JP2007050492A - Hole surface machining method - Google Patents

Hole surface machining method Download PDF

Info

Publication number
JP2007050492A
JP2007050492A JP2005238868A JP2005238868A JP2007050492A JP 2007050492 A JP2007050492 A JP 2007050492A JP 2005238868 A JP2005238868 A JP 2005238868A JP 2005238868 A JP2005238868 A JP 2005238868A JP 2007050492 A JP2007050492 A JP 2007050492A
Authority
JP
Japan
Prior art keywords
hole
jet
water flow
pressure
pressure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005238868A
Other languages
Japanese (ja)
Other versions
JP4581910B2 (en
Inventor
Eiko Kuroe
栄光 黒江
Hiromitsu Morita
森田  浩充
Fumiyoshi Kano
史義 加納
Noriyasu Inomata
憲安 猪俣
Yoshifumi Ito
美文 伊藤
Akito Akimoto
明人 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005238868A priority Critical patent/JP4581910B2/en
Priority to DE200610037069 priority patent/DE102006037069B4/en
Publication of JP2007050492A publication Critical patent/JP2007050492A/en
Application granted granted Critical
Publication of JP4581910B2 publication Critical patent/JP4581910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • B05B7/061Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with several liquid outlets discharging one or several liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • B05B7/062Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
    • B05B7/065Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet an inner gas outlet being surrounded by an annular adjacent liquid outlet

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Nozzles (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hole surface machining method for efficiently applying surface machining to a hole formed in a workpiece. <P>SOLUTION: The method is used for machining the inside face 311 of a main hole 31 by jetting out a jet water flow 2 having prescribed water pressure to the inside of the main hole 31 bored in the workpiece 3. The jet water flow 2 is a two-layered jet water flow 2 composed of a high-pressure water flow 21 and a low-pressure water flow 22 surrounding the high-pressure water flow 21 and contains cavitation bubbles 23. A flow control jig 6 having a reflection face 61 for reflecting the high-pressure water flow 21 is arranged inside the main hole 31. A clearance between the flow control jig 6 and the inside face 311 of the main hole 31 is set to ≤400 μm. The jet water flow 2 hits the inside face 311 of the main hole 31 while the high-pressure water flow 21 is jetted out to the reflection face 61 so as to be reflected with the reflection face 61. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属部材等の被加工体に設けられた孔の内側面に、キャビテーション気泡を含む高圧水流を当てて、被加工体の孔表面への圧縮応力付与、洗浄等を行う、孔表面加工処理方法に関する。   The present invention is directed to applying a high-pressure water stream containing cavitation bubbles to the inner surface of a hole provided in a workpiece such as a metal member, and applying a compressive stress to the hole surface of the workpiece, cleaning, etc. The present invention relates to a processing method.

金属部材へ圧縮応力を付与したり、金属部材の加工部分に生じるバリを除去したり、金属部材の表面に付着した汚れを洗浄したりするにあたり、キャビテーション気泡を含む高圧水流を金属部材の表面に当てる方法がある。即ち、キャビテーション気泡が金属部材の表面において崩壊する際に局部的に生ずる大きな衝撃圧力によって、金属部材の表面に圧縮応力を与えるなどの加工を行うことができる。   When applying compressive stress to a metal member, removing burrs from the processed part of the metal member, or cleaning dirt adhering to the surface of the metal member, a high-pressure water stream containing cavitation bubbles is applied to the surface of the metal member. There is a way to hit. That is, it is possible to perform processing such as applying a compressive stress to the surface of the metal member by a large impact pressure generated locally when the cavitation bubbles collapse on the surface of the metal member.

このような金属部材の表面加工方法のひとつとして、水中において行われる管内面のピーニング施工技術が開示されている(特許文献1)。この技術においては、水中において管内面へノズルと円錐抵抗体を挿入して、その円錐抵抗体が流路を小さくすることによって圧力上昇させ、発生したキャビテーション気泡をその抵抗体と管内面との間で崩壊させてピーニングを行っている。   As one of the surface processing methods for such metal members, a peening technique for pipe inner surface performed in water is disclosed (Patent Document 1). In this technique, a nozzle and a conical resistor are inserted into the inner surface of the tube in water, the conical resistor increases the pressure by reducing the flow path, and the generated cavitation bubbles are placed between the resistor and the inner surface of the tube. The peening is done by collapsing.

