過することによって流量を減じられているの
で、副冷却部33では冷却効果が大きく、冷却水も60
〜50℃位まで冷却される。
In the downstream cooling section 13 of the condenser 10, the refrigerant is cooled to about 50 ° C. On the other hand, radiator 3
At 0, the cooling water is cooled to about 80 ° C. in the main cooling section 32. Then, the cooling water other than that discharged from the first cooling water outlet 48 flows to the sub-cooling unit 33 and is further cooled. Here, since the flow rate of the cooling water entering the sub-cooling unit 33 is reduced by passing through the throttle hole 47 of the bypass plate 46, the cooling effect is large in the sub-cooling unit 33 and the cooling water is also reduced to 60%.
It is cooled down to about 50 ° C.

【0019】コンデンサ10の下流側冷却部13とラジ
エータ30の副冷却部33では冷媒および冷却水は同一
方向に流れるので、下流側冷却部13および副冷却部3
3を通過してエンジンルーム内へ入る空気の温度は、上
流側の左側から下流側へ、通過部位にしたがって順次に
低下していく。これにより、低い側では50℃台前半の
通過空気温度が得られる。
In the downstream cooling unit 13 of the condenser 10 and the sub-cooling unit 33 of the radiator 30, the refrigerant and the cooling water flow in the same direction, so that the downstream cooling unit 13 and the sub-cooling unit 3
The temperature of the air passing through 3 and entering the engine room gradually decreases from the left side on the upstream side to the downstream side according to the passage portion. Thereby, the passing air temperature in the lower half of 50 ° C. is obtained on the lower side.

【0020】本実施の形態は以上のように構成され、そ
れぞれの熱交換領域11、31を前後に重ねて配置した
コンデンサ10とラジエータ30において、ラジエータ
30の熱交換領域31を、コンデンサ10の熱交換領域
11の上流側冷却部12と下流側冷却部13に対応させ
て、主冷却部32と副冷却部33に区画し、上部では上
流側冷却部12と主冷却部32における冷却水と冷媒の
流れ方向を同一とするとともに、下部では下流側冷却部
13と副冷却部33における冷却水と冷媒の流れ方向を
同一とし、またラジエータ30においてその副冷却部3
3への冷却水の流速を絞り穴47によって低下させるも
のとしたので、コンデンサ10の下流側冷却部13とラ
ジエータ30の副冷却部33を通過してエンジンルーム
内へ入る空気の温度を顕著に低下させることができる。
これにより、低温度の空気をエンジンルーム内の高熱機
器付近へ向けることにより熱害が防止される。
The present embodiment is constructed as described above. In the condenser 10 and the radiator 30 in which the respective heat exchange regions 11 and 31 are arranged one after another, the heat exchange region 31 of the radiator 30 A main cooling section 32 and a sub-cooling section 33 are defined corresponding to the upstream cooling section 12 and the downstream cooling section 13 of the exchange area 11, and the cooling water and the refrigerant in the upstream cooling section 12 and the main cooling section 32 are arranged at the upper part. In the lower part, the flow directions of the cooling water and the refrigerant in the downstream cooling unit 13 and the sub-cooling unit 33 are the same, and in the radiator 30, the sub-cooling unit 3
Since the flow rate of the cooling water to the cooling water 3 is reduced by the throttle hole 47, the temperature of the air passing through the downstream cooling portion 13 of the condenser 10 and the sub cooling portion 33 of the radiator 30 and entering the engine room is remarkably reduced. Can be reduced.
Thereby, the heat damage is prevented by directing the low-temperature air to the vicinity of the high-temperature equipment in the engine room.

【0021】また、上流側冷却部12および主冷却部3
2と下流側冷却部13および副冷却部33の区画線a、
bの高さをラジエータ30とコンデンサ10の両者で一
致させたので、一方の主冷却部または上流側冷却部を通
過した高温側空気と他方の副冷却部または下流側冷却部
を通過した低温側空気の混合が皆無となって、通過空気
の可能な最低温度を実現できる。
The upstream cooling section 12 and the main cooling section 3
2, the lane markings a of the downstream cooling unit 13 and the sub cooling unit 33,
Since the height of b is matched between the radiator 30 and the condenser 10, the high-temperature side air that has passed through one main cooling section or upstream cooling section and the low-temperature side air that has passed through the other sub cooling section or downstream cooling section. There is no air mixing and the lowest possible temperature of the passing air can be achieved.

