JP2006160972A - Fiber-reinforced resin composite material, resin composition, and prepreg - Google Patents

Fiber-reinforced resin composite material, resin composition, and prepreg Download PDF

Info

Publication number
JP2006160972A
JP2006160972A JP2004357793A JP2004357793A JP2006160972A JP 2006160972 A JP2006160972 A JP 2006160972A JP 2004357793 A JP2004357793 A JP 2004357793A JP 2004357793 A JP2004357793 A JP 2004357793A JP 2006160972 A JP2006160972 A JP 2006160972A
Authority
JP
Japan
Prior art keywords
fiber
composite material
resin composite
reinforced resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004357793A
Other languages
Japanese (ja)
Inventor
Yasushi Suzumura
靖 鈴村
Hisao Koba
久雄 木場
Yohei Miwa
陽平 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004357793A priority Critical patent/JP2006160972A/en
Publication of JP2006160972A publication Critical patent/JP2006160972A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced resin composite material having excellent low-temperature curability, mechanical characteristics, and ignition resistance, and to provide a prepreg for obtaining the fiber-reinforced resin composite material. <P>SOLUTION: The fiber-reinforced resin composite material contains a fiber-reinforced material and a matrix resin composition, wherein the interlayer shear strength of the fiber-reinforced resin composite material that is obtained by 5 or less hours of curing at 100°C is 60 MPa or more, the glass transition temperature of 50°C or higher, and the fiber-reinforced resin composite material with a thickness of 2 mm or less is inflammable as determined based on a firing test according to Tetsu-un (Railway rule) No. 81 of the Ministry of Land, Infrastructure and Transport. The matrix resin composition contains the following essential components: (A) an epoxy resin, (B) a curing agent and a curing accelerator, (C) a metal oxide, and (D) a thermoplastic resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低温硬化性、機械特性に優れ、しかも耐着火性に優れた繊維強化樹脂複合材料、および該繊維強化樹脂複合材料を得るためのプリプレグに関する。更に詳しくは、鉄道車両等の交通機関に使用するために最適な繊維強化樹脂複合材料およびプリプレグに関する。   The present invention relates to a fiber reinforced resin composite material excellent in low-temperature curability and mechanical properties, and excellent in ignition resistance, and a prepreg for obtaining the fiber reinforced resin composite material. More specifically, the present invention relates to a fiber reinforced resin composite material and a prepreg that are optimal for use in transportation such as railway vehicles.

繊維強化樹脂複合材料は、軽量かつ高強度、高剛性であるというその特長を活かして、スポーツ・レジャー用途から自動車や航空機等の産業用途まで、幅広く用いられている。特に産業用途の自動車や鉄道車両、航空機などは、近年ますます軽量化が要求されており、FRPの使用が拡大している。産業用途の中でも自動車や鉄道車両などに用いられる材料には、機械的物性のほかに、難燃性が求められ、その用途に用いられる繊維強化樹脂複合材料にも難燃性が要求される。   Fiber reinforced resin composite materials are widely used from sports / leisure applications to industrial applications such as automobiles and aircraft, taking advantage of their light weight, high strength, and high rigidity. In particular, automobiles, railway vehicles, airplanes, and the like for industrial use are increasingly required to be lighter in recent years, and the use of FRP is expanding. Among industrial uses, materials used for automobiles, railway vehicles and the like are required to have flame retardancy in addition to mechanical properties, and fiber reinforced resin composite materials used for such uses are also required to have flame retardance.

このような繊維強化樹脂複合材料の成形方法として、繊維強化材に樹脂組成物を含浸させたプリプレグを用いる方法がある。難燃性が要求される用途に用いられるプリプレグには、当然ながら、成形後に高い難燃性が要求される。特に鉄道車両に用いられる繊維強化樹脂複合材料には、まず着火しないことが重要視されており、国土交通省鉄運81号に準拠した着火試験の判定基準が不燃性であることが要求される。   As a method for molding such a fiber reinforced resin composite material, there is a method using a prepreg in which a fiber reinforcing material is impregnated with a resin composition. Of course, prepregs used for applications requiring flame retardancy are required to have high flame retardancy after molding. In particular, fiber reinforced resin composite materials used in railway vehicles are emphasized not to be ignited first, and the criterion for the ignition test in accordance with the Ministry of Land, Infrastructure, Transport and Tourism Iron Transport No. 81 is required to be nonflammable. .

従来より、繊維強化樹脂複合材料を不燃性する方法は、繊維強化樹脂複合材料の厚みを増すことによって燃焼による熱を拡散、放熱させることにより、局所的な温度上昇を低減させ、これにより繊維強化樹脂複合材料の温度上昇に伴う着火を防止する作用をする。この作用により、鉄道車両等の業界が要求する不燃性の基準を満たすことが出来る。しかしながらこの方法では繊維強化樹脂複合材料の厚みを増すと同時にその重量も増大し繊維強化樹脂複合材料を用いる軽量化の効果が損なわれるため、必ずしも好ましい方法ではない。   Conventionally, the method of making a fiber reinforced resin composite material incombustible has been to reduce the local temperature rise by increasing the thickness of the fiber reinforced resin composite material, thereby diffusing and dissipating the heat from combustion, thereby reinforcing the fiber. It acts to prevent ignition associated with temperature rise of the resin composite material. This action can meet the non-flammability standards required by the industry such as railway vehicles. However, this method is not necessarily a preferred method because the thickness of the fiber reinforced resin composite material is increased and the weight thereof is increased and the effect of weight reduction using the fiber reinforced resin composite material is impaired.

また、特開平11−147965号公報(特許文献1)、特開2003−20410号公報(特許文献2)には、繊維強化樹脂複合材料の厚みが2mmと比較的、薄い厚みで不燃性の基準を満たす方法が提案されている。これらの方法では、オートクレーブを用いて125℃以上で加熱、加圧成形をして繊維強化樹脂複合材料が得られる。   Japanese Patent Application Laid-Open No. 11-147965 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2003-20410 (Patent Document 2) disclose that the fiber-reinforced resin composite material has a relatively thin thickness of 2 mm and is a non-flammable standard. A method for satisfying this has been proposed. In these methods, a fiber reinforced resin composite material is obtained by heating and pressure molding at 125 ° C. or higher using an autoclave.

オートクレーブの設備は非常に高価なため、生産現場に新規に導入することは困難ばかりでなく、一旦導入すると、そのオートクレーブの大きさに成形品の大きさが制限され、それより大きな成形品の製造は事実上不可能となる。また、125℃以上で加熱、加圧成形に使用できる成形型は耐熱、耐圧性に優れた金属製のものが使用されるが、このような金属製の型は作製に手間がかかり、高価である。   The equipment of the autoclave is very expensive, so it is not only difficult to introduce it to the production site, but once it is introduced, the size of the molded product is limited by the size of the autoclave and the production of larger molded products Is virtually impossible. In addition, metal molds that are excellent in heat resistance and pressure resistance are used as molds that can be used for heating and pressure molding at 125 ° C. or higher. However, such metal molds are time-consuming and expensive. is there.

このような観点から、脱オートクレーブ成形、低コスト成形の開発が盛んに行われており、その代表的なものとしては減圧による、大気圧のみの低圧下で成形するオーブン成形(真空バッグ成形とも呼ばれる。)がある。このオーブン成形では大気圧以外に圧力を加えないのでオートクレーブのようなしっかりした耐圧力容器がなくても良く、温度さえ上げることが出来る炉(オーブン)があれば成形が可能である。この方法によれば、例えば、断熱ボードと熱風ヒーターといった簡便な設備でも成形が可能である。更に100℃以下で成形出来れば型材として安価で加工しやすい石膏、木材を使用可能である。これにより鉄道車両の胴体部のような大型構造部を更に低コストで容易に作製できると考えられる。   From this point of view, development of de-autoclave molding and low-cost molding has been actively carried out, and typical examples thereof are oven molding (also called vacuum bag molding) in which molding is performed under a low pressure of only atmospheric pressure by reduced pressure. .) In this oven molding, no pressure other than atmospheric pressure is applied, so there is no need for a solid pressure-resistant container such as an autoclave, and molding is possible if there is an oven (oven) that can raise the temperature. According to this method, for example, molding can be performed with simple equipment such as a heat insulating board and a hot air heater. Furthermore, if it can be molded at 100 ° C. or lower, it is possible to use gypsum and wood that are inexpensive and easy to process as a mold material. Thereby, it is considered that a large-sized structure portion such as a trunk portion of a railway vehicle can be easily manufactured at a lower cost.

しかしながら、前述の特開平11−147965号公報、特開2003−20410号公報記載の樹脂組成物では、100℃以下でオーブン成形しても、樹脂組成物の硬化が不充分で充分な機械特性が発現せず、鉄道車両等の業界が要求する不燃性の基準も満たすことが出来なかった。   However, the resin compositions described in JP-A-11-147965 and JP-A-2003-20410 have insufficient mechanical properties due to insufficient curing of the resin composition even when oven-molded at 100 ° C. or lower. It did not appear, and the non-flammability standards required by industries such as railway vehicles could not be met.

特開平11−147965号公報Japanese Patent Laid-Open No. 11-147965 特開2003−20410号公報JP 2003-20410 A

本発明の目的は、オーブン成形が可能で、機械特性に優れ、しかも耐着火性に優れた繊維強化樹脂複合材料、および該繊維強化樹脂複合材料を得るためのプリプレグを提供することにある。   An object of the present invention is to provide a fiber reinforced resin composite material that can be oven-molded, has excellent mechanical properties, and has excellent ignition resistance, and a prepreg for obtaining the fiber reinforced resin composite material.

上記した課題は、本発明の繊維強化樹脂複合材料、ないしは該繊維強化樹脂複合材料を得るためのプリプレグによって解決することが出来る。   The above-described problems can be solved by the fiber reinforced resin composite material of the present invention or the prepreg for obtaining the fiber reinforced resin composite material.

すなわち本発明の繊維強化樹脂複合材料は、繊維強化材と樹脂組成物とを含む繊維強化樹脂複合材料であって、100℃、5時間以内の硬化で得られた繊維強化樹脂複合材料の層間剪断強度が60MPa以上でガラス転移温度が50℃以上、且つ厚みが2mmの繊維強化樹脂複合材料を用いた国土交通省鉄運81号に準拠した着火試験の判定が不燃性であることを特徴とするものである。   That is, the fiber reinforced resin composite material of the present invention is a fiber reinforced resin composite material including a fiber reinforced material and a resin composition, and the interlaminar shear of the fiber reinforced resin composite material obtained by curing within 100 hours at 100 ° C. Judgment of the ignition test based on the Ministry of Land, Infrastructure, Transport and Tourism Iron and Steel No. 81 using a fiber reinforced resin composite material having a strength of 60 MPa or more, a glass transition temperature of 50 ° C. or more, and a thickness of 2 mm is incombustible. Is.

本発明においては、前記繊維強化材の熱伝導率が5W/m・K以上で、繊維強化樹脂複合材料に対する繊維強化材の体積含有率が45〜70%である繊維強化樹脂複合材料であることが好ましく、前記層間剪断強度が70MPa以上、ガラス転移温度が80℃以上である繊維強化樹脂複合材料であることが好ましい。   In the present invention, the fiber reinforcing material is a fiber reinforced resin composite material having a thermal conductivity of 5 W / m · K or more and a volume content of the fiber reinforcing material to the fiber reinforced resin composite material of 45 to 70%. The fiber is preferably a fiber reinforced resin composite material having an interlayer shear strength of 70 MPa or more and a glass transition temperature of 80 ° C. or more.

本発明においては、前記樹脂組成物を100℃、5時間以内で硬化させた硬化物が、50℃での質量に対して300℃〜350℃での質量減少が3%以下であることを特徴とする繊維強化樹脂複合材料であることが好ましく、前記(A)、(B)、(C)、および(D)成分の配合質量比が、下記の割合である繊維強化樹脂複合材料であることが好ましい。
(A)エポキシ樹脂:100質量部
(B)硬化剤、硬化促進剤:4質量部以下
(C)金属酸化物:5〜40質量部
(D)熱可塑性樹脂:5〜90質量部
In the present invention, the cured product obtained by curing the resin composition at 100 ° C. within 5 hours has a mass loss at 300 ° C. to 350 ° C. of 3% or less with respect to the mass at 50 ° C. The fiber reinforced resin composite material is preferably a fiber reinforced resin composite material in which the blending mass ratio of the components (A), (B), (C), and (D) is the following ratio: Is preferred.
(A) Epoxy resin: 100 parts by mass (B) Curing agent, curing accelerator: 4 parts by mass or less (C) Metal oxide: 5-40 parts by mass (D) Thermoplastic resin: 5-90 parts by mass

本発明においては、前記(B)成分が尿素化合物の単独、又はジシアンジアミドとの併用である繊維強化樹脂複合材料であることが好ましく、前記(B)成分の尿素化合物がフェニルジメチルウレア、トルエンジメチルウレアである繊維強化樹脂複合材料であることが好ましい。   In the present invention, the component (B) is preferably a fiber reinforced resin composite material in which the urea compound is used alone or in combination with dicyandiamide, and the urea compound in the component (B) is phenyldimethylurea or toluenedimethylurea. It is preferable that it is a fiber reinforced resin composite material.

本発明においては、前記(C)成分の熱伝導率が20W/m・K以上で平均粒径が10μm以下である繊維強化樹脂複合材料が好ましく、前記(D)成分がフェノキシ樹脂である繊維強化樹脂複合材料であることが好ましい。   In the present invention, a fiber reinforced resin composite material in which the thermal conductivity of the component (C) is 20 W / m · K or more and the average particle size is 10 μm or less is preferable, and the fiber reinforced resin in which the component (D) is a phenoxy resin. A resin composite material is preferable.

本発明によれば、更に、前記樹脂組成物が繊維強化材に含浸してなるプリプレグが提供される。   According to the present invention, there is further provided a prepreg obtained by impregnating a fiber reinforcement with the resin composition.

上記構成を有する本発明によって、オーブン成形が可能で、かつ機械特性に優れ、しかも耐着火性に優れた繊維強化樹脂複合材料および該繊維強化樹脂複合材料を得るためのプリプレグを提供することができる。   According to the present invention having the above-described configuration, it is possible to provide a fiber reinforced resin composite material capable of being oven-molded, excellent in mechanical properties, and excellent in ignition resistance, and a prepreg for obtaining the fiber reinforced resin composite material. .

本発明のプリプレグを用いて製造された繊維強化樹脂複合材料は優れた耐着火性、機械特性を有しており鉄道車両用途に特に最適である。更に100℃で成形が可能であるためオートクレーブを用いずに安価なオーブン成形設備で大型構造物を一体成形できるので、更に軽量化させることが可能となる。   The fiber reinforced resin composite material produced using the prepreg of the present invention has excellent ignition resistance and mechanical properties, and is particularly suitable for railway vehicle applications. Furthermore, since the molding can be performed at 100 ° C., a large structure can be integrally molded with an inexpensive oven molding facility without using an autoclave, so that the weight can be further reduced.

以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量基準とする。   Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantity ratio are based on mass unless otherwise specified.

(繊維強化樹脂複合材料)
本発明者は、上記した従来技術の問題点を解決するために鋭意検討した結果、特定の機能を有する繊維強化樹脂複合材料であれば、かかる課題を一挙に解決することを究明したものである。すなわち、本発明においては、該繊維強化樹脂複合材料が繊維強化材と樹脂組成物とを含む繊維強化樹脂複合材料であって、100℃、5時間以内の硬化で得られた繊維強化樹脂複合材料の層間剪断強度が60MPa以上でガラス転移温度が50℃以上、しかも厚みが2mmの繊維強化樹脂複合材料の国土交通省鉄運81号に準拠した着火試験で判定が不燃性であることを特徴とする繊維強化樹脂複合材料(ないしは該繊維強化樹脂複合材料を得るためのプリプレグ)によって、上述した従来技術の問題点は解決される。このような本発明の繊維強化樹脂複合材料は、低温硬化性、機械特性に優れ、しかも耐着火性に優れるからである。
(Fiber reinforced resin composite material)
As a result of intensive studies to solve the above-described problems of the prior art, the present inventor has found that a fiber-reinforced resin composite material having a specific function can solve such problems all at once. . That is, in the present invention, the fiber reinforced resin composite material is a fiber reinforced resin composite material including a fiber reinforcing material and a resin composition, and the fiber reinforced resin composite material obtained by curing within 100 hours at 100 ° C. The interlaminar shear strength is 60 MPa or higher, the glass transition temperature is 50 ° C. or higher, and the thickness is 2 mm. The above-mentioned problems of the prior art are solved by the fiber reinforced resin composite material (or the prepreg for obtaining the fiber reinforced resin composite material). This is because the fiber-reinforced resin composite material of the present invention is excellent in low-temperature curability and mechanical properties, and in addition, is excellent in ignition resistance.

(繊維強化材)
本発明において繊維強化材は特に制限されないが、耐着火性の観点から熱伝導率が5W/m・K以上であることが好ましい。このような熱伝導率が5W/m・K以上である繊維強化材としては、炭素繊維、炭化ケイ素繊維、ボロン繊維等が挙げられる。これらの繊維強化材の形状は耐着火性の観点から連続繊維状のものが好ましい。連続繊維状の形状として長繊維、シート状、織物状、編物状、マット状、紙状が挙げられる。ここで示す繊維強化材の熱伝導率は27℃で、繊維方向での測定値である。
(Fiber reinforcement)
In the present invention, the fiber reinforcement is not particularly limited, but the thermal conductivity is preferably 5 W / m · K or more from the viewpoint of ignition resistance. Examples of the fiber reinforcing material having such a thermal conductivity of 5 W / m · K or more include carbon fiber, silicon carbide fiber, and boron fiber. The shape of these fiber reinforcements is preferably a continuous fiber from the viewpoint of ignition resistance. Examples of the continuous fiber shape include a long fiber, a sheet shape, a fabric shape, a knitted shape, a mat shape, and a paper shape. The thermal conductivity of the fiber reinforcement shown here is 27 ° C., which is a measured value in the fiber direction.

本発明においては、繊維強化樹脂複合材料中の繊維強化材の体積含有率が、45〜70%であることが好ましい。繊維強化材の体積含有率が45%以下になると、充分な機械特性を発現することが難しくなる傾向があり、繊維強化樹脂複合材料の熱伝導率が低下する傾向があるため、耐着火性の観点からも好ましくない。他方、繊維強化材の体積含有率が70%を超えると充分な機械特性が発現することが難しくなり好ましくない。繊維強化材の体積含有率は、より好ましくは体積含有率が50〜70%である。   In the present invention, the volume content of the fiber reinforcement in the fiber reinforced resin composite material is preferably 45 to 70%. When the volume content of the fiber reinforcement is 45% or less, it tends to be difficult to develop sufficient mechanical properties, and the thermal conductivity of the fiber reinforced resin composite material tends to decrease. It is not preferable also from a viewpoint. On the other hand, if the volume content of the fiber reinforcement exceeds 70%, it is difficult to develop sufficient mechanical properties, which is not preferable. The volume content of the fiber reinforcement is more preferably 50 to 70%.

((A)成分)
本発明における樹脂組成物に使用可能な(A)成分のエポキシ樹脂は特に制限されない。例えば、このようなエポキシ樹脂として、ビスフェノール型エポキシ樹脂、アミノグリシジル型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂肪族、脂環式エポキシ樹脂、イソシアネート変性エポキシ樹脂等が挙げられる。(A)成分のエポキシ樹脂としては、上記した樹脂を単独で使用してもよく、又は、必要に応じて2種類以上を併用しても良い。
((A) component)
The epoxy resin of component (A) that can be used in the resin composition in the present invention is not particularly limited. For example, as such an epoxy resin, bisphenol type epoxy resin, aminoglycidyl type epoxy resin, aminophenol type epoxy resin, novolac type epoxy resin, naphthalene type epoxy resin, aliphatic, alicyclic epoxy resin, isocyanate modified epoxy resin, etc. Is mentioned. As the epoxy resin of component (A), the above-described resins may be used alone, or two or more kinds may be used in combination as necessary.

((B)成分)
本発明における樹脂組成物に使用可能な(B)成分の硬化剤、硬化促進剤は特に限定されない。硬化性および保存性の観点からは、このような(B)成分として、尿素化合物、ジシアンジアミド(Dicy)等が挙げられ、単独で、又は必要に応じて併用して使用することができる。尿素化合物としては、アルキル系尿素化合物である3−(3.4−ジクロロフェニル)−1.1−ジメチルウレア(DCMU)、フェニルジメチルウレア(PDMU)、トルエンビスジメチルウレア(TBDMU)等が挙げられる。中でも、特にフェニルジメチルウレア(PDMU)、トルエンビスジメチルウレア(TBDMU)は100℃以下での硬化性が優れており好ましい。該フェニルジメチルウレア(PDMU)としては、ピイ・ティ・アイ・ジャパン社製のオミキュア94、トルエンビスジメチルウレア(TBDMU)としてはピイ・ティ・アイ・ジャパン社製のオミキュア24等が挙げられる。
((B) component)
The curing agent and curing accelerator of component (B) that can be used in the resin composition in the present invention are not particularly limited. From the viewpoint of curability and storage stability, examples of such component (B) include urea compounds, dicyandiamide (Dicy), and the like, and they can be used alone or in combination as necessary. Examples of urea compounds include alkyl urea compounds such as 3- (3.4-dichlorophenyl) -1.1-dimethylurea (DCMU), phenyldimethylurea (PDMU), and toluenebisdimethylurea (TBDMU). Among these, phenyldimethylurea (PDMU) and toluenebisdimethylurea (TBDMU) are particularly preferable because they have excellent curability at 100 ° C. or less. Examples of the phenyldimethylurea (PDMU) include Omicure 94 manufactured by PTI Japan, and examples of toluenebisdimethylurea (TBDMU) include Omicure 24 manufactured by PTI Japan.

((C)成分)
本発明における樹脂組成物に使用可能な(C)成分の金属酸化物は特に制限されない。このような金属酸化物は、熱伝導率が20W/m・K以上で平均粒径が10μm以下であることが好ましい。この熱伝導率が20W/m・K以上で、より優れた耐着火性を得ることができる。他方、該金属酸化物の平均粒径が10μmを超えると、繊維強化材のフィラメント間で金属酸化物がフィルトレイトを生じて繊維強化樹脂複合材料内の欠陥となるため機械特性が低下する傾向がある。ここで示す平均粒径は粒度分布が50%の値である。熱伝導率が20W/m・K以上の金属酸化物として酸化マグネシウム、酸化アルミニウムが挙げられ特に熱伝導率が高い酸化マグネシウムが耐着火性に優れるため有用である。ここで示す金属酸化物の熱伝導率は、27℃での測定値である。
((C) component)
The metal oxide of component (C) that can be used in the resin composition in the present invention is not particularly limited. Such a metal oxide preferably has a thermal conductivity of 20 W / m · K or more and an average particle size of 10 μm or less. When the thermal conductivity is 20 W / m · K or more, better ignition resistance can be obtained. On the other hand, when the average particle diameter of the metal oxide exceeds 10 μm, the metal oxide tends to form a fill trait between the filaments of the fiber reinforcing material and become a defect in the fiber reinforced resin composite material, so that the mechanical properties tend to decrease. is there. The average particle size shown here is a value at which the particle size distribution is 50%. Examples of the metal oxide having a thermal conductivity of 20 W / m · K or higher include magnesium oxide and aluminum oxide. Magnesium oxide having a particularly high thermal conductivity is useful because it has excellent ignition resistance. The thermal conductivity of the metal oxide shown here is a measured value at 27 ° C.

((D)成分)
本発明における樹脂組成物に使用可能な(D)成分の熱可塑性樹脂は、特に限定されないが、耐着火性の観点からフェノキシ樹脂を使用することが好ましい。これは、フェノキシ樹脂が自己消火性に優れているためである。
((D) component)
The thermoplastic resin of component (D) that can be used in the resin composition in the present invention is not particularly limited, but it is preferable to use a phenoxy resin from the viewpoint of ignition resistance. This is because the phenoxy resin is excellent in self-extinguishing properties.

本発明における樹脂組成物を100℃、5時間以内で硬化させた硬化物のDSC硬化度が70%以上である70%未満では充分な機械特性が発現されず、耐着火性も劣る。より好ましくは80%以上、更に好ましくは90%以上である。   If the DSC curing degree of the cured product obtained by curing the resin composition in the present invention at 100 ° C. for 5 hours or less is 70% or more and less than 70%, sufficient mechanical properties are not exhibited and ignition resistance is also inferior. More preferably, it is 80% or more, More preferably, it is 90% or more.

本発明における樹脂組成物を100℃、5時間以内で硬化させた硬化物が50℃での質量に対して300℃〜350℃での質量減少が3%以下である。質量減少が3%を超えると耐着火性が劣る。好ましくは1.5%以下である。   The mass reduction | decrease in 300 to 350 degreeC is 3% or less with respect to the mass in 50 degreeC of the hardened | cured material which hardened the resin composition in this invention within 100 degreeC and 5 hours. If the mass reduction exceeds 3%, the ignition resistance is poor. Preferably it is 1.5% or less.

(好適な含有比率)
成分である硬化剤、硬化促進剤(B)は、(A)成分100質量部に対して、4質量部以下であることが好ましい。(B)成分の含有比率が4質量部以下のとき、硬化剤、硬化促進剤が300℃以上から熱分解する傾向がなく、十分な着火性が得られる。(B)成分の含有比率は、より好ましくは3.5〜1.5質量部である。
(C)成分である金属酸化物は、(A)成分100質量部に対して5〜40質量部であることが好ましい。(C)成分の含有比率を5質量部以上とすることで十分な耐着火性が得られ、40質量部以内では機械特性が低下は顕著でない。(C)成分の含有比率は、より好ましくは15〜40質量部、更に好ましくは25〜40質量部である。
(Preferable content ratio)
It is preferable that the hardening agent and hardening accelerator (B) which are a component are 4 mass parts or less with respect to 100 mass parts of (A) component. When the content ratio of the component (B) is 4 parts by mass or less, the curing agent and the curing accelerator do not tend to thermally decompose from 300 ° C. or higher, and sufficient ignitability is obtained. The content ratio of the component (B) is more preferably 3.5 to 1.5 parts by mass.
(C) It is preferable that the metal oxide which is a component is 5-40 mass parts with respect to 100 mass parts of (A) component. When the content ratio of the component (C) is 5 parts by mass or more, sufficient ignition resistance is obtained, and within 40 parts by mass, the mechanical properties are not significantly reduced. The content ratio of the component (C) is more preferably 15 to 40 parts by mass, still more preferably 25 to 40 parts by mass.

(D)成分である熱可塑性樹脂は、(A)成分100質量部に対して5〜90質量部であることが好ましい。(D)成分の含有比率が5質量部以下では十分な着火性があり、90質量部以下では粘度の上昇による取扱性の悪化は顕著でなく、プリプレグ作製の際、繊維強化材への含浸に悪影響は与えない。(D)成分の含有比率はより好ましくは15〜60質量部、更に好ましくは25〜50質量部である。   (D) It is preferable that the thermoplastic resin which is a component is 5-90 mass parts with respect to 100 mass parts of (A) component. When the content ratio of the component (D) is 5 parts by mass or less, there is sufficient ignitability, and when it is 90 parts by mass or less, the deterioration of the handleability due to the increase in viscosity is not remarkable, and the fiber reinforced material is impregnated during prepreg production. There is no adverse effect. The content ratio of the component (D) is more preferably 15 to 60 parts by mass, still more preferably 25 to 50 parts by mass.

上記した(A)、(B)、(C)および(D)成分の各成分は、上記した含有比率の範囲内において適宣選択することが好ましい。   The components (A), (B), (C), and (D) described above are preferably selected within the range of the content ratio described above.

(繊維強化材)
上述した所定の物性を与える限り、本発明のプリプレグに使用可能な繊維強化材は特に制限されない。
(Fiber reinforcement)
As long as the above-mentioned predetermined physical properties are given, the fiber reinforcing material usable for the prepreg of the present invention is not particularly limited.

本発明のプリプレグに用いられる繊維強化材の形態は、耐着火性の観点からは、燃焼による熱を更に拡散、放熱させやすい連続繊維状の形状のものが好ましい。このような連続繊維状の形状としては、例えば長繊維、シート状、織物状、編物状、マット状、紙状が挙げられる。   The form of the fiber reinforcing material used in the prepreg of the present invention is preferably a continuous fiber-like shape that can further diffuse and dissipate heat from combustion from the viewpoint of ignition resistance. Examples of such a continuous fiber shape include a long fiber, a sheet shape, a fabric shape, a knitted shape, a mat shape, and a paper shape.

(各種試験法)
本発明において層間剪断強度、ガラス転移温度、着火試験、強化繊維の体積含有率、DSC硬化度、重量減少等の各種試験は、下記の方法に従って行われる。
(Various test methods)
In the present invention, various tests such as interlaminar shear strength, glass transition temperature, ignition test, reinforcing fiber volume content, DSC curing degree, weight reduction, and the like are performed according to the following methods.

〔層間剪断強度〕
プリプレグを積層し成形後、層間剪断強度(ILSS)をASTM D2344に従い測定する。
[Interlaminar shear strength]
After laminating and forming the prepreg, the interlaminar shear strength (ILSS) is measured according to ASTM D2344.

〔ガラス転移温度〕
プリプレグを積層し成形後、レオメトリック製RDA−700又は同等の性能を有する
粘弾性測定装置を用いて、温度を段階的にステップ状で上げていったときの貯蔵弾性率(G')を各温度において測定する。昇温は、5℃/ステップで行い、各ステップでは温度安定後1分間その温度で保持してから測定する。周波数は10ラジアン/秒で測定する。温度に対してG'の対数値をプロットし、得られたG'曲線のガラス弾性領域と転移領域の各接線の交点での温度をガラス転移温度とする(図1に、典型的なガラス転移温度測定例の模式的なグラフを示す)。
〔Glass-transition temperature〕
After the prepregs are laminated and molded, the storage elastic modulus (G ′) when the temperature is raised stepwise step by step using a rheometric RDA-700 or a viscoelasticity measuring device having equivalent performance. Measure at temperature. The temperature is raised at 5 ° C./step, and at each step, the temperature is held for 1 minute after the temperature is stabilized and then measured. The frequency is measured at 10 radians / second. The logarithmic value of G ′ is plotted against the temperature, and the temperature at the intersection of each tangent line of the glass elastic region and the transition region of the obtained G ′ curve is defined as the glass transition temperature (FIG. 1 shows a typical glass transition). A schematic graph of a temperature measurement example is shown).

〔着火試験〕
プリプレグを厚みが2mmになるように積層し成形後、国土交通省の「鉄運81号」に準拠した着火試験を行う。鉄運81号に規定の着火試験は、次の内容からなる。
(Ignition test)
After the prepreg is laminated and formed so as to have a thickness of 2 mm, an ignition test is performed in accordance with “Tetsunyu 81” of the Ministry of Land, Infrastructure, Transport and Tourism. The ignition test stipulated in Iron Fork 81 has the following contents.

すなわち、B5判の試料を45°に傾斜させて保持し、試料下面の中心の垂直下25.4mmのところに容器の中心がくるように燃料容器を受台に乗せ、エチルアルコール0.5ccを入れて着火し、燃料が燃え尽きるまで放置する。燃焼性の判定はアルコールの燃焼中と燃焼後に分け、着火、着炎、発煙状況、炎の状態を観察し、燃焼後は残炎、残じん、炭化、変形状態を調べる。   That is, hold a B5-size sample inclined at 45 °, place the fuel container on the cradle so that the center of the container is 25.4 mm vertically below the center of the lower surface of the sample, and add 0.5 cc of ethyl alcohol. Put it on and ignite it, and let it stand until the fuel is burned out. Judgment of flammability is made during and after the combustion of alcohol, igniting, igniting, smoking, and the state of flame are observed, and after combustion, afterflame, residual dust, carbonization, and deformation are examined.

判定結果は耐着火性の高い順に。「不燃性」、「極難燃性」、「難燃性」、「緩燃性」、「可燃性」である。   Judgment results are in descending order of ignition resistance. "Non-flammable", "Extremely flame retardant", "Flame retardant", "Slow flammability", "Flammable".

〔強化繊維の体積含有率〕
繊維強化樹脂複合材料に対する繊維強化材の体積含有率(Vf)は、繊維強化樹脂複合材料の密度(ρc)、繊維強化材の密度(ρf)、硬化させたマトリックス樹脂組成物の硬化物の密度(ρr)より、Vf(%)={(ρc−ρr)×100/(ρf−ρr)}によって算出される。
[Volume content of reinforcing fiber]
The volume content (V f ) of the fiber reinforcement relative to the fiber reinforced resin composite material is the density of the fiber reinforced resin composite material (ρ c ), the density of the fiber reinforcement (ρ f ), and the curing of the cured matrix resin composition. From the density (ρ r ) of the object, V f (%) = {(ρ c −ρ r ) × 100 / (ρ f −ρ r )}.

〔DSC硬化度〕
調製直後のマトリックス樹脂組成物の硬化発熱量(E0)、および該マトリックス樹脂組成物を硬化させた硬化物の残留発熱量(E1)をそれぞれ示差走査熱量計(DSC)で測定し、DSC硬化度(%)={(E0−E1)×100/E0}によって算出される。
[DSC curing degree]
The heating value (E 0 ) of the matrix resin composition immediately after preparation and the residual heating value (E 1 ) of the cured product obtained by curing the matrix resin composition were measured with a differential scanning calorimeter (DSC). The degree of cure (%) = {(E 0 −E 1 ) × 100 / E 0 }.

〔重量減少〕
マトリックス樹脂組成物を硬化させた硬化物の50℃での重量(W1)、300℃〜350℃間での重量(W2)をそれぞれ熱重量分析計(TGA)で測定し、重量減少(%)={(W1−W2)×100/W1}によって算出される。
[Weight reduction]
The weight (W 1 ) at 50 ° C. and the weight (W 2 ) between 300 ° C. and 350 ° C. of the cured product obtained by curing the matrix resin composition were measured with a thermogravimetric analyzer (TGA). %) = {(W 1 −W 2 ) × 100 / W 1 }.

〔実施例1〜9、比較例1〜17〕
以下、本発明の繊維強化樹脂複合材料、マトリックス樹脂組成物およびプリプレグの具体的な構成を実施例に基づいて、比較例と比較しながら説明する。なお、実施例および比較例の、マトリックス樹脂組成物に使用した各成分は、下記の略字で示す通りである。
[Examples 1-9, Comparative Examples 1-17]
Hereinafter, specific configurations of the fiber-reinforced resin composite material, the matrix resin composition, and the prepreg of the present invention will be described based on examples and compared with comparative examples. In addition, each component used for the matrix resin composition of an Example and a comparative example is as showing the following abbreviation.

(1)エポキシ樹脂
Ep828:ジャパンエポキシレジン社製、液状をなすビスフェノールA型エポキシ樹脂「エピコート828」
AER4152:旭化成社製、分子内にオキサゾリドン環を有するエポキシ樹脂「アラルダイトAER4152」
(1) Epoxy resin Ep828: manufactured by Japan Epoxy Resin Co., Ltd., liquid bisphenol A type epoxy resin “Epicoat 828”
AER4152: manufactured by Asahi Kasei Co., Ltd., epoxy resin having an oxazolidone ring in the molecule "Araldite AER4152"

(2)硬化剤、硬化促進剤
DCMU:保土々谷化学社製、ジクロジメチルウレア「DCMU99」
PDMU:ピー・ティー・アイジャパン社製、フェニルジメチルウレア 「オミキュア94」
TBDMU:ピー・ティー・アイジャパン社製、トルエンビスジメチルウレア 「オミキュア24」
Dicy:ジャパンエポキシレジン社製、ジシアンジアミド「Dicy7」
DDS:和歌山精化社製、ジアミノジフェニルスルホン「セイカキュアS」
(2) Curing agent, curing accelerator DCMU: Dichlorodimethylurea “DCMU99” manufactured by Hodogaya Chemical Co., Ltd.
PDMU: Ph.D. dimethylurea “OMICURE 94” manufactured by PTI Japan
TBDMU: Tobibisdimethylurea “OMICURE 24” manufactured by PTI Japan
Dicy: Dicyandiamide “Dicy7” manufactured by Japan Epoxy Resin Co., Ltd.
DDS: Diaminodiphenyl sulfone “Seika Cure S” manufactured by Wakayama Seika Co., Ltd.

(3)金属酸化物
マグミック:協和化学社製、酸化マグネシウム「マグミック」熱伝導率:60W/m・K、平均粒径:4μm
キョウワマグ150:協和化学社製、酸化マグネシウム「キョウワマグ150」熱伝導率:60W/m・K、平均粒径:15μm
TiO2:高純度化学社製、二酸化チタン、「a−Al23」熱伝導率:8.4W/m・K、平均粒径:3μm
(3) Metal oxide Magmic: manufactured by Kyowa Chemical Co., Ltd., magnesium oxide “magmic” thermal conductivity: 60 W / m · K, average particle size: 4 μm
Kyowa Mag 150: manufactured by Kyowa Chemical Co., Ltd., magnesium oxide “Kyowa Mug 150”, thermal conductivity: 60 W / m · K, average particle size: 15 μm
TiO 2 : manufactured by Kojun Chemical Co., Ltd., titanium dioxide, “a-Al 2 O 3 ” thermal conductivity: 8.4 W / m · K, average particle size: 3 μm

(4)熱可塑性樹脂
YP70:東都化成社製、フェノキシ樹脂「フェノトートYP70」
ビニレックK:チッソ社製、ポリビニルホルマール「ビニレックK」
(4) Thermoplastic resin YP70: manufactured by Tohto Kasei Co., Ltd., phenoxy resin “phenotote YP70”
Vinylec K: manufactured by Chisso, polyvinyl formal "Vinyleck K"

(5)繊維強化材
TR3110MS:三菱レイヨン社製、ポリアクリロニトリル系炭素繊維TR30S(熱伝導率:7W/m・K)を平織りしたクロス(目付:200g/m2
LCP300:有沢製作所社製、ガラス繊維(Eガラス(熱伝導率:1W/m・K))を平織りしたクロス(目付:310g/m2
(5) Fiber reinforcement TR3110MS: Mitsubishi Rayon Co., Ltd., polyacrylonitrile-based carbon fiber TR30S (thermal conductivity: 7 W / m · K) plain weave cloth (weight per unit: 200 g / m 2 )
LCP300: Arisawa Manufacturing Co., Ltd., glass fiber (E glass (thermal conductivity: 1 W / m · K)) plain-woven cloth (weight per unit: 310 g / m 2 )

(樹脂組成物の調製方法)
本発明のプリプレグにおける樹脂組成物の調製は、以下の方法で行った。
すなわち、(C)成分の硬化剤、硬化促進剤でDicy(ジシアンジアミド)を使用する実施例1〜2および実施例4〜9、比較例1〜3および比較例6〜17では、液状をなすビスフェノールA型エポキシ樹脂であるEp828を3質量部に対してDicyを1.8質量部配合し、三本ロールを用いて均一に分散させて触媒樹脂を得た。
(Method for preparing resin composition)
The resin composition in the prepreg of the present invention was prepared by the following method.
That is, in Examples 1-2 and Examples 4-9, Comparative Examples 1-3, and Comparative Examples 6-17 using Dicy (dicyandiamide) as the curing agent and curing accelerator of component (C), bisphenol in liquid form 1.8 parts by mass of Dicy was blended with 3 parts by mass of Ep828, which is an A-type epoxy resin, and uniformly dispersed using three rolls to obtain a catalyst resin.

次に〔表1〕、〔表2〕に示す残りの(A)成分のエポキシ樹脂と(D)成分の熱可塑性樹脂を配合し、150℃で攪拌機を用いて溶解させたのちに(C)成分の金属酸化物を配合し分散させてベース樹脂を得た。このベース樹脂を60℃まで冷却させた後に前記触媒樹脂、残りの(B)成分の硬化剤、硬化剤を配合し分散させてマトリックス樹脂組成物を得た。   Next, the remaining epoxy resin (A) shown in [Table 1] and [Table 2] and the thermoplastic resin (D) are blended and dissolved at 150 ° C. using a stirrer (C) A base resin was obtained by blending and dispersing the component metal oxides. The base resin was cooled to 60 ° C., and then the catalyst resin, the remaining component (B) curing agent and curing agent were blended and dispersed to obtain a matrix resin composition.

実施例3、比較例4〜5の樹脂組成物の調製方法においては、〔表1〕、〔表2〕に示す(A)、(D)成分を150℃で溶解した後に(C)成分を分散させてベース樹脂を得た。このベース樹脂を60℃まで冷却させた後に(B)成分を配合し分散させてマトリックス樹脂組成物を得た。   In the method for preparing the resin compositions of Example 3 and Comparative Examples 4 to 5, the components (A) and (D) shown in [Table 1] and [Table 2] were dissolved at 150 ° C. A base resin was obtained by dispersing. After this base resin was cooled to 60 ° C., the component (B) was blended and dispersed to obtain a matrix resin composition.

(樹脂組成物の硬化物作製および各種評価)
樹脂組成物の硬化物を、以下の方法で得た。得られた樹脂組成物の一部をアルミ皿に入れて乾燥機を用いて100℃、5時間の条件で加熱硬化させて硬化物を得た。この硬化物を用いて、前述の試験方法でDSC硬化度、質量減少の測定を行った。得られた測定結果を〔表1〕、〔表2〕に示す。
(Preparation of cured product of resin composition and various evaluations)
A cured product of the resin composition was obtained by the following method. A part of the obtained resin composition was put in an aluminum dish and heat cured using a dryer at 100 ° C. for 5 hours to obtain a cured product. Using this cured product, the DSC curing degree and the mass reduction were measured by the test method described above. The obtained measurement results are shown in [Table 1] and [Table 2].

(プリプレグ作製)
樹脂組成物をフィルムコーターを用いてホットメルトフィルム(HMF)を作製した。ホットメルトフィルムの樹脂目付は、実施例1〜7および比較例1〜11は66.5g/m2、実施例8は40g/m2、実施例9は90g/m2、比較例12は100g/m2、比較例13は27.5g/m2である。
(Prepreg production)
A hot melt film (HMF) was produced from the resin composition using a film coater. Resin basis weight of the hot melt film, Examples 1 to 7 and Comparative Examples 1 to 11 66.5 g / m 2, Example 8 40 g / m 2, Example 9 90 g / m 2, Comparative Example 12 100g / M 2 , Comparative Example 13 is 27.5 g / m 2 .

各種繊維強化材の両面に得られたホットメルトフィルムを貼り合わせてフュージングプレスを用いて、加熱圧着させてプリプレグを作製した。なお各プリプレグに用いた繊維強化材は比較例11がLCP300、比較例11以外の実施例、比較例はTR3110MSを用いた。   The hot melt films obtained on both surfaces of various fiber reinforcements were bonded together and heat-pressed using a fusing press to prepare prepregs. In addition, as for the fiber reinforcement used for each prepreg, Comparative Example 11 used LCP300, Examples other than Comparative Example 11 and Comparative Example used TR3110MS.

(各種試験片作製および各種評価)
上記により得られた各プリブレグを300×300mmにパターンカットし、実施例1〜7、比較例1〜11は9枚、実施例8は11枚、実施例9は9枚、比較例12は6枚、比較例13は13枚、それぞれ積層し、100℃、5時間の条件で真空バック成形により、厚みがそれぞれ2mmの繊維強化樹脂複合材料を得た。
(Various specimen preparation and various evaluations)
Each prepreg obtained as above was cut into a pattern of 300 × 300 mm. Examples 1-7, Comparative Examples 1-11 were 9 sheets, Example 8 was 11 sheets, Example 9 was 9 sheets, and Comparative Example 12 was 6 sheets. Thirteen sheets of Comparative Example 13 were laminated, and a fiber reinforced resin composite material having a thickness of 2 mm was obtained by vacuum back molding at 100 ° C. for 5 hours.

このようにして得られた繊維強化樹脂複合材料を、ガラス転移温度測定、層間剪断強度測定、および鉄運81号による着火試験の定めた寸法でカットし、各種試験片を作製した。これらの各種試験片を用いて前述の試験方法でガラス転移温度測定、層間剪断強度測定、鉄運81号による着火試験を行った。   The fiber reinforced resin composite material thus obtained was cut with the dimensions determined by the glass transition temperature measurement, the interlayer shear strength measurement, and the ignition test by Iron Transport No. 81, and various test pieces were produced. Using these various test pieces, the glass transition temperature measurement, the interlayer shear strength measurement, and the ignition test by Iron Fork 81 were conducted by the above-described test methods.

強化繊維の体積含有率(Vf)は、得られた各マトリックス樹脂組成物の硬化物、繊維強化樹脂複合材料の密度をアルキメデス法により密度を測定し、繊維強化材の密度はカタログ値(TR3110MSは、TR30S密度:1.8g/cm3、LCP300はEガラス密度:2.5g/cm3)を用いて、前述の試験方法で強化繊維の体積含有率(Vf)を算出した。各測定結果を〔表1〕、〔表2〕に示す。 The volume content (Vf) of the reinforcing fiber is determined by measuring the density of the cured product of the obtained matrix resin composition and the density of the fiber reinforced resin composite material by the Archimedes method, and the density of the fiber reinforcing material is a catalog value (TR3110MS is , TR30S density: 1.8 g / cm 3 , LCP300 was E glass density: 2.5 g / cm 3 ), and the volume content (Vf) of the reinforcing fiber was calculated by the test method described above. Each measurement result is shown in [Table 1] and [Table 2].

Figure 2006160972
Figure 2006160972

Figure 2006160972
Figure 2006160972

上記した〔表1〕、〔表2〕によれば、本発明の実施例は比較例と比べて以下の効果を有していることが理解されよう。   According to the above [Table 1] and [Table 2], it will be understood that the examples of the present invention have the following effects as compared with the comparative examples.

実施例1、比較例1の対比から明らかなように、(C)成分として金属酸化物である酸化マグネシウム、(D)成分として熱可塑性樹脂であるフェノキシ樹脂を配合することで耐着火性を向上させることが可能である。   As is clear from the comparison between Example 1 and Comparative Example 1, the ignition resistance is improved by blending magnesium oxide, which is a metal oxide, as the component (C) and phenoxy resin, which is the thermoplastic resin, as the component (D). It is possible to make it.

実施例1、比較例2および比較例3の対比から明らかなように、(C)成分として金属酸化物、(D)成分として熱可塑性樹脂が無い場合は、耐着火性が大幅に低下する。   As is clear from the comparison of Example 1, Comparative Example 2 and Comparative Example 3, when there is no metal oxide as the component (C) and no thermoplastic resin as the component (D), the ignition resistance is greatly reduced.

実施例1、実施例2、実施例3、比較例4、比較例6および比較例7の対比から明らかなように、(A)成分のエポキシ樹脂、100質量部に対して(B)成分である硬化剤、硬化促進剤の配合比が4質量部以下では、300℃〜350℃での質量減少が3%以下で鉄運81号による着火試験の判定が何れも不燃性であり耐着火性が優れていることが分かる。これに対して(A)成分のエポキシ樹脂、100質量部に対して(B)成分である硬化剤、硬化促進剤の配合比が4質量部を超えると300℃〜350℃での質量減少が3%を超えて、鉄運81号による着火試験の判定結果からも耐着火性が低下していることが分かる。   As is clear from the comparison of Example 1, Example 2, Example 3, Comparative Example 4, Comparative Example 6 and Comparative Example 7, (B) component with respect to 100 parts by mass of the (A) component epoxy resin When the blending ratio of a certain curing agent and curing accelerator is 4 parts by mass or less, the mass decrease at 300 ° C. to 350 ° C. is 3% or less, and the determination of the ignition test by Iron Fork 81 is both nonflammable and ignition resistant. It turns out that is excellent. On the other hand, when the compounding ratio of the (A) component epoxy resin, 100 parts by mass of the (B) component curing agent and the curing accelerator exceeds 4 parts by mass, the mass decrease at 300 ° C. to 350 ° C. It can be seen that the ignition resistance is lower than 3% from the determination result of the ignition test by Iron Fork 81.

実施例1、実施例2、実施例3、実施例9、比較例4および比較例5の対比から明らかなように、(B)成分である硬化剤、硬化促進剤が尿素化合物の単独、又はジシアンジアミドとの併用させたものは、剪断強度が70MPa以上、ガラス転移温度が50℃以上、DSC硬化度が70%以上と機械特性、耐熱性、硬化性に優れている。また、尿素化合物にフェニルジメチルウレア(PDMU)、トルエンジメチルウレア(TBDMU)を用いると、これらの特性が更に向上する。これに対して(B)成分である硬化剤、硬化促進剤が尿素化合物の単独、又はジシアンジアミドとの併用させたもの以外のものは機械特性、耐熱性、硬化性が劣っている。   As is clear from the comparison of Example 1, Example 2, Example 3, Example 9, Comparative Example 4 and Comparative Example 5, the curing agent as component (B), the curing accelerator is a urea compound alone, or When used in combination with dicyandiamide, the shear strength is 70 MPa or more, the glass transition temperature is 50 ° C. or more, and the DSC curing degree is 70% or more, which is excellent in mechanical properties, heat resistance, and curability. Further, when phenyldimethylurea (PDMU) or toluenedimethylurea (TBDMU) is used as the urea compound, these characteristics are further improved. On the other hand, those other than those in which the curing agent and curing accelerator as component (B) are urea compounds alone or in combination with dicyandiamide are inferior in mechanical properties, heat resistance and curability.

実施例1、比較例8の対比から明らかなように、(C)成分である金属酸化物の平均粒径が15μmの場合、剪断強度が大幅に低下する。   As is clear from the comparison between Example 1 and Comparative Example 8, when the average particle diameter of the metal oxide as the component (C) is 15 μm, the shear strength is significantly reduced.

実施例1、比較例9の対比から明らかなように、(C)成分である金属酸化物の熱伝導率が8.4W/m・Kの場合、鉄運81号による着火試験の判定結果からも耐着火性が低下する。   As is clear from the comparison between Example 1 and Comparative Example 9, when the thermal conductivity of the metal oxide (C) is 8.4 W / m · K, from the determination result of the ignition test by Iron Transport No. 81 However, the ignition resistance decreases.

実施例1、比較例10の対比から明らかなように、(D)成分である熱可塑性樹脂がポリビニルホルマールの場合、鉄運81号による着火試験の判定結果からも耐着火性が低下する。   As is clear from the comparison between Example 1 and Comparative Example 10, when the thermoplastic resin as the component (D) is polyvinyl formal, the ignition resistance is also lowered from the determination result of the ignition test by Iron Transport No. 81.

実施例1、比較例11の対比から明らかなように、繊維強化材の熱伝導率が1W/m・Kの場合は、鉄運81号による着火試験の判定結果からも耐着火性が低下する。   As is clear from the comparison between Example 1 and Comparative Example 11, when the thermal conductivity of the fiber reinforcement is 1 W / m · K, the ignition resistance also decreases from the determination result of the ignition test by Iron Transport No. 81. .

実施例1、実施例4、実施例5、比較例14および比較例15の対比から明らかなように、(A)成分のエポキシ樹脂、100質量部に対して(C)成分の金属酸化物の配合比が3質量部の場合は鉄運81号による着火試験の判定結果からも耐着火性が低下する。   As is clear from the comparison of Example 1, Example 4, Example 5, Comparative Example 14 and Comparative Example 15, the epoxy resin of component (A), the metal oxide of component (C) with respect to 100 parts by mass In the case where the blending ratio is 3 parts by mass, the ignition resistance also decreases from the result of the ignition test by Iron Fork 81.

また、(C)成分の金属酸化物の配合比が45質量部の場合は、層間剪断強度が大幅に低下する。   Moreover, when the compounding ratio of the metal oxide of the component (C) is 45 parts by mass, the interlaminar shear strength is greatly reduced.

実施例1、実施例6、実施例7、比較例16および比較例17の対比から明らかなように、(A)成分のエポキシ樹脂、100質量部に対して(D)成分の熱可塑性樹脂の配合比が3質量部の場合は鉄運81号による着火試験の判定結果からも耐着火性が低下する。また、(D)成分の熱可塑性樹脂の配合比が95質量部の場合は層間剪断強度が大幅に低下する。   As is clear from the comparison of Example 1, Example 6, Example 7, Comparative Example 16 and Comparative Example 17, the epoxy resin of component (A) and the thermoplastic resin of component (D) with respect to 100 parts by mass In the case where the blending ratio is 3 parts by mass, the ignition resistance also decreases from the result of the ignition test by Iron Fork 81. Further, when the blending ratio of the thermoplastic resin as the component (D) is 95 parts by mass, the interlaminar shear strength is significantly reduced.

以上の結果から、実施例1〜9は比較例1〜17と比べ低温硬化性、機械特性に優れ、しかも耐着火性においてバランスに優れた繊維強化樹脂複合材料であることか分かる。   From the above results, it can be seen that Examples 1 to 9 are fiber reinforced resin composite materials that are superior in low-temperature curability and mechanical properties as compared with Comparative Examples 1 to 17 and that have an excellent balance in ignition resistance.

図1は、本発明の実施例、比較例で製造した繊維強化樹脂複合材料の、動的せん断弾性率G’の対数値を温度に対してプロットしたグラフであって、該繊維強化樹脂複合材料のガラス転移温度(Tg)を求める作図方法を示したものである。FIG. 1 is a graph in which logarithmic values of dynamic shear modulus G ′ of fiber reinforced resin composite materials manufactured in Examples and Comparative Examples of the present invention are plotted against temperature, and the fiber reinforced resin composite materials. 3 shows a drawing method for obtaining the glass transition temperature (Tg).

Claims (12)

繊維強化材とマトリックス樹脂組成物とを含む繊維強化樹脂複合材料であって;
100℃、5時間以内の硬化で得られた繊維強化樹脂複合材料の層間剪断強度が60MPa以上でガラス転移温度が50℃以上であり、且つ厚みが2mmの繊維複合材料を用いた国土交通省鉄運81号に準拠した着火試験の判定が不燃性であることを特徴とする繊維強化樹脂複合材料。
A fiber reinforced resin composite material comprising a fiber reinforcement and a matrix resin composition;
Ministry of Land, Infrastructure, Transport and Tourism using a fiber composite material having a fiber reinforced resin composite material obtained by curing within 100 hours at 100 ° C. and having an interlayer shear strength of 60 MPa or more, a glass transition temperature of 50 ° C. or more, and a thickness of 2 mm A fiber reinforced resin composite material characterized in that the ignition test in accordance with No. 81 is nonflammable.
前記繊維強化材の熱伝導率が5W/m・K以上で、繊維強化樹脂複合材料に対する繊維強化材の体積含有率が45〜70%である請求項1記載の繊維強化樹脂複合材料。   2. The fiber reinforced resin composite material according to claim 1, wherein the fiber reinforcement has a thermal conductivity of 5 W / m · K or more and a volume content of the fiber reinforcement relative to the fiber reinforced resin composite material is 45 to 70%. 前記層間剪断強度が70MPa以上、ガラス転移温度が80℃以上である請求項1記載の繊維強化樹脂複合材料。   The fiber reinforced resin composite material according to claim 1, wherein the interlayer shear strength is 70 MPa or more and the glass transition temperature is 80 ° C or more. 前記マトリックス樹脂組成物が、次の(A)、(B)、(C)、および(D)成分を必須として含有する請求項1記載の繊維強化樹脂複合材料。
(A)エポキシ樹脂
(B)硬化剤、硬化促進剤
(C)金属酸化物
(D)熱可塑性樹脂
The fiber reinforced resin composite material according to claim 1, wherein the matrix resin composition contains the following components (A), (B), (C), and (D) as essential components.
(A) Epoxy resin (B) Curing agent, curing accelerator (C) Metal oxide (D) Thermoplastic resin
前記マトリックス樹脂組成物を100℃、5時間以内で硬化させた硬化物のDSC硬化度が70%以上である請求項1記載の繊維強化樹脂複合材料。   The fiber reinforced resin composite material according to claim 1, wherein a DSC curing degree of a cured product obtained by curing the matrix resin composition within 100 hours at 100 ° C is 70% or more. 前記マトリックス樹脂組成物を100℃、5時間以内で硬化させた硬化物が、50℃での質量に対して300℃〜350℃での質量減少が3%以下である請求項1記載の繊維強化樹脂複合材料。   2. The fiber reinforcement according to claim 1, wherein a cured product obtained by curing the matrix resin composition at 100 ° C. within 5 hours has a mass reduction at 300 ° C. to 350 ° C. of 3% or less with respect to the mass at 50 ° C. 3. Resin composite material. 前記(A)、(B)、(C)、および(D)成分の配合質量比が、下記の割合である請求項4記載の繊維強化樹脂複合材料。
(A)エポキシ樹脂:100質量部
(B)硬化剤、硬化促進剤:4質量部以下
(C)金属酸化物:5〜40質量部
(D)熱可塑性樹脂:5〜90質量部
The fiber-reinforced resin composite material according to claim 4, wherein a blending mass ratio of the components (A), (B), (C), and (D) is the following ratio.
(A) Epoxy resin: 100 parts by mass (B) Curing agent, curing accelerator: 4 parts by mass or less (C) Metal oxide: 5-40 parts by mass (D) Thermoplastic resin: 5-90 parts by mass
前記(B)成分が尿素化合物の単独、又はジシアンジアミドとの併用である請求項7記載の繊維強化樹脂複合材料。   The fiber-reinforced resin composite material according to claim 7, wherein the component (B) is a urea compound alone or in combination with dicyandiamide. 前記(B)成分の尿素化合物がフェニルジメチルウレア、トルエンジメチルウレアである請求項8記載の繊維強化樹脂複合材料。   The fiber-reinforced resin composite material according to claim 8, wherein the urea compound as the component (B) is phenyldimethylurea or toluenedimethylurea. 前記(C)成分の熱伝導率が20W/m・K以上で平均粒径が10μm以下である請求項7記載の繊維強化樹脂複合材料。   The fiber-reinforced resin composite material according to claim 7, wherein the thermal conductivity of the component (C) is 20 W / m · K or more and the average particle size is 10 µm or less. 前記(D)成分がフェノキシ樹脂である請求項7記載の繊維強化樹脂複合材料。   The fiber-reinforced resin composite material according to claim 7, wherein the component (D) is a phenoxy resin. 請求項4または請求項7に記載のマトリックス樹脂組成物が繊維強化材に含浸してなるプリプレグ。   A prepreg formed by impregnating a fiber reinforcing material with the matrix resin composition according to claim 4 or 7.
JP2004357793A 2004-12-10 2004-12-10 Fiber-reinforced resin composite material, resin composition, and prepreg Pending JP2006160972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357793A JP2006160972A (en) 2004-12-10 2004-12-10 Fiber-reinforced resin composite material, resin composition, and prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357793A JP2006160972A (en) 2004-12-10 2004-12-10 Fiber-reinforced resin composite material, resin composition, and prepreg

Publications (1)

Publication Number Publication Date
JP2006160972A true JP2006160972A (en) 2006-06-22

Family

ID=36663349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357793A Pending JP2006160972A (en) 2004-12-10 2004-12-10 Fiber-reinforced resin composite material, resin composition, and prepreg

Country Status (1)

Country Link
JP (1) JP2006160972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001768A (en) * 2007-06-22 2009-01-08 Meian Kokusai Gigyo Kofun Yugenkoshi Prepreg

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001768A (en) * 2007-06-22 2009-01-08 Meian Kokusai Gigyo Kofun Yugenkoshi Prepreg

Similar Documents

Publication Publication Date Title
JP5250972B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg, integrated molded product, fiber reinforced composite material plate, and casing for electric / electronic device
EP2762520B1 (en) Fiber-reinforced resin composite material and process for producing same
CA2880141C (en) Composite material with polyamide particles
EP3129428B1 (en) Composite materials
WO2018131300A1 (en) Prepreg and fiber reinforced composite material
JP7200928B2 (en) Thermosetting resin compositions, prepregs and fiber-reinforced composites
JP6584418B2 (en) Composite material with polyamide particle mixture
JP3216291B2 (en) Flame-retardant epoxy resin composition and prepreg
JP4894339B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2017218573A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2004345154A (en) Fiber reinforced composite material and its manufacturing method
JP2006160972A (en) Fiber-reinforced resin composite material, resin composition, and prepreg
JP6913399B2 (en) Thermosetting resin composition, fiber reinforced resin composite material and its manufacturing method
US20240093003A1 (en) Flame retardant composition, prepreg, and fiber reinforced composite material
WO2018156325A1 (en) Retaining compressive strength of thermoplastic-toughened epoxy composites under hot and wet conditions
JP5005911B2 (en) Fiber reinforced composite material
JP6854028B1 (en) Prepreg and non-combustible materials
JPH11147965A (en) Fiber-reinforced resin composite and prepreg
JP2004307648A (en) Epoxy resin composition and prepreg
JP2024046878A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
EP0397860A1 (en) Epoxy resin composition
KR101923083B1 (en) Prepreg and composite for wind-blade using the low temperature curing epoxy resin composition
WO2023176883A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
Anurangi et al. Enhanced thermo‐mechanical properties of carbon fiber reinforced thermoresistant polymer, a blend of di‐functional epoxy bisphenol A and a tri‐functional epoxy Tactix 742
WO2021153644A1 (en) Epoxy resin composition, cured resin product, prepreg, and fiber-reinforced composite material