JP2007057311A - Compound magnetic head and torque detection device for rotary shaft - Google Patents

Compound magnetic head and torque detection device for rotary shaft Download PDF

Info

Publication number
JP2007057311A
JP2007057311A JP2005241129A JP2005241129A JP2007057311A JP 2007057311 A JP2007057311 A JP 2007057311A JP 2005241129 A JP2005241129 A JP 2005241129A JP 2005241129 A JP2005241129 A JP 2005241129A JP 2007057311 A JP2007057311 A JP 2007057311A
Authority
JP
Japan
Prior art keywords
magnetic head
soft magnetic
composite
composite magnetic
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005241129A
Other languages
Japanese (ja)
Other versions
JP4827166B2 (en
Inventor
Masahiro Masuzawa
正宏 増澤
Masahiro Mita
正裕 三田
Yukio Ikeda
幸雄 池田
Matsu Oyo
松 欧陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Proterial Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Metals Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005241129A priority Critical patent/JP4827166B2/en
Publication of JP2007057311A publication Critical patent/JP2007057311A/en
Application granted granted Critical
Publication of JP4827166B2 publication Critical patent/JP4827166B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure for a torque detection device of a magnetostriction type for a rotary shaft capable of making the additional work to the shaft unnecessary, and capable of making the excitation/detection coils of the magnetic head high sensitivity depending on the number of turns of the coils while simplifying the coil winding method of the coils. <P>SOLUTION: The compound magnetic head core 20 is formed such that the rotary shaft 2 having magnetostrictive performance, the soft magnetism part 10 and the non-magnetism part 11 are arranged alternatively while intervening the air gap in between. By twisting the soft magnetism parts 10 to the shaft by approximately 45° while winding the coil in a solenoid shape to the head core 20, the twisting stress of the rotary shaft is detected precisely. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁歪特性を利用して回転軸の軸トルクを非接触で検出する装置に関するもので、特に自動車分野、産業機械分野などに適用するものである。   The present invention relates to an apparatus for detecting the axial torque of a rotating shaft in a non-contact manner using magnetostrictive characteristics, and is particularly applicable to the automobile field, industrial machine field, and the like.

自動車のパワーステアリング機構やエンジン制御機構、動力伝達機構などでは軸トルクを正確に検出する手段が古くから望まれている。検出精度を高めることにより、精密制御や効率向上が可能となるため、これまでに様々な手法が提案されてきた。なかでも回転軸の磁歪特性を利用して非接触で軸トルクを検出する手法は、応答性に優れ、高感度化が比較的容易であり、過負荷耐量も大きいことから、トーションバーのねじれ量からトルク検出を行なう従来手法に代わる方式として注目されている。   In the power steering mechanism, engine control mechanism, power transmission mechanism, and the like of automobiles, means for accurately detecting shaft torque has long been desired. Various techniques have been proposed so far because precise control and efficiency can be improved by increasing detection accuracy. In particular, the non-contact method of detecting shaft torque using the magnetostriction characteristics of the rotating shaft is excellent in responsiveness, is relatively easy to increase sensitivity, and has a large overload capability. Therefore, it is attracting attention as an alternative to the conventional method for detecting torque.

例えば特許文献1では、図7(a)に示す様に、回転軸に傾斜角を有する磁性膜115を固着させて、回転軸外周のソレノイドコイルで励磁・検出を行なう手法が提案されている。ところが、この方式は回転軸へ追加工を施す必要があるため、磁性膜の剥離など信頼性を損なう恐れがある。さらに、軸の専用化や大径化が必須となるため、装着性が悪いと思われる。   For example, Patent Document 1 proposes a technique in which a magnetic film 115 having an inclination angle is fixed to a rotating shaft and excitation and detection are performed by a solenoid coil on the outer periphery of the rotating shaft, as shown in FIG. However, since this method requires additional processing on the rotating shaft, there is a risk that reliability such as peeling of the magnetic film may be impaired. Furthermore, since it is essential to specialize the shaft and increase the diameter, it is considered that the wearability is poor.

また特許文献2では、図7(b)に示す様に、回転軸を無加工とし、ループコイルを一定の傾斜角を保ちながら配置することで特許文献1と同様にトルク検出を行なう手法が提案されている。この方式は軸への追加工が不要であるが、感度を高めるために軸の長手方向へ向かって広い領域を検出する必要があるので、装置の大型化が懸念される。   Further, in Patent Document 2, as shown in FIG. 7B, a method is proposed in which torque is detected in the same manner as in Patent Document 1 by disposing the rotating shaft and arranging the loop coil while maintaining a constant inclination angle. Has been. Although this method does not require any additional work on the shaft, it is necessary to detect a wide area in the longitudinal direction of the shaft in order to increase sensitivity, and there is a concern that the size of the apparatus will increase.

さらに特許文献3では、図7(c)に示す様に、特許文献2の課題を克服すべくコイル部分を大幅にコンパクト化する構造が提案されているが、コイル構造が複雑なため多数巻が困難であり、コイルの巻回数に依存した高感度化は実現し難いと思われる。   Further, in Patent Document 3, as shown in FIG. 7 (c), a structure for greatly reducing the coil portion is proposed to overcome the problem of Patent Document 2, but since the coil structure is complicated, a large number of windings are required. It is difficult to achieve high sensitivity depending on the number of turns of the coil.

