JP2007056302A - Method for producing sintered wick layer of heat pipe - Google Patents

Method for producing sintered wick layer of heat pipe Download PDF

Info

Publication number
JP2007056302A
JP2007056302A JP2005242085A JP2005242085A JP2007056302A JP 2007056302 A JP2007056302 A JP 2007056302A JP 2005242085 A JP2005242085 A JP 2005242085A JP 2005242085 A JP2005242085 A JP 2005242085A JP 2007056302 A JP2007056302 A JP 2007056302A
Authority
JP
Japan
Prior art keywords
wick layer
heat pipe
sintered
average particle
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005242085A
Other languages
Japanese (ja)
Inventor
Masaru Saito
勝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005242085A priority Critical patent/JP2007056302A/en
Publication of JP2007056302A publication Critical patent/JP2007056302A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a sintered wick layer of a heat pipe having satisfactory productivity, high capillary force and circulation of a working fluid. <P>SOLUTION: In the method for producing a sintered wick layer of a heat pipe, an unsintered wick layer is formed at the inner wall face of a metal pipe with a mixture of at least two kinds of powders with different average particle diameters, and the unsintered wick layer is heated and sintered in a reducing atmosphere. In this way, a heat pipe having satisfactory productivity, high capillary force and excellent circulation of a working fluid can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生産性がよく、毛細管力が高く、かつ、作動流体の循環性に優れたヒートパイプの焼結ウイック層の製造方法に関するものである。   The present invention relates to a method for producing a sintered wick layer of a heat pipe having good productivity, high capillary force and excellent working fluid circulation.

近年、ヒートパイプは、均熱用、ヒートシンク用、冷却用などとして、種々の用途に利用され、その範囲が広がっている。特にノートパソコンなどのような小型の電子機器に組み込まれる発熱部品の冷却部品としての用途が進んできている。   In recent years, heat pipes have been used for various purposes such as soaking, heat sinks, cooling, and the like, and the range has expanded. In particular, the use as a cooling part of a heat generating part incorporated in a small electronic device such as a notebook personal computer has been advanced.

これらの分野で使用されるヒートパイプは、機器側の小型化に伴い、小型、小径のものが主流となり、一部では立体構造の配置(配線)などが採用され、高所で発生した熱を低所で放熱する構造のものも増えてきている。   Heat pipes used in these fields have become smaller and smaller in diameter due to the downsizing of equipment, and some of them have adopted a three-dimensional structure (wiring), etc., to generate heat generated in high places. The number of structures that radiate heat in low places is also increasing.

ヒートパイプの構造としては、既に種々のものが提案されているが(引用文献1〜3)、その概略構造は、密閉されたパイプの内部に封入された作動流体(水など)を、パイプの一端(加熱部)で外部から加熱して蒸発(潜熱吸収)させると、その蒸気がパイプの他端の低温部(低圧部)に移動し、凝縮(潜熱放出)して、その周囲を冷却させる一方、凝縮された作動流体が加熱部に戻る構造のものである。この作動流体が戻る構造部分を、ウイック(ウイック層)といい、通常細線の束や、編組、溝、粉末の焼結体などにより構成されている。
特開2001−234262公報 特開2004−212040公報 特開2000−311971公報
Various heat pipe structures have already been proposed (Cited documents 1 to 3), but the general structure is that a working fluid (such as water) enclosed in a sealed pipe is used as a pipe. When heated from the outside at one end (heating part) and evaporated (latent heat absorption), the vapor moves to the low temperature part (low pressure part) at the other end of the pipe, condenses (latent heat release), and cools its surroundings On the other hand, the condensed working fluid returns to the heating unit. The structure part where the working fluid returns is called a wick (wick layer), and is usually composed of a bundle of fine wires, a braid, a groove, a powder sintered body, and the like.
JP 2001-234262 A JP 2004-21040 A JP 2000-31971 A

ところが、上述したように、最近の小型の電子機器では、このヒートパイプやこれからなるヒートシンクを立体的に組み付ける場合があるため、例えば高所の熱を低所に移動させる必要がある。つまり、作動流体を高所に戻す必要があり、ウイック層には、高い毛細管力が求められている。   However, as described above, in recent small electronic devices, the heat pipe and the heat sink made of the heat pipe may be assembled three-dimensionally, so that it is necessary to move heat at a high place to a low place, for example. That is, it is necessary to return the working fluid to a high place, and a high capillary force is required for the wick layer.

この観点からすると、ウイック層の構造体としては、細線の束や、編組、溝などより、多孔質構造を有する粉末の焼結体の方が、より高い毛細管力が期待できるため、有利である。   From this point of view, as the structure of the wick layer, a sintered body of a powder having a porous structure is more advantageous than a bundle of fine wires, braids, grooves, etc., because higher capillary force can be expected. .

しかし、従来の焼結によるウイック層の場合、例えば焼結粉末として銅粉を用い、これを不活性ガス(窒素ガスやアルゴンガスなど)下で焼結するときには、次のような問題点があった。
(1)高温(900〜1050℃)下で行う必要があるため、設備コストが嵩む他、例えば銅製ヒーパイプでは、パイプ素材の結晶粒が粗大化し易く、不均一変形を起こすなど、その後の曲げ加工や偏平加工がし難くなるなどの問題があった。
However, in the case of a wick layer by conventional sintering, for example, when copper powder is used as the sintered powder and this is sintered under an inert gas (nitrogen gas, argon gas, etc.), there are the following problems. It was.
(1) Since it is necessary to carry out under a high temperature (900 to 1050 ° C.), the equipment cost increases. For example, in a copper heat pipe, the crystal grains of the pipe material are likely to be coarsened and cause uneven deformation. And problems such as difficulty in flat machining.

