JP2007055199A - Method and apparatus for manufacturing composite optical element - Google Patents

Method and apparatus for manufacturing composite optical element Download PDF

Info

Publication number
JP2007055199A
JP2007055199A JP2005246490A JP2005246490A JP2007055199A JP 2007055199 A JP2007055199 A JP 2007055199A JP 2005246490 A JP2005246490 A JP 2005246490A JP 2005246490 A JP2005246490 A JP 2005246490A JP 2007055199 A JP2007055199 A JP 2007055199A
Authority
JP
Japan
Prior art keywords
axis
optical
molding
detection
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005246490A
Other languages
Japanese (ja)
Inventor
Takashi Sato
孝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinontec KK
Original Assignee
Chinontec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinontec KK filed Critical Chinontec KK
Priority to JP2005246490A priority Critical patent/JP2007055199A/en
Publication of JP2007055199A publication Critical patent/JP2007055199A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a composite optical element capable of suppressing an optical accuracy from lowering and fluctuating caused by the misalignment of the centers of an optical substrate and a formed plane. <P>SOLUTION: The method for manufacturing the composite optical element comprises a process for adjusting an axis according to an axis position of a formed plane 111a using an optical axis detecting means 112 capable of detecting an axis of a measuring plane form from a detecting distance along the optical axis corresponding to the measuring plane form of a measuring object, and with an auxiliary measuring plane 115a capable of being positioned with regard to the formed plane and of detecting the axis with the optical axis detecting means. In the process for adjusting an axis, the axis adjustment is performed on the basis of the result of detecting the axis of the auxiliary measuring plane, which is conducted in such a state that the optical axis detecting means is disposed at a position capable of detecting an optical plane La. The detection of the axis of the auxiliary measuring plane is conducted in such a state that the formed plane is nearer to a forming position k than when detecting the axis of the formed plane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複合光学素子の製造方法及び製造装置に係り、特に、光学基材上に光学層を積層形成する複合光学素子の製造工程に関する。   The present invention relates to a method and apparatus for manufacturing a composite optical element, and more particularly to a process for manufacturing a composite optical element in which an optical layer is formed on an optical substrate.

一般に、所望の光学特性を得るために、レンズ等の光学基材上に光学層を積層して複合光学素子を形成する場合がある。例えば、研磨加工等によって形成したガラス製のレンズの表面に、透明樹脂からなる樹脂層を積層した複合光学素子が知られている。このような複合光学素子を製造する場合には、光学基材と成形型との間に未硬化の樹脂材料を配置し、成形型の成形面で樹脂材料を成形した状態で、光照射等によって樹脂材料を硬化させることにより上記樹脂層を形成するようにしている(例えば、以下の特許文献1参照)。この場合、光学基材の光学面の軸芯と、樹脂層の成形光学面の軸芯とが所定の位置関係となるように、成形前に予め光学基材に対する成形型の軸調整(芯ずれ調整)を行う必要がある。   In general, in order to obtain desired optical characteristics, a composite optical element may be formed by laminating an optical layer on an optical substrate such as a lens. For example, a composite optical element in which a resin layer made of a transparent resin is laminated on the surface of a glass lens formed by polishing or the like is known. When manufacturing such a composite optical element, an uncured resin material is placed between the optical substrate and the mold, and the resin material is molded on the molding surface of the mold by light irradiation or the like. The resin layer is formed by curing the resin material (for example, see Patent Document 1 below). In this case, before the molding, the axis adjustment of the mold (center misalignment) with respect to the optical substrate is performed so that the axial center of the optical surface of the optical substrate and the axis of the molding optical surface of the resin layer have a predetermined positional relationship. Adjustment).

従来、この成形型の軸調整は、測定対象の測定面形状で反射された光に基づいて当該測定面形状の軸芯を検出可能な偏心顕微鏡を用いて、光学基材の光学面の軸芯と成形型の成形面の軸芯をそれぞれ検出し、X−Yステージ等の位置調整手段により両軸芯を相互に合わせることにより行っていた。   Conventionally, the axis adjustment of the mold is performed by using an eccentric microscope capable of detecting the axis of the measurement surface shape based on the light reflected by the measurement surface shape of the measurement object, and the axis of the optical surface of the optical substrate. And detecting the axis of the molding surface of the mold, and aligning both axes with a position adjusting means such as an XY stage.

一方、上下の金型で加熱軟化したガラス素材を成形することによりレンズを製造する光学素子成形装置の金型の芯出し方法が知られている(例えば、以下の特許文献2参照)。この金型の芯出し方法は、上下の金型のうち、可動軸に保持された金型の成形面の反射光を基準とし、調整側の金型においてその成形面以外に形成若しくは設置した反射面からの反射光を用いて上下の金型の芯ずれを調整するようにしている。
特開平7−308971号公報 特開平08−91855号公報
On the other hand, a mold centering method of an optical element molding apparatus that manufactures a lens by molding a glass material heat-softened by upper and lower molds is known (for example, see Patent Document 2 below). The centering method of this mold is based on the reflected light of the molding surface of the mold held on the movable shaft among the upper and lower molds, and the reflection formed or installed on the adjustment mold other than the molding surface. The misalignment of the upper and lower molds is adjusted using the reflected light from the surface.
JP-A-7-308971 Japanese Patent Laid-Open No. 08-91855

しかしながら、従来の成形型の軸調整方法においては、光学基材の光学面の面形状と、成形型の成形面の面形状が異なると、偏心顕微鏡による光学面の検出距離と成形面の検出距離が相互に異なることになるため、所定位置に固定した同じ偏心顕微鏡を用いて光学面と成形面の軸芯を検出しようとすると、金型を成形位置から離間した場所に配置して軸芯検出を行わざるを得ない。そして、このように成形面の軸芯検出が成形位置から離間した検出位置で行われると、せっかく軸調整により検出位置における成形型の芯ずれをなくしても、成形時には成形型を検出位置から成形位置まで移動させる必要があることから、成形型を移動させるための案内機構の案内精度によって成形時に芯ずれが生じ、この芯ずれにより、製造された複合光学素子の光学精度の低下や光学特性のばらつきが生ずるという問題点がある。   However, in the conventional method of adjusting the axis of the molding die, if the surface shape of the optical surface of the optical substrate is different from the surface shape of the molding surface of the molding die, the detection distance of the optical surface and the detection distance of the molding surface by the eccentric microscope Therefore, if you try to detect the axis of the optical surface and the molding surface using the same eccentric microscope fixed at a predetermined position, the die is placed at a location away from the molding position. I have to do it. If the axis detection of the molding surface is performed at the detection position separated from the molding position in this way, the molding die is molded from the detection position at the time of molding, even if there is no misalignment of the molding die at the detection position by adjusting the axis. Since it is necessary to move to the position, misalignment occurs during molding due to the guide accuracy of the guide mechanism for moving the mold, and this misalignment causes a decrease in the optical accuracy of the manufactured composite optical element and the optical characteristics. There is a problem that variations occur.

上記の成形型の移動に起因する芯ずれは、光学基材の光学面の軸芯検出と成形型の成形面の軸芯検出を共に成形位置で行うことにより回避することができるが、この場合には、光学面の検出時と成形面の検出時とで偏芯顕微鏡の位置を移動させる必要があることから、偏芯顕微鏡を移動させるための案内機構の案内精度によって検出精度が損なわれることとなるため、上記と同様に成形時の芯ずれが生ずる。   The misalignment caused by the movement of the molding die can be avoided by performing both the axial center detection of the optical surface of the optical base and the axial center detection of the molding surface of the molding die at the molding position. Since the position of the eccentric microscope needs to be moved between the detection of the optical surface and the detection of the molding surface, the detection accuracy is impaired by the guide accuracy of the guide mechanism for moving the eccentric microscope. Therefore, misalignment occurs during molding as described above.

一方、上下の金型によりレンズを成形する装置における金型の芯出し方法では、基準となる可動側の金型(下型)の軸芯の調整に関しては何らの記述もなく、当該金型の軸芯を光軸に対して調整する方法についても何ら開示されていない。したがって、基準となる金型と光軸との間に本来的に芯ずれがあれば、この芯ずれはそのまま上下の金型間の芯ずれに反映されることになる。   On the other hand, in the mold centering method in the apparatus for molding the lens by the upper and lower molds, there is no description about the adjustment of the axis of the movable mold (lower mold) as a reference, and there is no description of the mold. There is no disclosure of a method for adjusting the axis to the optical axis. Therefore, if there is an inherent misalignment between the reference mold and the optical axis, this misalignment is directly reflected in the misalignment between the upper and lower molds.

また、この場合には、上下の金型間の軸調整に際して、可動側の金型の軸芯を何らかの方法で予め光軸と一致させるなどして基準位置に設定しておき、その後に調整側の金型の位置調整を行ってしまえばそのまま成形を繰り返し行うことができるが、光学基材上で光学材料を成形して光学層を積層形成する場合には、光学基材の位置決め部位と光学面の位置関係には或る程度のばらつきがあることから、光学基材を供給する度に光学面の軸芯がずれるため、成形前に必ず光学面の軸調整を行う必要がある。したがって、最初に成形面の軸芯検出を行い、この軸芯位置を基準として、供給された光学基材の軸芯検出及び位置調整を行わなければならないので、偏芯顕微鏡の移動に伴う検出誤差をなくす目的で、成形面の軸芯検出時と光学面の軸芯検出時とで偏芯顕微鏡の位置を固定し、同じ位置で光学面の軸芯検出を逐次行っていくことが要求される。   In this case, when adjusting the axis between the upper and lower molds, the axis of the movable mold is set to the reference position by, for example, matching the optical axis with the optical axis in advance, and then the adjustment side If the position of the mold is adjusted, the molding can be repeated as it is. However, in the case of forming an optical layer by molding an optical material on an optical substrate, the positioning part of the optical substrate and the optical Since there is some variation in the positional relationship of the surfaces, the axis of the optical surface is displaced each time the optical base material is supplied. Therefore, it is necessary to always adjust the axis of the optical surface before molding. Therefore, the axial center of the molding surface must be detected first, and the axial center of the supplied optical substrate must be detected and adjusted based on this axial center position. In order to eliminate this, it is necessary to fix the position of the eccentric microscope between the detection of the axis of the molding surface and the detection of the axis of the optical surface, and sequentially detect the axis of the optical surface at the same position. .