そしてさらに上記3種の構造は、何れもコイルが回転軸に隣接しているため、軸の回転振れや異物混入などの影響を受けてコイルが断線する危険性も高く、それらを防止して構造信頼性を確保するためにコイル部分を樹脂などで覆って補強したり、軸とコイル間の空隙を拡大して感度を犠牲にしたりといった回避策が必要になると思われる。   In addition, the above three types of structures all have a high risk of disconnection of the coil due to the influence of rotational runout of the shaft and contamination of foreign matter because the coil is adjacent to the rotation shaft. In order to ensure reliability, it may be necessary to take measures such as covering and reinforcing the coil part with resin or the like, or enlarging the gap between the shaft and the coil to sacrifice sensitivity.

また特許文献4では、図7(d)に示す様に、回転軸の外周にU字形鉄心を設ける構造が記載されている。しかし、U字形鉄心を回転軸の外周に複数並べようとすると、構造が複雑化してコンパクト化が困難になり、生産性も悪く、さらに磁極の作用面積が増やし難いために高感度化が困難であると思われる。   Moreover, in patent document 4, as shown in FIG.7 (d), the structure which provides a U-shaped iron core in the outer periphery of a rotating shaft is described. However, if a plurality of U-shaped iron cores are arranged on the outer periphery of the rotating shaft, the structure becomes complicated and it becomes difficult to downsize, the productivity is poor, and it is difficult to increase the working area of the magnetic poles. It appears to be.

特開平1−94230号公報JP-A-1-94230 特開平6−273247号公報JP-A-6-273247 特開平6−194239号公報JP-A-6-194239 特許第2905561号公報Japanese Patent No. 2905561

本発明は、上述した従来の磁歪検出型のトルク検出装置に関わる装着性、信頼性、小型化、高感度化、生産性に関わる課題を解決するためのものである。   The present invention is to solve the problems related to the mounting property, reliability, downsizing, high sensitivity, and productivity related to the conventional magnetostriction detection type torque detection device described above.

本発明は、磁歪特性を有する回転軸に対して、空隙を介して軟磁性部と非磁性部とを周方向へ交互に並ベて配置した複合磁気ヘッドコアを形成し、前記軟磁性部を回転軸に対して傾斜させるとともに、前記複合磁気ヘッドコアに励磁・検出用のコイルを巻回するものである。   The present invention forms a composite magnetic head core in which soft magnetic portions and nonmagnetic portions are alternately arranged in the circumferential direction with a gap on a rotating shaft having magnetostrictive characteristics, and the soft magnetic portion is rotated. The coil is inclined with respect to the axis, and an excitation / detection coil is wound around the composite magnetic head core.

前記軟磁性部の回転軸に対する傾斜角は35〜55度であることが好ましい。   The inclination angle of the soft magnetic part with respect to the rotation axis is preferably 35 to 55 degrees.

前記軟磁性部の傾斜方向は、全て時計回り、または全て反時計回りであることが好ましい。   It is preferable that the inclination directions of the soft magnetic portions are all clockwise or all counterclockwise.

前記軟磁性部の傾斜方向が、時計回りと反時計回りを交互に繰り返すように軟磁性部を配置してもよい。   The soft magnetic part may be arranged so that the inclination direction of the soft magnetic part repeats clockwise and counterclockwise alternately.

前記非磁性部の周方向の最小幅は、前記軟磁性部の傾斜角方向長さの0.5〜1.5倍であることが好ましい。   The minimum width in the circumferential direction of the nonmagnetic part is preferably 0.5 to 1.5 times the length of the soft magnetic part in the inclination angle direction.

前記複合磁気ヘッドコアが回転軸の外周を取り囲む様に一体化、または2分割して形成されていることが好ましい。   It is preferable that the composite magnetic head core is formed integrally or divided into two so as to surround the outer periphery of the rotating shaft.

時計回りに傾斜角を有する複合磁気ヘッドと、反時計回りに傾斜角を有する複合磁気ヘッドとを組み合わせて、1対で利用することが好ましい。   It is preferable that a composite magnetic head having a tilt angle in the clockwise direction and a composite magnetic head having a tilt angle in the counterclockwise direction are used in combination.

前記軟磁性部における軸方向の両端部が、内径側へ突出していることが好ましい。   It is preferable that both end portions in the axial direction of the soft magnetic portion protrude toward the inner diameter side.

本発明の複合磁気ヘッドと、それから得られる信号に回路処理を加えて信号を出力する信号処理回路とを組み合わせることにより回転軸トルク検出装置を形成することができる。   A rotary shaft torque detecting device can be formed by combining the composite magnetic head of the present invention and a signal processing circuit that outputs a signal by applying circuit processing to a signal obtained therefrom.

以下に、磁歪検出型の回転軸トルク検出装置の原理を説明しながら、本発明の特長を示す。センサに設けられた励磁コイルへ電流を流すと、コイル周辺には図8(a)に示す様な磁束201が発生する。コイルで発生する磁束201は、コイルと直交する面内で右ネジの法則に従って閉ループを形成する。また、コイルの巻き方など磁気回路の工夫によって、複数の閉磁路を形成する場合が多い。なお、軸の回転によってセンサとの相対位置が変化しても、軸に回転トルクが加わって歪が生じない限り透磁率が変化しないため、コイルのインダクタンスにも変化は生じない。   The features of the present invention will be described below while explaining the principle of the magnetostrictive detection type rotating shaft torque detection device. When a current is passed through the excitation coil provided in the sensor, a magnetic flux 201 as shown in FIG. 8A is generated around the coil. The magnetic flux 201 generated by the coil forms a closed loop according to the right-handed screw rule in a plane orthogonal to the coil. In many cases, a plurality of closed magnetic paths are formed by devising a magnetic circuit such as a coil winding method. Even if the relative position of the sensor changes due to the rotation of the shaft, the magnetic permeability does not change unless a rotational torque is applied to the shaft to cause distortion, so that the coil inductance does not change.