(2)また、単一の銅粉で、平均粒径がほぼ同一のもの(例えば平均粒径100μm程度)を用いたときには、毛細管力が大きく、かつ、作動流体が流れ易い流路抵抗の小さい理想的なウイック層を得ることは、困難であるという問題があった。
つまり、銅粉の粒径が小さいと粒子間の隙間が小さくなり、高い毛細管力が得られるものの、隙間が狭い分だけ作動流体の流路抵抗が大きくなる(作動流体の循環性が悪くなる)からである。また、逆に、銅粉の粒径が大きいと粒子間の隙間が大きくなり、隙間が広い分だけ、作動流体の流路抵抗が小さくなるものの、高い毛細管力が得られなくなるからである。
(2) Further, when a single copper powder having the same average particle size (for example, an average particle size of about 100 μm) is used, the capillary force is large and the flow resistance at which the working fluid can easily flow is small. There was a problem that it was difficult to obtain an ideal wick layer.
In other words, when the particle size of the copper powder is small, the gap between the particles is reduced and a high capillary force is obtained, but the flow resistance of the working fluid is increased by the amount of the narrow gap (the circulation of the working fluid is deteriorated). Because. Conversely, if the particle size of the copper powder is large, the gap between the particles becomes large, and the flow resistance of the working fluid is reduced by the amount of the wide gap, but a high capillary force cannot be obtained.

このような状況下で、本発明者が鋭意検討したところ、少なくとも粒径の異なる2種類の粉末、例えば、銅粉と酸化銅粉を用いて、還元性雰囲気下で焼結ウイック層を形成した場合、毛細管力が高く、かつ、作動流体の流路抵抗が小さく、理想的なウイック層が得ることができることを見い出した。また、このときの焼結温度が、従来の焼結温度に比較して、低い温度(例えば700〜800℃)でもよいことが分かった。さらに、用いる銅粉と酸化銅粉においてそれらの平均粒径がどのような関係にあればよいのかも分かった。   Under such circumstances, the present inventors diligently studied, and formed a sintered wick layer in a reducing atmosphere using at least two kinds of powders having different particle diameters, for example, copper powder and copper oxide powder. In this case, it has been found that an ideal wick layer can be obtained because of high capillary force and low flow resistance of the working fluid. Moreover, it turned out that the temperature (for example, 700-800 degreeC) of the sintering temperature at this time may be low compared with the conventional sintering temperature. Furthermore, it was also found out what relationship the average particle diameters should have in the copper powder and copper oxide powder to be used.

本発明は、これらの点に鑑みてなされたもので、上記のような条件とすることにより、生産性がよく、毛細管力が高く、かつ、作動流体の循環性(還流性)に優れたヒートパイプの焼結ウイック層の製造方法を提供するものである。   The present invention has been made in view of these points. By adopting the conditions as described above, the heat is high in productivity, high in capillary force, and excellent in the circulation (recirculation) of the working fluid. A method for producing a sintered wick layer of a pipe is provided.

請求項1記載の本発明は、金属パイプの内壁面に少なくとも平均粒径の異なる2種類の粉末の混合体で未焼結ウイック層を形成し、前記未焼結ウイック層を還元性雰囲気下で加熱・焼結することを特徴とするヒートパイプの焼結ウイック層の製造方法にある。   In the first aspect of the present invention, an unsintered wick layer is formed on the inner wall surface of the metal pipe with a mixture of at least two types of powders having different average particle sizes, and the unsintered wick layer is formed in a reducing atmosphere. It is in the manufacturing method of the sintered wick layer of the heat pipe characterized by heating and sintering.

請求項2記載の本発明は、前記少なくとも平均粒径の異なる2種類の粉末が銅粉と酸化銅粉の混合体であることを特徴とする請求項1記載のヒートパイプの焼結ウイック層の製造方法にある。   According to a second aspect of the present invention, in the sintered wick layer of the heat pipe according to the first aspect, the at least two kinds of powders having different average particle diameters are a mixture of copper powder and copper oxide powder. In the manufacturing method.

請求項3記載の本発明は、前記還元性雰囲気が、水素雰囲気下であることを特徴とする請求項1又は2記載のヒートパイプの焼結ウイック層の製造方法にある。   The present invention according to claim 3 is the method for producing a sintered wick layer of a heat pipe according to claim 1 or 2, wherein the reducing atmosphere is a hydrogen atmosphere.

請求項4記載の本発明は、前記銅粉の平均粒径が700〜15μmから選ばれると共に、前記酸化銅粉の平均粒径が400〜5μmから選ばれる一方、銅粉の平均粒径が750酸化銅粉の平均粒径により大きいことを特徴とする請求項2又は3記載のヒートパイプの焼結ウイック層の製造方法にある。   According to the fourth aspect of the present invention, the average particle size of the copper powder is selected from 700 to 15 μm and the average particle size of the copper oxide powder is selected from 400 to 5 μm, while the average particle size of the copper powder is 750. 4. The method for producing a sintered wick layer of a heat pipe according to claim 2, wherein the average particle diameter of the copper oxide powder is larger.

請求項5記載の本発明は、前記未焼結ウイック層の形成にあたって、前記金属パイプ内に小径の耐熱性棒状体を挿入し、前記金属パイプとの隙間に前記混合体を詰め込むことを特徴とする請求項1、2、3又は4記載のヒートパイプの焼結ウイック層の製造方法にある。   The present invention according to claim 5 is characterized in that, in forming the unsintered wick layer, a small-diameter heat-resistant rod-shaped body is inserted into the metal pipe, and the mixture is packed into a gap with the metal pipe. The method for producing a sintered wick layer of a heat pipe according to claim 1, 2, 3, or 4.

本発明のヒートパイプの焼結ウイック層の製造方法によると、金属パイプの内壁面に少なくとも平均粒径の異なる2種類の粉末の混合体で未焼結ウイック層を形成し、この未焼結ウイック層を還元性雰囲気下で加熱・焼結するため、毛細管力が高く、かつ、作動流体の循環性に優れた、理想的なウイック層が得られる。また、このときの焼結温度が、従来の焼結温度に比較して、低温(例えば700〜800℃)でもよいため、設備コストの低減ができる他、パイプ素材結晶粒の粗大化が抑制できる。この結果、生産性がよく、その後の曲げ加工や偏平加工がし易くなるなど加工上の利点も得られる。   According to the method for producing a sintered wick layer of a heat pipe of the present invention, an unsintered wick layer is formed on the inner wall surface of a metal pipe with a mixture of at least two types of powders having different average particle diameters. Since the layer is heated and sintered in a reducing atmosphere, an ideal wick layer having high capillary force and excellent working fluid circulation is obtained. Moreover, since the sintering temperature at this time may be a low temperature (for example, 700-800 degreeC) compared with the conventional sintering temperature, it can reduce an installation cost and can suppress the coarsening of a crystal grain of a pipe material. . As a result, productivity is good, and processing advantages such as easy subsequent bending and flattening can be obtained.

図1〜図2は、本発明に係る製造方法により得られたヒートパイプの例を示したものである。図中、10は銅製、銅合金製などの金属パイプ、20はこの金属パイプ10の内面側に設けた焼結ウイック層である。図2は、図1の丸パイプを偏平加工したものである。これらのヒートパイプは、冷却装置などの熱循環装置系におけるヒートパイプ用品やヒートシンク用品として利用される。   1 to 2 show examples of heat pipes obtained by the manufacturing method according to the present invention. In the figure, 10 is a metal pipe made of copper or copper alloy, and 20 is a sintered wick layer provided on the inner surface side of the metal pipe 10. FIG. 2 is a flattened version of the round pipe of FIG. These heat pipes are used as heat pipe supplies and heat sink supplies in a heat circulation system such as a cooling device.

このような焼結ウイック層20を有するヒートパイプの製造方法は、特に限定されないが、例えば、図3に示すように、金属パイプ10の中心に、パイプ内径より小径の耐熱性棒状体30、例えばタングステン棒やセラミック棒などを挿入する。そして、この金属パイプ10との隙間に、少なくとも平均粒径の異なる2種類の粉末の混合体40、例えば銅粉と酸化銅粉の混合体を、未焼結ウイック層20aとして詰め込む。この後、焼結炉に入れて、還元性雰囲気下で焼結する。焼結後、耐熱性棒状体30を引き抜けば、金属パイプ10の壁面に焼結ウイック層20の形成された、所望のヒートパイプが得られる。図2のように、偏平形状のヒートパイプを得るには、さらに、圧延により偏平加工を施せばよい。   A method for manufacturing a heat pipe having such a sintered wick layer 20 is not particularly limited. For example, as shown in FIG. 3, a heat-resistant rod-like body 30 having a diameter smaller than the inner diameter of the pipe is formed at the center of the metal pipe 10, for example, Insert a tungsten rod or ceramic rod. Then, a mixture 40 of at least two kinds of powders having different average particle diameters, for example, a mixture of copper powder and copper oxide powder, is packed in the gap between the metal pipe 10 as an unsintered wick layer 20a. Then, it puts into a sintering furnace and sinters in a reducing atmosphere. If the heat-resistant rod-shaped body 30 is pulled out after sintering, a desired heat pipe in which the sintered wick layer 20 is formed on the wall surface of the metal pipe 10 is obtained. As shown in FIG. 2, in order to obtain a flat heat pipe, flattening may be further performed by rolling.

上記銅粉と酸化銅粉の混合体では、銅粉の平均粒径が酸化銅粉の平均粒径より大きく設定(例えば銅粉の平均粒径=約70μm、酸化銅粉の平均粒径=約30μm)してあるため、径の大きい銅粉の間に径の小さい酸化銅粉が分散する形となる。この状態で焼結されると、粉粒間に形成される隙間は、径の大きい銅粉同士の場合よりは小さく、径の小さい酸化銅粉同士の場合よりは大きい隙間が形成されることになる。これらの関係を模式的に図示すると、図4(A)〜(B)の如くである。   In the mixture of the copper powder and the copper oxide powder, the average particle diameter of the copper powder is set larger than the average particle diameter of the copper oxide powder (for example, the average particle diameter of the copper powder = about 70 μm, the average particle diameter of the copper oxide powder = about 30 μm), the copper oxide powder having a small diameter is dispersed between the copper powder having a large diameter. When sintered in this state, the gap formed between the grains is smaller than that between copper powders having a large diameter, and a larger gap is formed than between copper oxide powders having a small diameter. Become. These relationships are schematically shown in FIGS. 4A to 4B.

つまり、銅粉と酸化銅粉の平均粒径を最適に設定することにより、隙間が大き過ぎず、かつ、小さ過ぎることもない、最適の隙間を持った理想的な焼結ウイック層20を得ることができる。隙間が大き過ぎると、毛細管力が低下し、隙間が小さ過ぎると、作動流体の流路抵抗が大きくなるからである。   That is, by setting the average particle diameter of the copper powder and the copper oxide powder optimally, an ideal sintered wick layer 20 having an optimal gap that is neither too large nor too small is obtained. be able to. This is because if the gap is too large, the capillary force decreases, and if the gap is too small, the flow resistance of the working fluid increases.

特に、酸化銅粉の場合、具体的には、酸化銅(CuO)、亜酸化銅(Cu2O)が主成分で、その他にCu2O3やCuO2なども含まれていることが知られている。これらの酸化物は、加熱された還元性雰囲気下では容易に銅(Cu)となる。つまり、CuO+H2→Cu+H2Oに代表される反応を起こし、生じた水は水蒸気として還元銅粉中から放出される。その結果、還元銅粉は多孔質で表面活性の高い銅となる。この還元銅粉同士が接触すると、容易に拡散し合うことから凝集性が高く、ここに銅粉や金属パイプ内面の銅壁などが存在すると、還元銅粉がバインダー(接着剤)としての役目を果たすものと推測される。これにより、後述するように、低温下でも良好な焼結が得られる。また、還元銅粉の凝集体が作動流体とも優れた濡れ性を持つことから、高い毛細管力が期待できる。 In particular, in the case of copper oxide powder, specifically, it is known that copper oxide (CuO) and cuprous oxide (Cu 2 O) are the main components, and Cu 2 O 3 and CuO 2 are also included. It has been. These oxides easily become copper (Cu) in a heated reducing atmosphere. That is, a reaction represented by CuO + H 2 → Cu + H 2 O is caused, and the generated water is released from the reduced copper powder as water vapor. As a result, the reduced copper powder becomes porous and has high surface activity. When these reduced copper powders come into contact with each other, they easily diffuse together, so that the cohesiveness is high. If copper powder or a copper wall on the inner surface of a metal pipe is present here, the reduced copper powder serves as a binder (adhesive). Presumed to fulfill. Thereby, as will be described later, good sintering can be obtained even at a low temperature. Moreover, since the aggregate of reduced copper powder has excellent wettability with the working fluid, a high capillary force can be expected.

このように平均粒径の大きい銅粉と平均粒径の小さい酸化銅粉を用いると、その混合量を最適化することにより、粒子間に生じる隙間(空間)を適宜調整することができる。
具体的には、得ようとするヒートパイプの用途や要求特性などによっても異なるが、例えば、銅粉の平均粒径は700〜15μm、酸化銅粉の平均粒径は400〜5μm程度の中から選択するものとし、これらの酸化銅粉の配合比率も、3〜80%程度として適宜選択することができる。
Thus, when copper powder with a large average particle diameter and copper oxide powder with a small average particle diameter are used, the gap (space) generated between the particles can be appropriately adjusted by optimizing the amount of mixing.
Specifically, although it varies depending on the use and required characteristics of the heat pipe to be obtained, for example, the average particle diameter of the copper powder is about 700 to 15 μm, and the average particle diameter of the copper oxide powder is about 400 to 5 μm. It should be selected, and the blending ratio of these copper oxide powders can be appropriately selected as about 3 to 80%.

上記焼結時の還元性雰囲気にあっては、特に限定されないが、例えば水素や一酸化炭素存在下の雰囲気下を挙げることができる。従来方法では、一般的に、窒素ガスやアルゴンガスなどの不活性ガス下で行われているが、上記還元性雰囲気下で行うことにより、酸化銅粉が還元されて凝集性が高まるため、低温下でも良好な焼結が得られる。従来のアルゴンガス下では950〜1000℃程度の高温で約3時間の焼結時間が必要であったが、還元性雰囲気下では、700〜1050℃程度での温度で可能であわるが、後述するように、700〜800℃程度の温度で約2時間の焼結時間でも、良好な結果が得られた。   The reducing atmosphere at the time of sintering is not particularly limited, and examples thereof include an atmosphere in the presence of hydrogen or carbon monoxide. In the conventional method, it is generally performed under an inert gas such as nitrogen gas or argon gas. However, by performing in the reducing atmosphere, the copper oxide powder is reduced and the cohesion is increased. Good sintering is obtained even underneath. Under conventional argon gas, a sintering time of about 3 hours was required at a high temperature of about 950 to 1000 ° C., but under a reducing atmosphere, it can be performed at a temperature of about 700 to 1050 ° C. Thus, good results were obtained even at a sintering time of about 2 hours at a temperature of about 700-800 ° C.

〈試験例〉
因みに、表1に示した条件で、図2に示した如き構造のヒートパイプをサンプルとして製造した。そして、得られた各サンプルの焼結ウイック層の状態(焼結状況)を調べ、同表に併記した。
<Test example>
Incidentally, a heat pipe having a structure as shown in FIG. 2 was manufactured as a sample under the conditions shown in Table 1. And the state (sintering condition) of the sintered wick layer of each obtained sample was investigated and written together in the same table.

ここで、用いた金属パイプは長さ300mm、厚さ0.5mm、外径10mmの無酸素銅丸パイプである。製造時、この銅丸パイプの中央に外径5mmのタングステン棒を入れ、パイプとの隙間に、十分混合された銅粉と酸化銅粉の混合体を、表1の配合比率で詰めた。この後、各サンプルを焼結炉に入れて、表1の焼結条件で焼結させた。焼結後、タングステン棒をパイプから引き抜き、この丸パイプを、厚さ(高さ)6.0mmに圧延して偏平加工した。   Here, the used metal pipe is an oxygen-free copper round pipe having a length of 300 mm, a thickness of 0.5 mm, and an outer diameter of 10 mm. At the time of manufacture, a tungsten rod having an outer diameter of 5 mm was placed in the center of the copper round pipe, and a mixture of copper powder and copper oxide powder that were sufficiently mixed was packed in the gap between the pipes at a blending ratio shown in Table 1. Thereafter, each sample was put in a sintering furnace and sintered under the sintering conditions shown in Table 1. After sintering, the tungsten rod was pulled out from the pipe, and this round pipe was rolled to a thickness (height) of 6.0 mm and flattened.