そこで、本発明は上記問題点を解決するものであり、その課題は、光学基材と成形面の芯ずれに起因する光学精度の低下及びばらつきを抑制することのできる複合光学素子の製造方法及び製造装置を提供することにある。   Therefore, the present invention solves the above-mentioned problems, and the problem is that a method for producing a composite optical element capable of suppressing a decrease in optical accuracy and variations caused by misalignment between an optical substrate and a molding surface, and It is to provide a manufacturing apparatus.

本発明の複合光学素子の製造方法は、光学面を備えた光学基材上に、成形面により成形された成形光学面を備えた光学層が積層形成される複合光学素子の製造方法において、測定対象の測定面形状に応じた光軸方向の検出距離にて前記測定面形状の軸芯を検出可能な光学軸検出手段を用いて前記成形面の軸芯位置に応じた軸調整を行う軸調整工程が設けられ、前記成形面に対して位置決めされるとともに前記光学軸検出手段により軸芯が検出可能な補助測定面が設けられ、前記軸調整工程では、前記光学軸検出手段が前記光学面の軸芯を検出可能な位置に配置された状態で実施された前記補助測定面の軸芯検出の結果に基づいて前記軸調整が行われ、前記補助測定面の軸芯検出は、前記成形面の軸芯検出を行うときよりも前記成形面が成形位置に近接した状態で行われることを特徴とする。   The method for manufacturing a composite optical element of the present invention is a method for manufacturing a composite optical element in which an optical layer having a molded optical surface formed by a molding surface is laminated on an optical substrate having an optical surface. Axis adjustment for adjusting the axis according to the axis position of the molding surface using an optical axis detection means capable of detecting the axis of the measurement surface shape at a detection distance in the optical axis direction corresponding to the target measurement surface shape And an auxiliary measurement surface that is positioned with respect to the molding surface and capable of detecting an axis by the optical axis detection means. In the axis adjustment step, the optical axis detection means The axis adjustment is performed based on the result of the axis detection of the auxiliary measurement surface performed in a state where the axis is located at a position where the axis can be detected, and the axis detection of the auxiliary measurement surface is performed on the molding surface. The molding surface is higher than the molding position when detecting the axis. Wherein the carried out that in close proximity to.

この発明によれば、軸調整を行う際に、光学軸検出手段により成形面の軸芯検出を行うのではなく、成形面に対して位置決めされた補助測定面の軸芯検出を行うことにより、光学軸検出手段による成形面と光学面に対する検出距離が大きく異なっていても、補助測定面の軸芯検出時における成形面の位置を成形位置に近接させることを可能にしている。したがって、軸調整時と成形時との間で必要とされる成形面の移動距離を低減し若しくは無くすことができるので、移動精度に起因する光学面と成形面との間の芯ずれを抑制できる。   According to this invention, when performing the axis adjustment, by detecting the axis of the auxiliary measurement surface positioned with respect to the molding surface, instead of detecting the axis of the molding surface by the optical axis detection means, Even if the detection distance between the molding surface and the optical surface by the optical axis detection means is greatly different, the position of the molding surface when detecting the axis of the auxiliary measurement surface can be brought close to the molding position. Therefore, since the movement distance of the molding surface required between the axis adjustment and molding can be reduced or eliminated, misalignment between the optical surface and the molding surface due to movement accuracy can be suppressed. .

本発明において、前記補助測定面の軸芯検出は、前記成形面が実質的に成形位置に配置された状態で行われることが好ましい。これによれば、軸調整時と成形時とで成形面を移動させる必要がなくなるので、移動精度に起因する芯ずれの発生を防止できる。   In this invention, it is preferable that the axial center detection of the said auxiliary | assistant measurement surface is performed in the state in which the said shaping | molding surface was arrange | positioned substantially in a shaping | molding position. According to this, since it is not necessary to move the molding surface between the axis adjustment and molding, it is possible to prevent the occurrence of misalignment due to the movement accuracy.

また、本発明の別の複合光学素子の製造方法は、光学面を備えた光学基材上に、成形面により成形された成形光学面を備えた光学層が積層形成される複合光学素子の製造方法において、測定対象の測定面形状に応じた光軸方向の検出距離にて前記測定面形状の軸芯を検出可能な光学軸検出手段を用いて前記成形面の軸芯位置に応じた軸調整を行う軸調整工程が設けられ、前記成形面に対して位置決めされるとともに前記光学軸検出手段により軸芯が検出可能な補助測定面が設けられ、該補助測定面の面形状及び光軸方向の位置は、前記補助測定面の軸芯を検出するときの前記検出距離に前記成形面と前記補助測定面との光軸方向の間隔を加算した値と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値との差(D115+DA−DL−DB)の絶対値が、前記成形面の軸芯を検出するときの前記検出距離と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値との差(D111−DL−DB)の絶対値よりも小さくなるように設定され、前記軸調整工程では、前記光学軸検出手段による前記補助測定面に対する軸芯検出の結果に基づいて前記軸調整が行われることを特徴とする。   Another method of manufacturing a composite optical element of the present invention is to manufacture a composite optical element in which an optical layer having a molded optical surface formed by a molding surface is laminated on an optical substrate having an optical surface. In the method, the axis adjustment according to the axis position of the molding surface using the optical axis detection means capable of detecting the axis of the measurement surface shape at the detection distance in the optical axis direction according to the measurement surface shape of the measurement object And an auxiliary measuring surface that is positioned with respect to the molding surface and capable of detecting the axis by the optical axis detecting means. The surface shape of the auxiliary measuring surface and the optical axis direction are provided. The position is a value obtained by adding a distance in the optical axis direction between the molding surface and the auxiliary measurement surface to the detection distance when detecting the axis of the auxiliary measurement surface, and when detecting the axis of the optical surface. The optical surface and the molding during molding at the detection distance of The absolute value of the difference (D115 + DA−DL−DB) with respect to the value obtained by adding the intervals in the optical axis direction detects the detection distance when detecting the axis of the molding surface and the axis of the optical surface. Is set to be smaller than the absolute value of the difference (D111-DL-DB) between the optical distance at the time of molding and the value obtained by adding the distance in the optical axis direction of the molding surface to the detected distance at In the adjustment step, the axis adjustment is performed based on a result of axial center detection on the auxiliary measurement surface by the optical axis detection means.

この発明によれば、軸調整を行う際に、光学軸検出手段により成形面の軸芯検出を行うのではなく、成形面に対して位置決めされた補助測定面の軸芯検出を行うことにより、光学軸検出手段による成形面と光学面に対する検出距離が大きく異なっていても、補助測定面を上記のように構成することにより、軸調整時と成形時との間で必要とされる、成形面、光学面、或いは、光学軸検出手段の移動距離を低減し若しくは無くすことができるので、各部の移動精度に起因する光学面と成形面との間の芯ずれを抑制することが可能になる。   According to this invention, when performing the axis adjustment, by detecting the axis of the auxiliary measurement surface positioned with respect to the molding surface, instead of detecting the axis of the molding surface by the optical axis detection means, Even if the detection distance to the optical surface and the molding surface by the optical axis detection means is greatly different, the molding surface is required between the axis adjustment and molding by configuring the auxiliary measurement surface as described above. Since the movement distance of the optical surface or the optical axis detection means can be reduced or eliminated, it is possible to suppress misalignment between the optical surface and the molding surface due to the movement accuracy of each part.

特に、前記補助測定面の軸芯を検出するときの前記検出距離に前記成形面と前記補助測定面との光軸方向の間隔を加算した値(D115+DA)と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値(DL+DB)とが実質的に一致するように、補助測定面の面形状及び光軸方向の位置が設定されることにより、成形面の軸調整時と成形時との間で、成形面、光学面、及び、光学軸検出手段のいずれをも移動させる必要がなくなるので、移動に伴う芯ずれの発生を防止できる。   In particular, a value (D115 + DA) obtained by adding the distance in the optical axis direction between the molding surface and the auxiliary measurement surface to the detection distance when detecting the axis of the auxiliary measurement surface, and the axis of the optical surface are detected. The surface shape of the auxiliary measurement surface and the direction of the optical axis so that the value (DL + DB) obtained by adding the distance in the optical axis direction of the optical surface and the molding surface at the time of molding substantially coincides with the detection distance at the time of molding Therefore, it is not necessary to move any of the molding surface, the optical surface, and the optical axis detecting means between the adjustment of the molding surface axis and the molding time. Generation of deviation can be prevented.

ここで、前記補助測定面の軸芯検出は、前記補助測定面を備えた補助部材を、前記成形面を備えた成形型に対して位置決め固定した状態で行われることが好ましい。これによれば、成形型と補助部材とを別部材で構成するので、装置構造に応じた適宜の構造で容易に位置決め固定することができる。また、前記補助測定面は、前記成形面と同軸に位置決めされることが好ましい。これによれば、補助測定面の軸芯検出の結果を何ら処理することなく、そのまま成形面の軸芯位置として用いて軸調整を行うことが可能になる。さらに、上記の成形型に対して上記の補助部材が着脱可能に構成されることが好ましい。補助部材を成形型に対して着脱可能に構成することにより、軸調整時には補助部材を成形型に取り付け、成形時には成形型から補助部材を取り外すことができるため、補助部材の取り付け位置や補助測定面の位置に制約がなくなるため、所定の補助測定面を容易に設定することが可能になる。   Here, it is preferable that the axis measurement of the auxiliary measurement surface is performed in a state in which an auxiliary member having the auxiliary measurement surface is positioned and fixed with respect to a molding die having the molding surface. According to this, since the molding die and the auxiliary member are configured as separate members, the positioning and fixing can be easily performed with an appropriate structure according to the apparatus structure. The auxiliary measurement surface is preferably positioned coaxially with the molding surface. According to this, it is possible to perform the axis adjustment by using the result of the detection of the axis of the auxiliary measurement surface as it is as the axis position of the molding surface without any processing. Furthermore, it is preferable that the auxiliary member is configured to be detachable from the mold. By configuring the auxiliary member so that it can be attached to and removed from the mold, the auxiliary member can be attached to the mold during axis adjustment and the auxiliary member can be removed from the mold during molding. Therefore, it is possible to easily set a predetermined auxiliary measurement surface.

また、前記軸調整工程では、前記補助測定面の軸芯と前記光学軸検出手段の光軸との位置関係が調整されることが好ましい。軸調整工程では、補助測定面の軸芯検出に基づいて、何らかの形で成形面の軸芯位置に応じた軸調整が行われればよいので、例えば、補助測定面の軸芯を所定の位置に合わせたり、補助測定面の軸芯位置に応じて他の部材の位置を調整したりすることが含まれる。特に、補助測定面の軸芯と光学軸検出手段の光軸との位置関係を調整しておく(例えば、補助測定面若しくは成形面の軸芯を光軸に一致させておく)ことにより、その後、光学軸検出手段の光軸と光学面の軸芯とを整合させるだけで光学面と成形面とを整合させることが可能になる。   In the axis adjustment step, it is preferable that the positional relationship between the axis of the auxiliary measurement surface and the optical axis of the optical axis detection means is adjusted. In the axis adjustment process, it is only necessary to adjust the axis according to the axis position of the molding surface in any way based on the detection of the axis of the auxiliary measurement surface. For example, the axis of the auxiliary measurement surface is set to a predetermined position. And adjusting the position of another member according to the axial center position of the auxiliary measurement surface. In particular, by adjusting the positional relationship between the axis of the auxiliary measurement surface and the optical axis of the optical axis detection means (for example, by aligning the axis of the auxiliary measurement surface or the molding surface with the optical axis), The optical surface and the molding surface can be aligned only by aligning the optical axis of the optical axis detection means and the axis of the optical surface.

さらに、前記補助測定面は、前記成形面の軸芯上に位置決め配置されることが好ましい。補助測定面が成形面の軸芯上に位置決め配置されることで、光学軸検出手段をそのまま用いて補助測定面の軸芯検出を行うことが可能になる。この場合、補助測定面の軸芯が成形面の軸芯と一致するように構成されることがさらに好ましい。これによれば、補助測定面の軸芯検出データをそのまま成形面の軸芯検出データとして用いることが可能になる。   Furthermore, it is preferable that the auxiliary measurement surface is positioned on the axis of the molding surface. By positioning the auxiliary measurement surface on the axis of the molding surface, it is possible to detect the axis of the auxiliary measurement surface using the optical axis detection means as it is. In this case, it is more preferable that the axis of the auxiliary measurement surface is configured to coincide with the axis of the molding surface. According to this, it becomes possible to use the axis detection data of the auxiliary measurement surface as it is as the axis detection data of the molding surface.

次に、本発明の複合光学素子の製造装置は、光学面を備えた光学基材上に、成形面により成形された成形光学面を備えた光学層を積層形成する複合光学素子の製造装置において、前記光学基材を支持する支持台と、前記成形面を備えた成形型と、前記支持台と前記成形型の少なくとも一方を相互に接離可能な態様で光軸方向に案内する案内構造と、測定対象の測定面形状に応じた光軸方向の検出距離にて前記測定面形状の軸芯を検出可能な光学軸検出手段と、前記支持台と前記成形型の間の軸調整を可能とする位置調整手段と、前記成形面に対して位置決めされるとともに前記光学軸検出手段により軸芯検出可能な補助測定面と、を具備することを特徴とする。   Next, the composite optical element manufacturing apparatus of the present invention is a composite optical element manufacturing apparatus in which an optical layer having a molded optical surface formed by a molding surface is laminated on an optical substrate having an optical surface. A support base that supports the optical base; a molding die that includes the molding surface; and a guide structure that guides at least one of the support base and the molding die in the direction of the optical axis in a manner in which the support base and the molding die can be separated from each other , An optical axis detection means capable of detecting the axis of the measurement surface shape at a detection distance in the optical axis direction according to the measurement surface shape of the measurement object, and the axis adjustment between the support base and the mold can be performed And an auxiliary measurement surface positioned with respect to the molding surface and capable of detecting the axis by the optical axis detection unit.

本発明において、前記補助測定面の軸芯を検出するときの前記検出距離に前記成形面と前記補助測定面との光軸方向の間隔を加算した値と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値との差(D115+DA−DL−DB)の絶対値が、前記成形面の軸芯を検出するときの前記検出距離と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値との差(D111−DL−DB)の絶対値よりも小さくように、前記補助測定面の面形状及び位置が設定されていることが好ましい。   In the present invention, a value obtained by adding a distance in the optical axis direction between the molding surface and the auxiliary measurement surface to the detection distance when detecting the axis of the auxiliary measurement surface, and the axis of the optical surface are detected. The absolute value of the difference (D115 + DA-DL-DB) between the optical surface at the time of molding and the value obtained by adding the distance in the optical axis direction of the molding surface to the detection distance at the time of detection detects the axis of the molding surface The difference between the detected distance at the time and the value obtained by adding the distance between the optical surface and the molding surface in the optical axis direction at the time of molding to the detection distance when detecting the axis of the optical surface (D111-DL- The surface shape and position of the auxiliary measurement surface are preferably set so as to be smaller than the absolute value of DB).

また、前記補助手段は、前記成形型に対して着脱可能に構成された補助部材で構成されていることが好ましく、さらに、前記補助測定面と前記成形面の軸芯が一致していることが好ましい。   Moreover, it is preferable that the said auxiliary | assistant means is comprised with the auxiliary member comprised so that attachment or detachment with respect to the said shaping | molding die was carried out, and also the axial center of the said auxiliary | assistant measurement surface and the said molding surface may correspond. preferable.

本発明によれば、成形面に対して位置決めされた補助測定面の軸芯検出に基づいて軸調整を行うことにより、移動精度に起因する芯ずれを低減することができ、これによって複合光学素子の光学精度を向上させることができるとともに光学特性のばらつきを低減できる。   According to the present invention, it is possible to reduce the misalignment caused by the movement accuracy by performing the axis adjustment based on the axial center detection of the auxiliary measurement surface positioned with respect to the molding surface, and thereby the composite optical element. The optical accuracy can be improved, and variations in optical characteristics can be reduced.

次に、添付図面を参照して本発明に係る複合光学素子の製造方法及び製造装置の実施形態について詳細に説明する。   Next, embodiments of a method and apparatus for manufacturing a composite optical element according to the present invention will be described in detail with reference to the accompanying drawings.

[複合光学素子の製造装置]
最初に、図1及び図2を参照して、本実施形態の複合光学素子の製造装置の概略構成について説明する。図1は製造装置100の全体構成を示す概略構成図、図2は製造装置100の成形型及び支持台の近傍を拡大して示す拡大部分断面図である。
[Composite optical element manufacturing equipment]
First, with reference to FIG.1 and FIG.2, schematic structure of the manufacturing apparatus of the composite optical element of this embodiment is demonstrated. FIG. 1 is a schematic configuration diagram showing the overall configuration of the manufacturing apparatus 100, and FIG. 2 is an enlarged partial cross-sectional view showing the vicinity of a forming die and a support base of the manufacturing apparatus 100.

この製造装置100は、共通のフレーム101に対して取り付けられた支持台102、型固定台103、及び、検出台104を有し、支持台102は光学基材としてのレンズ基材Lを支持固定するように構成され、型固定台103には成形型111が固定され、検出台104には光学軸検出手段である偏芯顕微鏡112が固定されている。ここで、支持台102、成形型111及び偏芯顕微鏡112は、図1において上下方向に伸びる偏芯顕微鏡112の光軸112Xに沿って配置されている。   The manufacturing apparatus 100 includes a support base 102, a mold fixing base 103, and a detection base 104 attached to a common frame 101. The support base 102 supports and fixes a lens base L as an optical base. The molding die 111 is fixed to the die fixing base 103, and the eccentric microscope 112, which is an optical axis detecting means, is fixed to the detection base 104. Here, the support table 102, the mold 111, and the eccentric microscope 112 are arranged along the optical axis 112X of the eccentric microscope 112 extending in the vertical direction in FIG.

支持台102は、フレーム101に対してX−Yテーブル等の位置調整可能な位置調整機構104を介して取り付けられている。これにより、支持台102は光軸112Xと直交する平面方向(水平方向)に位置調整可能に構成される。支持台102は上記光軸112Xに沿って貫通した貫通孔102aを備え、レンズ基材Lを貫通孔102aの開口範囲に光学面Laが臨む姿勢で設置できるように構成されている。   The support base 102 is attached to the frame 101 via a position adjustment mechanism 104 such as an XY table that can adjust the position. Accordingly, the support base 102 is configured to be positionally adjustable in a plane direction (horizontal direction) orthogonal to the optical axis 112X. The support base 102 includes a through hole 102a penetrating along the optical axis 112X, and is configured so that the lens base L can be installed in an attitude in which the optical surface La faces the opening range of the through hole 102a.

成形型111は型固定台103に固定され、光軸112Xの方向に向いた成形面111aを備えている。型固定台103は案内機構(図示例では一対の平行な案内レールとこれに案内される被案内部)105によってフレーム101に対してスライド可能に構成され、ボールねじ等の駆動機構によって光軸112Xに沿って移動可能に構成されている。また、型固定台103には、成形型111の傾き調整機構(図示せず)が内蔵されている。   The forming die 111 is fixed to the die fixing base 103 and includes a forming surface 111a facing in the direction of the optical axis 112X. The mold fixing base 103 is configured to be slidable with respect to the frame 101 by a guide mechanism (in the illustrated example, a pair of parallel guide rails and a guided portion guided by the guide rail) 105, and an optical axis 112X by a drive mechanism such as a ball screw. It is configured to be movable along. The mold fixing base 103 incorporates a tilt adjusting mechanism (not shown) of the mold 111.

偏芯顕微鏡112は、光源部112Aから発せられた照明光を光軸112Xに沿って支持台102及び成形型111側へ照射するとともに、任意の測定対象の測定面形状に応じた検出距離で当該測定面で反射されて戻ってくる検出光を検出部112Bで検出して、上記測定面の軸芯位置を求めることができるように構成されている。偏心顕微鏡112の検出部112Bはモニタ112Cに接続され、このモニタ112Cの表示面上に上記測定面の軸芯Pが表示される。なお、表示面中の原点Oは上記光軸112Xの位置に相当する。   The eccentric microscope 112 irradiates illumination light emitted from the light source unit 112A toward the support base 102 and the mold 111 along the optical axis 112X, and at a detection distance corresponding to the measurement surface shape of an arbitrary measurement target. The detection light reflected and returned from the measurement surface is detected by the detection unit 112B, and the axial center position of the measurement surface can be obtained. The detection unit 112B of the eccentric microscope 112 is connected to a monitor 112C, and the axis P of the measurement surface is displayed on the display surface of the monitor 112C. The origin O in the display surface corresponds to the position of the optical axis 112X.

上記検出台104は、案内機構(一対の平行な案内レールとこれに案内される部分)106によってフレーム101に対してスライド可能に構成され、図示しない駆動機構により或いは手動で光軸112Xに沿って移動可能に構成される。また、検出台104には、偏芯顕微鏡112の傾き調整機構(図示せず)が設けられている。   The detection table 104 is configured to be slidable with respect to the frame 101 by a guide mechanism (a pair of parallel guide rails and a portion guided by the guide mechanism) 106, and along the optical axis 112X by a drive mechanism (not shown) or manually. It is configured to be movable. Further, the detection table 104 is provided with a tilt adjustment mechanism (not shown) of the eccentric microscope 112.

ディスペンサ113は、レンズ基材Lに積層する光学層(樹脂層)の素材である光学材料(透明な樹脂材料)を供給するものであり、フレーム101に対して図示左右方向に移動可能に構成され、図示の退避位置から成形型111側に移動することにより、ノズル113aから一定量の未硬化の光学材料を上記成形型111の成形面111a上に滴下することができるように構成されている。   The dispenser 113 supplies an optical material (transparent resin material) that is a material of an optical layer (resin layer) to be laminated on the lens base L, and is configured to be movable in the horizontal direction in the figure with respect to the frame 101. A certain amount of uncured optical material can be dropped from the nozzle 113 a onto the molding surface 111 a of the molding die 111 by moving from the retracted position to the molding die 111 side.

光照射ユニット114は、レンズ基材Lに積層された未硬化の光学材料に光(紫外線)を照射するものである。光照射ユニット114はフレーム101に対して図示左右方向に移動可能に構成され、図示の退避位置から支持台102側に移動することにより、照射口114aから光をレンズ基材Lに向けて照射できるように構成されている。   The light irradiation unit 114 irradiates light (ultraviolet rays) to the uncured optical material laminated on the lens substrate L. The light irradiation unit 114 is configured to be movable in the horizontal direction in the figure with respect to the frame 101, and can move toward the lens base L from the irradiation port 114 a by moving from the retracted position to the support base 102 side. It is configured as follows.

なお、鏡面リング107は上記の光照射ユニットによって紫外線等の光を照射する際に当該光の集光性を高めるものであり、拡散板108は光の照度均一性を確保するためのものである。拡散板108はフレーム101に対して図の紙面と直交する方向に移動可能に構成され、光照射時以外においては光軸112Xと交差しない位置に退避するようになっている。   The mirror ring 107 increases the light condensing property when the light irradiation unit irradiates light such as ultraviolet rays, and the diffusion plate 108 is for ensuring the illuminance uniformity of the light. . The diffusing plate 108 is configured to be movable in a direction perpendicular to the paper surface of the drawing with respect to the frame 101, and retracts to a position that does not intersect the optical axis 112X except during light irradiation.

本実施形態の装置100においては、図2に示すように、上記成形型111に対して検出補助体115が着脱可能に取り付けられる。この検出補助体115は、成形型111に対して高精度に位置決め固定されるように構成されている。検出補助体115は、光軸112X上に配置された補助測定面115aを備えている。これにより、検出補助体115を成形型111に取り付けたとき、補助測定面115aは成形面111aに対して位置決めされた状態とされる。具体的には、補助測定面115aは成形面111aの支持台若しくは偏芯顕微鏡112側に配置される。補助測定面115aは成形面111aと同軸に(すなわち、補助測定面115aの軸芯が成形面111aの軸芯と一致するように)構成されていることが望ましい。   In the apparatus 100 of the present embodiment, as shown in FIG. 2, a detection auxiliary body 115 is detachably attached to the mold 111. The detection assisting body 115 is configured to be positioned and fixed with high accuracy with respect to the mold 111. The detection auxiliary body 115 includes an auxiliary measurement surface 115a disposed on the optical axis 112X. Thereby, when the detection auxiliary body 115 is attached to the molding die 111, the auxiliary measurement surface 115a is positioned with respect to the molding surface 111a. Specifically, the auxiliary measurement surface 115a is arranged on the support base of the molding surface 111a or the eccentric microscope 112 side. The auxiliary measurement surface 115a is preferably configured to be coaxial with the molding surface 111a (that is, the axis of the auxiliary measurement surface 115a coincides with the axis of the molding surface 111a).

なお、本発明を特に限定するものではないが、以下の説明においては、検出補助体115を成形型111に取り付けたとき、補助測定面115aの軸芯位置は、成形面111aの軸芯位置に一致するように構成されているものとする。もちろん、本発明では、補助測定面115aの軸芯位置と成形面111aの軸芯位置とが異なっていても構わない。ただし、この場合には、両軸芯のずれ方位及びずれ量を予め測定しておき、後述する軸調整工程において上記のずれ方位及びずれ量を勘案して調整作業を実施する必要がある。   Although the present invention is not particularly limited, in the following description, when the detection assisting body 115 is attached to the molding die 111, the axial center position of the auxiliary measuring surface 115a is the axial center position of the molding surface 111a. Assume that they are configured to match. Of course, in the present invention, the axis position of the auxiliary measurement surface 115a and the axis position of the molding surface 111a may be different. However, in this case, it is necessary to measure the deviation azimuth and deviation amount of both axes in advance, and to perform the adjustment work in consideration of the deviation azimuth and deviation amount in the axis adjustment process described later.

図示例の場合、検出補助体115は、成形型111に位置決め固定される固定部材(固定リング)115Aと、この固定部材115Aに対して位置決め固定される補助部材115Bとを有し、この補助部材115Bに上記の補助測定面115aが形成されている。このようにすると、固定部材115Aを常用するとともに、必要に応じて異なる補助測定面115aを形成した補助部材115Bを差し替えて用いることが可能になる。   In the case of the illustrated example, the detection auxiliary body 115 includes a fixing member (fixing ring) 115A that is positioned and fixed to the mold 111, and an auxiliary member 115B that is positioned and fixed to the fixing member 115A. The auxiliary measurement surface 115a is formed on 115B. If it does in this way, while it becomes possible to use fixing member 115A regularly, it becomes possible to replace and use auxiliary member 115B which formed different auxiliary measuring surface 115a as needed.

また、補助部材115Bを構成する素材は何ら限定されるものではなく、例えば、真鍮、鋼材等の金属で構成されていてもよく、ガラスや樹脂材料等の非金属で構成されていてもよい。補助測定面115aは、偏芯顕微鏡112等の光学軸検出手段によって軸芯が検出可能な面(凹面若しくは凸面)であればよく、図示例の場合、補助測定面115aにおいて何らかの反射光が発生し、この反射光が偏芯顕微鏡112にて検出可能となっていればよい。ここで、補助測定面115aが鏡面であることが軸芯の検出精度を高める上で望ましい。また、補助測定面115aは球面であることが好ましいが、非球面であっても構わない。   Moreover, the raw material which comprises the auxiliary member 115B is not limited at all, For example, it may be comprised with metals, such as a brass and steel materials, and may be comprised with nonmetals, such as glass and a resin material. The auxiliary measurement surface 115a may be a surface (concave or convex) whose axis can be detected by an optical axis detection unit such as the eccentric microscope 112. In the illustrated example, some reflected light is generated on the auxiliary measurement surface 115a. It is sufficient that the reflected light can be detected by the eccentric microscope 112. Here, it is desirable that the auxiliary measurement surface 115a is a mirror surface in order to increase the detection accuracy of the axis. The auxiliary measurement surface 115a is preferably a spherical surface, but may be an aspherical surface.

次に、上記の偏芯顕微鏡112による測定対象の測定面の軸芯検出方法について簡単に説明する。本発明の光学軸検出手段は、上述のように、測定面の形状に応じた光軸方向の検出距離にて当該測定面の軸芯検出を行うものであり、本実施形態では上記の偏芯顕微鏡112が例示される。この偏芯顕微鏡112は、図5(a)に示すように、照明光を所定の焦点距離fで光軸方向に照射し、焦点距離fに対応する位置にある測定対象10の測定面10aからの反射光を検出することができるように構成されている。   Next, a method for detecting the axial center of the measurement surface to be measured by the eccentric microscope 112 will be briefly described. As described above, the optical axis detection means of the present invention performs axial center detection of the measurement surface at a detection distance in the optical axis direction corresponding to the shape of the measurement surface. In the present embodiment, the above-described eccentricity is performed. The microscope 112 is illustrated. As shown in FIG. 5A, the eccentric microscope 112 irradiates illumination light in the optical axis direction at a predetermined focal length f, and from the measurement surface 10a of the measurement object 10 at a position corresponding to the focal length f. The reflected light can be detected.

一般的には、図5(b)に示すような測定対象20の凸球面状の測定面20aの軸芯を検出する場合には、偏芯顕微鏡112の検出距離Dは、照明光の焦点距離fから測定面20aの曲率半径Rを減算したf−Rとなり、この検出距離D=f−Rに測定面20aが配置されたときに、測定面20aの軸芯を求めることができるようになっている。また、図5(c)に示すような測定対象30の凹球面状の光学面30aの軸芯を検出する場合には、偏芯顕微鏡112の検出距離Dは、照明光の焦点距離fに測定面30aの曲率半径Rを加算したf+Rとなり、この検出距離D=f+Rに測定面30aが配置されたときに、測定面30aの軸芯を求めることが可能になる。すなわち、曲率半径Rの符号を測定面の曲率中心が顕微鏡側にある場合を正とし、反対側にある場合を負とすれば、検出距離は常にD=f+Rで表される。   In general, when detecting the axial center of the convex measurement surface 20a of the measurement target 20 as shown in FIG. 5B, the detection distance D of the eccentric microscope 112 is the focal length of the illumination light. f−R obtained by subtracting the radius of curvature R of the measurement surface 20a from f, and when the measurement surface 20a is disposed at this detection distance D = f−R, the axis of the measurement surface 20a can be obtained. ing. When detecting the axis of the concave spherical optical surface 30a of the measurement target 30 as shown in FIG. 5C, the detection distance D of the eccentric microscope 112 is measured at the focal length f of the illumination light. The sum of the curvature radii R of the surface 30a is f + R. When the measurement surface 30a is arranged at the detection distance D = f + R, the axis of the measurement surface 30a can be obtained. That is, if the sign of the radius of curvature R is positive when the center of curvature of the measurement surface is on the microscope side and negative when the center of curvature is on the opposite side, the detection distance is always expressed as D = f + R.

上記においては測定面が球面である場合について説明したが、測定面が非球面(例えば、放物面や高次曲面など)であっても、基本的には測定面形状に応じた所定の検出距離において、当該測定面の軸芯が検出される。   In the above description, the case where the measurement surface is a spherical surface has been described. However, even if the measurement surface is an aspherical surface (for example, a paraboloid or a higher-order curved surface), basically a predetermined detection according to the shape of the measurement surface is performed. At the distance, the axis of the measurement surface is detected.

次に、以上説明した製造装置100を用いた複合光学素子の製造方法について説明する。製造装置100では、まず、後に詳述する軸調整工程を実施し、次に、ディスペンサ113を移動させてノズル113aから所定量の光学材料(未硬化の樹脂材料)を成形型111の成形面111a上に滴下する。その後、ディスペンサ113を退避させて、成形型111を上昇させ、支持台102にセットされたレンズ基材Lに近接させ、光学材料をレンズ基材Lと成形型111で挟み込み、所定の形状に成形する。   Next, a method for manufacturing a composite optical element using the manufacturing apparatus 100 described above will be described. In the manufacturing apparatus 100, first, an axis adjustment process, which will be described in detail later, is performed, and then, the dispenser 113 is moved, and a predetermined amount of optical material (uncured resin material) is transferred from the nozzle 113a to the molding surface 111a of the molding die 111. Drip on top. Thereafter, the dispenser 113 is retracted, the molding die 111 is raised, brought close to the lens base L set on the support base 102, the optical material is sandwiched between the lens base L and the molding die 111, and molded into a predetermined shape. To do.

その後、拡散板108を繰り出して光軸112X上に配置し、光照射ユニット114を移動させてその照射口114aから光を照射する。この光はレンズ基材Lと成形型111の間で成形された状態となっている光学材料に照射され、光学材料が光硬化することにより、図4(c)に示す光学層Mが形成される。この光学層Mは、上記成形面111aを反映した成形光学面Maを備えたものとなる。その後、成形型111を下方に移動させて離型すると、支持台102には、レンズ基材L上に光学層Mが積層形成された複合光学素子が残される。   Thereafter, the diffusing plate 108 is drawn out and disposed on the optical axis 112X, and the light irradiation unit 114 is moved to irradiate light from the irradiation port 114a. This light is applied to the optical material molded between the lens substrate L and the mold 111, and the optical material is photocured to form the optical layer M shown in FIG. 4C. The The optical layer M has a molding optical surface Ma reflecting the molding surface 111a. Thereafter, when the mold 111 is moved downward and released, a composite optical element in which the optical layer M is laminated on the lens substrate L is left on the support base 102.

本実施形態の製造方法では、上記のようにレンズ基材Lに光学層Mを積層形成する成形工程に先立って、図4(c)に示すレンズ基材Lの光学面Laの軸芯と、光学層Mの成形光学面Maの軸芯とが所定の関係になるように、レンズ基材Lの光学面Laの軸芯と、成形型111の成形面111aの軸芯との関係を調整する軸調整工程を実施する。   In the manufacturing method of the present embodiment, prior to the molding step of forming the optical layer M on the lens substrate L as described above, the axis of the optical surface La of the lens substrate L shown in FIG. The relationship between the axis of the optical surface La of the lens base L and the axis of the molding surface 111a of the mold 111 is adjusted so that the axis of the molding optical surface Ma of the optical layer M has a predetermined relationship. The axis adjustment process is performed.

通常、上記の軸調整工程で、レンズ基材Lの光学面Laの軸芯と、成形型111の成形面111aの軸芯とを一致させることにより、成形工程において、複合光学素子の光学面Laの軸芯と光学層Mの成形光学面Maの軸芯とが一致するようにするので、以下においてはこれを前提として説明するが、本発明はこの場合に限られず、両軸芯間が任意の関係になるように調整する場合を広く包含する。   Usually, in the above-mentioned axis adjustment step, the optical surface La of the compound optical element is aligned in the molding step by matching the axis of the optical surface La of the lens substrate L with the axis of the molding surface 111a of the mold 111. The axis of the optical layer M coincides with the axis of the molding optical surface Ma of the optical layer M. The following description will be made based on this assumption. However, the present invention is not limited to this, and the distance between the two axes is arbitrary. A wide range of cases where adjustment is made so that

従来の軸調整工程では、偏芯顕微鏡112により、成形型111の成形面111aの軸芯検出と、レンズ基材Lの光学面Laの軸芯検出とをそれぞれ実施し、これらの検出によって得られた両軸芯の位置を一致させるように、例えば、図1に示す位置調整機構104を調整する。この場合、具体的な軸調整の手順は任意であり、光学面Laの軸芯と、成形面111aの軸芯とが直接一致するように、偏芯顕微鏡112で検出された軸芯位置を相互に一致させるように位置調整をしてもよく、或いは、偏芯顕微鏡112の光軸をいずれか一方の軸芯に一致させるように位置調整し、その後、他方の軸芯を偏芯顕微鏡112の光軸に一致するように調整してもよい。   In the conventional axis adjustment step, the eccentric microscope 112 performs the detection of the axis of the molding surface 111a of the mold 111 and the detection of the axis of the optical surface La of the lens base L, respectively. For example, the position adjusting mechanism 104 shown in FIG. 1 is adjusted so that the positions of the two axes coincide. In this case, the specific axis adjustment procedure is arbitrary, and the axis positions detected by the eccentric microscope 112 are mutually matched so that the axis of the optical surface La and the axis of the molding surface 111a are directly matched. The position may be adjusted so that the optical axis of the eccentric microscope 112 matches the optical axis of one of the axes, and the other optical axis is then adjusted to match that of the eccentric microscope 112. You may adjust so that it may correspond with an optical axis.

より具体的な例としては、最初に、偏芯顕微鏡112の光軸112X(モニタ112Cの画面上では原点Oで示される。)と、成形型111の成形面111aの軸芯とが一致するように図示しない位置調整機構により偏芯顕微鏡112の平面位置を調整し、その後、この位置調整された偏芯顕微鏡112で支持台102に供給されたレンズ基材Lの光学面Laの軸芯検出を行い、光学面Laの軸芯が偏芯顕微鏡112の光軸(原点O)と一致するように、位置調整機構104を調整する。   As a more specific example, first, the optical axis 112X (indicated by the origin O on the screen of the monitor 112C) of the eccentric microscope 112 and the axis of the molding surface 111a of the molding die 111 coincide with each other. The planar position of the eccentric microscope 112 is adjusted by a position adjusting mechanism (not shown), and then the axial center detection of the optical surface La of the lens base L supplied to the support base 102 by the eccentric microscope 112 adjusted in position is performed. The position adjustment mechanism 104 is adjusted so that the axis of the optical surface La coincides with the optical axis (origin O) of the eccentric microscope 112.

しかしながら、従来の方法では、図4に示すように、偏芯顕微鏡112による光学面Laに対する軸芯検出時の検出距離DLと、成形面111aに対する軸芯検出時の検出距離D111とが異なるため、偏芯顕微鏡112による成形面111aの軸芯検出時には、成形面111aが成形位置kから主軸方向に距離Sだけ離間した位置に配置された状態とされる。したがって、軸調整時において光学面Laの軸芯と成形面111aの軸芯とが一致するように調整したとしても、成形を行うために成形型111を距離Sだけ移動させる間に案内機構の案内精度に応じて位置ずれが生ずるため、成形時には両軸芯間に上記の位置ずれに対応する芯ずれが発生することになる。   However, in the conventional method, as shown in FIG. 4, the detection distance DL when detecting the axis with respect to the optical surface La by the eccentric microscope 112 is different from the detection distance D111 when detecting the axis with respect to the molding surface 111a. At the time of detecting the axial center of the molding surface 111a by the eccentric microscope 112, the molding surface 111a is arranged at a position separated from the molding position k by a distance S in the main axis direction. Therefore, even when the axis of the optical surface La and the axis of the molding surface 111a are adjusted to coincide with each other during the axis adjustment, the guide mechanism guides while moving the molding die 111 by the distance S in order to perform molding. Since misalignment occurs in accordance with accuracy, misalignment corresponding to the misalignment occurs between the shaft cores during molding.

上記の芯ずれは、偏芯顕微鏡112による成形面111aの軸芯検出を、成形面111aを成形位置kに配置して行う場合でも発生する。すなわち、検出距離DLとD111とが異なる点はなんら変わらないため、成形面111aの軸芯検出を成形位置kにて行うためには、光学面Laの軸芯検出を行うときと成形面111aの軸芯検出を行うときとで、偏芯顕微鏡112の位置を距離Sだけ変えなくてはならないからである。すなわち、この場合には、偏芯顕微鏡112を距離Sだけ移動させる必要があるため、偏芯顕微鏡の案内機構の案内精度に応じて偏芯顕微鏡に位置ずれが生ずるため、検出誤差の結果として成形型111を移動させる場合と同等の芯ずれが発生しうる。   The above-described misalignment occurs even when the axial center of the molding surface 111a is detected by the eccentric microscope 112 by placing the molding surface 111a at the molding position k. That is, since the difference between the detection distance DL and D111 does not change at all, in order to detect the axial center of the molding surface 111a at the molding position k, when detecting the axial center of the optical surface La and the molding surface 111a. This is because the position of the eccentric microscope 112 must be changed only by the distance S when the axis is detected. That is, in this case, since the eccentric microscope 112 needs to be moved by the distance S, the eccentric microscope is displaced according to the guide accuracy of the guide mechanism of the eccentric microscope. A misalignment equivalent to the case of moving the mold 111 may occur.

本実施形態では、軸調整工程において、成形型111に検出補助体115を取り付け、成形面111aに対して位置決めされた補助測定面115aに対して軸芯検出を行う。この補助測定面115aの面形状及び成形面111aとの光軸112X方向の間隔は、図3に示すように、偏芯顕微鏡112を光学面Laの軸芯検出時の検出距離DLに対応する位置に固定し、補助測定面115aに対して軸芯検出を行うときに、成形面111aが成形位置kに配置されるように設定されている。   In the present embodiment, in the shaft adjusting step, the detection auxiliary body 115 is attached to the forming die 111, and the shaft center is detected with respect to the auxiliary measuring surface 115a positioned with respect to the forming surface 111a. The surface shape of the auxiliary measurement surface 115a and the distance between the molding surface 111a and the optical axis 112X in the direction of the optical axis 112X correspond to the position corresponding to the detection distance DL when the eccentric microscope 112 detects the axis of the optical surface La as shown in FIG. The molding surface 111a is set at the molding position k when the axis is detected on the auxiliary measurement surface 115a.

すなわち、補助測定面115aの面形状は、補助測定面115aの軸芯検出時の検出距離D115に補助測定面115aと成形面111aの光軸方向の間隔DAを加算した値が、光学面Laの軸芯検出時の検出距離DLに成形時における光学面La(成形位置j)と成形面111a(成形位置k)との光軸方向の間隔DBを加算した値に一致する(D115+DA=DL+DB)ように形成されている。   That is, the surface shape of the auxiliary measurement surface 115a is obtained by adding the distance DA in the optical axis direction between the auxiliary measurement surface 115a and the molding surface 111a to the detection distance D115 when the axis of the auxiliary measurement surface 115a is detected. It coincides with the value obtained by adding the distance DB in the optical axis direction between the optical surface La (molding position j) and the molding surface 111a (molding position k) at the time of molding to the detection distance DL at the time of detecting the axis (D115 + DA = DL + DB). Is formed.

上記のようにすると、成形面111aが成形位置kにある状態で補助測定面115aの軸芯検出が行われ、しかも、光学面Laの軸芯検出時と補助測定面115aの軸芯検出時とで偏芯顕微鏡112が同じ位置にあるので、移動精度に起因する芯ずれを招くことがない。したがって、移動精度に影響されずに高い精度で光学面Laの軸芯と成形光学面Maの軸芯とを一致させることができる。   As described above, the axis measurement of the auxiliary measurement surface 115a is performed in a state where the molding surface 111a is at the molding position k, and when the axis of the optical surface La is detected and when the axis of the auxiliary measurement surface 115a is detected. Thus, the eccentric microscope 112 is in the same position, so that the misalignment caused by the movement accuracy is not caused. Therefore, the axis of the optical surface La and the axis of the shaping optical surface Ma can be matched with high accuracy without being affected by the movement accuracy.

なお、本実施形態の場合においても、光学面Laの軸芯と、補助測定面115aの軸芯とを直接一致させるだけでなく、例えば、補助測定面115aの軸芯に偏芯顕微鏡112の光軸を一致させ、その後、偏芯顕微鏡112の光軸に光学面Laの軸芯を一致させるように、支持台102の位置調整を行うようにしてもよい。   In the case of the present embodiment as well, not only the axis of the optical surface La and the axis of the auxiliary measurement surface 115a are directly matched, but, for example, the light of the eccentric microscope 112 is aligned with the axis of the auxiliary measurement surface 115a. The positions of the support base 102 may be adjusted so that the axes coincide with each other and then the axis of the optical surface La coincides with the optical axis of the eccentric microscope 112.

例えば、具体的な例としては、以下のような軸調整作業を行う。最初に、支持台102の水平姿勢、偏芯顕微鏡112の倒れ補正、成形型111の倒れ補正などを実施し、その後に、支持台102上にレンズ基材Lを設置し、このレンズ基材Lの光学面Laの軸芯検出が可能となるように、偏芯顕微鏡112の上下位置を調整する。すなわち、偏芯顕微鏡112を光学面Laに対して検出距離DLだけ上方に設置する。   For example, as a specific example, the following axis adjustment work is performed. First, the horizontal posture of the support base 102, the tilt correction of the eccentric microscope 112, the tilt correction of the molding die 111, and the like are performed. Thereafter, the lens base L is installed on the support base 102, and this lens base L The vertical position of the eccentric microscope 112 is adjusted so that the axial center of the optical surface La can be detected. That is, the eccentric microscope 112 is installed above the optical surface La by the detection distance DL.

次に、レンズ基材Lを支持台102から取り外し、成形型111に検出補助体115を取り付け、成形型111を移動させて、偏芯顕微鏡112の検出距離D115に対応する位置で補助測定面115aの軸芯検出を行う。このとき、補助測定面115aの面形状及び光軸方向の位置(成形面111aとの間隔)が上記のように設定されていれば、成形面111aは図3に示すように成形位置kに配置される。そして、偏芯顕微鏡112により補助測定面115aの軸芯位置を検出して当該軸芯位置を記録するか、或いは、偏芯顕微鏡112の図示しない位置調整機構を用いて、補助測定面115aの軸芯(補助測定面115aの軸芯と成形面111aの軸芯とが一致するように設定されている場合)、若しくは、成形面111aの軸芯(補助測定面115aの軸芯と成形面111aの軸芯とが異なるように設定されている場合)を光軸112Xに一致させる。   Next, the lens base L is detached from the support base 102, the detection auxiliary body 115 is attached to the mold 111, the mold 111 is moved, and the auxiliary measurement surface 115a is located at a position corresponding to the detection distance D115 of the eccentric microscope 112. Detecting the axis center. At this time, if the surface shape of the auxiliary measurement surface 115a and the position in the optical axis direction (interval with the molding surface 111a) are set as described above, the molding surface 111a is arranged at the molding position k as shown in FIG. Is done. Then, the axis position of the auxiliary measurement surface 115a is detected by the eccentric microscope 112 and the axis position is recorded, or the axis of the auxiliary measurement surface 115a is used by using a position adjustment mechanism (not shown) of the eccentric microscope 112. A core (when the axis of the auxiliary measurement surface 115a is set to coincide with the axis of the molding surface 111a) or the axis of the molding surface 111a (the axis of the auxiliary measurement surface 115a and the molding surface 111a (When the axis is set differently) is made to coincide with the optical axis 112X.

次に、上記検出補助体115を成形型111から取り外し、成形型111を下方に戻した後に、再びレンズ基材Lを支持台102に設置し、光学面Laの軸芯検出を行い、位置調整機構104を用いて、光学面Laの軸芯が上記の記録された軸芯位置、或いは、光軸112Xに一致するように調整する。その後、上述のように、光学材料の供給、成形型111の移動、光学材料の成形、光学材料の硬化処理、離型を順次に行い、複合光学素子を製造する。   Next, after removing the detection auxiliary body 115 from the mold 111 and returning the mold 111 downward, the lens base L is again placed on the support base 102, the axis of the optical surface La is detected, and the position is adjusted. Using the mechanism 104, the axis of the optical surface La is adjusted to coincide with the recorded axis position or the optical axis 112X. Thereafter, as described above, the optical material is supplied, the mold 111 is moved, the optical material is molded, the optical material is cured, and the mold is sequentially released to manufacture the composite optical element.

その後、新たなレンズ基材Lを上記と同様に供給し、上記と同様に光学面Laの軸芯検出、レンズ基材Lの軸調整を行った上で、再び成形を実施する。これ以降、このような手順を繰り返すことによって、複合光学素子の製造を繰り返し行うことができる。   Thereafter, a new lens substrate L is supplied in the same manner as described above, and after the axial center detection of the optical surface La and the axis adjustment of the lens substrate L are performed in the same manner as described above, the molding is performed again. Thereafter, the composite optical element can be repeatedly manufactured by repeating such a procedure.

なお、上記実施形態では、補助測定面115aの軸芯検出時において成形面111aが成形位置kにあるように、補助測定面115aの面形状及び光軸方向の位置を設定しているが、本発明はこのような態様に限られない。例えば、結果的に軸芯検出時の成形面111aの位置と成形位置kとの間隔が、図4に示す検出補助体115を用いない場合に比べて低減されていれば、成形面111aの軸芯検出時と成形時の間の移動量が少なくなるため、移動精度に起因する芯ずれも少なくなる。   In the above embodiment, the surface shape of the auxiliary measurement surface 115a and the position in the optical axis direction are set so that the molding surface 111a is at the molding position k when the axis of the auxiliary measurement surface 115a is detected. The invention is not limited to such an embodiment. For example, if the interval between the position of the molding surface 111a and the molding position k at the time of detecting the axis is reduced as compared with the case where the detection auxiliary body 115 shown in FIG. 4 is not used, the axis of the molding surface 111a. Since the amount of movement between the center detection time and the molding time is reduced, the center deviation due to the movement accuracy is also reduced.

すなわち、芯ずれを低減するためには、偏芯顕微鏡112の位置を固定して検出を行う場合には、偏芯顕微鏡112による補助測定面115aに対する軸芯検出時における成形面111aと成形位置kとの光軸上の間隔が、偏芯顕微鏡112による成形面111aに対する軸芯検出時における成形面111aと成形位置kとの光軸上の間隔より小さくなるように、補助測定面115aの面形状及び位置が設定されていればよい。   That is, in order to reduce the misalignment, when the position of the eccentric microscope 112 is fixed and detection is performed, the molding surface 111a and the molding position k when the eccentricity microscope 112 detects the axial center with respect to the auxiliary measurement surface 115a. The surface shape of the auxiliary measurement surface 115a is such that the distance on the optical axis is smaller than the distance on the optical axis between the molding surface 111a and the molding position k when the eccentric microscope 112 detects the axis with respect to the molding surface 111a. And the position should just be set.

この場合、例えば、成形面111aが図示例のように凹曲面状であれば、偏芯顕微鏡112側に配置される補助測定面115aは成形面111aよりも曲率半径の小さな凹曲面状、若しくは、図示例のように凸曲面状に構成される。   In this case, for example, if the molding surface 111a has a concave curved surface shape as in the illustrated example, the auxiliary measurement surface 115a arranged on the eccentric microscope 112 side has a concave curved surface shape with a smaller radius of curvature than the molding surface 111a, or It is configured in a convex curved surface shape as in the illustrated example.

また、補助測定面115aの軸芯検出時における成形面111aの位置を成形位置kに設定する代わりに偏芯顕微鏡112の位置を光学面Laの軸芯検出時と補助測定面115aの軸芯検出時とで変える場合には、両軸芯検出時における偏芯顕微鏡112の位置の差が、検出補助体115を用いない場合に比べて低減されていれば、偏芯顕微鏡112の移動量が少なくなるため、移動精度に起因する芯ずれも少なくなる。   Further, instead of setting the position of the molding surface 111a at the time of detection of the axis of the auxiliary measurement surface 115a to the molding position k, the position of the eccentric microscope 112 is set at the time of detecting the axis of the optical surface La and the axis of the auxiliary measurement surface 115a. In the case of changing with time, if the difference in the position of the eccentric microscope 112 at the time of detecting both axes is reduced compared to the case where the detection auxiliary body 115 is not used, the amount of movement of the eccentric microscope 112 is small. Therefore, misalignment due to movement accuracy is also reduced.

上記の関係を偏芯顕微鏡112の位置を固定するか否かを問わずに一般化すると、abs[〜]が〜の絶対値を示すものとしたとき、abs[D115+DA−DL−DB]がabs[D111−DL−DB]=Sよりも小さくなるように、補助測定面115aの面形状及び光軸方向の位置が設定されていればよいことになる。   If the above relationship is generalized regardless of whether or not the position of the eccentric microscope 112 is fixed, abs [D115 + DA-DL-DB] is abs when abs [˜] indicates an absolute value of. It is only necessary to set the surface shape of the auxiliary measurement surface 115a and the position in the optical axis direction so as to be smaller than [D111-DL-DB] = S.

このようにすると、上記のように光学面Laと成形面111aに対する軸芯検出時において偏芯顕微鏡112の位置を固定しているときには、軸芯検出時における成形型111の位置と、成形時における成形型111の位置との差に基づいて生ずる移動精度に起因する芯ずれを低減することができるし、また、光学面Laと成形面111aに対する軸芯検出時において成形面111aを成形位置kに配置する代わりに、偏芯顕微鏡112の位置を移動させて軸芯検出を行うときには、レンズ基材Lの光学面Laに対する軸芯検出時の偏芯顕微鏡の位置と、成形型111の成形面111aに対する軸芯検出時の偏芯顕微鏡の位置との差に基づいて生ずる移動精度に起因する軸芯の検出誤差を低減することができる。   In this way, when the position of the eccentric microscope 112 is fixed at the time of detecting the axis with respect to the optical surface La and the forming surface 111a as described above, the position of the forming die 111 at the time of detecting the axis and at the time of forming The misalignment caused by the movement accuracy caused by the difference from the position of the molding die 111 can be reduced, and the molding surface 111a is set to the molding position k when detecting the axial center of the optical surface La and the molding surface 111a. When performing the axial center detection by moving the position of the eccentric microscope 112 instead of arranging it, the position of the eccentric microscope at the time of the axial center detection with respect to the optical surface La of the lens base L and the molding surface 111a of the mold 111 are determined. Therefore, it is possible to reduce the detection error of the axis due to the movement accuracy caused based on the difference from the position of the eccentric microscope when the axis is detected.

尚、本発明は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the present invention is not limited to the illustrated examples described above, and various modifications can be made without departing from the scope of the present invention.

実施形態の複合光学素子の製造装置の全体構成を示す概略構成図。The schematic block diagram which shows the whole structure of the manufacturing apparatus of the composite optical element of embodiment. 実施形態の製造装置の主要部を拡大して示す拡大部分構成図。The expanded partial block diagram which expands and shows the principal part of the manufacturing apparatus of embodiment. 実施形態の軸芯検出時と成形時における成形型の位置関係を示す説明図(a)及び(b)。Explanatory drawing (a) and (b) which show the positional relationship of the shaping | molding die at the time of the axial center detection and shaping | molding of embodiment. 従来の軸芯検出時と成形時における成形型の位置関係を示す説明図(a)及び(b)、並びに、製造される複合光学素子の断面図(c)。Explanatory drawing (a) and (b) which show the positional relationship of the shaping | molding die at the time of the conventional axial center detection and shaping | molding, and sectional drawing (c) of the composite optical element manufactured. 偏心顕微鏡による軸芯検出時における測定対象物と検出距離の関係をそれぞれ模式的に示す説明図(a)〜(c)。Explanatory drawing (a)-(c) which each shows typically the relationship between the measuring object at the time of the axial center detection by an eccentric microscope, and detection distance.

符号の説明Explanation of symbols

100…製造装置、101…フレーム、102…支持台、103…型固定台、104…位置調整機構、105、106…案内機構、111…成形型、111a…成形面、112…偏芯顕微鏡、115…検出補助体、115a…補助測定面、115A…固定部材、115B…補助部材、L…レンズ基材、La…光学面、M…光学層、Ma…成形光学面、DL…光学面Laの軸芯検出時の検出距離、D111…成形面111aの軸芯検出時の検出距離、D115…補助測定面の軸芯検出時の検出距離、DA…補助測定面と成形面の光軸方向の間隔、DB…成形時における光学面と成形面の光軸方向の間隔
DESCRIPTION OF SYMBOLS 100 ... Manufacturing apparatus, 101 ... Frame, 102 ... Support stand, 103 ... Mold fixing stand, 104 ... Position adjustment mechanism, 105, 106 ... Guide mechanism, 111 ... Mold, 111a ... Molding surface, 112 ... Eccentric microscope, 115 ... Detection auxiliary body, 115a ... auxiliary measurement surface, 115A ... fixing member, 115B ... auxiliary member, L ... lens substrate, La ... optical surface, M ... optical layer, Ma ... molding optical surface, DL ... axis of optical surface La Detection distance when detecting the core, D111: Detection distance when detecting the axis of the molding surface 111a, D115: Detection distance when detecting the axis of the auxiliary measurement surface, DA: Distance between the auxiliary measurement surface and the molding surface in the optical axis direction, DB: Distance between the optical surface and the molding surface in the optical axis direction during molding

Claims (7)

光学面を備えた光学基材上に、成形面により成形された成形光学面を備えた光学層が積層形成される複合光学素子の製造方法において、
測定対象の測定面形状に応じた光軸方向の検出距離にて前記測定面形状の軸芯を検出可能な光学軸検出手段を用いて前記成形面の軸芯位置に応じた軸調整を行う軸調整工程が設けられ、
前記成形面に対して位置決めされるとともに前記光学軸検出手段により軸芯が検出可能な補助測定面が設けられ、
前記軸調整工程では、前記光学軸検出手段が前記光学面の軸芯を検出可能な位置に配置された状態で実施された前記補助測定面の軸芯検出の結果に基づいて前記軸調整が行われ、
前記補助測定面の軸芯検出は、前記成形面の軸芯検出を行うときよりも前記成形面が成形位置に近接した位置で行われることを特徴とする複合光学素子の製造方法。
In the method of manufacturing a composite optical element in which an optical layer having a molded optical surface formed by a molding surface is laminated on an optical substrate having an optical surface,
An axis that adjusts the axis according to the position of the axis of the molding surface by using an optical axis detector that can detect the axis of the shape of the measurement surface at a detection distance in the direction of the optical axis corresponding to the shape of the measurement surface to be measured. An adjustment process is provided,
An auxiliary measuring surface that is positioned with respect to the molding surface and capable of detecting the axis by the optical axis detecting means is provided,
In the axis adjustment step, the axis adjustment is performed based on the result of the axis detection of the auxiliary measurement surface performed in a state where the optical axis detection unit is disposed at a position where the axis of the optical surface can be detected. I,
The method of manufacturing a composite optical element, wherein the axis of the auxiliary measurement surface is detected at a position closer to the molding position than when the axis of the molding surface is detected.
前記補助測定面の軸芯検出は、前記成形面が実質的に成形位置に配置された状態で行われることを特徴とする請求項1に記載の複合光学素子の製造方法。   The method of manufacturing a composite optical element according to claim 1, wherein the axis measurement of the auxiliary measurement surface is performed in a state where the molding surface is substantially disposed at a molding position. 光学面を備えた光学基材上に、成形面により成形された成形光学面を備えた光学層が積層形成される複合光学素子の製造方法において、
測定対象の測定面形状に応じた光軸方向の検出距離にて前記測定面形状の軸芯を検出可能な光学軸検出手段を用いて前記成形面の軸芯位置に応じた軸調整を行う軸調整工程が設けられ、
前記成形面に対して位置決めされるとともに前記光学軸検出手段により軸芯が検出可能な補助測定面が設けられ、
前記補助測定面の面形状及び光軸方向の位置は、前記補助測定面の軸芯を検出するときの前記検出距離に前記成形面と前記補助測定面との光軸方向の間隔を加算した値と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値との差(D115+DA−DL−DB)の絶対値が、前記成形面の軸芯を検出するときの前記検出距離と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値との差(D111−DL−DB)の絶対値よりも小さくなるように設定され、
前記軸調整工程では、前記光学軸検出手段による前記補助測定面に対する軸芯検出の結果に基づいて前記軸調整が行われることを特徴とする複合光学素子の製造方法。
In a method for manufacturing a composite optical element in which an optical layer having a molded optical surface formed by a molding surface is laminated on an optical substrate having an optical surface,
An axis that adjusts the axis according to the position of the axis of the molding surface by using an optical axis detector that can detect the axis of the shape of the measurement surface at a detection distance in the direction of the optical axis corresponding to the shape of the measurement surface to be measured. An adjustment process is provided,
An auxiliary measuring surface that is positioned with respect to the molding surface and capable of detecting the axis by the optical axis detecting means is provided,
The surface shape of the auxiliary measurement surface and the position in the optical axis direction are values obtained by adding the distance in the optical axis direction between the molding surface and the auxiliary measurement surface to the detection distance when detecting the axis of the auxiliary measurement surface. And the absolute value of the difference (D115 + DA-DL-DB) between the detection distance when detecting the axis of the optical surface and the value obtained by adding the optical axis direction of the molding surface in the optical axis direction during molding However, the detection distance when detecting the axis of the molding surface and the detection distance when detecting the axis of the optical surface are the distance between the optical surface and the molding surface in the optical axis direction during molding. It is set to be smaller than the absolute value of the difference (D111−DL−DB) from the added value,
In the axis adjustment step, the axis adjustment is performed based on a result of axial center detection on the auxiliary measurement surface by the optical axis detection means.
前記補助測定面の軸芯検出は、前記補助測定面を備えた補助部材を、前記成形面を備えた成形型に対して位置決め固定した状態で行われることを特徴とする請求項1乃至3のいずれか一項に記載の複合光学素子の製造方法。   The axis detection of the auxiliary measurement surface is performed in a state where an auxiliary member provided with the auxiliary measurement surface is positioned and fixed with respect to a molding die provided with the molding surface. The manufacturing method of the composite optical element as described in any one. 光学面を備えた光学基材上に、成形面により成形された成形光学面を備えた光学層を積層形成する複合光学素子の製造装置において、
前記光学基材を支持する支持台と、
前記成形面を備えた成形型と、
前記支持台と前記成形型の少なくとも一方を相互に接離可能な態様で光軸方向に案内する案内構造と、
測定対象の測定面形状に応じた光軸方向の検出距離にて前記測定面形状の軸芯を検出可能な光学軸検出手段と、
前記支持台と前記成形型の間の軸調整を可能とする位置調整手段と、
前記成形面に対して位置決めされるとともに前記光学軸検出手段により軸芯検出可能な補助測定面と、
を具備することを特徴とする複合光学素子の製造装置。
In an apparatus for manufacturing a composite optical element, in which an optical layer having a molded optical surface formed by a molding surface is laminated on an optical substrate having an optical surface,
A support for supporting the optical substrate;
A mold having the molding surface;
A guide structure that guides at least one of the support base and the mold in the direction of the optical axis in a manner capable of contacting and separating from each other;
An optical axis detection means capable of detecting the axis of the measurement surface shape at a detection distance in the optical axis direction according to the measurement surface shape of the measurement object;
Position adjusting means for enabling axis adjustment between the support base and the mold;
An auxiliary measuring surface that is positioned with respect to the molding surface and capable of detecting an axis by the optical axis detecting means
An apparatus for manufacturing a composite optical element, comprising:
前記補助測定面の軸芯を検出するときの前記検出距離に前記成形面と前記補助測定面との光軸方向の間隔を加算した値と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値との差(D115+DA−DL−DB)の絶対値が、前記成形面の軸芯を検出するときの前記検出距離と、前記光学面の軸芯を検出するときの前記検出距離に成形時における前記光学面と前記成形面の光軸方向の間隔を加算した値との差(D111−DL−DB)の絶対値よりも小さくなるように、前記補助測定面の面形状及び光軸方向の位置が設定されることを特徴とする請求項5に記載の複合光学素子の製造装置。   The value obtained by adding the distance in the optical axis direction between the molding surface and the auxiliary measurement surface to the detection distance when detecting the axis of the auxiliary measurement surface, and the detection when detecting the axis of the optical surface The detection when the absolute value of the difference (D115 + DA−DL−DB) between the optical surface at the time of molding and the value obtained by adding the distance in the optical axis direction of the molding surface to the distance is detected as the axis of the molding surface Absolute (D111-DL-DB) difference between a distance and a value obtained by adding a distance in the optical axis direction between the optical surface and the molding surface at the time of molding to the detection distance when detecting the axis of the optical surface 6. The composite optical element manufacturing apparatus according to claim 5, wherein the surface shape of the auxiliary measurement surface and the position in the optical axis direction are set so as to be smaller than the value. 前記補助測定面は、前記成形型に対して着脱可能に構成された補助部材に設けられていることを特徴とする請求項5又は6に記載の複合光学素子の製造装置。
The said auxiliary | assistant measurement surface is provided in the auxiliary member comprised so that attachment or detachment with respect to the said shaping | molding die was carried out, The manufacturing apparatus of the composite optical element of Claim 5 or 6 characterized by the above-mentioned.
JP2005246490A 2005-08-26 2005-08-26 Method and apparatus for manufacturing composite optical element Pending JP2007055199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246490A JP2007055199A (en) 2005-08-26 2005-08-26 Method and apparatus for manufacturing composite optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246490A JP2007055199A (en) 2005-08-26 2005-08-26 Method and apparatus for manufacturing composite optical element

Publications (1)

Publication Number Publication Date
JP2007055199A true JP2007055199A (en) 2007-03-08

Family

ID=37919081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246490A Pending JP2007055199A (en) 2005-08-26 2005-08-26 Method and apparatus for manufacturing composite optical element

Country Status (1)

Country Link
JP (1) JP2007055199A (en)

Similar Documents

Publication Publication Date Title
JP7087056B2 (en) Imprinting equipment, imprinting method and manufacturing method of goods
US8153336B2 (en) Photomask substrate, photomask substrate forming member, photomask substrate fabricating method, photomask, and exposing method that uses the photomask
KR101932208B1 (en) Substrate support, method for loading a substrate on a substrate support location, lithographic apparatus and device manufacturing method
JP5868215B2 (en) Imprint apparatus, imprint method, and article manufacturing method using the same
EP3317726B1 (en) A substrate holder, a lithographic apparatus and method of manufacturing devices
JP6180131B2 (en) Imprint apparatus and article manufacturing method using the same
JP6097704B2 (en) Imprint apparatus, imprint method, and article manufacturing method
US9770850B2 (en) Imprint apparatus and article manufacturing method
US20100285412A1 (en) Method for fabricating 3d microstructure
JP6765607B2 (en) Exposure device, exposure method
CN107615170B (en) Exposure illumination device, exposure device, and exposure method
JP2015222417A (en) Apparatus and method for exposure
JP2011060843A (en) Characteristic testing device of photocurable resin, holder used by testing device, and characteristic testing method
JP2010243961A (en) Lens barrel, and method of adjusting lens interval
EP4110532A1 (en) Nanoscale thin film deposition systems
JP2007055199A (en) Method and apparatus for manufacturing composite optical element
KR20150003342A (en) Method and device for producing a plurality of microlenses
TW201104298A (en) Lens module and method for assembly same
JPWO2019059315A1 (en) Lighting equipment for exposure, exposure equipment and exposure method
JP2007086684A (en) Exposure device
KR100950071B1 (en) Apparatus for test of substrate in imprint process
WO2010082341A1 (en) Transfer apparatus
JP2019166780A (en) Apparatus, method, and program for manufacturing composite lens, and mold for manufacturing composite lens
JP2007237594A (en) Composite lens manufacturing method/device
KR20090103762A (en) Positioning unit of optical element, optical system, exposure apparatus, and adjustment method of optical system