【0022】図5は実施の形態の変形例を示す。これ
は、ラジエータ30とコンデンサ10を一体化させて複
合型熱交換器1としたものである。この複合型熱交換器
1では、熱交換領域の断面図である図6に示すように、
コンデンサ10とラジエータ30の両冷却通路18、3
8にわたって延びるフィン4が設けられ、このフィン4
で冷却通路18、38が連結されている。とくに図示し
ないが、コンデンサ10およびラジエータ30における
各熱交換領域がそれぞれ上部の上流側冷却部12および
主冷却部32と下部の下流側冷却部13および副冷却部
33に区画されている点を含めてその他の構成は変わら
ない。
FIG. 5 shows a modification of the embodiment. This is a composite heat exchanger 1 in which the radiator 30 and the condenser 10 are integrated. In this combined heat exchanger 1, as shown in FIG. 6, which is a cross-sectional view of the heat exchange region,
Cooling passages 18 and 3 of condenser 10 and radiator 30
A fin 4 extending over the fin 4
Connects the cooling passages 18 and 38. Although not particularly illustrated, the heat exchange areas of the condenser 10 and the radiator 30 are divided into an upper upstream cooling section 12 and a main cooling section 32 and a lower downstream cooling section 13 and a sub cooling section 33, respectively. Other configurations remain the same.

【0023】この変形例においても、コンデンサ10の
下流側冷却部13とラジエータ30の副冷却部33を通
過してエンジンルーム内へ入る空気の温度を顕著に低下
させることができ、その低温度の空気をエンジンルーム
内の高熱機器付近へ向けることにより熱害が防止され
る。また、コンデンサの下流側冷却部とラジエータの副
冷却部における流れの向きが同一で、流れにそって冷却
水と冷媒の温度が同レベルで推移するので、両冷却通路
18、38がフィン4で連結されていても冷媒が冷却水
によって温められてエアコンディショナの性能低下を招
くこともない。
Also in this modification, the temperature of the air passing through the downstream cooling section 13 of the condenser 10 and the sub cooling section 33 of the radiator 30 and entering the engine room can be remarkably reduced. The heat damage is prevented by directing the air to the vicinity of the high heat equipment in the engine room. In addition, since the flow directions in the downstream cooling section of the condenser and the sub-cooling section of the radiator are the same, and the temperatures of the cooling water and the refrigerant change at the same level along the flow, both cooling passages 18 and 38 are formed by the fins 4. Even if the air conditioner is connected, the coolant is not heated by the cooling water, and the performance of the air conditioner does not deteriorate.

【0024】図7は第2の実施の形態を示す。この図は
第1の実施の形態におけるラジエータを示す図4に対応
する図である。ラジエータ30’は、第1タンク34と
第2タンク36間に複数の冷却通路38を接続した熱交
換領域31を、上部の通風面積の大きな主冷却部32
と、下部の通風面積の小さな副冷却部33とに区画され
ている。
FIG. 7 shows a second embodiment. This figure is a view corresponding to FIG. 4 showing the radiator according to the first embodiment. The radiator 30 ′ includes a heat exchange area 31 in which a plurality of cooling passages 38 are connected between the first tank 34 and the second tank 36, and a main cooling section 32 having a large ventilation area at the top.
And a sub cooling unit 33 having a small ventilation area at the bottom.