図8(a)の無負荷状態から、図8(b)の様に軸へ回転トルクを付与すると、軸の長手方向に対して+45°と−45°傾斜する方向に、引張応力(−σ)と圧縮応力(+σ)とがそれぞれ直交しながら同時に発生する。ここで、軟磁性材料に引張応力が加わると透磁率が増加し、逆に圧縮応力が加わると透磁率が減少する磁歪特性を利用することができる。   When rotational torque is applied to the shaft as shown in FIG. 8B from the no-load state in FIG. 8A, tensile stress (−σ in the directions inclined by + 45 ° and −45 ° with respect to the longitudinal direction of the shaft. ) And compressive stress (+ σ) are simultaneously generated while being orthogonal to each other. Here, it is possible to use magnetostriction characteristics in which the permeability increases when a tensile stress is applied to the soft magnetic material and conversely the permeability decreases when a compressive stress is applied.

つまり、励磁コイルで発生した磁束が、引張応力の加わる方向へは流れ易く、反対に圧縮応力の加わる方向へは流れ難くなるので、この変化量や差分量を検出すれば、トルクの正負や絶対量を推定することができる。例えば、図8に示す様に軸に対して+45°傾斜する方向に螺旋状の励磁コイルがあると仮定する。コイルで発生する磁束は、右ネジの法則に従って閉磁路を形成するので、コイルとは直交する−45°方向の面内における透磁率変化の影響を大きく受ける。ここで、−45°方向に引張応力が加わったと仮定すると、無負荷時に比べて磁束が流れ易くなるので、コイルのインダクタンスは無負荷時に比べて増加する。反対に圧縮応力が加わると、インダクタンスは減少することになる。   In other words, the magnetic flux generated by the exciting coil is easy to flow in the direction in which tensile stress is applied, and on the other hand, it is difficult to flow in the direction in which compressive stress is applied. The amount can be estimated. For example, as shown in FIG. 8, it is assumed that there is a spiral exciting coil in a direction inclined by + 45 ° with respect to the axis. Since the magnetic flux generated in the coil forms a closed magnetic circuit according to the right-handed screw law, the magnetic flux is greatly affected by the permeability change in the −45 ° direction perpendicular to the coil. Here, assuming that a tensile stress is applied in the −45 ° direction, the magnetic flux flows more easily than when there is no load, so the coil inductance increases compared to when there is no load. Conversely, when compressive stress is applied, the inductance decreases.

前述の様に、軸へ回転トルクを付与すると+45°と−45°の両方向へ、向きの異なる応力が同時に発生するので、無負荷時に対するインダクタンスの変化量からトルクを推定する方式では、+45°か−45°のどちらか一方向の透磁率変化を検出すれば良いことになる。また、+45°と−45°の両方向を同時に検出して、その差分量を検出することで、より高精度にトルクを推定することも可能になる。+45°と−45°の両方向を同時に検出する手段としては、図2(b)に示す様に時計回りに傾斜角を有するものと、反時計回りに傾斜角を有するものとを組み合わせて、1対で利用することで実現可能となる。もしくは図3(b)に示す様に、軟磁性部の傾斜方向が、時計回りと反時計回りを交互に繰り返しており、なおかつ図4(b)に示す軸方向への巻線方式であって、軟磁性部の傾斜方向別に巻線を2分割しても良い。   As described above, when rotational torque is applied to the shaft, stresses having different directions are generated simultaneously in both directions of + 45 ° and −45 °. Therefore, in the method of estimating the torque from the amount of change in inductance with respect to no load, + 45 ° Or a change in magnetic permeability in one direction of −45 ° may be detected. Further, by detecting both the + 45 ° and −45 ° directions at the same time and detecting the difference amount, it is possible to estimate the torque with higher accuracy. As means for simultaneously detecting both + 45 ° and −45 ° directions, as shown in FIG. 2 (b), a combination of a clockwise tilt angle and a counterclockwise tilt angle as shown in FIG. This can be realized by using a pair. Alternatively, as shown in FIG. 3 (b), the inclination direction of the soft magnetic part repeats alternately clockwise and counterclockwise, and the winding method is in the axial direction shown in FIG. 4 (b). The winding may be divided into two for each inclination direction of the soft magnetic part.

いずれにせよ、磁歪式の回転軸トルク検出装置では、軸に対して+45°および、または−45°傾斜方向の透磁率変化を読み取ることが重要であり、特許文献1ではコイルを軸の回転方向に沿って傾斜角なくソレノイド状に巻回する代わりに、回転軸に±45°傾斜する方向へ磁性膜を設けることで傾斜方向のみに磁束が流れる様に工夫している。また、特許文献2や特許文献3ではコイルに傾斜角を持たせることで軸トルクを検出可能にしている。   In any case, in the magnetostrictive rotating shaft torque detection device, it is important to read the change in permeability in the direction of inclination of + 45 ° and −45 ° with respect to the shaft. Instead of winding in the form of a solenoid with no inclination angle, a magnetic film is provided in a direction inclined by ± 45 ° on the rotating shaft so that the magnetic flux flows only in the inclination direction. Moreover, in patent document 2 and patent document 3, axial torque can be detected by giving the coil an inclination angle.