しかしながら、上記工法では液中にてキャビテーション気泡を発生させるため高圧水に伴う流れを円錐抵抗体後部へ流す必要がある。つまり、管内面と円錐抵抗体との間に、例えば1.5mm以上という充分な大きさのクリアランスが必要である。そのため、上記クリアランスから抵抗体後方へキャビテーションが流れてしまい、効率的なピーニングを行うことが困難となる。   However, in the above construction method, cavitation bubbles are generated in the liquid, and it is necessary to flow the flow accompanying the high-pressure water to the rear part of the cone resistor. That is, a sufficiently large clearance of, for example, 1.5 mm or more is required between the tube inner surface and the conical resistor. For this reason, cavitation flows from the clearance to the rear of the resistor, making it difficult to perform efficient peening.

特開平10−76467号公報Japanese Patent Laid-Open No. 10-76467

本発明は、かかる従来の問題点に鑑みてなされたもので、被加工体に設けた孔の内側面に効率的に表面加工処理を施すことができる孔表面加工処理方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and intends to provide a hole surface processing method capable of efficiently performing surface processing on the inner surface of a hole provided in a workpiece. It is.

本発明は、被加工体に穿設された孔の内部に、所定の水圧を有する噴射水流を噴出して上記孔の内側面を加工処理する方法であって、
上記噴射水流は、高圧水流と該高圧水流を取り囲む低圧水流とからなる二層の噴射水流であり、キャビテーション気泡を含み、
上記孔の内部に、上記高圧水流を反射する反射面を有する流れ制御治具を配置しておき、
上記流れ制御治具と上記孔の内側面との間のクリアランスを400μm以下として、
上記高圧水流を上記反射面に噴出して反射させることにより、上記噴射水流を上記孔の内側面に当てることを特徴とする孔表面加工処理方法にある(請求項1)。
The present invention is a method of processing an inner surface of the hole by ejecting a jet water flow having a predetermined water pressure inside a hole drilled in a workpiece,
The jet stream is a two-layer jet stream composed of a high-pressure stream and a low-pressure stream surrounding the high-pressure stream, including cavitation bubbles,
A flow control jig having a reflective surface for reflecting the high-pressure water flow is disposed inside the hole,
The clearance between the flow control jig and the inner surface of the hole is 400 μm or less,
The hole surface processing method is characterized in that the jet water stream is applied to the inner surface of the hole by jetting the high-pressure water stream to the reflecting surface and reflecting it.

次に、本発明の作用効果につき説明する。
上記孔表面加工処理方法においては、高圧水流を噴出させると共にその周りを取り囲むように低圧水流を噴出させることによって発生させたキャビテーション気泡を含む噴射水流が、上記流れ制御治具の反射面において反射する。
Next, the effects of the present invention will be described.
In the hole surface processing method, a jet water flow including cavitation bubbles generated by jetting a high-pressure water stream and jetting a low-pressure water stream so as to surround it is reflected on a reflection surface of the flow control jig. .

そして、上記流れ制御冶具と、被加工体の孔の内側面とのクリアランスを400μm以下とすることにより、キャビテーション気泡が流れ制御冶具の後方へ流出することを防止することができる。また、高圧水流が反射面に反射することによる反射面周囲における噴射水流の圧力の急激な昇圧により、キャビテーション気泡を効率的に崩壊させることができる。このとき、極めて大きな衝撃圧力が局部的に発生し、被加工体の孔の内側面に充分な大きさの圧縮応力を付与することができる。即ち、孔の内側面に効率的に圧縮応力を付与することができる。
また、孔表面にバリが生じていればこのバリを効率的に除去することができ、汚れが付着していればこの汚れを効率的に洗浄することができる。
Then, by setting the clearance between the flow control jig and the inner surface of the hole of the workpiece to be 400 μm or less, it is possible to prevent cavitation bubbles from flowing out to the rear of the flow control jig. In addition, the cavitation bubbles can be efficiently collapsed by the rapid pressure increase of the jet water flow around the reflecting surface due to the reflection of the high-pressure water flow on the reflecting surface. At this time, an extremely large impact pressure is locally generated, and a sufficiently large compressive stress can be applied to the inner surface of the hole of the workpiece. That is, it is possible to efficiently apply a compressive stress to the inner surface of the hole.
Moreover, if the burr | flash has arisen on the hole surface, this burr | flash can be removed efficiently, and if dirt has adhered, this dirt can be wash | cleaned efficiently.