各サンプルの焼結ウイック層の状態は、偏平加工したサンプルのパイプ内を観察し、焼結ウイック層の剥離・脱落が見られた場合を「×」で表示し、一部剥離が見られた場合を「△」で表示し、異常が見られなかった場合を「○」で表示した。   As for the state of the sintered wick layer of each sample, the inside of the pipe of the flat sample was observed, and when the sintered wick layer was peeled or dropped, it was indicated by “x”, and some peeling was observed. The case was displayed as “△”, and the case where no abnormality was found was displayed as “◯”.

Figure 2007056302
Figure 2007056302

表1から、銅粉のみを用い、不活性ガス下で焼結を行った場合、焼結温度が950〜1000℃程度でないと、良好な焼結状態(試験NO1〜2)が得られないことが分る。また、銅粉のみで、還元性雰囲気下の場合でも、焼結温度が900℃程度ないと、良好な焼結状態(試験NO4)が得られないことが分る。   From Table 1, when only copper powder is used and sintering is performed under an inert gas, a good sintered state (tests No. 1 and 2) cannot be obtained unless the sintering temperature is about 950 to 1000 ° C. I understand. Further, it can be seen that a good sintered state (test NO4) cannot be obtained unless the sintering temperature is about 900 ° C. even in a reducing atmosphere with only copper powder.

これに対して、銅粉と酸化銅粉の混合体を用い、還元性雰囲気下で焼結を行った場合、焼結温度が700〜800℃程度で、良好な焼結状態(試験NO6〜8)が得られることが分る。
しかし、同条件でも、焼結温度が650℃以下の場合には、焼結温度が低過ぎて、良好な焼結状態(試験NO9〜10)が得られないことが分る。
On the other hand, when a mixture of copper powder and copper oxide powder is used and sintering is performed in a reducing atmosphere, the sintering temperature is about 700 to 800 ° C. and a good sintered state (test NO 6 to 8). ) Is obtained.
However, even under the same conditions, it can be seen that when the sintering temperature is 650 ° C. or lower, the sintering temperature is too low to obtain a good sintered state (tests Nos. 9 to 10).

また、焼結時間においても、銅粉のみの場合、良好な焼結状態を得るには、3時間の焼結時間が必要であった(試験NO1〜2、4)。これに対して、銅粉と酸化銅粉の混合体の場合、2時間の焼結時間でよかった(試験NO6〜8)。つまり、本発明の場合良好な生産性が得られる。   Moreover, also in sintering time, in the case of only copper powder, in order to obtain a favorable sintered state, sintering time of 3 hours was required (test NO1-2, 4). On the other hand, in the case of a mixture of copper powder and copper oxide powder, a sintering time of 2 hours was sufficient (tests NO6 to 8). That is, in the case of the present invention, good productivity can be obtained.

次に、ヒートパイプの限界熱輸送量について、表2に示した条件下で測定した。測定対象のヒートパイプのサンプルとしては、上記表1の銅粉のみ(試験NO1)の焼結ウイック層を設けたもの(試験NO11)と、上記表1の銅粉と酸化銅粉の混合体(試験NO6)の焼結ウイック層を設けたもの(試験NO12)と、新たに、銅粉と酸化銅粉の混合体で酸化銅粉の平均粒径が異なるもので焼結ウイック層を設けたもの(試験NO13〜14)と、銅粉と酸化銅粉の混合体で混合比の異なるもので焼結ウイック層を設けたもの(試験NO15〜18)について行った。なお、新たに追加した各サンプルの試験NO13〜18のヒートパイプも、上記表1の場合と同様にして製造した。   Next, the critical heat transport amount of the heat pipe was measured under the conditions shown in Table 2. As a sample of the heat pipe to be measured, a sample (test NO11) provided with a sintered wick layer of only the copper powder of Table 1 (Test NO1) and a mixture of the copper powder and copper oxide powder of Table 1 (Test NO11) Test NO6) with a sintered wick layer (Test NO12) and a new mixture of copper powder and copper oxide powder with a different average particle diameter of copper oxide powder and a sintered wick layer (Test NO13 to 14) and a mixture of copper powder and copper oxide powder with different mixing ratios (test NO15 to 18) were used. In addition, the heat pipe of test NO13-18 of each newly added sample was manufactured similarly to the case of Table 1 above.

このようにして得られたヒートパイプの長さを300mmに揃え、一端(片端部)を電縫加工して閉じ、内部に作動流体として水を入れた後、内部を減圧しつつ他端(脱気端)を溶着して閉じた。これらのヒートパイプを、図5に示すような、装置(試験装置)として組み立てた。即ち、ヒートパイプPhの一端に加熱源としてのヒータ(加熱部)100を装着する一方、他端には放熱フィン200を装着すると共に、この放熱フィン200に送風ファン300を対峙させ、ヒートパイプPhのヒータ側を水平に対して、5°ほど上向きに設置させた。   The length of the heat pipe thus obtained is adjusted to 300 mm, one end (one end) is closed by electro-sewing, and water is added as a working fluid to the inside. We closed the air end). These heat pipes were assembled as an apparatus (test apparatus) as shown in FIG. In other words, a heater (heating unit) 100 as a heating source is attached to one end of the heat pipe Ph, and a radiating fin 200 is attached to the other end, and the blower fan 300 is opposed to the radiating fin 200, and the heat pipe Ph. The heater side was set upward by about 5 ° with respect to the horizontal.

この状態で、パイプ内の水の温度が常に50℃になるように保持して、ヒータ100の発熱量と送風ファン300の冷却量を増加させていった。このようにして試験したとき、ヒータ側の温度が急上昇してヒートパイプPhが動作しなくなる直前のヒータ加熱量を求め、これを限界熱輸送量とした。測定中は加熱部以外からの放熱がないように、試験装置は十分な断熱を行った。なお、表2では、サンプルの試験NO11の限界熱輸送量を1.00としたときの比として表した。   In this state, the temperature of the water in the pipe is always kept at 50 ° C., and the heat generation amount of the heater 100 and the cooling amount of the blower fan 300 are increased. When the test was performed in this manner, the heater heating amount immediately before the heater pipe temperature suddenly increased and the heat pipe Ph did not operate was obtained, and this was defined as the limit heat transport amount. During the measurement, the test apparatus provided sufficient heat insulation so that heat was not emitted from other than the heating part. In addition, in Table 2, it represented as a ratio when the limit heat transport amount of test NO11 of a sample was set to 1.00.

Figure 2007056302
Figure 2007056302

表2から、従来の銅粉のみからなる焼結ウイック層を有するヒートパイプ(試験NO11)に対して、本発明の要件を満たす銅粉と酸化銅粉の混合体の焼結ウイック層を有するヒートパイプ(試験NO12〜18)は、従来品と同等以上の限界熱輸送量を得られることが分かった。つまり、性能的に何ら問題のないことが確認できた。   From Table 2, heat having a sintered wick layer of a mixture of copper powder and copper oxide powder satisfying the requirements of the present invention, compared to a heat pipe (test NO11) having a sintered wick layer made of only conventional copper powder It was found that the pipes (test Nos. 12 to 18) can obtain a critical heat transport amount equal to or higher than that of the conventional product. In other words, it was confirmed that there was no problem in performance.

本発明に係るヒートパイプの焼結ウイック層の製造方法により得られるヒートパイプの一例を示した縦断端面である。It is the vertical end surface which showed an example of the heat pipe obtained by the manufacturing method of the sintered wick layer of the heat pipe which concerns on this invention. 本発明に係るヒートパイプの焼結ウイック層の製造方法により得られるヒートパイプの他の例を示した縦断端面である。It is the vertical end surface which showed the other example of the heat pipe obtained by the manufacturing method of the sintered wick layer of the heat pipe which concerns on this invention. 本発明に係るヒートパイプの焼結ウイック層の製造方法を実施するための一例を示した縦断面図である。It is the longitudinal cross-sectional view which showed an example for enforcing the manufacturing method of the sintered wick layer of the heat pipe which concerns on this invention. (A)〜(B) 本発明に係るヒートパイプの焼結ウイック層の製造方法による焼結ウイック層の状態を示した概略説明図である。(A)-(B) It is the schematic explanatory drawing which showed the state of the sintered wick layer by the manufacturing method of the sintered wick layer of the heat pipe which concerns on this invention. ヒートパイプの限界熱輸送量を測定するための試験装置を示した概略説明図である。It is the schematic explanatory drawing which showed the test apparatus for measuring the limiting heat transport amount of a heat pipe.

符号の説明Explanation of symbols

10・・・金属パイプ、20・・・焼結ウイック層、20a・・・未焼結ウイック層、30・・・耐熱性棒状体、40・・・混合体
DESCRIPTION OF SYMBOLS 10 ... Metal pipe, 20 ... Sintered wick layer, 20a ... Unsintered wick layer, 30 ... Heat-resistant rod-shaped body, 40 ... Mixture

Claims (5)

金属パイプの内壁面に少なくとも平均粒径の異なる2種類の粉末の混合体で未焼結ウイック層を形成し、前記未焼結ウイック層を還元性雰囲気下で加熱・焼結することを特徴とするヒートパイプの焼結ウイック層の製造方法。   A non-sintered wick layer is formed of a mixture of at least two types of powders having different average particle diameters on the inner wall surface of a metal pipe, and the unsintered wick layer is heated and sintered in a reducing atmosphere. A method for manufacturing a sintered wick layer of a heat pipe. 前記少なくとも平均粒径の異なる2種類の粉末が銅粉と酸化銅粉の混合体であることを特徴とする請求項1記載のヒートパイプの焼結ウイック層の製造方法。   The method for producing a sintered wick layer of a heat pipe according to claim 1, wherein the at least two kinds of powders having different average particle diameters are a mixture of copper powder and copper oxide powder. 前記還元性雰囲気が、水素雰囲気下であることを特徴とする請求項1又は2記載のヒートパイプの焼結ウイック層の製造方法。   The method for producing a sintered wick layer of a heat pipe according to claim 1, wherein the reducing atmosphere is a hydrogen atmosphere. 前記銅粉の平均粒径が700〜15μmから選ばれると共に、前記酸化銅粉の平均粒径が400〜5μmから選ばれる一方、銅粉の平均粒径が酸化銅粉の平均粒径により大きいことを特徴とする請求項2又は3記載のヒートパイプの焼結ウイック層の製造方法。   While the average particle diameter of the copper powder is selected from 700 to 15 μm and the average particle diameter of the copper oxide powder is selected from 400 to 5 μm, the average particle diameter of the copper powder is larger than the average particle diameter of the copper oxide powder. The method for producing a sintered wick layer of a heat pipe according to claim 2 or 3, wherein: 前記未焼結ウイック層の形成にあたって、前記金属パイプ内にパイプ内径より小径の耐熱性棒状体を挿入し、前記金属パイプとの隙間に前記混合体を詰め込むことを特徴とする請求項1、2、3又は4記載のヒートパイプの焼結ウイック層の製造方法。
The formation of the unsintered wick layer includes inserting a heat-resistant rod-like body having a diameter smaller than the inner diameter of the pipe into the metal pipe and filling the mixture into a gap with the metal pipe. The manufacturing method of the sintered wick layer of the heat pipe of 3 or 4.
JP2005242085A 2005-08-24 2005-08-24 Method for producing sintered wick layer of heat pipe Pending JP2007056302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242085A JP2007056302A (en) 2005-08-24 2005-08-24 Method for producing sintered wick layer of heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242085A JP2007056302A (en) 2005-08-24 2005-08-24 Method for producing sintered wick layer of heat pipe

Publications (1)

Publication Number Publication Date
JP2007056302A true JP2007056302A (en) 2007-03-08

Family

ID=37920034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242085A Pending JP2007056302A (en) 2005-08-24 2005-08-24 Method for producing sintered wick layer of heat pipe

Country Status (1)

Country Link
JP (1) JP2007056302A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047383A (en) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
CN101839660A (en) * 2010-03-31 2010-09-22 华南理工大学 Flat heat tube with hole-groove combined mandrel and manufacturing method thereof
JP2010287561A (en) * 2009-06-11 2010-12-24 Yeh-Chiang Technology Corp Led lamp
JP2011112330A (en) * 2009-11-30 2011-06-09 Shinko Electric Ind Co Ltd Heat radiation component and method for manufacturing the same
JP2011243987A (en) * 2010-05-15 2011-12-01 Zhongshan Weiquang Technology Co Ltd Method for manufacturing paper chamber and paper chamber
KR101177062B1 (en) 2010-04-19 2012-08-27 한국과학기술원 Wick for heat pipes using metal particle and Preparing thereof
CN102788525A (en) * 2011-05-18 2012-11-21 泰硕电子股份有限公司 Manufacturing method for heat pipe
KR101250326B1 (en) * 2011-11-28 2013-04-03 한국과학기술원 Method for the optimal design of the heat pipe wick having dual pores using metal powders
WO2016002870A1 (en) * 2014-07-02 2016-01-07 三菱マテリアル株式会社 Porous aluminum heat exchange member
JP2016095108A (en) * 2014-11-17 2016-05-26 古河電気工業株式会社 Heat pipe
DE102016113620A1 (en) * 2016-07-25 2018-01-25 Volkswagen Aktiengesellschaft Method for producing a housing component of an internal combustion engine
KR102126935B1 (en) * 2020-02-18 2020-07-07 주식회사 디케이 Method for vapor chamber wick manufacturing using cut wire and metal powder and The structure thereof
CN112304135A (en) * 2019-07-29 2021-02-02 广州力及热管理科技有限公司 Capillary structure element of temperature equalizing plate and manufacturing method thereof
WO2021029204A1 (en) * 2019-08-09 2021-02-18 矢崎エナジーシステム株式会社 Structure, and method for manufacturing same
TWI720823B (en) * 2020-02-26 2021-03-01 永源科技材料股份有限公司 Manufacturing method of a capillary structure
CN112444151A (en) * 2019-09-03 2021-03-05 广州力及热管理科技有限公司 Metal oxide slurry for manufacturing capillary structure of uniform temperature plate element
CN112444152A (en) * 2019-09-03 2021-03-05 广州力及热管理科技有限公司 Chain-shaped copper metal capillary structure and manufacturing method thereof
US10981230B2 (en) 2014-05-30 2021-04-20 Mitsubishi Materials Corporation Porous aluminum complex and method of producing porous aluminum complex
CN112756608A (en) * 2020-12-14 2021-05-07 北京有研粉末新材料研究院有限公司 Preparation method for in-situ generation of liquid absorbent core material of copper-clad iron heat pipe
CN113399669A (en) * 2020-03-17 2021-09-17 永源科技材料股份有限公司 Capillary structure
CN114131016A (en) * 2021-12-01 2022-03-04 联德电子科技(常熟)有限公司 Method for processing coreless rod sintered heat pipe
CN114199055A (en) * 2020-08-28 2022-03-18 广州力及热管理科技有限公司 Sheet metal element with solidified composite material structure and manufacturing method thereof
CN114406266A (en) * 2022-02-08 2022-04-29 郭鹏杰 Liquid absorption core, phase-change heat transfer device and preparation method
CN114413669A (en) * 2022-02-08 2022-04-29 郭鹏杰 Liquid absorption core, phase change heat transfer device and preparation method
CN115740431A (en) * 2022-12-21 2023-03-07 北京有研粉末新材料研究院有限公司 Compound copper powder and preparation method and application thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047383A (en) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe
JP2010287561A (en) * 2009-06-11 2010-12-24 Yeh-Chiang Technology Corp Led lamp
JP2011112330A (en) * 2009-11-30 2011-06-09 Shinko Electric Ind Co Ltd Heat radiation component and method for manufacturing the same
CN101839660A (en) * 2010-03-31 2010-09-22 华南理工大学 Flat heat tube with hole-groove combined mandrel and manufacturing method thereof
KR101177062B1 (en) 2010-04-19 2012-08-27 한국과학기술원 Wick for heat pipes using metal particle and Preparing thereof
JP2011243987A (en) * 2010-05-15 2011-12-01 Zhongshan Weiquang Technology Co Ltd Method for manufacturing paper chamber and paper chamber
CN102788525A (en) * 2011-05-18 2012-11-21 泰硕电子股份有限公司 Manufacturing method for heat pipe
KR101250326B1 (en) * 2011-11-28 2013-04-03 한국과학기술원 Method for the optimal design of the heat pipe wick having dual pores using metal powders
US10981230B2 (en) 2014-05-30 2021-04-20 Mitsubishi Materials Corporation Porous aluminum complex and method of producing porous aluminum complex
WO2016002870A1 (en) * 2014-07-02 2016-01-07 三菱マテリアル株式会社 Porous aluminum heat exchange member
JP2016014508A (en) * 2014-07-02 2016-01-28 三菱マテリアル株式会社 Porous aluminum heat exchange member
US10598446B2 (en) 2014-07-02 2020-03-24 Mitsubishi Materials Corporation Porous aluminum heat exchange member
JP2016095108A (en) * 2014-11-17 2016-05-26 古河電気工業株式会社 Heat pipe
WO2016080364A1 (en) * 2014-11-17 2016-05-26 古河電気工業株式会社 Heat pipe
US10184729B2 (en) 2014-11-17 2019-01-22 Furukawa Electric Co., Ltd. Heat pipe
DE102016113620A1 (en) * 2016-07-25 2018-01-25 Volkswagen Aktiengesellschaft Method for producing a housing component of an internal combustion engine
CN112304135B (en) * 2019-07-29 2022-10-14 广州力及热管理科技有限公司 Capillary structure element of temperature equalizing plate and manufacturing method thereof
CN112304135A (en) * 2019-07-29 2021-02-02 广州力及热管理科技有限公司 Capillary structure element of temperature equalizing plate and manufacturing method thereof
WO2021029204A1 (en) * 2019-08-09 2021-02-18 矢崎エナジーシステム株式会社 Structure, and method for manufacturing same
GB2600039A (en) * 2019-08-09 2022-04-20 Yazaki Energy System Corp Structure, and method for manufacturing same
GB2600039B (en) * 2019-08-09 2023-06-07 Yazaki Energy System Corp Structure, and method for manufacturing same
US20220128315A1 (en) * 2019-08-09 2022-04-28 Yazaki Energy System Corporation Structure, and method for manufacturing same
CN112444151A (en) * 2019-09-03 2021-03-05 广州力及热管理科技有限公司 Metal oxide slurry for manufacturing capillary structure of uniform temperature plate element
CN112444152A (en) * 2019-09-03 2021-03-05 广州力及热管理科技有限公司 Chain-shaped copper metal capillary structure and manufacturing method thereof
CN112444152B (en) * 2019-09-03 2022-01-11 广州力及热管理科技有限公司 Chain-shaped copper metal capillary structure and manufacturing method thereof
CN112444151B (en) * 2019-09-03 2022-01-11 广州力及热管理科技有限公司 Metal oxide slurry for manufacturing capillary structure of uniform temperature plate element
KR102126935B1 (en) * 2020-02-18 2020-07-07 주식회사 디케이 Method for vapor chamber wick manufacturing using cut wire and metal powder and The structure thereof
TWI720823B (en) * 2020-02-26 2021-03-01 永源科技材料股份有限公司 Manufacturing method of a capillary structure
CN113399669A (en) * 2020-03-17 2021-09-17 永源科技材料股份有限公司 Capillary structure
CN114199055A (en) * 2020-08-28 2022-03-18 广州力及热管理科技有限公司 Sheet metal element with solidified composite material structure and manufacturing method thereof
CN114199055B (en) * 2020-08-28 2024-04-09 广州力及热管理科技有限公司 Sheet metal element having a cured composite structure and method for producing the same
CN112756608A (en) * 2020-12-14 2021-05-07 北京有研粉末新材料研究院有限公司 Preparation method for in-situ generation of liquid absorbent core material of copper-clad iron heat pipe
CN114131016A (en) * 2021-12-01 2022-03-04 联德电子科技(常熟)有限公司 Method for processing coreless rod sintered heat pipe
CN114406266A (en) * 2022-02-08 2022-04-29 郭鹏杰 Liquid absorption core, phase-change heat transfer device and preparation method
CN114413669A (en) * 2022-02-08 2022-04-29 郭鹏杰 Liquid absorption core, phase change heat transfer device and preparation method
CN115740431A (en) * 2022-12-21 2023-03-07 北京有研粉末新材料研究院有限公司 Compound copper powder and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2007056302A (en) Method for producing sintered wick layer of heat pipe
Vijayakumar et al. Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids
JP6303850B2 (en) Catalyst production method
US20070089860A1 (en) Heat pipe with sintered powder wick
JP5421531B2 (en) Molybdenum metal powder and its production
WO2011075965A1 (en) Composite copper powder for manufacturing inner wall capillary structure of heat pipe
JP2007120935A (en) Heat transfer tube
CN105307801A (en) Joining material and joining method using same
JP2011021255A (en) Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
CN110160385B (en) Capillary structure sintered at low temperature in heat transfer component and manufacturing method thereof
JP2015225842A (en) Joint material and joint method using the same
CN101900505A (en) Heat pipe and manufacturing method thereof
Yu et al. Ag@ Sn core‐shell powder preform with a high re‐melting temperature for high‐temperature power devices packaging
KR20180047524A (en) Heat pipe and it&#39;s wick containing Metal-Carbon composite material
JP2018206840A (en) Heat dissipation structure
JP2006147170A (en) Conductive material and its manufacturing method
CN112756608A (en) Preparation method for in-situ generation of liquid absorbent core material of copper-clad iron heat pipe
CN106152002B (en) The heat dissipation panel device, head lamp and preparation method for automobile of light emitting diode
JP2008283125A (en) Composite material and composite body
Hashimoto et al. Nano-structured two-phase heat spreader for cooling ultra-high heat flux sources
JP2008122024A (en) Heat pipe, heat pipe module and heat pipe manufacturing method
JP6605918B2 (en) heat pipe
KR20150099091A (en) Method of Manufacturing Nano Material from Graphite-Metal Composite by Mechanical Alloying and Collected Nano Material Using the Same
JP2004063898A (en) Heat radiating material and its manufacturing method
JP2014152338A (en) Nano-wire-provided fine particle and production method thereof