特許文献1の構造は、コイルが単純なソレノイド状のために多数巻が容易で、高感度化し易いという大きな特長を有するものの、軸への加工が必要なことが信頼性や装着性を悪化させていた。   Although the structure of Patent Document 1 has a great feature that a coil is a simple solenoid and can be easily wound in a large number and is easy to achieve high sensitivity, the need for machining on the shaft deteriorates reliability and mountability. It was.

そこで本方式では回転軸を無加工とし、回転軸に対して空隙を介して軟磁性部と非磁性部とが周方向へ交互に並んだ複数の磁極部を形成し、その軟磁性部が回転軸に対して傾斜角を有するとともに、磁極部へ励磁するためのコイルが単純なソレノイド状であることを構造上の主な特徴としている。   Therefore, in this method, the rotating shaft is not processed, and a plurality of magnetic pole portions are formed in which the soft magnetic portions and the nonmagnetic portions are alternately arranged in the circumferential direction through gaps with respect to the rotating shaft, and the soft magnetic portions rotate. The main structural features are that the coil has an inclination angle with respect to the shaft and the coil for exciting the magnetic pole portion is a simple solenoid.

軸への複雑な加工を不要にすることで、装着性を大幅に改善することができる。なお、回転軸が非磁性SUSなどの様に磁歪特性を持たないものであっても、軸の外周部に磁歪特性を有するリングを被せるだけで済むので、特許文献1の様に信頼性を損なうことがない。また、コイルをソレノイド状にできるので、巻回数に依存した高感度化が容易になる。さらに、コイルを磁気ヘッドの外周面に配置できるので、コイルが断線する危険性を回避することもできる。そしてさらに、回転軸と磁気ヘッドとの空隙を大幅に縮小して、高感度化を図ることも容易になる。   By eliminating the need for complicated machining on the shaft, it is possible to significantly improve the mounting ability. Even if the rotating shaft does not have magnetostriction characteristics such as non-magnetic SUS, it is only necessary to cover the outer peripheral portion of the shaft with a ring having magnetostriction characteristics. There is nothing. Further, since the coil can be formed in a solenoid shape, high sensitivity depending on the number of turns is facilitated. Furthermore, since the coil can be arranged on the outer peripheral surface of the magnetic head, it is possible to avoid the risk of the coil being disconnected. Furthermore, it is easy to increase the sensitivity by greatly reducing the gap between the rotating shaft and the magnetic head.

磁気ヘッドの構造として、前記軟磁性部は回転軸に対して絶対値で35〜55°の傾斜角度を有することが好ましい。なお、軟磁性部の傾斜角度は、回転軸のねじり応力が発生する方向である45°に揃えるのが最も好ましい。しかし、回転軸と複合磁気ヘッド間の空隙部によって、磁束の流れる方向が若干変化するため、複合磁気ヘッドの軟磁性部の傾斜角度が理想値である45°に対して±10°の範囲でずれても、検出精度に顕著な差を生じることがない。   As the structure of the magnetic head, it is preferable that the soft magnetic portion has an inclination angle of 35 to 55 ° in absolute value with respect to the rotation axis. The inclination angle of the soft magnetic part is most preferably set to 45 °, which is the direction in which the torsional stress of the rotating shaft is generated. However, the direction in which the magnetic flux flows slightly changes depending on the gap between the rotating shaft and the composite magnetic head, so that the tilt angle of the soft magnetic part of the composite magnetic head is within ± 10 ° with respect to the ideal value of 45 °. Even if it deviates, there is no significant difference in detection accuracy.

前記非磁性部の周方向の幅は、前記軟磁性部の傾斜角方向長さの0.5〜1.5倍であると、軟磁性部の数と同数だけ発生する複数の閉磁路どうしの磁気的な干渉が起こり難くなるため、回転軸に対して45°傾斜する方向の透磁率変化を効率良く検出することができる。励磁・検出コイルで発生する磁束は、複合磁気ヘッドの軟磁性体片ごとに分割されながら傾斜方向に沿って流れ、一方の端部近傍から空隙を介して回転軸へ流れ込む。その回転軸へ流れ込んだ磁束が、同じ軟磁性体片の他方の端部近傍へ戻る様に磁気回路を構成すると、磁路長、つまり磁気抵抗が最も小さくなるために検出感度が高まる。その手段として、隣接極どうしの間に位置する非磁性部の周方向の幅を広げることが好ましい。非磁性部の周方向の幅が、軟磁性部の傾斜角方向長さの0.5倍未満であると、回転軸から流れ出た磁束が隣接する他の軟磁性体片に流れてしまうために、磁路長、つまり磁気抵抗が増大して検出感度が相対的に低下してしまう。また、非磁性部の周方向の幅が、軟磁性部の傾斜角方向長さの1.5倍を大幅に超えると、回転軸と対向することで磁極面として作用できる軟磁性部の有効面積が相対的に減少し、検出感度が低下してしまう。   The circumferential width of the non-magnetic portion is 0.5 to 1.5 times the inclination angle direction length of the soft magnetic portion, and a plurality of closed magnetic paths that are generated in the same number as the number of soft magnetic portions. Since magnetic interference hardly occurs, it is possible to efficiently detect a magnetic permeability change in a direction inclined by 45 ° with respect to the rotation axis. The magnetic flux generated by the excitation / detection coil flows along the tilt direction while being divided for each soft magnetic piece of the composite magnetic head, and flows into the rotating shaft from the vicinity of one end through a gap. If the magnetic circuit is configured so that the magnetic flux flowing into the rotating shaft returns to the vicinity of the other end of the same soft magnetic piece, the magnetic path length, that is, the magnetic resistance is minimized, so that the detection sensitivity is increased. As a means for this, it is preferable to widen the circumferential width of the nonmagnetic portion located between adjacent poles. If the circumferential width of the non-magnetic portion is less than 0.5 times the length of the soft magnetic portion in the inclination angle direction, the magnetic flux flowing out from the rotating shaft will flow to other adjacent soft magnetic pieces. In addition, the magnetic path length, that is, the magnetic resistance is increased, and the detection sensitivity is relatively lowered. In addition, when the circumferential width of the nonmagnetic portion greatly exceeds 1.5 times the inclination angle direction length of the soft magnetic portion, the effective area of the soft magnetic portion that can act as a magnetic pole surface by facing the rotating shaft Decreases relatively, and the detection sensitivity decreases.

軟磁性部と非磁性部とが周方向へ交互に並んだ複合磁気ヘッドを得る手段として、例えば図1に示す様に、軟磁性ヨーク10と非磁性スペーサ11を切削や鍛造、鋳造などで個別に製作した後に、接着やネジ止め等によって組立てを行なう手法が選択できる。また、軟磁性部だけを個別に製作した後に、複数の軟磁性体片を非磁性体の樹脂等でインサート成型する手法や、非磁性体のアルミダイキャストで鋳包む手法なども選択できる。   As a means for obtaining a composite magnetic head in which soft magnetic portions and nonmagnetic portions are alternately arranged in the circumferential direction, for example, as shown in FIG. 1, the soft magnetic yoke 10 and the nonmagnetic spacer 11 are individually cut, forged, cast, etc. After manufacturing, a method of assembling by bonding or screwing can be selected. In addition, after manufacturing only the soft magnetic parts individually, a technique of insert molding a plurality of soft magnetic pieces with a non-magnetic resin or the like, or a technique of casting with a non-magnetic aluminum die-casting can be selected.

また図6に示す様に、磁気ヘッドを周方向へ2分割にすることで、軸を挟み込む様に装着可能とし、回転軸への装着性をより良好にすることもできる。さらに磁気ヘッドの一部を切り欠いて、回転軸への着脱を容易にすることも可能である。   In addition, as shown in FIG. 6, by dividing the magnetic head into two in the circumferential direction, the magnetic head can be mounted so as to sandwich the shaft, and the mounting property to the rotating shaft can be improved. Further, a part of the magnetic head can be cut out to facilitate attachment to and removal from the rotating shaft.

励磁・検出コイルの巻線方式としては、図7(d)の特許文献4に記載のごとく軟磁性体片の各々へソレノイド状に巻き付ける方式の他に、図4(a)〜(c)に記載のごとく磁気ヘッドの全体を取り囲む様に一様に巻回することができる。図4(a)に記載の方式はリング形状の複合磁気ヘッドコア20に対して外周面において周方向に巻線を施す。巻線作業が最も容易であり、さらに回転軸を挿入する磁気ヘッドの内周面側にコイルが存在しないため、より高い構造信頼性を得ることができる。また図4(b)に記載の方式はリング形状の複合磁気ヘッドコア20に対して軸方向に巻線を施す。図3(b)に記載の様に時計回りと反時計回りを交互に繰り返す複合磁気ヘッドにおいて、軟磁性部の傾斜方向別に巻線を2分割したり、図6に記載の様に複合磁気ヘッドを周方向へ2分割し、その各々へ独立して巻線を施したりする場合に有効である。また図4(c)に記載の巻線方式は周方向の巻線密度を不均一にして巻線が主に軟磁性体片と交差するように巻く。巻線作業が複雑なものの、傾斜角を有する軟磁性体片に対して直交方向にコイルを配置できるという利点があり、検出効率の向上につながる。   As the winding method of the excitation / detection coil, in addition to the method of winding it in the form of a solenoid around each of the soft magnetic material pieces as described in Patent Document 4 of FIG. 7 (d), FIGS. 4 (a) to 4 (c). As described, the magnetic head can be uniformly wound so as to surround the whole. In the method shown in FIG. 4A, the ring-shaped composite magnetic head core 20 is wound in the circumferential direction on the outer peripheral surface. The winding work is the easiest, and furthermore, no coil exists on the inner peripheral surface side of the magnetic head into which the rotating shaft is inserted, so that higher structural reliability can be obtained. 4B, the ring-shaped composite magnetic head core 20 is wound in the axial direction. In the composite magnetic head that alternately repeats clockwise and counterclockwise rotation as shown in FIG. 3 (b), the winding is divided into two according to the inclination direction of the soft magnetic portion, or as shown in FIG. This is effective when the winding is divided into two in the circumferential direction and the windings are applied independently to each of them. In the winding method shown in FIG. 4C, the winding density in the circumferential direction is made non-uniform so that the winding mainly crosses the soft magnetic piece. Although the winding work is complicated, there is an advantage that a coil can be arranged in a direction orthogonal to a soft magnetic piece having an inclination angle, which leads to an improvement in detection efficiency.