【0025】第1タンク34内は、隔板35により主冷
却部32に連通する第1室41と副冷却部33に連通す
る第2室42とに区画されている。第2タンク36内
は、熱交換領域31における主冷却部32と副冷却部3
3の区画線bよりも低くしたがって副冷却部33を2分
する位置に隔板50を設けて、副冷却部33の一部と主
冷却部32とに連通する第5室51と、副冷却部33の
残部に連通する第6室52に区画されている。第5室5
1の上記区画線bより高い位置には第1の冷却水出口4
8が設けられ、第6室52には第2の冷却水出口49が
設けられている。
The inside of the first tank 34 is divided by a partition plate 35 into a first chamber 41 communicating with the main cooling section 32 and a second chamber 42 communicating with the sub cooling section 33. Inside the second tank 36, the main cooling section 32 and the sub cooling section 3 in the heat exchange area 31 are arranged.
A partition plate 50 is provided at a position lower than the dividing line b of the third cooling line 33 so as to divide the sub cooling unit 33 into two, and a fifth chamber 51 communicating with a part of the sub cooling unit 33 and the main cooling unit 32 is provided. It is partitioned into a sixth chamber 52 that communicates with the rest of the section 33. Room 5
The first cooling water outlet 4 is located at a position higher than the lane marking b.
8 is provided, and the sixth chamber 52 is provided with a second cooling water outlet 49.

【0026】これにより、ラジエータ30’の副冷却部
33においては、第5室51から副冷却部33に矢示D
のように流れた冷却水は、第1タンク34の第2室42
で折り返されて、再び副冷却部33を矢示Eのように流
れて第2タンク36の第6室52に至り、それから第2
の冷却水出口49から排出される。上記折り返しにより
副冷却部33での冷却水の流路長が2倍になり、その流
路抵抗により副冷却部33での冷却水の流速は低下す
る。
As a result, in the sub-cooling section 33 of the radiator 30 ', an arrow D is sent from the fifth chamber 51 to the sub-cooling section 33.
The cooling water flowing as described above is supplied to the second chamber 42 of the first tank 34.
And flows through the sub-cooling section 33 again as shown by the arrow E, reaches the sixth chamber 52 of the second tank 36, and then
From the cooling water outlet 49. Due to the turning back, the flow path length of the cooling water in the sub cooling unit 33 is doubled, and the flow velocity of the cooling water in the sub cooling unit 33 is reduced due to the flow path resistance.

【0027】副冷却部33の、第5室51に接続する冷
却通路38の数は、下側の第6室52に接続する冷却通
路38の数よりも小さく設定してある。これにより、主
冷却部32と副冷却部33における冷却水路の流路抵抗
が調整され、好ましい流量配分となり、冷却効率が向上
する。コンデンサ10を含むその他の構成は、第1の実
施の形態と同じである。ラジエータ30’の副冷却部3
3とコンデンサ10の下流側冷却部13は互いに整合し
て重なるように配置される。
The number of cooling passages 38 connected to the fifth chamber 51 of the sub-cooling section 33 is set smaller than the number of cooling passages 38 connected to the lower sixth chamber 52. Thereby, the flow path resistance of the cooling water passage in the main cooling unit 32 and the sub cooling unit 33 is adjusted, and a preferable flow rate distribution is achieved, and the cooling efficiency is improved. Other configurations including the capacitor 10 are the same as those of the first embodiment. Sub-cooling unit 3 of radiator 30 '
3 and the downstream cooling part 13 of the condenser 10 are arranged so as to be aligned with each other and overlap.

【0028】本実施の形態は以上のように構成され、ラ
ジエータ30’の副冷却部33における冷却水の流路長
を折り返しにより長くしたので、副冷却部33での冷却
水の温度を一層低下させることができる。
The present embodiment is configured as described above, and the length of the cooling water flow path in the sub-cooling section 33 of the radiator 30 'is lengthened by folding, so that the temperature of the cooling water in the sub-cooling section 33 is further reduced. Can be done.

【0029】なお、コンデンサとして、図8のように、
リキッドタンクを備えたコンデンサ10’を用いた場合
には、熱交換領域のうちリキッドタンクからの冷媒を流
すサブクール部を下流側冷却部として、これにラジエー
タの副冷却部33を重ねるのが好ましい。コンデンサ1
0’では、第1ギャラリ14の第1室21からの冷媒が
上流側冷却部第2ギャラリ16の第1室16a、第1ギ
ャラリ14の第2室22を経て、熱交換領域11を矢示
A、B、Jのように1往復半して第2ギャラリ16の第
2室16bへ流れ、液化された冷媒はその後一旦第2ギ
ャラリ16に付設されたリキッドタンク55に入る。そ
れから冷媒はリキッドタンク55から第2ギャラリ16
の第3室16cを経て、熱交換領域のサブクール部60
を矢示Kのように第1ギャラリ14の第3室27へ流れ
る。この例では、サブクール部60を発明における下流
側冷却部とし、冷媒が矢示A、B、Jで流れる領域が上
流側冷却部となる。
As a capacitor, as shown in FIG.
In the case where the condenser 10 'having a liquid tank is used, it is preferable that the sub-cooling part in the heat exchange area through which the refrigerant from the liquid tank flows is set as the downstream cooling part, and the sub-cooling part 33 of the radiator is overlapped with this. Capacitor 1
At 0 ', the refrigerant from the first chamber 21 of the first gallery 14 passes through the first chamber 16a of the upstream-side cooling section second gallery 16 and the second chamber 22 of the first gallery 14, and indicates the heat exchange area 11 by an arrow. One and a half reciprocations like A, B and J flow to the second chamber 16b of the second gallery 16, and the liquefied refrigerant then temporarily enters the liquid tank 55 attached to the second gallery 16. Then, the refrigerant is supplied from the liquid tank 55 to the second gallery 16.
After passing through the third chamber 16c, the subcool part 60 in the heat exchange area
Flows to the third chamber 27 of the first gallery 14 as shown by arrow K. In this example, the subcool unit 60 is defined as the downstream cooling unit in the present invention, and the region in which the refrigerant flows in arrows A, B, and J is the upstream cooling unit.

【0030】また、各実施の形態では、ラジエータ3
0、30’とコンデンサ10をエンジンルーム前端部に
配置した例について説明したが、これに限定されず、必
要に応じて側部に配置することも可能である。また、各
図においてコンデンサおよびラジエータへの冷却水や冷
媒の入り口(23、43)を左側としてあるが、これも
エンジンルーム内の配管レイアウトに合わせて右側に変
更できる。
In each embodiment, the radiator 3
Although an example in which the 0, 30 'and the condenser 10 are arranged at the front end of the engine room has been described, the present invention is not limited to this, and it is also possible to arrange them at the side as needed. In each figure, the inlets (23, 43) of the cooling water and the refrigerant to the condenser and the radiator are on the left side, but can be changed to the right side in accordance with the piping layout in the engine room.

【0031】[0031]

【発明の効果】以上のとおり、本発明は、それぞれの熱
交換領域を前後に重ねて配置したラジエータとコンデン
サからなる車両用熱交換器において、コンデンサの熱交
換領域が上流側冷却部と下流側冷却部とに区画され、ラ
ジエータは熱交換領域が主冷却部と副冷却部とに区画さ
れて、冷却水が主冷却部から副冷却部へ折り返して主冷
却部での流れと逆方向の流れを含み、コンデンサの熱交
換領域とラジエータの熱交換領域を重ねて配置し、ラジ
エータの副冷却部とコンデンサの下流側冷却部を対向さ
せたので、コンデンサの下流側冷却部を通過した空気が
ラジエータで暖められることなく、下流側冷却部と副冷
却部を通過してエンジンルーム内へ入る空気の温度を低
下させることができる。したがって、低温度の空気を高
熱機器付近へ向けることによりエンジンルーム内の熱害
が防止される。
As described above, the present invention relates to a vehicle heat exchanger comprising a radiator and a condenser in which the respective heat exchange areas are arranged one after another in a front-to-rear direction. The radiator is divided into a cooling section and a radiator.The heat exchange area is divided into a main cooling section and a sub-cooling section, and the cooling water returns from the main cooling section to the sub-cooling section and flows in a direction opposite to the flow in the main cooling section. Since the heat exchange area of the condenser and the heat exchange area of the radiator are arranged so as to overlap with each other, and the sub-cooling section of the radiator and the downstream cooling section of the condenser are opposed to each other, the air passing through the downstream cooling section of the condenser is radiator. , The temperature of the air passing through the downstream cooling section and the sub-cooling section and entering the engine room can be reduced. Therefore, by directing the low-temperature air to the vicinity of the high-temperature equipment, heat damage in the engine room is prevented.

【0032】同じく、ラジエータとコンデンサの冷却通
路に一体のフィンを張り渡して結合させた複合型熱交換
器とした場合も、冷媒が再度暖められてエアコンディシ
ョナの性能低下を招くようなこともない。なお、ラジエ
ータの主冷却部と副冷却部の境界を、コンデンサの上流
側冷却部と下流側冷却部の境界と同一高さに設定すれ
ば、一方の主冷却部または上流側冷却部を通過した高温
側空気と他方の副冷却部または下流側冷却部を通過した
低温側空気の混合が皆無となって、最低通過空気温度を
実現できる。
Similarly, in the case of a composite heat exchanger in which integral fins are stretched and connected to the cooling passages of the radiator and the condenser, the refrigerant may be reheated to lower the performance of the air conditioner. Absent. If the boundary between the main cooling section and the sub-cooling section of the radiator is set at the same height as the boundary between the upstream cooling section and the downstream cooling section of the condenser, the radiator has passed one main cooling section or the upstream cooling section. Since there is no mixing of the high-temperature side air and the low-temperature side air that has passed through the other sub-cooling section or the downstream-side cooling section, the minimum passing air temperature can be realized.

【0033】また、ラジエータの冷却通路の両端に第1
タンクと第2タンクを接続し、第1タンクは隔板により
主冷却部に連通する第1室と副冷却部に連通する第2室
とに区画して、第1室に冷却水入口を、第2室には第2
の冷却水出口を設け、第2タンク内は、絞り穴を備える
バイパス板により主冷却部に連通する第3室と副冷却部
に連通する第4室とに区画して、第3室に第1の冷却水
出口を設けることにより、主冷却部を流れた冷却水の多
くは第1の冷却水出口から排出され、残部が絞り穴で流
速を下げて副冷却部に入るので、この副冷却部でとくに
顕著に冷却される。
Also, first ends are provided at both ends of the cooling passage of the radiator.
The tank and the second tank are connected, and the first tank is divided into a first chamber communicating with the main cooling unit by a partition plate and a second chamber communicating with the sub cooling unit, and a cooling water inlet is provided in the first chamber. The second room has a second
The inside of the second tank is divided into a third chamber communicating with the main cooling section and a fourth chamber communicating with the sub-cooling section by a bypass plate having a throttle hole. By providing the first cooling water outlet, most of the cooling water flowing through the main cooling portion is discharged from the first cooling water outlet, and the remaining portion is reduced in flow velocity by the throttle hole to enter the sub cooling portion. Cooling is particularly pronounced in the area.

【0034】あるいはまた、第1タンクは隔板により主
冷却部に連通する第1室と副冷却部に連通する第2室と
に区画して、第1室に冷却水入口を設け、第2タンク内
は隔板により、副冷却部の一部と主冷却部とに連通する
第5室と副冷却部の残部に連通する第6室とに区画し
て、第5室に第1の冷却水出口を、第6室に第2の冷却
水出口を設けることにより、副冷却部では冷却水が第5
室から第2室へ流れたあと折り返されてさらに第6室へ
流れ、冷却水の流路長が2倍になるので、副冷却部での
冷却水の温度を一層低下させることができる。
Alternatively, the first tank is divided by a partition into a first chamber communicating with the main cooling section and a second chamber communicating with the sub-cooling section, and a cooling water inlet is provided in the first chamber. The inside of the tank is partitioned by a partition into a fifth chamber communicating with a part of the sub-cooling unit and the main cooling unit, and a sixth chamber communicating with the rest of the sub-cooling unit. By providing a water outlet and a second cooling water outlet in the sixth chamber, the cooling water is supplied to the fifth cooling water in the sub-cooling section.
After flowing from the chamber to the second chamber, it is turned back and further flows to the sixth chamber, and the flow path length of the cooling water is doubled, so that the temperature of the cooling water in the sub-cooling section can be further reduced.

【0035】この際、副冷却部における第5室に連通す
る冷却通路の断面積を第6室に連通する冷却通路の断面
積よりも小さく設定することにより、主冷却部と副冷却
部における冷却水路の流路抵抗が調整され、好ましい流
量配分となり、冷却効率が向上する。
At this time, by setting the sectional area of the cooling passage communicating with the fifth chamber in the sub-cooling section smaller than the sectional area of the cooling passage communicating with the sixth chamber, the cooling in the main cooling section and the sub-cooling section is performed. The flow path resistance of the water channel is adjusted, so that a preferable flow rate distribution is achieved, and the cooling efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す平面図である。FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】ラジエータとコンデンサを離間させて示す実施
の形態の斜視図である。
FIG. 2 is a perspective view of an embodiment in which a radiator and a condenser are separated from each other.

【図3】コンデンサの構造を示す一部断面正面図であ
る。
FIG. 3 is a partial cross-sectional front view showing the structure of the capacitor.

【図4】ラジエータの構造を示す一部断面正面図であ
る。
FIG. 4 is a partial cross-sectional front view showing the structure of the radiator.

【図5】実施の形態の変形例を示す横断面図である。FIG. 5 is a transverse sectional view showing a modification of the embodiment.

【図6】図5におけるF−F部断面図である。FIG. 6 is a sectional view taken along the line FF in FIG. 5;

【図7】第2の実施の形態を示す図である。FIG. 7 is a diagram showing a second embodiment.

【図8】コンデンサの変形例を示す図である。FIG. 8 is a diagram showing a modification of the capacitor.

【図9】従来例を示す図である。FIG. 9 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

4、19、39 フィン 10 コンデンサ 11、31 熱交換領域 12、32 主冷却部 13、33 副冷却部 14 第1ギャラリ 15 隔板 16 第2ギャラリ 16a 第1室 16b 第2室 16c 第3室 18、38 冷却通路 21 第1室 22 第2室 27 第3室 23、24 コネクタ 30、30’ ラジエータ 31 熱交換領域 34 第1タンク 35、50 隔板 36 第2タンク 41 第1室 42 第2室 43 冷却水入口 44 第3室 45 第4室 46 バイパス板 47 絞り穴 48 第1の冷却水出口 49 第2の冷却水出口 51 第5室 52 第6室 55 リキッドタンク 60 サブクール部 4, 19, 39 Fin 10 Condenser 11, 31 Heat exchange area 12, 32 Main cooling section 13, 33 Sub cooling section 14 First gallery 15 Separator 16 Second gallery 16a First chamber 16b Second chamber 16c Third chamber 18 , 38 Cooling passage 21 First chamber 22 Second chamber 27 Third chamber 23, 24 Connector 30, 30 'Radiator 31 Heat exchange area 34 First tank 35, 50 Separator 36 Second tank 41 First chamber 42 Second chamber 43 cooling water inlet 44 third chamber 45 fourth chamber 46 bypass plate 47 throttle hole 48 first cooling water outlet 49 second cooling water outlet 51 fifth chamber 52 sixth chamber 55 liquid tank 60 subcool section

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷却通路を横方向に配した熱交換領域が
上下の上流側冷却部と下流側冷却部とに区画され、冷媒
が上流側冷却部を流れたあと折り返して下流側冷却部に
おける逆方向の流れを含むエアコンディショナのコンデ
ンサと、冷却通路を横方向に配した熱交換領域を上下の
主冷却部と副冷却部とに分割して、冷却水が主冷却部に
おける一方向への流れのあと折り返して副冷却部におけ
る逆方向への流れを含むエンジン冷却用のラジエータと
からなり、前記コンデンサの熱交換領域とラジエータの
熱交換領域を重ねて配置し、ラジエータの副冷却部とコ
ンデンサの下流側冷却部を対向させたことを特徴とする
車両用熱交換器。
1. A heat exchange region in which cooling passages are arranged in a lateral direction is divided into upper and lower upstream cooling portions and a downstream cooling portion. The air conditioner condenser including the reverse flow and the heat exchange area where the cooling passages are arranged in the horizontal direction are divided into upper and lower main cooling units and sub cooling units, and the cooling water flows in one direction in the main cooling unit. And a radiator for cooling the engine including a flow in the reverse direction in the sub-cooling section after the flow of the sub-cooling section, the heat exchange area of the condenser and the heat exchange area of the radiator are arranged in an overlapping manner, and the sub cooling section of the radiator A heat exchanger for a vehicle, wherein a downstream cooling part of a condenser is opposed.
【請求項2】 前記ラジエータの主冷却部と副冷却部の
境界が前記コンデンサの上流側冷却部と下流側冷却部の
境界と同一高さに設定されていることを特徴とする請求
項1記載の車両用熱交換器。
2. A radiator according to claim 1, wherein a boundary between the main cooling section and the sub-cooling section is set at the same height as a boundary between the upstream cooling section and the downstream cooling section of the condenser. Heat exchanger for vehicles.
【請求項3】 前記ラジエータは、前記冷却通路の一端
を第1タンクに接続し、冷却通路の他端を第2タンクに
接続して構成され、前記第1タンクは隔板により主冷却
部に連通する第1室と副冷却部に連通する第2室とに区
画され、前記第2タンク内は、絞り穴を備えるバイパス
板により主冷却部に連通する第3室と副冷却部に連通す
る第4室とに区画され、その第3室には第1の冷却水出
口が設けられ、前記第1タンクの第1室には冷却水入口
が設けられ、第2室には第2の冷却水出口が設けられて
いることを特徴とする請求項1または2記載の車両用熱
交換器。
3. The radiator is configured such that one end of the cooling passage is connected to a first tank, and the other end of the cooling passage is connected to a second tank, and the first tank is connected to a main cooling unit by a partition plate. It is divided into a first chamber that communicates with a second chamber that communicates with the sub-cooling unit, and the inside of the second tank communicates with a third chamber that communicates with the main cooling unit and a sub-cooling unit by a bypass plate having a throttle hole. A first cooling water outlet is provided in the third chamber, a cooling water inlet is provided in the first chamber of the first tank, and a second cooling water is provided in the second chamber. The vehicle heat exchanger according to claim 1, wherein a water outlet is provided.
【請求項4】 前記ラジエータは、前記冷却通路の一端
を第1タンクに接続し、冷却通路の他端を第2タンクに
接続して構成され、前記第1タンクは隔板により主冷却
部に連通する第1室と副冷却部に連通する第2室とに区
画されて、前記第1室には冷却水入口が設けられ、前記
第2タンク内は隔板により、副冷却部の一部と主冷却部
とに連通する第5室と副冷却部の残部に連通する第6室
とに区画され、前記第5室に第1の冷却水出口が設けら
れるとともに、第6室には第2の冷却水出口が設けられ
ていることを特徴とする請求項1または2記載の車両用
熱交換器。
4. The radiator is configured such that one end of the cooling passage is connected to a first tank and the other end of the cooling passage is connected to a second tank, and the first tank is connected to a main cooling unit by a partition plate. The first chamber is divided into a first chamber communicating with the sub-cooling unit, and a cooling water inlet is provided in the first chamber, and a part of the sub-cooling unit is formed in the second tank by a partition plate. And a fifth chamber communicating with the main cooling section and a sixth chamber communicating with the rest of the sub-cooling section. The fifth chamber is provided with a first cooling water outlet, and the sixth chamber has a first cooling water outlet. The vehicle heat exchanger according to claim 1 or 2, wherein two cooling water outlets are provided.
【請求項5】 前記副冷却部における前記第5室に連通
する冷却通路の断面積は、前記第6室に連通する冷却通
路の断面積よりも小さく設定してあることを特徴とする
請求項4記載の車両用熱交換器。
5. A cross-sectional area of a cooling passage communicating with the fifth chamber in the sub-cooling section is set smaller than a cross-sectional area of a cooling passage communicating with the sixth chamber. 4. The heat exchanger for vehicles according to 4.
JP2000297876A 2000-09-29 2000-09-29 Vehicle heat exchanger Expired - Fee Related JP4216451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297876A JP4216451B2 (en) 2000-09-29 2000-09-29 Vehicle heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297876A JP4216451B2 (en) 2000-09-29 2000-09-29 Vehicle heat exchanger

Publications (2)

Publication Number Publication Date
JP2002107094A true JP2002107094A (en) 2002-04-10
JP4216451B2 JP4216451B2 (en) 2009-01-28

Family

ID=18779917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297876A Expired - Fee Related JP4216451B2 (en) 2000-09-29 2000-09-29 Vehicle heat exchanger

Country Status (1)

Country Link
JP (1) JP4216451B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060840A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Vehicle powered by fuel cell
WO2008103711A1 (en) * 2007-02-20 2008-08-28 Modine Manufacturing Company Heat exchanger system and method of operating the same
WO2014091746A1 (en) * 2012-12-11 2014-06-19 株式会社デンソー Vehicle heat exchanger
JP2019018680A (en) * 2017-07-14 2019-02-07 株式会社デンソー Cooling module for vehicle
JP2019138220A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Cooling device of internal combustion engine
JP2020032958A (en) * 2018-08-31 2020-03-05 トヨタ自動車株式会社 Cooling apparatus for vehicle
US11326836B1 (en) 2020-10-22 2022-05-10 Asia Vital Components Co., Ltd. Vapor/liquid condensation system
TWI764298B (en) * 2020-09-25 2022-05-11 奇鋐科技股份有限公司 Vapor/liquid condensation system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060840A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Vehicle powered by fuel cell
WO2008103711A1 (en) * 2007-02-20 2008-08-28 Modine Manufacturing Company Heat exchanger system and method of operating the same
US8434433B2 (en) 2007-02-20 2013-05-07 Modine Manufacturing Company Heat exchanger system and method of operating the same
CN101617110B (en) * 2007-02-20 2014-06-25 摩丁制造公司 Heat exchanger system and method of operating the same
WO2014091746A1 (en) * 2012-12-11 2014-06-19 株式会社デンソー Vehicle heat exchanger
JP2014133550A (en) * 2012-12-11 2014-07-24 Denso Corp Vehicle heat exchange device
US9669681B2 (en) 2012-12-11 2017-06-06 Denso Corporation Vehicle heat exchanger
JP2019018680A (en) * 2017-07-14 2019-02-07 株式会社デンソー Cooling module for vehicle
JP2019138220A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Cooling device of internal combustion engine
JP2020032958A (en) * 2018-08-31 2020-03-05 トヨタ自動車株式会社 Cooling apparatus for vehicle
CN112585024A (en) * 2018-08-31 2021-03-30 丰田自动车株式会社 Cooling apparatus for vehicle
JP7248395B2 (en) 2018-08-31 2023-03-29 トヨタ自動車株式会社 vehicle cooling system
CN112585024B (en) * 2018-08-31 2024-03-19 丰田自动车株式会社 Cooling device for a vehicle
TWI764298B (en) * 2020-09-25 2022-05-11 奇鋐科技股份有限公司 Vapor/liquid condensation system
US11326836B1 (en) 2020-10-22 2022-05-10 Asia Vital Components Co., Ltd. Vapor/liquid condensation system
US11555653B2 (en) 2020-10-22 2023-01-17 Asia Vital Components Co. Ltd. Vapor/liquid condensation system

Also Published As

Publication number Publication date
JP4216451B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4176642B2 (en) Heat exchanger
CN108139089B (en) Outdoor unit and indoor unit of air conditioner
US8250879B2 (en) Dual-circuit chiller with two-pass heat exchanger in a series counterflow arrangement
US9939183B2 (en) Constant-temperature-fluid circulation device
CN100565069C (en) Refrigerating module
US20120060550A1 (en) Heat exchanger for a refrigeration system
US20160138871A1 (en) Duplex heat exchanger
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
KR20000077372A (en) Heat exchanger
SE520741C2 (en) Device with heat exchanger especially for a motor vehicle
JPH0735439A (en) Laminated type heat exchanger
KR101438608B1 (en) Cooling module for vehicle
JP4178472B2 (en) Heat exchanger and air conditioner
WO2007099868A1 (en) Heat exchanger and integrated-type heat exchanger
US20130292090A1 (en) Plate-Type Heat Exchanger And Air-Conditioning Circuit For A Vehicle
US6431264B2 (en) Heat exchanger with fluid-phase change
ATE364826T1 (en) HEAT EXCHANGER MODULE WITH MAIN COOLER AND AUXILIARY COOLER
US6772602B2 (en) Cooling system for a vehicle
JP2001521132A (en) Air-cooled condenser
US7013952B2 (en) Stack type heat exchanger
JP4216451B2 (en) Vehicle heat exchanger
US7051796B2 (en) Heat exchanger
MX2007012510A (en) Parallel-flow evaporators with liquid trap for providing better flow distribution.
US20090050304A1 (en) Heat exchanger for motor vehicles
US10018101B2 (en) Cooling system and a method for its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees