JP2007059106A - Connection structure of press-fit terminal and base plate and designing method of press-fit terminal - Google Patents

Connection structure of press-fit terminal and base plate and designing method of press-fit terminal Download PDF

Info

Publication number
JP2007059106A
JP2007059106A JP2005240533A JP2005240533A JP2007059106A JP 2007059106 A JP2007059106 A JP 2007059106A JP 2005240533 A JP2005240533 A JP 2005240533A JP 2005240533 A JP2005240533 A JP 2005240533A JP 2007059106 A JP2007059106 A JP 2007059106A
Authority
JP
Japan
Prior art keywords
press
fit terminal
hole
terminal
fit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240533A
Other languages
Japanese (ja)
Other versions
JP4721820B2 (en
Inventor
Yasushi Saito
寧 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2005240533A priority Critical patent/JP4721820B2/en
Publication of JP2007059106A publication Critical patent/JP2007059106A/en
Application granted granted Critical
Publication of JP4721820B2 publication Critical patent/JP4721820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multi-Conductor Connections (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a press-fit terminal with stable connection between the terminal and a through-hole and without risk of degradation of an insulating property of a base plate for a long time, as well as a designing method of the same capable of designing in a short time in designing a connection structure of the base plate and the press-fit terminal. <P>SOLUTION: In the connection structure of the terminal and the base plate made by inserting the press-fit terminal 1 in a press-fit state into a through-hole 3 of the base plate 2, the press-fit terminal is formed so that a contact load x[N] at insertion of the press-fit terminal into the through-hole is to be within a range expressed in formula (1): 40≤x≤290ä[Z-(A+2T+B)]/2}+20. In the formula (1), Z[mm] denotes an interpolar pitch (minimum) of the through-hole, A[mm] a diameter (maximum) of the through-hole, T[mm] a wall thickness (maximum) of the through-hole, and B[mm] a necessary insulation distance at least necessary for securing an insulation property between the terminal and wiring. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子機器に組み込まれる、プレスフィット端子と基板の接続構造、及びプレスフィット端子の設計方法に関するものである。   The present invention relates to a press-fit terminal-substrate connection structure and a press-fit terminal design method incorporated in an electronic apparatus.

従来、プリント回路基板などの基板と端子を固定する方法として、基板に設けられた導電性スルーホールにプレスフィット端子と呼ばれる端子を挿入し、半田付けを行わずに機械的にこの端子を固定する方法が知られている。プレスフィット端子は、基板のスルーホールに挿入される案内部と、基板用コネクタなどに装着される取付部と、これら案内部と取付部との間に配置されてスルーホール径よりも大きな幅に形成される接続部とを有している。   Conventionally, as a method of fixing a terminal such as a printed circuit board and a terminal, a terminal called a press-fit terminal is inserted into a conductive through hole provided on the board, and the terminal is mechanically fixed without soldering. The method is known. The press-fit terminal is arranged between the guide part inserted into the through hole of the board, the mounting part to be mounted on the board connector, etc., and between the guide part and the mounting part, and has a width larger than the through hole diameter. A connecting portion to be formed.

プレスフィット端子は、案内部より基板のスルーホールに挿入し、そのスルーホール径よりも大きな幅の接続部をスルーホール内に圧入する事で接触荷重が発生し、機械的な保持力が増大し、安定した電気的接続が得られるように形成されている。   The press-fit terminal is inserted into the through hole of the board from the guide part, and the contact load is generated by press-fitting the connecting part with a width larger than the through hole diameter into the through hole, increasing the mechanical holding force. It is formed so as to obtain a stable electrical connection.

また基板は、一般にガラス繊維を縦横に組み合わせたエポキシ樹脂を含浸させたシートを多数積層し圧着して形成され、表面に導電部材による配線回路パターンと、該基板の表裏を貫通するスルーホールとが設けられている。基板のスルーホールには、該スルーホールの内周面の壁から基板表面のスルーホール開口周縁にかけて、銅めっき等のめっきが施されていて、スルーホールは導電性を有しており基板の配線回路パターンに電気的に接続されている。   The substrate is generally formed by laminating and pressing a large number of sheets impregnated with epoxy resin in which glass fibers are vertically and horizontally combined, and has a wiring circuit pattern made of a conductive member on the surface and through holes penetrating the front and back of the substrate. Is provided. The through hole of the substrate is plated with copper plating or the like from the wall of the inner peripheral surface of the through hole to the periphery of the through hole opening on the surface of the substrate. It is electrically connected to the circuit pattern.

自動車等の、振動が大きく、高温、高湿と云った過酷な環境で使用される制御機器に用いられる基板は、高い電気的接続信頼性を得るために、プレスフィット端子の基板に対する固着力を確保する必要がある。そこで、例えばプレスフィット接続部の幅をスルーホールの径よりも更に大きく形成して、圧入シロを大きくして保持力を高めたプレスフィット端子が公知である(例えば、特許文献1参照)。   Boards used in control equipment used in harsh environments such as automobiles with large vibrations, high temperatures, and high humidity are required to secure press-fit terminals to the board in order to obtain high electrical connection reliability. It is necessary to secure. Thus, for example, a press-fit terminal is known in which the width of the press-fit connection portion is formed larger than the diameter of the through hole, and the press-fit terminal is increased to increase the holding force (see, for example, Patent Document 1).

特開2004−127610号公報JP 2004-127610 A

しかしながら、従来のプレスフィット端子のように基板に対する保持力を得るため、プレスフィット接続部の圧入シロを大きくすると、プレスフィット端子の圧入時に基板に損傷を与える虞が大きくなる。この基板の損傷は、絶縁性等の基板特性を大きく低下させる要因となる。   However, in order to obtain a holding force with respect to the substrate as in the case of a conventional press-fit terminal, if the press-fitting joint of the press-fit connection portion is increased, there is a high possibility that the substrate is damaged when the press-fit terminal is press-fitted. This damage to the substrate is a factor that greatly deteriorates the substrate characteristics such as insulation.

また基板が自動車の制御装置等のように、過酷な動作環境で使用される場合、プレスフィット端子とスルーホールとの間で電気的に接続が長期間安定している必要がある。すなわち、プレスフィット端子と基板のスルーホールの接触抵抗が低く、プレスフィット端子を挿入した後も長期にわたり安定していることが要求される。   Further, when the substrate is used in a harsh operating environment such as a control device of an automobile, the electrical connection between the press-fit terminal and the through hole needs to be stable for a long time. That is, the contact resistance between the press-fit terminal and the through-hole of the substrate is required to be low and stable for a long time after the press-fit terminal is inserted.

また、プレスフィット端子とスルーホールの接続は、電気的に接続が安定していると同時に、使用している間に基板の白化などが発生しても隣の端子と短絡するような不良が発生しないことが要求される。   In addition, the connection between the press-fit terminal and the through-hole is electrically stable, and at the same time, even if whitening of the substrate occurs during use, a defect such as short-circuiting with the adjacent terminal occurs. It is required not to.

プレスフィット端子の形状を設計する場合、圧入シロによる保持力を見込んで、形状を考える。しかし、圧入シロをどの程度に設定すれば、最適な保持力が得られるかは不明である。従来、新しいプレスフィット端子を設計する場合、その形状は設計者の経験と勘により決定されている。すなわちプレスフィット端子を実際に作製し、基板のスルーホールに挿入して各種試験を行って性能を評価し、この評価結果をフィードバックして形状等を変更し、試験を行うという作業を、所望の性能のプレスフィット端子が得られるまで繰り返し行っていた。しかし、これらの一連の作業は非常に時間と手間がかかるという問題があった。   When designing the shape of a press-fit terminal, consider the shape taking into account the holding force due to press-fitting scissors. However, it is unclear to what extent the press-fit scissors are set to obtain the optimum holding force. Conventionally, when designing a new press-fit terminal, the shape is determined by the experience and intuition of the designer. That is, a press-fit terminal is actually manufactured, inserted into the through-hole of the board, and subjected to various tests to evaluate the performance, and the evaluation result is fed back to change the shape etc. This process was repeated until a high-performance press-fit terminal was obtained. However, there is a problem that these series of operations are very time consuming and troublesome.

本発明が解決しようとする課題は、端子とスルーホールの接続が安定していると同時に長期にわたり基板の絶縁性能の低下の虞がないプレスフィット端子とスルーホールの接続構造を提供すること、プレスフィット端子を設計する際に短期間で設計可能なプレスフィット端子の設計方法を提供することにある。   The problem to be solved by the present invention is to provide a connection structure between a press-fit terminal and a through-hole, in which the connection between the terminal and the through-hole is stable and at the same time, there is no risk of deterioration of the insulating performance of the substrate over a long period of time. An object of the present invention is to provide a press-fit terminal design method that can be designed in a short period of time when designing a fit terminal.

上記課題を解決するために本発明は、請求項1に記載の発明のように、基板のスルーホールにプレスフィット端子が圧入状態で挿入されてなるプレスフィット端子と基板の接続構造において、プレスフィット端子をスルーホールに挿入した際の接触荷重x[N]が下記(1)式で表される範囲内となるように、プレスフィット端子と基板が形成されていることを要旨とするものである。
40≦x≦290{〔Z−(A+2T+B)〕/2}+20・・・(1)
上記(1)式において、Z[mm]はスルーホールの極間ピッチ(最小)、A[mm]はスルーホール径(最大)、T[mm]はスルーホールの壁厚(最大)、B[mm]は端子と配線間の絶縁性を確保するために最低限必要な必要絶縁距離である。
In order to solve the above-mentioned problems, the present invention provides a press-fit terminal-board connection structure in which a press-fit terminal is inserted into a through-hole of a board in a press-fitted state as in the invention described in claim 1. The gist is that the press-fit terminal and the substrate are formed so that the contact load x [N] when the terminal is inserted into the through hole is within the range represented by the following formula (1). .
40 ≦ x ≦ 290 {[Z− (A + 2T + B)] / 2} +20 (1)
In the above equation (1), Z [mm] is the pitch between the through holes (minimum), A [mm] is the through hole diameter (maximum), T [mm] is the through hole wall thickness (maximum), and B [ mm] is the minimum necessary insulation distance necessary to ensure insulation between the terminal and the wiring.

本発明に係るプレスフィット端子の設計方法は、請求項2に記載の発明のように、基板のスルーホールに圧入状態で挿入されるプレスフィット端子を設計する方法において、基板のスルーホールにプレスフィット端子を圧入して耐久試験を行った後に安定した接触抵抗が得られる初期の接触荷重を最小接触荷重として設定し、基板の配線パターンとスルーホールの絶縁距離として、基板の高温高湿試験後に安定した絶縁抵抗が得られる必要絶縁距離を求め、該必要絶縁距離とスルーホール径から白化許容距離を求め、基板のスルーホールに接触荷重の異なる複数のプレスフィット端子を圧入して基板の白化長さを測定し、白化長さと接触荷重の関係を求め、その関係に基づいて前記白化許容距離に対応する接触荷重を最大接触荷重として設定し、プレスフィット端子の接触荷重が前記最小接触荷重以上であって前記最大接触荷重以下になるように、プレスフィット端子を設計することを要旨とするものである。   A press-fit terminal design method according to the present invention is a method for designing a press-fit terminal to be inserted into a through-hole of a board in a press-fitted state, as in the invention described in claim 2. The initial contact load that provides stable contact resistance after press-fitting the terminal and setting a stable contact resistance is set as the minimum contact load, and it is stable after the high-temperature and high-humidity test of the board as the insulation distance between the wiring pattern of the board and the through-hole. The required whitening distance to obtain the required insulation resistance, the allowable whitening distance from the required insulating distance and the through hole diameter, and press-fit multiple press-fit terminals with different contact loads into the through hole of the board to obtain the whitening length of the board To determine the relationship between the whitening length and the contact load, and based on this relationship, set the contact load corresponding to the allowable whitening distance as the maximum contact load. , To be less than the maximum contact load be at the contact load of the press-fit terminal is the minimum contact load above, it is an gist to design the press-fit terminal.

上記本発明に係るプレスフィット端子と基板の接続構造によれば、プレスフィット端子と基板のスルーホールの接触抵抗が低く安定であり、更に接触抵抗が長期にわたり安定しており、使用している間に基板の白化などが発生しても隣の端子と短絡するような絶縁性の不良が発生する虞がない。   According to the connection structure of the press-fit terminal and the substrate according to the present invention, the contact resistance between the press-fit terminal and the through-hole of the substrate is low and stable, and the contact resistance is stable over a long period of time. Even if whitening of the substrate occurs, there is no possibility that an insulating defect such as a short circuit with an adjacent terminal will occur.

本発明に係るプレスフィット端子の設計方法によれば、プレスフィット端子の形状を設計する場合、最適な接触荷重を設定することができるために、所望の性能のプレスフィット端子を容易に得ることができ、新規のプレスフィット端子を作る場合の開発時間を短縮することができる。   According to the method for designing a press-fit terminal according to the present invention, when designing the shape of the press-fit terminal, an optimum contact load can be set, so that a press-fit terminal having a desired performance can be easily obtained. It is possible to shorten the development time when making a new press-fit terminal.

以下、本発明の実施形態について、図面を参照して詳細に説明する。本発明のプレスフィット端子と基板の接続構造は、図1(a)、(b)に示すように、プレスフィット端子1が、基板2の導電性を有するスルーホール3に圧入状態で挿入されるものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 (a) and 1 (b), the press fit terminal 1 is inserted into the conductive through-hole 3 of the substrate 2 in a press-fit state. Is.

プレスフィット端子1は、図1(a)に示すように先端側が案内部11として先細状に形成され、後端側が他の端子(図示しない)に装着するための取付部12として形成され、前記案内部11と取付部12の間が、スルーホール3の内部と接触して電気的に接続する接続部13として形成されている。基板2はその表面に各種導電路(特に図示しない)が形成されていると共に、図1(a)に示すように基板2を貫通するスルーホール3が複数設けられている。このスルーホール3の内周面及び開口周縁には、銅めっき等により導電層4が形成され、導電層4は基板2表面の導電路に接続されている。   As shown in FIG. 1 (a), the press-fit terminal 1 is formed such that the front end side is tapered as a guide portion 11, and the rear end side is formed as an attachment portion 12 for mounting to another terminal (not shown). Between the guide part 11 and the attachment part 12, it forms as the connection part 13 which contacts the inside of the through-hole 3, and is electrically connected. Various conductive paths (not shown) are formed on the surface of the substrate 2, and a plurality of through holes 3 penetrating the substrate 2 are provided as shown in FIG. A conductive layer 4 is formed on the inner peripheral surface and the opening peripheral edge of the through hole 3 by copper plating or the like, and the conductive layer 4 is connected to a conductive path on the surface of the substrate 2.

図1(b)に示すように、プレスフィット端子1を基板2のスルーホール3に挿入すると、プレスフィット端子1は接続部13の幅(以下、端子幅と云うこともある)が、スルーホール3の径(A±Δ)よりも大きく形成されているから、端子幅が小さくなるように変形して、スルーホール3に圧入状態で挿入され、スルーホール3の内部の導電層4と接触して電気的に接続する。この時のプレスフィット端子1と基板2に加わる荷重をグラフで表すと図2に示すようになる。 As shown in FIG. 1B, when the press-fit terminal 1 is inserted into the through-hole 3 of the substrate 2, the press-fit terminal 1 has a width of the connecting portion 13 (hereinafter also referred to as a terminal width). 3 is formed to be larger than the diameter (A 0 ± Δ A ) of FIG. 3, so that the terminal width is reduced and inserted into the through hole 3 in a press-fit state. Contact and connect electrically. The load applied to the press-fit terminal 1 and the substrate 2 at this time is represented by a graph as shown in FIG.

図2のグラフは、縦軸が反力(圧縮力又は引張力)であり、横軸が長さ(端子幅又はスルーホール径)である。図2においてPは端子の荷重特性を示す曲線であり、Qは基板の荷重特性を示す曲線である。スルーホール3にプレスフィット端子1を圧入すると、図2の端子の荷重特性の曲線Pに示すように、プレスフィット端子1は、圧入により端子幅が小さくなり長さが短くなると共に圧縮力が大きくなる。また基板2のスルーホール3の周辺に加わる引張力は、図2の基板の荷重特性の曲線Qに示すように、プレスフィット端子1が圧入されるに従ってスルーホール2の径が拡大して長さが長くなると共に引張力が大きくなる。   In the graph of FIG. 2, the vertical axis is the reaction force (compression force or tensile force), and the horizontal axis is the length (terminal width or through-hole diameter). In FIG. 2, P is a curve indicating the load characteristic of the terminal, and Q is a curve indicating the load characteristic of the substrate. When the press-fit terminal 1 is press-fitted into the through hole 3, as shown in the curve P of the load characteristic of the terminal in FIG. Become. Further, the tensile force applied to the periphery of the through hole 3 of the substrate 2 increases in length as the diameter of the through hole 2 increases as the press-fit terminal 1 is press-fitted as shown in the curve Q of the load characteristic of the substrate in FIG. As the length increases, the tensile force increases.

図2のグラフにおいて、端子の荷重特性を示す曲線Pと基板の荷重特性を示す曲線Qとが交叉した点Cが、プレスフィット端子1がスルーホール3に圧入完了した状態である。そして、点Cの反力が接触荷重x(単位:N)である。長期的に安定したプレスフィット端子1と基板2の接続構造を得るためには、この接触荷重xが、低く安定した接触抵抗が得られる最小接触荷重と、安定した基板の絶縁性能が得られる最大接触荷重の間に入るように、プレスフィット端子1と基板2の関係を設定すれば良い。以下、最小接触荷重と最大接触荷重について説明する。   In the graph of FIG. 2, a point C where the curve P indicating the load characteristic of the terminal and the curve Q indicating the load characteristic of the substrate intersect is a state where the press-fit terminal 1 has been press-fitted into the through hole 3. The reaction force at point C is the contact load x (unit: N). In order to obtain a stable connection structure between the press-fit terminal 1 and the substrate 2 in the long term, this contact load x is the minimum that can provide a low and stable contact resistance, and a maximum that can provide a stable substrate insulation performance. What is necessary is just to set the relationship between the press fit terminal 1 and the board | substrate 2 so that it may enter between contact loads. Hereinafter, the minimum contact load and the maximum contact load will be described.

最小接触荷重は、経時的に絶縁抵抗が大きくなることを見込んで安定した接触抵抗が保持できる範囲で最小の接触荷重に設定する。プレスフィット端子1とスルーホール3の接続は、経時変化により接触荷重が低下することによって絶縁抵抗が大きくなり、安定した電気的接続状態を保持できなくなる。例えば接続基板が高温状態に長時間放置されると、酸化が進行し、端子や基板の応力緩和が生じ、接触荷重が低下する。また接続基板の雰囲気が低温の状態から常温或いは高温の状態が繰り返される温度サイクルを受けると、端子と基板に熱膨張と収縮が起こり、酸化や摺動等の影響により接触荷重が低下する。   The minimum contact load is set to the minimum contact load within a range where stable contact resistance can be maintained in anticipation of an increase in insulation resistance over time. The connection between the press-fit terminal 1 and the through-hole 3 increases the insulation resistance due to a decrease in contact load due to a change with time, and a stable electrical connection state cannot be maintained. For example, when the connection substrate is left in a high temperature state for a long time, oxidation proceeds, stress relaxation of the terminals and the substrate occurs, and the contact load decreases. Also, when the connection substrate is subjected to a temperature cycle in which the atmosphere of the connection substrate is repeated from a low temperature state to a normal temperature or a high temperature state, thermal expansion and contraction occur in the terminal and the substrate, and the contact load decreases due to the influence of oxidation or sliding.

図3のグラフはプレスフィット端子を基板のスルーホールに圧入する際の接触荷重と接触抵抗の関係を示すグラフであり、横軸が接触荷重であり、縦軸が接触抵抗である。図3の初期の曲線はスルーホールにプレスフィット端子を圧入した当初の接触抵抗を示し、耐久後の曲線は車載を想定した耐久試験として高温放置試験及び温度サイクル試験を行った後の接触抵抗を示すものである。図3に示すように、接触荷重が小さくなって、ある一定値以下になると、急激に接触抵抗が増加する。また、耐久試験後の曲線に示すように、経時後は、更に接触抵抗が急激に増加する接触荷重が小さくなる方にシフトする。   The graph of FIG. 3 is a graph showing the relationship between the contact load and the contact resistance when the press-fit terminal is press-fitted into the through hole of the substrate, the horizontal axis is the contact load, and the vertical axis is the contact resistance. The initial curve in Fig. 3 shows the initial contact resistance when press-fit terminals are press-fitted into the through hole, and the curve after endurance shows the contact resistance after performing a high temperature storage test and a temperature cycle test as an endurance test assuming in-vehicle use. It is shown. As shown in FIG. 3, when the contact load decreases and becomes a certain value or less, the contact resistance rapidly increases. In addition, as shown by the curve after the durability test, after a lapse of time, the contact load at which the contact resistance rapidly increases further shifts to become smaller.

図3に示すグラフにおいて、耐久試験後の接触抵抗が低く安定した状態の領域で使用するように初期接触荷重を設定すれば良い。すなわち最小接触荷重は、耐久後に接触抵抗が大きくなる分を見込んで、安定した状態で低い接触抵抗が保持できる範囲で最小の接触荷重とすればよいことを意味する。なお本発明において最小接触荷重と云う場合、初期の接触荷重を意味する。   In the graph shown in FIG. 3, the initial contact load may be set so as to be used in a region where the contact resistance after the durability test is low and stable. That is, the minimum contact load means that the minimum contact load may be set in a range where a low contact resistance can be maintained in a stable state in anticipation of an increase in contact resistance after durability. In the present invention, the minimum contact load means an initial contact load.

以下、最小接触荷重を具体的に求めた例を示す。図4(a)〜(c)は、各種形状のプレスフィット端子を基板のスルーホールに挿入して初期の接触抵抗と耐久試験後の接触抵抗を測定した結果を示すものであり、最上段にプレスフィット端子の形状を示し、中段に初期の接触抵抗の測定結果を示し、下段に耐久試験後の接触抵抗を示した。図4(a)はプレスフィット端子1の接続部13の断面がN型の端子であり、(b)は接続部13の断面が一部貫通したN型の端子であり、(c)は接続部13の断面がニードルアイ型の端子である。この図4(a)〜(c)の耐久試験後の接触抵抗を見ると、いずれも初期接触荷重が約35N付近から接触抵抗が急激に増加している。この結果より、耐久試験後であっても低く安定した接触抵抗が得られる初期接触荷重は、プレスフィット端子の形状にかかわらず、35N程度であることが判る。そこで、余裕を見て、最小接触荷重を40Nに設定しておけば、端子圧入後長期間経過した後でも、安定した接触抵抗が得られることは明らかである。なお図4(a)〜(c)の試験では、プレスフィット端子もしくは基板のどちらかにSnめっきを施した。   Hereinafter, the example which calculated | required the minimum contact load concretely is shown. 4A to 4C show the results of measuring the initial contact resistance and the contact resistance after the endurance test by inserting press-fit terminals of various shapes into the through holes of the substrate. The shape of the press-fit terminal is shown, the measurement result of the initial contact resistance is shown in the middle stage, and the contact resistance after the durability test is shown in the lower stage. 4A is an N-type terminal having a cross-section of the connection portion 13 of the press-fit terminal 1, FIG. 4B is an N-type terminal in which the cross-section of the connection portion 13 is partially penetrated, and FIG. The cross section of the part 13 is a needle eye type terminal. Looking at the contact resistance after the durability test of FIGS. 4A to 4C, the contact resistance increases rapidly from the initial contact load of about 35 N. From this result, it can be seen that the initial contact load at which a low and stable contact resistance is obtained even after the durability test is about 35 N regardless of the shape of the press-fit terminal. Therefore, if the minimum contact load is set to 40 N with a margin, it is clear that a stable contact resistance can be obtained even after a long period of time has passed after the terminal press-fitting. In the tests shown in FIGS. 4A to 4C, Sn plating was applied to either the press-fit terminal or the substrate.

最大接触荷重は、経時的に基板に白化が生じても、安定した絶縁性能が保持できる範囲で最大の接触荷重に設定する。絶縁性能の低下は、プレスフィット端子圧入時の衝撃による基板の白化に起因するものと考えられる。基板2は、一般にガラス基材にエポキシ樹脂含浸クロスなどを重ねた積層体である。基板2のスルーホール3に端子を圧入する事で、ガラスクロスとエポキシ樹脂との間で剥離したりエポキシ樹脂層に割れが入り、白化が発生することがある。白化すると、割れにより生じた隙間から水分が侵入して絶縁距離が短くなるために絶縁性能が低下したり、イオン伝導により電路が形成されてしまい、隣の端子と短絡するといった問題がある。そして基板の白化長さは、プレスフィット端子のスルーホールに対する接触荷重が大きくなる程、長くなると考えられる。従って、許容できる白化長さの範囲で接触荷重の最大値を設定すれば、絶縁性能に影響しないはずである。   The maximum contact load is set to the maximum contact load within a range in which stable insulation performance can be maintained even if the substrate is whitened over time. It is considered that the decrease in insulation performance is caused by whitening of the substrate due to an impact at the time of press-fitting a press-fit terminal. The substrate 2 is generally a laminate in which an epoxy resin impregnated cloth or the like is stacked on a glass base material. By press-fitting a terminal into the through hole 3 of the substrate 2, the glass cloth and the epoxy resin may be peeled off or the epoxy resin layer may be cracked to cause whitening. When whitening occurs, moisture enters from the gaps caused by cracks and the insulation distance is shortened, resulting in a decrease in insulation performance, and an electric circuit is formed by ionic conduction, resulting in a short circuit with an adjacent terminal. And it is thought that the whitening length of a board | substrate becomes long, so that the contact load with respect to the through hole of a press fit terminal becomes large. Therefore, if the maximum value of the contact load is set within the allowable whitening length range, the insulation performance should not be affected.

ところで基板の白化は、プレスフィット端子の圧入時の応力によるものばかりではない。例えば基板をドリルで削りスルーホールを形成する際に、ドリルの衝撃によって基板が割れて白化することもある。基板の白化が、基板自体に存在するものなのか、或いはプレスフィット端子の圧入によるものなのかを判別するのは極めて困難である。しかし図5に示すように、基板2にプレスフィット端子1を圧入することで白化5が発生しても、その白化長さが、十分な絶縁特性を得る為に必要な絶縁距離(必要絶縁距離)Bの範囲内であれば基板の絶縁性能を十分維持できる。つまりプレスフィット端子の圧入により基板が白化しても、その白化長さが絶縁性能を維持できる許容範囲内となるように、接触荷重の上限を設定すれば良い。なお必要絶縁距離Bは、図5に示すように、白化の端部B1から隣の端子の白化の端部B2までの長さである。また、内層としてスルーホール間に導電層を設ける場合は、そこまでの長さとして同じ様に考えを展開してゆく事ができる。   By the way, the whitening of the substrate is not only due to the stress at the time of press-fitting the press-fit terminal. For example, when a through hole is formed by cutting a substrate with a drill, the substrate may be broken and whitened by the impact of the drill. It is extremely difficult to determine whether the whitening of the substrate is present on the substrate itself or by press-fitting a press-fit terminal. However, as shown in FIG. 5, even if whitening 5 occurs by press-fitting the press-fit terminal 1 into the substrate 2, the whitening length is an insulation distance necessary for obtaining sufficient insulation characteristics (necessary insulation distance). ) If it is within the range of B, the insulating performance of the substrate can be sufficiently maintained. That is, even if the substrate is whitened by press-fitting a press-fit terminal, the upper limit of the contact load may be set so that the whitening length is within an allowable range in which the insulation performance can be maintained. As shown in FIG. 5, the necessary insulation distance B is the length from the whitening end B1 to the whitening end B2 of the adjacent terminal. Further, when a conductive layer is provided between through holes as an inner layer, the same idea can be developed for the length up to that.

必要絶縁距離Bの範囲内とするために許容できる限界の白化長さを白化許容距離y(単位:mm)とすると、白化許容距離yは下記の(2)式で表すことができる。
(数1)
y≦〈(Z±ΔMIN−{(A±ΔMAX+2(T±ΔMAX+B}〉/2・・・(2)
図1(a)に示すように、上記(2)式において(Z±ΔMINは極間ピッチ(最小)、(A±ΔMAXはスルーホール径(最大)、(T±ΔMAXはスルーホールの壁厚(最大)であり、Δ、Δ、Δはそれぞれの公差である。なおスルーホールの壁厚とは、スルーホール3内部の導電層4の厚みのことである。
Assuming that the limit whitening length allowable to be within the range of the necessary insulation distance B is the whitening allowable distance y (unit: mm), the whitening allowable distance y can be expressed by the following equation (2).
(Equation 1)
y ≦ <(Z 0 ± Δ Z) MIN - {(A 0 ± Δ A) MAX +2 (T 0 ± Δ T) MAX + B}> / 2 ··· (2)
As shown in FIG. 1 (a), in the above equation (2), (Z 0 ± Δ Z ) MIN is the pitch between the electrodes (minimum), (A 0 ± Δ A ) MAX is the through-hole diameter (maximum), (T 0 ± Δ T ) MAX is the wall thickness (maximum) of the through hole, and Δ Z , Δ A , Δ T are tolerances of each. The wall thickness of the through hole is the thickness of the conductive layer 4 inside the through hole 3.

ここで、
(数2)
Z≡(Z±ΔMIN=Z−Δ
(数3)
A≡(A±ΔMAX=A+Δ
(数4)
T≡(T±ΔMAX=T+Δ
とすると、上記(2)式は下記の(3)式のように表すことができる。
(数5)
y≦{Z−(A+2T+B)}/2 ・・・(3)
スルーホールにプレスフィット端子を圧入した際に基板が白化しても、上記(3)式で求められる白化許容距離y未満であれば、絶縁性能を維持できる。
here,
(Equation 2)
Z≡ (Z 0 ± Δ Z ) MIN = Z 0 −Δ Z
(Equation 3)
A≡ (A 0 ± Δ A ) MAX = A 0 + Δ A
(Equation 4)
T≡ (T 0 ± Δ T ) MAX = T 0 + Δ T
Then, the above equation (2) can be expressed as the following equation (3).
(Equation 5)
y ≦ {Z− (A + 2T + B)} / 2 (3)
Even if the substrate is whitened when a press-fit terminal is press-fitted into the through hole, the insulation performance can be maintained as long as it is less than the allowable whitening distance y obtained by the above equation (3).

以下、必要絶縁距離Bを具体的に求めた例を示す。一般的な車載用の基板について、基板単体の白化長さとスルーホール径との関係を調べると、図6に示すように、最大で0.2mm程度であった。また基板の絶縁距離を変え、高温高湿試験後の端子と配線間の絶縁抵抗の劣化について試験を行った。図7に示すように、基板2のスルーホール3の導電層4と配線パターン6との間の絶縁抵抗について、絶縁距離を0.2〜0.4mmの間で変化させた試験片を準備して、初期と高温高湿試験後の絶縁抵抗を測定した。その結果、図8に示すように、絶縁距離が最短の0.2mmの条件においても絶縁抵抗が目標値である10Ω以上有り、十分な絶縁性能を有していることが判った。また高温高湿試験後も同様な結果であり、初期との相違もほとんどなかった。この結果より、絶縁距離が0.2mm以上あれば絶縁性能が十分確保できることが判った。そこで必要絶縁距離Bを0.2mmと設定した。 Hereinafter, the example which calculated | required the required insulation distance B concretely is shown. When the relationship between the whitening length of a single substrate and the through-hole diameter of a general vehicle-mounted substrate was examined, it was about 0.2 mm at the maximum as shown in FIG. In addition, the insulation distance of the substrate was changed, and a test was conducted on the deterioration of the insulation resistance between the terminal and the wiring after the high temperature and high humidity test. As shown in FIG. 7, for the insulation resistance between the conductive layer 4 and the wiring pattern 6 in the through hole 3 of the substrate 2, a test piece was prepared in which the insulation distance was changed between 0.2 and 0.4 mm. The insulation resistance after the initial test and after the high temperature and high humidity test was measured. As a result, as shown in FIG. 8, it was found that the insulation resistance was 10 9 Ω, which is the target value, even under the condition of the shortest insulation distance of 0.2 mm, and that the insulation performance was sufficient. The same results were obtained after the high temperature and high humidity test, and there was almost no difference from the initial stage. From this result, it was found that the insulation performance can be sufficiently secured if the insulation distance is 0.2 mm or more. Therefore, the necessary insulation distance B was set to 0.2 mm.

なお上記の基板の実際の必要絶縁距離Bは、0.2mm未満であると考えられるが、絶縁距離を0.2mm未満とした基板を工業的に量産するのは不可能なので、意味がない。但し、上記結果は一般的な車載用基板の場合であり、基板の種類(品質)によっては、必要絶縁距離Bの値が異なる可能性がある。必要絶縁距離は、基板の種類に応じて、上記の手法で絶縁抵抗を測定し決定することが望ましい。   The actual required insulation distance B of the substrate is considered to be less than 0.2 mm, but it is meaningless because it is impossible to industrially mass-produce a substrate having an insulation distance of less than 0.2 mm. However, the above results are for a general vehicle-mounted substrate, and the value of the required insulation distance B may vary depending on the type (quality) of the substrate. It is desirable that the required insulation distance is determined by measuring the insulation resistance by the above method according to the type of the substrate.

ここで、上記の必要絶縁距離B=0.2mmを用いて、白化許容距離yを求めてみる。図1(a)に示す基板の極間ピッチ(最小)Zが、2.2mmで、スルーホール径(最大)Aが1.9mmとすると、これらの数値を前記(3)式に代入して、
白化許容距離y={2.2−(1.09+0.2)}/2=0.455[mm]となる。
Here, the allowable whitening distance y is calculated using the above-described necessary insulation distance B = 0.2 mm. If the inter-electrode pitch (minimum) Z of the substrate shown in FIG. 1A is 2.2 mm and the through-hole diameter (maximum) A is 1.9 mm, these numerical values are substituted into the above equation (3). ,
Whitening allowable distance y = {2.2− (1.09 + 0.2)} / 2 = 0.455 [mm].

次に白化許容距離に対応する接触荷重を求めた例を示す。まず、各種形状の端子について、白化長さと接触荷重の関係を断面観察の手法により調べた。その結果を図9のグラフに示した。この図9に示す各点の接触荷重に対応する白化長さの最大値を結んで得られた直線Rは、白化長さS[mm]と接触荷重x[N]の関係を示すものであり、下記(4)式の通り表される。
(数6)
x=290S+20 ・・・(4)
Next, the example which calculated | required the contact load corresponding to whitening allowable distance is shown. First, the relationship between the whitening length and the contact load was examined for various shapes of terminals by a cross-sectional observation technique. The results are shown in the graph of FIG. A straight line R obtained by connecting the maximum whitening length corresponding to the contact load at each point shown in FIG. 9 indicates the relationship between the whitening length S [mm] and the contact load x [N]. Is expressed as the following equation (4).
(Equation 6)
x = 290S + 20 (4)

ここで白化長さSが許容できる最大値は、前記(3)式で表される白化許容距離yであるから、接触荷重の上限となる最大接触荷重は、下記(5)式で表すことができる。
(数7)
x≦290{〔Z−(A+2T+B)〕/2}+20・・・(5)
Here, the maximum allowable whitening length S is the allowable whitening distance y expressed by the above equation (3). Therefore, the maximum contact load that is the upper limit of the contact load can be expressed by the following equation (5). it can.
(Equation 7)
x ≦ 290 {[Z− (A + 2T + B)] / 2} +20 (5)

以上のことより、プレスフィット端子が備えるべき必要接触荷重xは、最小接触荷重が基板の種類に関わらず40N以上であり、最大接触荷重は〈290{〔Z−(A+2T+B)〕/2}+20〉N以下となるように設定すればよいことが判る。   From the above, the necessary contact load x that the press-fit terminal should have is a minimum contact load of 40 N or more regardless of the type of the substrate, and the maximum contact load is <290 {[Z- (A + 2T + B)] / 2} +20. It can be seen that it may be set so that it is N or less.

例えば、白化許容距離yが0.455mmの場合は、yを上記(5)式の{〔Z−(A+2T+B)〕/2}に代入すると、最大接触荷重は約161Nとなる。このように図9に示す直線Rにおいて、白化許容距離となる白化長さに対応する点の接触荷重が最大接触荷重として設定することができる。   For example, when the allowable whitening distance y is 0.455 mm, the maximum contact load is about 161 N when y is substituted into {[Z− (A + 2T + B)] / 2} in the above formula (5). As described above, in the straight line R shown in FIG. 9, the contact load at the point corresponding to the whitening length that is the allowable whitening distance can be set as the maximum contact load.

プレスフィット端子を、上記の接触荷重となるように形成するには、プレスフィット端子の接続部13の形状や端子の材質等を変更することで、接触荷重を変更できる。プレスフィット端子は、例えば銅合金等の導電性に優れた金属線を所定の形状に打ち抜き加工することにより形成することができる。打ち抜き加工では、全体が均一な厚みに形成されるが、必要な箇所に加工を施して部分的に厚みを変えることもできる。端子の厚みを変える加工方法としては、例えば、プレス加工やめっきを施すこと等が挙げられる。また特に図示しないが、プレスフィット端子1全体や、接続部13のスルーホール3と接触する部分の表面等に、Snめっき等のめっきを施すことができる。   In order to form the press-fit terminal so as to have the above-described contact load, the contact load can be changed by changing the shape of the connecting portion 13 of the press-fit terminal, the material of the terminal, or the like. The press-fit terminal can be formed by punching a metal wire having excellent conductivity such as a copper alloy into a predetermined shape. In the punching process, the whole is formed to have a uniform thickness, but it is also possible to change the thickness partially by processing the necessary part. Examples of the processing method for changing the thickness of the terminal include press processing and plating. Further, although not particularly shown, plating such as Sn plating can be applied to the entire press-fit terminal 1 or the surface of a portion of the connecting portion 13 that contacts the through hole 3.

新規なプレスフィット端子を製造する場合、その端子の接触荷重が最大接触荷重と最小接触荷重の範囲内にあるように製造すれば、確実に長期的に安定した性能を発揮できる。また、接触荷重を上記範囲内の限界値ぎりぎりで製造するのではなく、限界値からある程度余裕を持った接触荷重となるように製造することで、さらに安定した性能のプレスフィット端子が得られる。   When manufacturing a new press-fit terminal, if it is manufactured so that the contact load of the terminal is within the range of the maximum contact load and the minimum contact load, the long-term stable performance can be surely exhibited. In addition, a press-fit terminal with more stable performance can be obtained by manufacturing the contact load so that the contact load has a certain margin from the limit value, instead of manufacturing the contact load at the limit value within the above range.

また、実際にプレスフィット端子を試作しなくても、端子の形状と接触荷重についてコンピュータを用いたシミュレーション等により、プレスフィット端子の性能を予測して形状を決定することができる。その結果、実際に端子の試作と性能評価を繰り返して新規のプレスフィット端子を製造していた従来の方法と比較して、新規なプレスフィット端子の製造を迅速に行うことができる。   Further, without actually making a prototype of a press-fit terminal, the shape of the terminal can be determined by predicting the performance of the press-fit terminal by simulation using a computer with respect to the shape and contact load of the terminal. As a result, it is possible to rapidly manufacture a new press-fit terminal as compared with the conventional method in which a new press-fit terminal is manufactured by actually repeating trial manufacture and performance evaluation of the terminal.

本発明のプレスフィット端子とスルーホールを有する基板の接続構造は、各種の制御基板の接続構造としてに利用できるが、自動車、産業機器等の高振動、高温、高湿等の過酷な環境下で使用される電気配線における電線基板同士の接続に用いた場合、過酷な条件においても長期間わたって高い信頼性を有する接続構造として最適に利用することができる。   The connection structure of the press-fit terminal and the substrate having a through hole according to the present invention can be used as a connection structure of various control boards. When used for connection between electric wire substrates in the electric wiring used, it can be optimally used as a connection structure having high reliability over a long period of time even under severe conditions.

本発明のプレスフィット端子と基板の接続構造を示すものであり、(a)は接続前の状態を示す説明図であり、(b)は接続後の状態を示す説明図である。The press fit terminal and board | substrate connection structure of this invention are shown, (a) is explanatory drawing which shows the state before a connection, (b) is explanatory drawing which shows the state after a connection. プレスフィット端子と基板の接続原理を説明するためのものであり、圧縮力と端子幅の関係及び引張力とスルーホール径の関係を示すグラフである。It is for demonstrating the connection principle of a press fit terminal and a board | substrate, and is a graph which shows the relationship between a compressive force and terminal width, and the relationship between a tensile force and a through-hole diameter. プレスフィット端子を基板のスルーホールに圧入した後の接触荷重と接触抵抗の関係を示すグラフである。It is a graph which shows the relationship between the contact load after press-fitting a press fit terminal into the through hole of a board | substrate, and contact resistance. (a)〜(c)は、プレスフィット端子の形状と、基板のスルーホールに各種形状のプレスフィット端子を圧入した後の、初期の接触抵抗と接触荷重の関係を示すグラフと、耐久試験後の接触抵抗と接触荷重の関係を示すグラフである。(A) to (c) are graphs showing the relationship between the initial contact resistance and the contact load after press-fit terminals of various shapes are press-fitted into the through-holes of the substrate, and after the durability test. It is a graph which shows the relationship between contact resistance and contact load. 基板の白化と絶縁距離を説明するための基板とプレスフィット端子の断面を示す説明図である。It is explanatory drawing which shows the cross section of the board | substrate and pressfit terminal for demonstrating the whitening and insulation distance of a board | substrate. 基板の白化長さとスルーホール径の関係を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the relationship between the whitening length of a board | substrate, and the through-hole diameter. 基板の配線と端子との絶縁抵抗の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of the insulation resistance of the wiring of a board | substrate, and a terminal. 絶縁距離を変えた基板の初期と高温高湿試験後の絶縁抵抗の測定結果を示すグラフである。It is a graph which shows the measurement result of the insulation resistance after the initial stage of the board | substrate which changed the insulation distance, and a high temperature / humidity test. 端子の接触荷重と白化長さとの関係を示すである。It is a relationship between the contact load of the terminal and the whitening length.

符号の説明Explanation of symbols

1 プレスフィット端子
2 基板
3 スルーホール
4 導電層
1 Press-fit terminal 2 Substrate 3 Through hole 4 Conductive layer

Claims (2)

基板のスルーホールにプレスフィット端子が圧入状態で挿入されてなるプレスフィット端子と基板の接続構造において、プレスフィット端子をスルーホールに挿入した際の接触荷重x[N]が下記(1)式で表される範囲内となるように、プレスフィット端子と基板が形成されていることを特徴とするプレスフィット端子と基板の接続構造。
40≦x≦290{〔Z−(A+2T+B)〕/2}+20・・・(1)
上記(1)式において、Z[mm]はスルーホールの極間ピッチ(最小)、A[mm]はスルーホール径(最大)、T[mm]はスルーホールの壁厚(最大)、B[mm]は端子と配線間の絶縁性を確保するために最低限必要な必要絶縁距離である。
In the connection structure between a press-fit terminal and a board in which a press-fit terminal is inserted into the through hole of the board in a press-fitted state, the contact load x [N] when the press-fit terminal is inserted into the through hole is expressed by the following equation (1). A press-fit terminal and substrate connection structure, wherein the press-fit terminal and the substrate are formed so as to be within the range shown.
40 ≦ x ≦ 290 {[Z− (A + 2T + B)] / 2} +20 (1)
In the above equation (1), Z [mm] is the pitch between the through holes (minimum), A [mm] is the through hole diameter (maximum), T [mm] is the through hole wall thickness (maximum), and B [ mm] is the minimum necessary insulation distance necessary to ensure insulation between the terminal and the wiring.
基板のスルーホールに圧入状態で挿入されるプレスフィット端子を設計する方法において、基板のスルーホールにプレスフィット端子を圧入して耐久試験を行った後に安定した接触抵抗が得られる初期の接触荷重を最小接触荷重として設定し、基板の配線パターンとスルーホールの絶縁距離として、基板の高温高湿試験後に安定した絶縁抵抗が得られる必要絶縁距離を求め、該必要絶縁距離とスルーホール径から白化許容距離を求め、基板のスルーホールに接触荷重の異なる複数のプレスフィット端子を圧入して基板の白化長さを測定し、白化長さと接触荷重の関係を求め、その関係に基づいて前記白化許容距離に対応する接触荷重を最大接触荷重として設定し、プレスフィット端子の接触荷重が前記最小接触荷重以上であって前記最大接触荷重以下になるように、プレスフィット端子を設計することを特徴とするプレスフィット端子の設計方法。
In the method of designing a press-fit terminal that is inserted into a through-hole of a board in a press-fit state, an initial contact load that provides stable contact resistance after a press-fit terminal is press-fitted into the through-hole of the board and a durability test is performed Set as the minimum contact load, as the insulation distance between the wiring pattern of the board and the through-hole, obtain the required insulation distance that provides stable insulation resistance after the high-temperature and high-humidity test of the board. Obtain the distance, press-fit multiple press-fit terminals with different contact loads into the through-holes of the board, measure the whitening length of the board, find the relationship between the whitening length and the contact load, and based on this relationship the whitening allowable distance Is set as the maximum contact load, and the contact load of the press-fit terminal is not less than the minimum contact load and the maximum contact So that heavy below, the design method of a press-fit terminal, characterized by designing the press-fit terminal.
JP2005240533A 2005-08-23 2005-08-23 Press-fit terminal-board connection structure and press-fit terminal design method Active JP4721820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240533A JP4721820B2 (en) 2005-08-23 2005-08-23 Press-fit terminal-board connection structure and press-fit terminal design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240533A JP4721820B2 (en) 2005-08-23 2005-08-23 Press-fit terminal-board connection structure and press-fit terminal design method

Publications (2)

Publication Number Publication Date
JP2007059106A true JP2007059106A (en) 2007-03-08
JP4721820B2 JP4721820B2 (en) 2011-07-13

Family

ID=37922424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240533A Active JP4721820B2 (en) 2005-08-23 2005-08-23 Press-fit terminal-board connection structure and press-fit terminal design method

Country Status (1)

Country Link
JP (1) JP4721820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167095A1 (en) * 2015-04-14 2016-10-20 株式会社オートネットワーク技術研究所 Press-fit terminal and substrate connector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124794A (en) * 1985-11-25 1987-06-06 松下電工株式会社 Structure of connecting connction pin to printed wiring board
JPS62124795A (en) * 1985-11-25 1987-06-06 松下電工株式会社 Structure of connecting connction pin to printed wiring board
JPH0831476A (en) * 1994-07-15 1996-02-02 Dai Ichi Denshi Kogyo Kk Press-in contact
JP2002231354A (en) * 2001-02-06 2002-08-16 Oki Electric Cable Co Ltd Press-in terminal and connector using the same
JP2004127610A (en) * 2002-09-30 2004-04-22 Fujitsu Ten Ltd Press fit terminal
JP2004128071A (en) * 2002-09-30 2004-04-22 Fujitsu Ten Ltd Press fit bonding wiring substrate
JP2004134303A (en) * 2002-10-11 2004-04-30 Fujitsu Ten Ltd Press fit joining method and its wiring board
JP2004134302A (en) * 2002-10-11 2004-04-30 Fujitsu Ten Ltd Press fit terminal connecting device and press fit connection wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124794A (en) * 1985-11-25 1987-06-06 松下電工株式会社 Structure of connecting connction pin to printed wiring board
JPS62124795A (en) * 1985-11-25 1987-06-06 松下電工株式会社 Structure of connecting connction pin to printed wiring board
JPH0831476A (en) * 1994-07-15 1996-02-02 Dai Ichi Denshi Kogyo Kk Press-in contact
JP2002231354A (en) * 2001-02-06 2002-08-16 Oki Electric Cable Co Ltd Press-in terminal and connector using the same
JP2004127610A (en) * 2002-09-30 2004-04-22 Fujitsu Ten Ltd Press fit terminal
JP2004128071A (en) * 2002-09-30 2004-04-22 Fujitsu Ten Ltd Press fit bonding wiring substrate
JP2004134303A (en) * 2002-10-11 2004-04-30 Fujitsu Ten Ltd Press fit joining method and its wiring board
JP2004134302A (en) * 2002-10-11 2004-04-30 Fujitsu Ten Ltd Press fit terminal connecting device and press fit connection wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167095A1 (en) * 2015-04-14 2016-10-20 株式会社オートネットワーク技術研究所 Press-fit terminal and substrate connector
CN107431296A (en) * 2015-04-14 2017-12-01 株式会社自动网络技术研究所 Press-in cooperation terminal and board connector
US10014606B2 (en) 2015-04-14 2018-07-03 Autonetworks Technologies, Ltd. Press-fit terminal and board connector

Also Published As

Publication number Publication date
JP4721820B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US20070093143A1 (en) Structure of connecting press-fit terminal to board
JP5103566B2 (en) Electrical contact and inspection jig having the same
KR100455097B1 (en) Inspection jig for inspecting board and board inspection apparatus having the same
US9178294B2 (en) Printed circuit board and electronic device using printed circuit board
JP2008070146A (en) Socket for inspection
JP2000292437A (en) Conductive contact and conductive contact unit
US7304247B2 (en) Circuit board with at least one electronic component
JP5117282B2 (en) WIRING BOARD AND ELECTRONIC DEVICE HAVING THE SAME
CN111257731A (en) CAF test module, test fixture and test assembly
JP2007012279A (en) Press-fit terminal
JP4721820B2 (en) Press-fit terminal-board connection structure and press-fit terminal design method
CN110146804B (en) PCB dynamic conduction reliability test method
CN102394413A (en) Electronic part
JP2010153263A (en) Anisotropic conductive sheet and method for manufacturing the same, board, inspection apparatus, component module, and electronic product
TWI488369B (en) Line arrangement and arrangement of rubber connectors and manufacturing method thereof
TW200617400A (en) Circuit device inspecting electrode apparatus, method for manufacturing the same and circuit device inspecting apparatus
JP4300348B2 (en) Press-fit pin mounting board structure and press-fit pin connection inspection method
JP5986397B2 (en) Inspection jig
JPH0755877A (en) Environment testing device
JP2011210375A (en) Connector pin, press-fit connector, and press-fit connector mounting method
JP2002055118A (en) Prober
JP2004134302A (en) Press fit terminal connecting device and press fit connection wiring board
Chou et al. Effects of lead-free surface finishes on press-fit connections
KR200202519Y1 (en) Socket board for test socket
JP2008122240A (en) Connector device for measuring electric resistance, and electric resistance measuring device of circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250