また、図5に記載のごとく軟磁性部における軸方向の両端部を、回転軸のある内側へ向かって突出させることも好ましい(図5(a))。各軟磁性部の間を埋める非磁性部も軟磁性部と同様に形成すると内周側に突出するつばを有する複合磁気ヘッドコア20が形成される(図5(b))。前述の様に、複合磁気ヘッドの軟磁性部における軸方向の両端部近傍では、磁束が直角に曲げられて内周面側へ向かい、空隙を介して回転軸に出入りする。このため、軟磁性部の両端部近傍を可能な限り回転軸に近付けることで空隙量を減らし、磁気抵抗を減少させて高感度化を図ることが容易になる。   Further, as shown in FIG. 5, it is also preferable that both end portions in the axial direction of the soft magnetic portion protrude toward the inside where the rotation shaft is located (FIG. 5A). When the non-magnetic portion that fills the space between the soft magnetic portions is formed in the same manner as the soft magnetic portion, a composite magnetic head core 20 having a flange protruding toward the inner peripheral side is formed (FIG. 5B). As described above, in the vicinity of both end portions in the axial direction of the soft magnetic portion of the composite magnetic head, the magnetic flux is bent at a right angle toward the inner peripheral surface, and enters and exits the rotating shaft through the air gap. For this reason, it becomes easy to increase the sensitivity by reducing the gap amount and reducing the magnetic resistance by bringing the vicinity of both ends of the soft magnetic portion as close as possible to the rotation axis.

さらに、図5(c)に記載のごとく磁気ヘッドの外周側面と、内周側面の凹部の各々に励磁・検出用のコイルを同時に配置することで、コイルの多数巻と小型化を同時に実現することも可能となる。   Further, as shown in FIG. 5 (c), the coil for excitation / detection is simultaneously disposed in each of the outer peripheral side surface and the concave portion on the inner peripheral side surface of the magnetic head, thereby simultaneously realizing a large number of coils and a reduction in size. It is also possible.

本発明により、トルクを検出する回転軸への複雑な追加工が不要になる。また、磁気ヘッド部分の構造信頼性が向上するとともに、コンパクト化も容易になる。さらに、励磁・検出コイルの巻線処理が容易なため、装置全体としての生産性も向上する。   The present invention eliminates the need for complicated additional work on the rotating shaft that detects torque. In addition, the structural reliability of the magnetic head portion is improved, and compactness is facilitated. Further, since the winding process of the excitation / detection coil is easy, the productivity of the entire apparatus is improved.

以下、本発明の実施形態について図面とともに説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(全体構成)
図1(a)〜(c)に、本発明の磁歪式トルク検出装置の一実施形態を示す。図1(a)は複合磁気ヘッドの鉄心部分を分解した斜視図を示したものである。磁気ヘッドの鉄心部分は、斜め45度の傾斜角を有する4つの軟磁性ヨーク10と、それらの間に配置する4つの非磁性スペーサ11と、外周の両端部を補強する外周補強リング12で構成されている。軟磁性ヨーク10には焼結フェライトを使用し、非磁性スペーサ11および外周補強リング12にはアルミを使用し、各々の部材を接着固定した。図1(b)は接着固定後の複合磁気ヘッドコア20の斜視図を示したものである。図1(c)は前記複合磁気ヘッドコア20の外周側へ励磁・検出用のコイルを巻回して複合磁気ヘッド1を形成し、その内周側へ被験物である回転軸2を挿入し、コイルの両端部に交流電流13を印加している様子を示した斜視図である。回転軸にはニッケル・モリブデン鋼に浸炭処理を施したものを使用した。
(overall structure)
1A to 1C show an embodiment of a magnetostrictive torque detection device of the present invention. FIG. 1A is a perspective view showing an exploded core portion of a composite magnetic head. The iron core of the magnetic head is composed of four soft magnetic yokes 10 having an inclination angle of 45 degrees, four nonmagnetic spacers 11 disposed between them, and an outer peripheral reinforcing ring 12 that reinforces both ends of the outer periphery. Has been. Sintered ferrite was used for the soft magnetic yoke 10, and aluminum was used for the nonmagnetic spacer 11 and the outer peripheral reinforcing ring 12, and the respective members were bonded and fixed. FIG. 1B shows a perspective view of the composite magnetic head core 20 after being bonded and fixed. FIG. 1 (c) shows a composite magnetic head 1 formed by winding an excitation / detection coil around the outer periphery of the composite magnetic head core 20 and inserting a rotating shaft 2 as a test object into the inner periphery thereof. It is the perspective view which showed a mode that the alternating current 13 is applied to the both ends. The rotating shaft used was nickel-molybdenum steel that was carburized.

回転軸の外径はΦ20mm、複合磁気ヘッドの内径はΦ20.6mm、外径はΦ25mmとした。励磁・検出コイルにはΦ0.5mmのエナメル線を使用し、複合磁気ヘッドコアの外周側へ120ターン巻回し、交流電流の周波数を100kHzとした。   The outer diameter of the rotating shaft was Φ20 mm, the inner diameter of the composite magnetic head was Φ20.6 mm, and the outer diameter was Φ25 mm. The excitation / detection coil used was an enameled wire with a diameter of 0.5 mm, wound 120 turns around the outer periphery of the composite magnetic head core, and the frequency of the alternating current was 100 kHz.

回転軸へ−200〜+200Nmのトルクを付与した時の、コイルのインダクタンス変化を実測したものを図9に示す。トルクは回転軸につないだトルク計により測定し、コイルのインダクタンスはLCRメータで測定した。図9より、トルクを付与した時のインダクタンス変化は良好な直線性を示すことが解かる。従って、本発明の複合磁気ヘッドから得られる信号に回路処理を加えれば、極めて直線性の良い出力信号が得られることになる。   FIG. 9 shows the measured changes in the inductance of the coil when a torque of −200 to +200 Nm is applied to the rotating shaft. Torque was measured with a torque meter connected to the rotating shaft, and coil inductance was measured with an LCR meter. From FIG. 9, it can be seen that the inductance change when torque is applied exhibits good linearity. Therefore, if circuit processing is added to the signal obtained from the composite magnetic head of the present invention, an output signal with extremely good linearity can be obtained.

本発明の一実施例に関わるトルク検出装置の模式図である。It is a schematic diagram of the torque detection apparatus concerning one Example of this invention. 本発明の一実施例に関わる装置の取付け方法を示す模式図である。It is a schematic diagram which shows the attachment method of the apparatus concerning one Example of this invention. 本発明の一実施例に関わる磁極パターンを示す模式図である。It is a schematic diagram which shows the magnetic pole pattern concerning one Example of this invention. 本発明の一実施例に関わるコイル巻線方法を示す模式図である。It is a schematic diagram which shows the coil winding method concerning one Example of this invention. 本発明の一実施例に関わる他の構造を示す模式図である。It is a schematic diagram which shows the other structure in connection with one Example of this invention. 本発明の一実施例に関わる他の装置取付け方法を示す模式図である。It is a schematic diagram which shows the other apparatus attachment method in connection with one Example of this invention. 他の実施例を示す模式図である。It is a schematic diagram which shows another Example. 本発明の一実施例に関わるトルク検出の原理を示す模式図である。It is a schematic diagram which shows the principle of the torque detection in connection with one Example of this invention. 本発明の一実施例に関わる実験結果を示すグラフである。It is a graph which shows the experimental result regarding one Example of this invention.

符号の説明Explanation of symbols

1:複合磁気ヘッド
2:回転軸
10:軟磁性ヨーク
11:非磁性スペーサ
12:外周補強リング
13:励磁・検出コイル
20:複合磁気ヘッドコア
102:回転軸
110:軟磁性ヨーク
113:励磁・検出コイル
115:軟磁性体片
201:磁束
1: Composite magnetic head 2: Rotating shaft
10: Soft magnetic yoke
11: Nonmagnetic spacer
12: Peripheral reinforcement ring
13: Excitation / detection coil
20: Composite magnetic head core
102: Rotation axis
110: Soft magnetic yoke
113: Excitation / detection coil
115: Soft magnetic piece
201: Magnetic flux

Claims (9)

磁歪特性を有する回転軸に対して、空隙を介して軟磁性部と非磁性部とを周方向へ交互に並ベて配置した複合磁気ヘッドコアを形成し、前記軟磁性部を回転軸に対して傾斜させるとともに、前記複合磁気ヘッドコアに励磁・検出用のコイルを巻回することを特徴とする複合磁気ヘッド。 A composite magnetic head core in which soft magnetic parts and nonmagnetic parts are alternately arranged in the circumferential direction through a gap with respect to a rotational axis having magnetostrictive characteristics is formed, and the soft magnetic part is arranged with respect to the rotational axis. A composite magnetic head, wherein the magnetic head is tilted and an excitation / detection coil is wound around the composite magnetic head core. 前記軟磁性部の回転軸に対する傾斜角が35〜55度であることを特徴とする、請求項1に記載の複合磁気ヘッド。 2. The composite magnetic head according to claim 1, wherein an inclination angle of the soft magnetic portion with respect to a rotation axis is 35 to 55 degrees. 前記軟磁性部の傾斜方向が、全て時計回り、または全て反時計回りであることを特長とする、請求項1または請求項2に記載の複合磁気ヘッド。 3. The composite magnetic head according to claim 1, wherein the inclination directions of the soft magnetic parts are all clockwise or all counterclockwise. 4. 前記軟磁性部の傾斜方向が、時計回りと反時計回りを交互に繰り返すことを特長とする、請求項1または請求項2に記載の複合磁気ヘッド。 3. The composite magnetic head according to claim 1, wherein an inclination direction of the soft magnetic portion alternately repeats clockwise and counterclockwise. 前記非磁性部の周方向の最小幅が、前記軟磁性部の傾斜角方向長さの0.5〜1.5倍であることを特徴とする、請求項3または請求項4に記載の複合磁気ヘッド。 5. The composite according to claim 3, wherein a minimum width in the circumferential direction of the nonmagnetic part is 0.5 to 1.5 times a length in a tilt angle direction of the soft magnetic part. Magnetic head. 前記磁極部が回転軸の外周を取り囲む様に一体化、または2分割して形成されていることを特徴とする、請求項3または請求項4または請求項5に記載の複合磁気ヘッド。 6. The composite magnetic head according to claim 3, wherein the magnetic pole portion is formed integrally or divided into two so as to surround the outer periphery of the rotating shaft. 請求項3または請求項5または請求項6に記載の複合磁気ヘッドにおいて、時計回りに傾斜角を有するものと、反時計回りに傾斜角を有するものとを組み合わせて、1対で利用することを特徴とする、複合磁気ヘッド。 7. The composite magnetic head according to claim 3, wherein the head having an inclination angle clockwise and the one having an inclination angle counterclockwise are used as a pair. Characteristic composite magnetic head. 前記軟磁性部における軸方向の両端部が、内径側へ突出していることを特長とする、請求項3または請求項4または請求項6または請求項7に記載の複合磁気ヘッド。 8. The composite magnetic head according to claim 3, wherein both ends of the soft magnetic portion in the axial direction protrude toward an inner diameter side. 9. 請求項1乃至8に記載の複合磁気ヘッドから得られる信号に回路処理を加えて信号を出力することを特徴とする回転軸トルク検出装置。 9. A rotary shaft torque detecting device that outputs a signal by subjecting the signal obtained from the composite magnetic head according to claim 1 to circuit processing.
JP2005241129A 2005-08-23 2005-08-23 Composite magnetic head and rotating shaft torque detector Expired - Fee Related JP4827166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241129A JP4827166B2 (en) 2005-08-23 2005-08-23 Composite magnetic head and rotating shaft torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241129A JP4827166B2 (en) 2005-08-23 2005-08-23 Composite magnetic head and rotating shaft torque detector

Publications (2)

Publication Number Publication Date
JP2007057311A true JP2007057311A (en) 2007-03-08
JP4827166B2 JP4827166B2 (en) 2011-11-30

Family

ID=37920943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241129A Expired - Fee Related JP4827166B2 (en) 2005-08-23 2005-08-23 Composite magnetic head and rotating shaft torque detector

Country Status (1)

Country Link
JP (1) JP4827166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184298A (en) * 2014-09-10 2014-12-03 六安源创电机制造科技有限公司 Stepping motor based on shape memory alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184363B (en) * 2014-09-11 2018-07-06 六安源创电机制造科技有限公司 Ultra-magnetic telescopic stepper motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841096Y1 (en) * 1969-04-11 1973-12-01
JPS62157542A (en) * 1985-12-28 1987-07-13 Aisin Warner Ltd Magnetostrictive type torque sensor
JPH03194430A (en) * 1989-12-22 1991-08-26 Mitsubishi Electric Corp Strain measuring instrument
JPH06194239A (en) * 1992-11-06 1994-07-15 Mitsubishi Electric Corp Torque detector and torque detection element
JPH11337424A (en) * 1998-05-27 1999-12-10 Aisin Seiki Co Ltd Torque sensor
JP2005208008A (en) * 2004-01-26 2005-08-04 Hitachi Ltd Torque sensor
JP2005321272A (en) * 2004-05-07 2005-11-17 Hitachi Cable Ltd Magnetostrictive torque sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841096Y1 (en) * 1969-04-11 1973-12-01
JPS62157542A (en) * 1985-12-28 1987-07-13 Aisin Warner Ltd Magnetostrictive type torque sensor
JPH03194430A (en) * 1989-12-22 1991-08-26 Mitsubishi Electric Corp Strain measuring instrument
JPH06194239A (en) * 1992-11-06 1994-07-15 Mitsubishi Electric Corp Torque detector and torque detection element
JPH11337424A (en) * 1998-05-27 1999-12-10 Aisin Seiki Co Ltd Torque sensor
JP2005208008A (en) * 2004-01-26 2005-08-04 Hitachi Ltd Torque sensor
JP2005321272A (en) * 2004-05-07 2005-11-17 Hitachi Cable Ltd Magnetostrictive torque sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184298A (en) * 2014-09-10 2014-12-03 六安源创电机制造科技有限公司 Stepping motor based on shape memory alloy

Also Published As

Publication number Publication date
JP4827166B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4616122B2 (en) Magnetic bearing
JP6552713B2 (en) Stator of rotating electric machine and rotating electric machine
JP2008061299A (en) Magnetic core, armature, rotary electric machine and compressor
US20220018723A1 (en) Torque detection sensor
CN111664979A (en) Magnetostrictive torque detection sensor
US8049382B2 (en) Brushless motor
JP4878908B2 (en) Rotating electric machine
JP2022013124A (en) Torque detection sensor
US20220018722A1 (en) Torque detection sensor
JP2007278865A (en) Magnetostrictive torque detecting apparatus
US20220020522A1 (en) Core for torque detection sensor and torque detection sensor
JP4827166B2 (en) Composite magnetic head and rotating shaft torque detector
JP2003284269A (en) Rotary electric machine with divided stator structure
JP2007101427A (en) Magnetic head for magnetostrictive type torque detector
JP4291211B2 (en) Rotating electric machine rotor and rotating electric machine
JP7166551B2 (en) Torque sensor stator structure
WO2017179207A1 (en) Resolver
JP2009077491A (en) Stator core laminated body and electric motor
JP2007292511A (en) Position detector and motor for use in electric power steering
JP4192086B2 (en) Exciter, field machine, and electric motor using the same
JP6609138B2 (en) Axial gap type rotating electrical machine
JP5177661B2 (en) Torque sensor
JP2010054238A (en) Torque sensor
JP2010054237A (en) Torque sensor
JP4827167B2 (en) Method for producing composite magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees