JP2007051264A - Fiber-reinforced composite material - Google Patents

Fiber-reinforced composite material Download PDF

Info

Publication number
JP2007051264A
JP2007051264A JP2005333826A JP2005333826A JP2007051264A JP 2007051264 A JP2007051264 A JP 2007051264A JP 2005333826 A JP2005333826 A JP 2005333826A JP 2005333826 A JP2005333826 A JP 2005333826A JP 2007051264 A JP2007051264 A JP 2007051264A
Authority
JP
Japan
Prior art keywords
resin composition
matrix resin
reinforced composite
composite material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005333826A
Other languages
Japanese (ja)
Other versions
JP5005911B2 (en
Inventor
Kenichi Watanabe
渡辺  賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005333826A priority Critical patent/JP5005911B2/en
Publication of JP2007051264A publication Critical patent/JP2007051264A/en
Application granted granted Critical
Publication of JP5005911B2 publication Critical patent/JP5005911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite material which exhibits an excellent ignition resistance without the need for increasing the thickness or mixing a flame-retardant in it, allows freedom for material selection and is satisfactrily used for railroad vehicles. <P>SOLUTION: The fiber-reinforced composite material is constituted of a reinforcing fiber material and a matrix resin composition. The matrix resin composition has a 5% weight loss temperature of ≥350°C as measured by thermogravimetry and a thermoconductivity of ≥2 W/m×K. Preferably, the matrix resin composition has a crosslinking density of 1,000-4,000 mol/m<SP>3</SP>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スポーツ・レジャー用途、自動車・鉄道車両・航空機等の産業用途に使用される繊維強化複合材料に関する。   The present invention relates to a fiber-reinforced composite material used for sports / leisure applications, industrial applications such as automobiles, railway vehicles, and aircraft.

繊維強化複合材料の一つに、炭素繊維からなる繊維強化材とマトリクス樹脂とを有して構成される炭素繊維強化複合材料がある。
炭素繊維強化複合材料は、軽量、高強度、高剛性という優れた特長を有していることから、スポーツ・レジャー用途から自動車・鉄道車両・航空機等の産業用途まで、幅広く用いられている。
特に、自動車・鉄道車両・航空機の用途では、近年ますます軽量化が要求されているため、炭素繊維強化複合材料の使用が拡大しているが、このような用途に使用される炭素繊維強化複合材料には、軽量性や機械的物性の他に、難燃性が求められている。
As one of the fiber reinforced composite materials, there is a carbon fiber reinforced composite material configured by including a fiber reinforcing material made of carbon fiber and a matrix resin.
Since carbon fiber reinforced composite materials have excellent features such as light weight, high strength, and high rigidity, they are widely used from sports / leisure applications to industrial applications such as automobiles, railway vehicles, and aircrafts.
In particular, the use of carbon fiber reinforced composite materials is expanding due to the recent demand for weight reduction in automobiles, railway vehicles, and aircraft, but the carbon fiber reinforced composites used in such applications are increasing. In addition to light weight and mechanical properties, the material is required to have flame retardancy.

なかでも鉄道車両に用いられる繊維強化樹脂複合材料には、まず、着火しないこと(耐着火性)が重要視されており、国土交通省鉄運81号に準拠した着火試験(以下、国交省着火試験ともいう。)により、最も耐着火性の高い「不燃性」と判定されることが要求される。
炭素繊維強化複合材料に耐着火性を付与する方法としては、炭素繊維強化複合材料の厚みを大きくすることでその熱容量を増加させて、炭素繊維強化複合材料の温度上昇を低減させ、耐着火性を得ようとする方法、炭素繊維として熱伝導率の高いピッチ系炭素繊維を使用することで炭素繊維強化複合材料の熱伝導率を向上させ、耐着火性を得ようとする方法(例えば特許文献1参照。)、マトリクス樹脂に難燃剤を配合する方法(例えば特許文献2および3参照)などが提案されている。
特開平8−118527号公報 特開平11−147965号公報 特開2000−20410号公報
In particular, fiber reinforced resin composite materials used in railway vehicles are given priority not to ignite (ignition resistance), and an ignition test (hereinafter referred to as Ministry of Land, Infrastructure, Transport and Tourism) is compliant with the Ministry of Land, Infrastructure, Transport and Tourism of Japan. It is also required to be determined as “non-flammable” with the highest ignition resistance.
As a method of imparting ignition resistance to a carbon fiber reinforced composite material, the heat capacity is increased by increasing the thickness of the carbon fiber reinforced composite material, and the temperature rise of the carbon fiber reinforced composite material is reduced. A method for improving the thermal conductivity of a carbon fiber reinforced composite material by using a pitch-based carbon fiber having a high thermal conductivity as a carbon fiber, and a method for obtaining ignition resistance (for example, Patent Documents) 1), and a method of blending a flame retardant with a matrix resin (see, for example, Patent Documents 2 and 3).
JP-A-8-118527 Japanese Patent Laid-Open No. 11-147965 JP 2000-20410 A

しかしながら、炭素繊維強化複合材料の厚みを大きくする方法では、耐着火性は向上し、各業界から要求される不燃性の基準を満たせるようにはなるものの、厚みが大きくなることに伴って炭素繊維強化複合材料の重量も増加してしまい、炭素繊維強化複合材料の特長の1つである軽量性が損なわれてしまう。
また、特許文献1に記載の方法は、炭素繊維としてピッチ系炭素繊維を選択することで炭素繊維強化複合材料の熱伝導率を向上できるため、容易な方法ではあるが、ピッチ系炭素繊維の使用が必須条件となり、材料の選択が限られてしまう。
さらに、特許文献2および3などに開示の方法を実施する場合には、国交省着火試験の判定基準である「煙の量」、「炭化の大きさ」、「サンプルの変形」などの基準をすべてクリアする難燃剤を選択することが望ましいが、そのような難燃剤は多くは存在しないのが実情である。また、仮に各基準をすべてクリアするような難燃剤を使用したとしても、その場合には、配合量を多くせざるを得ず、炭素繊維強化複合材料の他の特長が犠牲となる可能性も生じる。
However, in the method of increasing the thickness of the carbon fiber reinforced composite material, the ignition resistance is improved and the non-flammability standard required by each industry can be satisfied. However, as the thickness increases, the carbon fiber is increased. The weight of the reinforced composite material also increases, and the lightness that is one of the features of the carbon fiber reinforced composite material is impaired.
Moreover, since the method of patent document 1 can improve the thermal conductivity of a carbon fiber reinforced composite material by selecting pitch-type carbon fiber as carbon fiber, although it is an easy method, use of pitch-type carbon fiber Is an essential condition, and the selection of materials is limited.
Furthermore, when the methods disclosed in Patent Documents 2 and 3 are implemented, criteria such as “amount of smoke”, “size of carbonization”, and “deformation of sample”, which are judgment criteria of the MLIT ignition test, are used. It is desirable to select a flame retardant that clears all, but in reality there are not many such flame retardants. In addition, even if a flame retardant that satisfies all of the standards is used, in that case, the amount must be increased, and other features of the carbon fiber reinforced composite material may be sacrificed. Arise.

本発明は上記事情に鑑みてなされたもので、厚みを大きくしたり、難燃剤を配合したりしなくても優れた耐着火性を発現し、材料選択の自由度も備え、鉄道車両にも十分に使用できる繊維強化複合材料を提供することを課題とする。   The present invention has been made in view of the above circumstances, and exhibits excellent ignition resistance without increasing the thickness or blending a flame retardant. It is an object to provide a fiber-reinforced composite material that can be used sufficiently.

本発明者らは、マトリクス樹脂組成物の着火温度と熱分解温度との関係に着目するとともに、マトリクス樹脂組成物の熱伝導率について検討することで、従来にない新しい考え方に基づいて、上記課題を解決できる繊維強化複合材料を提供可能なことを見出し、本発明を完成するに至った。
すなわち、樹脂は、熱分解して5%の重量減少を伴う熱分解ガスを発生することで着火する。よって、国交省着火試験で「不燃性」と判定される高い耐着火性を発現するためには、該試験における加熱によってマトリクス樹脂組成物の表面が到達する表面温度の最大値よりも、マトリクス樹脂組成物の5%重量減少温度が高いことが必要となる。一般的な樹脂では、このような国交省着火試験による加熱で到達する表面温度の最大値は350〜400℃になる。よって、国交省着火試験で「不燃性」と判定されるためには、マトリクス樹脂組成物の5%重量減少温度は、このような温度よりもある程度以上高温であることが必要となる。ところが、マトリクス樹脂組成物の5%重量減少温度をこのような高温とすることには非常に困難を伴う。
そこで、本発明者らは、鋭意検討した結果、マトリクス樹脂組成物の5%重量減少温度をできるだけ高めると同時に、国交省着火試験による加熱で到達するマトリクス樹脂組成物の表面温度の最大値を低く抑えることにより、国交省着火試験で「不燃性」と判定され得るに十分な耐着火性を発現する繊維強化複合材料が得られることに想到した。
そして、加熱により到達するマトリクス樹脂組成物の表面温度は、マトリクス樹脂組成物の熱伝導率を高くすることで低温化できることを見出し、本発明を完成した。
The present inventors pay attention to the relationship between the ignition temperature and the thermal decomposition temperature of the matrix resin composition, and examine the thermal conductivity of the matrix resin composition. The present inventors have found that a fiber-reinforced composite material that can solve the above problems can be provided, and have completed the present invention.
That is, the resin is ignited by pyrolysis and generating pyrolysis gas with a weight loss of 5%. Therefore, in order to express high ignition resistance determined as “nonflammable” in the MLIT ignition test, the matrix resin is more than the maximum surface temperature that the surface of the matrix resin composition reaches by heating in the test. It is necessary that the 5% weight loss temperature of the composition be high. In a general resin, the maximum value of the surface temperature reached by heating by such a MLIT ignition test is 350 to 400 ° C. Therefore, in order to be determined as “nonflammable” in the MLIT ignition test, the 5% weight reduction temperature of the matrix resin composition needs to be higher than this temperature to some extent. However, it is very difficult to set the 5% weight loss temperature of the matrix resin composition to such a high temperature.
Therefore, as a result of intensive studies, the present inventors have increased the 5% weight reduction temperature of the matrix resin composition as much as possible, and at the same time, reduced the maximum value of the surface temperature of the matrix resin composition reached by heating in the MLIT ignition test. It was conceived that, by suppressing, a fiber reinforced composite material exhibiting sufficient ignition resistance that can be judged as “non-combustible” in the MLIT ignition test.
And it discovered that the surface temperature of the matrix resin composition which reaches | attains by heating can be made low by making the thermal conductivity of a matrix resin composition high, and completed this invention.

本発明の繊維強化複合材料は、繊維強化材とマトリクス樹脂組成物とを有して構成される繊維強化複合材料であって、前記マトリクス樹脂組成物は、熱重量測定から求められる5%重量減少温度が350℃以上であり、かつ、熱伝導率が2W/m・K以上であることを特徴とする。
前記マトリクス樹脂組成物は、架橋密度が1000〜4000mol/mであることが好ましい。
The fiber reinforced composite material of the present invention is a fiber reinforced composite material comprising a fiber reinforcing material and a matrix resin composition, and the matrix resin composition is reduced by 5% by weight obtained from thermogravimetry. The temperature is 350 ° C. or higher, and the thermal conductivity is 2 W / m · K or higher.
The matrix resin composition preferably has a crosslink density of 1000 to 4000 mol / m 3 .

本発明によれば、厚みを大きくしたり、難燃剤を配合したりしなくても優れた耐着火性を発現し、材料選択の自由度も備え、鉄道車両にも十分に使用できる繊維強化複合材料を提供できる。   According to the present invention, a fiber reinforced composite that expresses excellent ignition resistance without increasing the thickness or blending a flame retardant, has a degree of freedom of material selection, and can be sufficiently used for railway vehicles. Can provide material.

以下、本発明を詳細に説明する。
本発明の繊維強化複合材料は、繊維強化材とマトリクス樹脂組成物とを有して構成されるものであって、マトリクス樹脂組成物としては、熱重量測定から求められる5%重量減少温度が350℃以上、好ましくは400℃以上であって、かつ、熱伝導率が2W/m・K以上であるものが使用されている。このように、5%重量減少温度と熱伝導率とが特定の値以上であるものをマトリクス樹脂組成物として使用することによって、マトリクス樹脂組成物の5%重量減少温度を、国交省着火試験による加熱でマトリクス樹脂組成物の表面が到達する表面温度の最大値よりも容易に高く維持できる。その結果、このようなマトリクス樹脂組成物が使用された繊維強化複合材料は、国交省着火試験により「不燃性」と判定される程の耐着火性を備え、鉄道車両への使用に適したものとなる。
Hereinafter, the present invention will be described in detail.
The fiber-reinforced composite material of the present invention is configured to include a fiber reinforcing material and a matrix resin composition, and the matrix resin composition has a 5% weight reduction temperature of 350 determined by thermogravimetry. A material having a temperature of at least 400C, preferably at least 400 ° C, and a thermal conductivity of 2 W / m · K or more is used. As described above, by using a matrix resin composition having a 5% weight reduction temperature and a thermal conductivity of a specific value or more, the 5% weight reduction temperature of the matrix resin composition is determined by the MLIT ignition test. It can be easily maintained higher than the maximum surface temperature that the surface of the matrix resin composition reaches by heating. As a result, the fiber reinforced composite material using such a matrix resin composition has an ignition resistance that is judged as “non-combustible” by the MLIT ignition test, and is suitable for use in railway vehicles. It becomes.

なお、5%重量減少温度とは、十分に乾燥させた試料(初期質量:M)を窒素雰囲気下にて加熱していき、その際、試料の質量が初期質量の95%まで、すなわち、0.95Mまで減少した際の温度のことである。加熱時の昇温速度は、通常2〜15℃/minとされる。
また、熱伝導率とは、単位長さ(厚み)あたり1K(℃)の温度差があるときに、単位時間に単位面積を移動する熱量を表すものであり、この値が大きいほど熱伝導性が大きいことを示す。熱伝導率が大きいと、材料が熱せられたときに放熱が促進されることから、材料の温度上昇が妨げられる。
The 5% weight loss temperature means that a sufficiently dried sample (initial mass: M) is heated in a nitrogen atmosphere, and the sample mass is 95% of the initial mass, that is, 0%. .Temperature when decreased to 95M. The heating rate during heating is usually 2 to 15 ° C./min.
The thermal conductivity represents the amount of heat that moves a unit area per unit time when there is a temperature difference of 1 K (° C.) per unit length (thickness). The larger this value, the higher the thermal conductivity. Is large. When the thermal conductivity is large, heat dissipation is promoted when the material is heated, so that the temperature rise of the material is hindered.

ここで、マトリクス樹脂組成物の5%重量減少温度が350℃以上であるものの熱伝導率が2W/m・K未満である場合や、熱伝導率が2W/m・K以上であるもののマトリクス樹脂組成物の5%重量減少温度が350℃未満である場合には、国交省着火試験による加熱において、マトリクス樹脂組成物の表面温度の最大値をマトリクス樹脂組成物の5%重量減少温度よりも低く維持できず、その結果、このマトリクス樹脂組成物を備えた繊維強化複合材料は「不燃性」の判定が得られなくなってしまう。   Here, when the 5% weight loss temperature of the matrix resin composition is 350 ° C. or higher, the thermal conductivity is less than 2 W / m · K, or the thermal conductivity is 2 W / m · K or higher. When the 5% weight reduction temperature of the composition is less than 350 ° C., the maximum surface temperature of the matrix resin composition is lower than the 5% weight reduction temperature of the matrix resin composition in heating by the MLIT ignition test. As a result, the fiber-reinforced composite material provided with the matrix resin composition cannot be determined as “nonflammable”.

さらに、マトリクス樹脂組成物は、その架橋密度が、1000〜4000mol/mであることが好ましく、2000〜3500mol/mであることがより好ましい。架橋密度が1000mol/m以上であると、マトリクス樹脂組成物中の結合点が多く、マトリクス樹脂組成物が熱分解しにくくなる結果、その熱分解温度を高めることができる。また、架橋密度が4000mol/m以下であると、マトリクス樹脂組成物が過度に硬くなったり、脆くなったりすることがないため好ましい。なお、架橋密度は、マトリクス樹脂組成物の動的粘弾性測定の結果より算出できる。 Furthermore, the matrix resin composition, the crosslinking density is preferably 1000~4000mol / m 3, more preferably 2000~3500mol / m 3. When the crosslinking density is 1000 mol / m 3 or more, there are many bonding points in the matrix resin composition, and the matrix resin composition becomes difficult to be thermally decomposed. As a result, the thermal decomposition temperature can be increased. Moreover, it is preferable for the crosslink density to be 4000 mol / m 3 or less because the matrix resin composition does not become excessively hard or brittle. The crosslink density can be calculated from the result of dynamic viscoelasticity measurement of the matrix resin composition.

マトリクス樹脂組成物としては、このような5%重量減少温度と熱伝導率とを備え、好ましくは上述の範囲の架橋密度を有するものであればその組成には特に制限はない。
マトリクス樹脂組成物に必須成分として含まれる樹脂成分としても、種々の熱硬化性樹脂や熱可塑性樹脂を1種以上使用できるが、繊維強化複合材料のマトリクスを構成するものであるため、硬化させることにより、5%重量減少温度が350℃以上、架橋密度が1000〜4000mol/mとなるエポキシ樹脂の使用が好適である。また、エポキシ樹脂としては、複数種を併用することが好ましく、具体的には、液状のビスフェノールA型2官能エポキシ樹脂(例えば、ジャパンエポキシレジン(株)製のエピコート828(Ep828))と固体状のビスフェノールA型2官能エポキシ樹脂(例えば、ジャパンエポキシレジン(株)製のエピコート1004(Ep1004))とを併用する方法、液状のビスフェノールA型2官能エポキシ樹脂と多官能エポキシ樹脂とを併用する方法などが挙げられる。多官能エポキシ樹脂としては、例えば、4官能のテトラグリシジル型エポキシ樹脂(例えば、ジャパンエポキシレジン(株)製のエピコート604(Ep604))などが好適である。
The matrix resin composition is not particularly limited as long as it has such a 5% weight loss temperature and thermal conductivity, and preferably has a crosslinking density in the above range.
As the resin component included as an essential component in the matrix resin composition, one or more kinds of various thermosetting resins and thermoplastic resins can be used. However, since they constitute the matrix of the fiber-reinforced composite material, they are cured. Therefore, it is preferable to use an epoxy resin having a 5% weight loss temperature of 350 ° C. or higher and a crosslink density of 1000 to 4000 mol / m 3 . In addition, it is preferable to use a plurality of epoxy resins in combination, and specifically, a liquid bisphenol A type bifunctional epoxy resin (for example, Epicoat 828 (Ep828) manufactured by Japan Epoxy Resin Co., Ltd.) and a solid state. A method using a bisphenol A type bifunctional epoxy resin (for example, Epicoat 1004 (Ep1004) manufactured by Japan Epoxy Resin Co., Ltd.), a method using a liquid bisphenol A type bifunctional epoxy resin and a polyfunctional epoxy resin together Etc. As the polyfunctional epoxy resin, for example, a tetrafunctional tetraglycidyl type epoxy resin (for example, Epicoat 604 (Ep604) manufactured by Japan Epoxy Resin Co., Ltd.) is suitable.

また、樹脂成分が熱硬化性樹脂の場合には、マトリクス樹脂組成物には必要に応じて硬化剤が含まれてもよい。例えばエポキシ樹脂に対する硬化剤としては、ジシアンジアミド(DICY)や、フェニルジメチルウレア(PDMU)、トルエンビスジメチルウレア(TBDMU)などのウレア化合物などが挙げられる。硬化剤の配合量は適宜設定できるが、マトリクス樹脂組成物の架橋密度・硬化速度の観点から、これら硬化剤は、エポキシ樹脂100質量部に対して、DICYの場合には、0.5〜5質量部が好ましく、1〜3質量部がより好ましい。ウレア化合物(PDMUおよびTBDMU)の場合には、エポキシ樹脂100質量部に対して、1〜6質量部が好ましく、2〜4質量部がより好ましい。硬化剤の配合量がこのような範囲内であると、架橋密度や硬化速度が適切な範囲となり、硬化物が過度に硬くなったり脆くなったりすることもないし、硬化時に反応が暴走するおそれもない。   When the resin component is a thermosetting resin, the matrix resin composition may contain a curing agent as necessary. For example, examples of the curing agent for the epoxy resin include urea compounds such as dicyandiamide (DICY), phenyldimethylurea (PDMU), and toluenebisdimethylurea (TBDMU). Although the compounding quantity of a hardening | curing agent can be set suitably, from a viewpoint of the crosslinking density and hardening rate of a matrix resin composition, these hardening | curing agents are 0.5-5 in the case of DICY with respect to 100 mass parts of epoxy resins. A mass part is preferable and 1-3 mass parts is more preferable. In the case of urea compounds (PDMU and TBDMU), 1 to 6 parts by mass is preferable and 2 to 4 parts by mass is more preferable with respect to 100 parts by mass of the epoxy resin. When the blending amount of the curing agent is within such a range, the crosslinking density and the curing rate are in an appropriate range, the cured product is not excessively hard or brittle, and the reaction may run away during curing. Absent.

なお、マトリクス樹脂組成物の含有する樹脂成分が熱硬化性のものである場合には、マトリクス樹脂組成物の5%重量減少温度、熱伝導率、架橋密度とは、この樹脂組成物を硬化させた硬化物についての値である。   When the resin component contained in the matrix resin composition is thermosetting, the 5% weight loss temperature, the thermal conductivity, and the crosslinking density of the matrix resin composition are used to cure the resin composition. This is the value for the cured product.

マトリクス樹脂組成物の熱伝導率を2W/m・K以上とするためには、マトリクス樹脂組成物に、熱伝導率を向上させるための熱伝導性充填材を配合することが好ましい。
熱伝導性充填材は、その充填材の有する熱伝導率が高いほど、マトリクス樹脂組成物の熱伝導率を高め、その放熱を促すことができる。このような観点から、熱伝導性充填材としては、その熱伝導率が100W/m・K以上、好ましくは200W/m・K以上のものを使用する。また、このような熱伝導性充填材を使用することは、その配合量を低く抑えられる点からも好ましい。
In order to set the thermal conductivity of the matrix resin composition to 2 W / m · K or more, it is preferable to add a thermally conductive filler for improving the thermal conductivity to the matrix resin composition.
The higher the thermal conductivity of the thermal conductive filler, the higher the thermal conductivity of the matrix resin composition, and the more heat dissipation can be promoted. From such a viewpoint, as the thermally conductive filler, one having a thermal conductivity of 100 W / m · K or more, preferably 200 W / m · K or more is used. Moreover, it is preferable to use such a heat conductive filler from the point that the blending amount can be kept low.

熱伝導性充填材としては、線状または粒子状の形状の充填材を用いることができる。
線状の熱伝導性充填材の場合には、アスペクト比が10〜200のものが好ましく、50〜100のものがさらに好ましい。アスペクト比が10以上であると、マトリクス樹脂組成物中での熱伝導性充填材同士の接触確率が高くなり、すなわち、伝熱経路が形成され易くなり、十分な配合効果が得られる。また、200以下であると、熱伝導性充填材を配合することによるマトリクス樹脂組成物の流動性悪化を抑制できる。なお、ここでアスペクト比とは、線状の熱伝導性充填材において、長さ(L)と長さ方向に対して垂直の断面における最大長さ(D:例えば直径)との比L/Dである。
線状の熱伝導性充填材には、カーボンナノチューブ、気相成長炭素繊維(VGCF)等があるが、カーボンナノチューブよりも取り扱い性が良好で、アスペクト比が好適であり、容易に入手できる等の観点から、気相成長炭素繊維を用いることが好ましい。
As the thermally conductive filler, a linear or particulate filler can be used.
In the case of a linear heat conductive filler, one having an aspect ratio of 10 to 200 is preferable, and one having 50 to 100 is more preferable. When the aspect ratio is 10 or more, the contact probability between the heat conductive fillers in the matrix resin composition increases, that is, a heat transfer path is easily formed, and a sufficient blending effect is obtained. Moreover, the fluidity | liquidity deterioration of the matrix resin composition by mix | blending a heat conductive filler can be suppressed as it is 200 or less. Here, the aspect ratio is a ratio L / D between the length (L) and the maximum length (D: for example, diameter) in a cross section perpendicular to the length direction in a linear heat conductive filler. It is.
The linear heat conductive filler includes carbon nanotubes, vapor grown carbon fiber (VGCF), etc., but it has better handleability than carbon nanotubes, has a favorable aspect ratio, is easily available, etc. From the viewpoint, it is preferable to use vapor grown carbon fiber.

粒子状の熱伝導性充填材の場合には、平均粒子径が1〜10μmのものが好ましく、2〜8μmのものがより好ましい。平均粒子径が1μm以上であると、伝熱経路が形成され易い。また、10μm以下であると、プリプレグ作製時におけるマトリクス樹脂組成物の繊維強化材への含浸性の悪化を抑えつつ、マトリクス樹脂組成物を繊維強化材に浸透させることができる。粒子状の熱伝導性充填材としては、特に熱伝導性に優れることから、窒化アルミニウム(AIN)が好ましい。   In the case of the particulate heat conductive filler, those having an average particle diameter of 1 to 10 μm are preferable, and those having a particle diameter of 2 to 8 μm are more preferable. When the average particle diameter is 1 μm or more, a heat transfer path is easily formed. Moreover, it can permeate | transmit a matrix resin composition to a fiber reinforcement, suppressing the deterioration of the impregnation property to the fiber reinforcement of a matrix resin composition at the time of prepreg preparation as it is 10 micrometers or less. As the particulate heat conductive filler, aluminum nitride (AIN) is preferable because it is particularly excellent in heat conductivity.

このように熱伝導性充填材としては特に制限はなく、複数種を併用することもできるが、マトリクス樹脂組成物中に容易に分散でき、マトリクス樹脂組成物の流動性も確保でき、さらに伝熱経路が形成されやすくなる等の利点を有することから、線状の気相成長炭素繊維の使用が特に好ましい。   Thus, the heat conductive filler is not particularly limited, and a plurality of types can be used in combination, but can be easily dispersed in the matrix resin composition, the fluidity of the matrix resin composition can be secured, and heat transfer The use of linear vapor-grown carbon fibers is particularly preferred because it has advantages such as easy formation of paths.

熱伝導性充填材の配合量は特に限定されないが、十分な配合効果(熱伝導率向上効果)が得られ、かつ、マトリクス樹脂組成物の流動性を損なわず、プリプレグの作製が良好に行える量であることが好ましく、通常は、樹脂成分100質量部に対して20〜250質量部である。
特に、熱伝導性充填材として窒化アルミニウムを使用する場合には、樹脂成分100質量部に対して100〜250質量部が好ましく、150〜200質量部がより好ましい。気相成長炭素繊維を使用する場合には、樹脂成分100質量部に対して、20〜150質量部が好ましく、50〜100質量部がより好ましい。
The blending amount of the heat conductive filler is not particularly limited, but a sufficient blending effect (thermal conductivity improving effect) can be obtained, and the fluidity of the matrix resin composition can be obtained and the prepreg can be produced satisfactorily. It is preferable that it is 20-250 mass parts normally with respect to 100 mass parts of resin components.
In particular, when aluminum nitride is used as the thermally conductive filler, 100 to 250 parts by mass is preferable and 150 to 200 parts by mass is more preferable with respect to 100 parts by mass of the resin component. When using vapor growth carbon fiber, 20-150 mass parts is preferable with respect to 100 mass parts of resin components, and 50-100 mass parts is more preferable.

このようなマトリクス樹脂組成物は、樹脂成分に対して熱伝導性充填材や硬化剤などを配合し、2軸混練機、ロール混練機などの混練機で混練することで製造できる。   Such a matrix resin composition can be produced by blending a heat conductive filler or a curing agent with a resin component and kneading the mixture with a kneader such as a biaxial kneader or a roll kneader.

マトリクス樹脂組成物とともに繊維強化複合材料を構成する繊維強化材としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、シリコンカーバイド繊維等が挙げられるが、これらのなかでは、軽量・高強度・高弾性率を有し、耐熱性、耐薬品性も良好であることから、炭素繊維が好ましい。また、炭素繊維としては、ピッチ系、ポリアクリロニトリル(PAN系)、レーヨン系等の種類があり、いずれの炭素繊維を用いてもよいが、炭素繊維の生産性の面から、PAN系炭素繊維の使用がより好ましい。
また、繊維強化材の形態としては、ミルドファイバー状、チョップドファイバー状、連続繊維、各種織物等の形態が挙げられる。
Examples of the fiber reinforcing material constituting the fiber reinforced composite material together with the matrix resin composition include carbon fiber, glass fiber, aramid fiber, boron fiber, silicon carbide fiber, etc. Among these, light weight and high strength are mentioned. -Carbon fiber is preferred because of its high modulus of elasticity and good heat resistance and chemical resistance. Moreover, as carbon fiber, there are types such as pitch-based, polyacrylonitrile (PAN-based), rayon-based, etc., and any carbon fiber may be used. From the viewpoint of carbon fiber productivity, PAN-based carbon fiber Use is more preferred.
Moreover, as a form of a fiber reinforcement, forms, such as a milled fiber form, a chopped fiber form, continuous fiber, various textiles, are mentioned.

繊維強化複合材料の製造方法としては特に制限はなく、離型紙上に薄く塗布したマトリクス樹脂組成物に各種形態の繊維強化材を含浸させるプリプレグ法や、樹脂浴中に炭素繊維を浸し、通過させるディッピング法等が挙げられる。
また、プリプレグ法による繊維強化複合材料の成形方法としては、オートクレーブ成形法、プリプレグをシートラップして、ラップ内を減圧しながら加熱して成形する方法(真空バッグ成形)、可膨張性の芯材にプリプレグを巻き付け、芯材の熱膨張によりプリプレグを押圧して成形する方法(内圧成形)が挙げられる。また、芯材にプリプレグを巻き付ける成形方法としては、その他に、引き抜き成形やフィラメントワインディングなども挙げられる。
There are no particular restrictions on the method for producing the fiber reinforced composite material, and a prepreg method in which various forms of fiber reinforcement are impregnated into a matrix resin composition thinly coated on a release paper, or carbon fibers are immersed in a resin bath and allowed to pass through. The dipping method etc. are mentioned.
The prepreg method for molding fiber reinforced composite materials includes autoclave molding, wrapping the prepreg and heating it while reducing the pressure inside the wrap (vacuum bag molding), inflatable core material A method (internal pressure molding) in which a prepreg is wound around and the prepreg is pressed by thermal expansion of the core material. In addition, examples of the molding method for winding the prepreg around the core material include pultrusion molding and filament winding.

以上説明したように、このような繊維強化複合材料は、マトリクス樹脂組成物の5%重量減少温度と熱伝導率とが特定値以上であるため、国交省着火試験により「不燃性」と判定され得る程度の耐着火性を発現でき、高い難燃性の要求される鉄道車両への使用にも適したものとなる。また、このような繊維強化複合材料によれば、厚みを大きくしたり、難燃剤を配合したりすることなく高い耐着火性を発現でき、また、繊維強化材やマトリクス樹脂組成物中の樹脂成分の種類を幅広く選択でき、材料選択の自由度も備えている。よって、このような繊維強化複合材料は、特に鉄道車両や、自動車、航空機などの産業用途に好適に使用できるが、スポーツ・レジャー用途など他の分野でも使用することができる。   As described above, such a fiber reinforced composite material is determined to be “nonflammable” by the MLIT ignition test because the 5% weight loss temperature and the thermal conductivity of the matrix resin composition are above a specific value. The ignition resistance can be obtained to the extent that it can be obtained, and it is also suitable for use in railway vehicles that require high flame resistance. Moreover, according to such a fiber reinforced composite material, high ignition resistance can be expressed without increasing the thickness or blending a flame retardant, and the resin component in the fiber reinforcing material or the matrix resin composition A wide range of types can be selected, and the material can be freely selected. Therefore, such a fiber reinforced composite material can be suitably used particularly for industrial applications such as railway vehicles, automobiles, and aircraft, but can also be used in other fields such as sports and leisure applications.

以下、本発明について、実施例を挙げて具体的に説明するが、本発明の内容は実施例に限定されるものではない。
[実施例1〜8、比較例1〜6]
表1または表2に示す配合比(質量基準)で、樹脂成分と硬化剤と熱伝導性充填材とを2軸混練機またはロール混練機により40〜50℃で混合し、マトリクス樹脂組成物を調製した。
得られたマトリクス樹脂組成物を、三菱レイヨン(株)製炭素繊維クロスTR3110(フィラメント数3000本、平織り、繊維目付け200g/m熱伝導率:7W/m・K )に、含有率が40質量%となるように含浸し、プリプレグを作製した。
得られた各ブリブレグを所定の大きさにパターンカットし、10枚積層した。ついで、140℃、面圧10MPa、15分の条件でこれをプレス成形し、厚みが2.0mmの炭素繊維強化複合材料を得た。なお、パターンカットのサイズは、燃焼試験用の炭素繊維強化複合材料を作製する場合、300mm×300mmとした。そして、プレス成形後、湿式カッターによりB5判(182mm×257mm)の大きさにカットした。
炭素繊維強化複合材料とマトリクス樹脂組成物について、以下の試験を行った。結果を表1および2に示す。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the content of this invention is not limited to an Example.
[Examples 1-8, Comparative Examples 1-6]
A resin component, a curing agent, and a thermally conductive filler are mixed at 40 to 50 ° C. with a biaxial kneader or a roll kneader at a blending ratio (mass basis) shown in Table 1 or Table 2, and a matrix resin composition is obtained. Prepared.
The obtained matrix resin composition is carbon fiber cloth TR3110 (3000 filaments, plain weave, fiber basis weight 200 g / m 2 thermal conductivity: 7 W / m · K) manufactured by Mitsubishi Rayon Co., Ltd., with a content of 40 mass. % Impregnation to prepare a prepreg.
Each of the obtained bribregs was pattern-cut into a predetermined size, and 10 sheets were laminated. Subsequently, this was press-molded under conditions of 140 ° C. and a surface pressure of 10 MPa for 15 minutes to obtain a carbon fiber reinforced composite material having a thickness of 2.0 mm. The size of the pattern cut was 300 mm × 300 mm when a carbon fiber reinforced composite material for a combustion test was produced. And after press molding, it cut | disconnected in the magnitude | size of B5 size (182 mm x 257 mm) with the wet cutter.
The following tests were conducted on the carbon fiber reinforced composite material and the matrix resin composition. The results are shown in Tables 1 and 2.

[各試験方法]
(1)熱重量測定
硬化(硬化条件:140℃、面圧10MPa、15分)後のマトリクス樹脂組成物を約10mg量り取り、窒素雰囲気下、昇温速度10℃/minの条件にて、室温〜700℃まで昇温、加熱し、その際の重量変化を測定した。温度―重量変化率の関係より、5%重量減少温度を読み取った。測定機器としては、Seiko Instruments.Inc製 TG/DTA6300を用いた。
(2)熱伝導率測定
硬化(硬化条件:140℃、面圧10MPa、15分)後のマトリクス樹脂組成物について、非定常細線加熱法にて室温での熱伝導率を測定した。測定機器として、京都電子工業(株)製のQTM−500を用いた。
(3)動的粘弾性測定
厚み1mmの硬化(硬化条件:140℃、面圧10MPa、15分)後のマトリクス樹脂組成物を幅12mm×長さ25mmに切り出し、試験片とした。
この試験片について、温度範囲30℃〜250℃、昇温速度10℃/min、歪0.1°、振幅1.59Hzの条件で、動的粘弾性(動的捻り)測定を行い、温度と貯蔵弾性率(G’)の関係を把握した。架橋密度は、Tg+40℃の温度をT(K)、T(K)における貯蔵弾性率(G’)をG’Tg+40、気体定数をR、フロント係数をφ(=1)として、以下の式で算出される。
架橋密度(ρ)=G’Tg+40/φRT
測定機器としては、UBM製Rheosol G−3000を用いた。また、Tgはガラス転移点である。
(4)着火性試験
先に得られた燃焼試験用の炭素繊維強化複合材料について、国土交通省鉄運81号に準拠した着火試験を行った。この試験は次の内容からなる。
B5判の試料を45°に傾斜させて保持し、試料下面の中心の垂直下25.4mmのところに容器の中心がくるように燃料容器を受台に乗せ、エチルアルコール0.5ccを入れて着火し、燃料が燃え尽きるまで放置する。燃焼性の判定はアルコールの燃焼中と燃焼後に分け、着火、着炎、発煙状況、炎の状態を観察し、燃焼後は残炎、残じん、炭化、変形状態を調べる。判定結果は耐着火性の高い順に、「不燃性」、「極難燃性」、「難燃性」、「緩燃性」、「可燃性」である。尚、鉄運81号は、英著「プラスチックの難燃化−低発煙化と有害燃焼ガス対策」日刊工業新聞(1978年)及び西沢著「増補新版ポリマーの難燃化−その科学と実際技術」大成社(1992年)に詳説されている。
[Each test method]
(1) Thermogravimetric measurement About 10 mg of the matrix resin composition after curing (curing conditions: 140 ° C., surface pressure of 10 MPa, 15 minutes) is weighed, and room temperature at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. The temperature was raised to ˜700 ° C. and heated, and the change in weight at that time was measured. The 5% weight loss temperature was read from the relationship between temperature and weight change rate. As a measuring instrument, Seiko Instruments. Inc. TG / DTA6300 was used.
(2) Thermal conductivity measurement About the matrix resin composition after hardening (curing conditions: 140 degreeC, surface pressure 10MPa, 15 minutes), the thermal conductivity at room temperature was measured by the unsteady thin wire heating method. As a measuring device, QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd. was used.
(3) Measurement of dynamic viscoelasticity The matrix resin composition after curing with a thickness of 1 mm (curing conditions: 140 ° C., surface pressure of 10 MPa, 15 minutes) was cut into a width of 12 mm and a length of 25 mm to obtain a test piece.
With respect to this test piece, dynamic viscoelasticity (dynamic twist) measurement was performed under the conditions of a temperature range of 30 ° C. to 250 ° C., a temperature increase rate of 10 ° C./min, a strain of 0.1 °, and an amplitude of 1.59 Hz. The relationship of storage elastic modulus (G ′) was grasped. The crosslink density is Tg + 40 ° C., T (K), storage elastic modulus (G ′) at T (K) is G ′ Tg + 40 , gas constant is R, front coefficient is φ (= 1), Calculated.
Crosslink density (ρ) = G ′ Tg + 40 / φRT
UBM Rheosol G-3000 was used as a measuring instrument. Tg is a glass transition point.
(4) Ignition test The carbon fiber reinforced composite material for the combustion test obtained earlier was subjected to an ignition test in accordance with Ministry of Land, Infrastructure, Transport and Tourism Iron Transport No.81. This test consists of the following:
Hold a B5-size sample at 45 °, place the fuel container on the cradle so that the center of the container is 25.4 mm below the center of the bottom surface of the sample, and add 0.5 cc of ethyl alcohol. Ignite and leave until the fuel is burned out. Judgment of flammability is made during and after the combustion of alcohol, igniting, igniting, smoking, and the state of flame are observed, and after combustion, afterflame, residual dust, carbonization, and deformation are examined. The determination results are “incombustible”, “extremely flame retardant”, “flame retardant”, “slow flammability”, and “flammable” in descending order of ignition resistance. Iron Fork 81 is an English book "Plastic Flame Retardation-Low Smoke Generation and Countermeasure against Hazardous Combustion Gas", Nikkan Kogyo Shimbun (1978) and Nishizawa "Reinforcement of Renewed New Polymers-Science and Practical Technology" It is described in detail in Taiseisha (1992).

Figure 2007051264
Figure 2007051264

Figure 2007051264
Figure 2007051264

表中の略号は以下の通りである。
Ep828:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製)
Ep1004:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製)
Ep604:テトラグリシジル型エポキシ樹脂(ジャパンエポキシレジン(株)製)
DICY:ジシアンジアミド DICY7(ジャパンエポキシレジン(株)製)
PDMU:フェニルジメチルウレア オミキュア94(PTIジャパン(株))
TBDMU:トルエンビスジメチルウレア オミキュア52(PTIジャパン(株))
AlN:窒化アルミニウム FLB(東洋アルミニウム(株)製)
MgO:酸化マグネシウム パイロキスマ5301K(協和化学工業(株)製)
Al:アルミナ AS−50(昭和電工(株)製)
VGCF:気相成長炭素繊維(昭和電工(株)製)
Abbreviations in the table are as follows.
Ep828: Bisphenol A type epoxy resin (Japan Epoxy Resin Co., Ltd.)
Ep1004: Bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.)
Ep604: Tetraglycidyl type epoxy resin (Japan Epoxy Resin Co., Ltd.)
DICY: Dicyandiamide DICY7 (manufactured by Japan Epoxy Resin Co., Ltd.)
PDMU: Phenyldimethylurea Omicure 94 (PTI Japan)
TBDMU: Toluenebisdimethylurea Omicure 52 (PTI Japan)
AlN: Aluminum nitride FLB (manufactured by Toyo Aluminum Co., Ltd.)
MgO: Magnesium oxide Pyroxuma 5301K (manufactured by Kyowa Chemical Industry Co., Ltd.)
Al 2 O 3 : Alumina AS-50 (manufactured by Showa Denko KK)
VGCF: Vapor growth carbon fiber (manufactured by Showa Denko KK)

実施例の結果から、マトリクス樹脂組成物として、5%重量減少温度が350℃以上であって、かつ、熱伝導率が2W/m・K以上であるものを使用することにより、国交省着火試験により「不燃性」の判定が得られた。一方、マトリクス樹脂組成物の5%重量減少温度か熱伝導率の少なくとも一方が上記条件を満たさない比較例のものでは、「不燃性」よりも悪い判定しか得られなかった。

From the results of the examples, the use of a matrix resin composition having a 5% weight loss temperature of 350 ° C. or higher and a thermal conductivity of 2 W / m · K or higher is used in the MLIT ignition test. As a result, “nonflammability” was determined. On the other hand, in the comparative example in which at least one of the 5% weight loss temperature or the thermal conductivity of the matrix resin composition does not satisfy the above conditions, only a judgment that is worse than “nonflammability” was obtained.

Claims (2)

繊維強化材とマトリクス樹脂組成物とを有して構成される繊維強化複合材料であって、
前記マトリクス樹脂組成物は、熱重量測定から求められる5%重量減少温度が350℃以上であり、かつ、熱伝導率が2W/m・K以上であることを特徴とする繊維強化複合材料。
A fiber reinforced composite material comprising a fiber reinforcing material and a matrix resin composition,
The matrix resin composition has a 5% weight loss temperature determined by thermogravimetry of 350 ° C. or higher and a thermal conductivity of 2 W / m · K or higher.
前記マトリクス樹脂組成物は、架橋密度が1000〜4000mol/mであることを特徴とする繊維強化複合材料。
Said matrix resin composition, fiber-reinforced composite material, characterized in that the crosslinking density of 1000~4000mol / m 3.
JP2005333826A 2005-07-22 2005-11-18 Fiber reinforced composite material Active JP5005911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333826A JP5005911B2 (en) 2005-07-22 2005-11-18 Fiber reinforced composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005213007 2005-07-22
JP2005213007 2005-07-22
JP2005333826A JP5005911B2 (en) 2005-07-22 2005-11-18 Fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2007051264A true JP2007051264A (en) 2007-03-01
JP5005911B2 JP5005911B2 (en) 2012-08-22

Family

ID=37915923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333826A Active JP5005911B2 (en) 2005-07-22 2005-11-18 Fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP5005911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107470A (en) * 2019-12-27 2021-07-29 帝人株式会社 Fiber-reinforced composite material, and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069872A (en) * 1992-03-27 1994-01-18 Kureha Chem Ind Co Ltd Resin composition containing polyarylene thioether and polyamide
JPH06162855A (en) * 1992-11-25 1994-06-10 Matsushita Electric Works Ltd Insulative adhering sheet
JPH07258439A (en) * 1994-03-24 1995-10-09 Shin Kobe Electric Mach Co Ltd Flame retardant laminated sheet and its production
JPH10139893A (en) * 1996-11-05 1998-05-26 Toshiba Ceramics Co Ltd Fiber reinforced, nonconductive and highly thermoconductive plastic
JP2003268236A (en) * 2002-03-20 2003-09-25 Toray Ind Inc Polyarylene sulfide resin composition
JP2004035702A (en) * 2002-07-03 2004-02-05 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for manufacturing fiber-reinforced composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069872A (en) * 1992-03-27 1994-01-18 Kureha Chem Ind Co Ltd Resin composition containing polyarylene thioether and polyamide
JPH06162855A (en) * 1992-11-25 1994-06-10 Matsushita Electric Works Ltd Insulative adhering sheet
JPH07258439A (en) * 1994-03-24 1995-10-09 Shin Kobe Electric Mach Co Ltd Flame retardant laminated sheet and its production
JPH10139893A (en) * 1996-11-05 1998-05-26 Toshiba Ceramics Co Ltd Fiber reinforced, nonconductive and highly thermoconductive plastic
JP2003268236A (en) * 2002-03-20 2003-09-25 Toray Ind Inc Polyarylene sulfide resin composition
JP2004035702A (en) * 2002-07-03 2004-02-05 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for manufacturing fiber-reinforced composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107470A (en) * 2019-12-27 2021-07-29 帝人株式会社 Fiber-reinforced composite material, and method for producing the same

Also Published As

Publication number Publication date
JP5005911B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
Garg et al. Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites
JP5744876B2 (en) Improvement of composite materials
Cheng et al. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites
Rallini et al. Effect of boron carbide nanoparticles on the fire reaction and fire resistance of carbon fiber/epoxy composites
Yip et al. Effect of multi-walled carbon nanotubes addition on mechanical properties of polymer composites laminate
Li et al. Simultaneous enhancement of electrical conductivity and interlaminar fracture toughness of carbon fiber/epoxy composites using plasma-treated conductive thermoplastic film interleaves
Megahed et al. The effect of incorporation of hybrid silica and cobalt ferrite nanofillers on the mechanical characteristics of glass fiber‐reinforced polymeric composites
Zaheer et al. A treatise on multiscale glass fiber epoxy matrix composites containing graphene nanoplatelets
Chang An investigation on the dynamic behavior and thermal properties of MWCNTs/FRP laminate composites
JP2017510683A (en) Composite material
JP2006291095A (en) Epoxy resin composition for fiber reinforced composite materials
Subhani et al. Toward improved mechanical performance of multiscale carbon fiber and carbon nanotube epoxy composites
JP2010202727A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
Saharudin et al. Synergistic effects of halloysite and carbon nanotubes (HNTs+ CNTs) on the mechanical properties of epoxy nanocomposites.
Li et al. Simultaneous enhancement of electrical conductivity and interlaminar shear strength of CF/EP composites through MWCNTs doped thermoplastic polyurethane film interleaves
JP5005911B2 (en) Fiber reinforced composite material
JP2021116404A (en) Tow-preg
Sakthi Balan et al. Tailoring polymer composites for critical thermal applications: a review on fibers, additives, coatings, aerogels, test methodologies
Jain et al. Processing and characterization of carbon-carbon nanofiber composites
JP2006160972A (en) Fiber-reinforced resin composite material, resin composition, and prepreg
Chunzheng The effect of surface coating of CNTs on the mechanical properties of CF‐filled HDPE composites
JP2021088675A (en) Thermosetting resin composition, fiber-reinforced resin composite material, and method for producing the same
JP2008303262A (en) Carbon fiber-reinforced plastic
Suresha et al. Thermal Properties of the Pineapple Leaf Fiber‐Based Hybrid Composites
JP6854028B1 (en) Prepreg and non-combustible materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5005911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250