以上のごとく、本発明によれば、被加工体に設けた孔の内側面に効率的に表面加工処理を施すことができる孔表面加工処理方法を提供することができる。   As described above, according to the present invention, it is possible to provide a hole surface processing method that can efficiently perform a surface processing on the inner surface of a hole provided in a workpiece.

本発明(請求項1)において、上記被加工体としては、例えば、金属、樹脂、セラミック等からなるものがある。
また、上記孔表面加工処理方法は、例えば、孔の内側面に圧縮応力を付与(ピーニング)したり、バリを除去したり、汚れを洗浄したりする場合に用いることができる。
In the present invention (Claim 1), the workpiece is made of, for example, metal, resin, ceramic, or the like.
Moreover, the said hole surface processing method can be used, for example, when giving compressive stress (peening) to the inner surface of a hole, removing a burr | flash, or wash | cleaning dirt.

また、上記被加工体は、上記孔に交差するように該孔の内側面に開口した交差孔を設けてなり、上記流れ制御治具の上記反射面は、上記孔の軸方向に対し所定の角度を有するように傾斜してなり、上記噴射水流を上記流れ制御冶具の反射面を介して上記交差孔へ向けて反射させ、上記孔と上記交差孔との交差角部及び/又は上記交差孔の内側面に上記キャビテーション気泡を含む上記噴射水流を当てることができる(請求項2)。
この場合には、上記噴射水流を上記交差孔に効率的に導くと共に、交差角部や交差孔の内側面において、効率的にキャビテーション気泡を崩壊させることができる。それ故、交差角部や交差孔の内側面に対し、効率的に孔表面加工処理を行うことができる。
Further, the workpiece is provided with a cross hole opened on the inner surface of the hole so as to cross the hole, and the reflection surface of the flow control jig has a predetermined direction with respect to the axial direction of the hole. It is inclined so as to have an angle, and the jet water flow is reflected toward the cross hole through the reflection surface of the flow control jig, and the cross angle portion between the hole and the cross hole and / or the cross hole. The jet water flow containing the cavitation bubbles can be applied to the inner side surface of the gas.
In this case, the jet water flow can be efficiently guided to the intersecting hole, and the cavitation bubbles can be efficiently collapsed at the intersecting corner portion or the inner surface of the intersecting hole. Therefore, the hole surface processing can be efficiently performed on the crossing corners and the inner side surfaces of the crossing holes.

また、上記交差孔は、上記交差角部とは反対側において上記被加工体の表面に開口した開口部を有し、該開口部から流出する上記噴射水流の流量を制御する流量制御手段により上記開口部からの上記噴射水流の流出量を調整することが好ましい(請求項3)。
この場合には、交差孔に流入する噴射水流の流量を調整することが可能となり、交差孔の表面加工処理を行うのに最適な状態で、キャビテーション気泡を交差孔において崩壊させることが可能となる。
In addition, the cross hole has an opening opened on the surface of the workpiece on the side opposite to the crossing corner, and the flow control means controls the flow rate of the jet water flow flowing out from the opening. It is preferable to adjust the outflow amount of the jet water flow from the opening (claim 3).
In this case, the flow rate of the jet water flowing into the cross hole can be adjusted, and the cavitation bubbles can be collapsed in the cross hole in a state optimal for performing the surface processing of the cross hole. .

また、上記交差孔は、上記交差角部とは反対側において上記被加工体の表面に開口した開口部を有し、該開口部には該開口部を閉塞する閉塞手段を配置することもできる(請求項4)。
この場合には、上記交差孔の内部およびその付近において、噴射水流の淀み領域がより形成されやすくなる。そのため、上記交差孔に導かれたキャビテーション気泡が、上記交差角部や交差孔の内側面付近において充分に崩壊し、交差孔の表面加工処理を効率的に行うことができる。
Further, the cross hole has an opening that opens on the surface of the workpiece on the side opposite to the crossing corner, and a closing means for closing the opening can be disposed in the opening. (Claim 4).
In this case, the stagnation region of the jet water flow is more easily formed in the cross hole and in the vicinity thereof. For this reason, the cavitation bubbles guided to the cross holes are sufficiently collapsed in the vicinity of the cross corners and the inner side surfaces of the cross holes, and the surface processing of the cross holes can be performed efficiently.

また、上記高圧水流を噴出する第1噴出口と、該第1噴出口を取り囲み上記低圧水流を噴出する第2噴出口とを有する二層ノズルを、水中に配置し、該二層ノズルから上記噴射水流を気中へ向かって噴出することが好ましい(請求項5)。
この場合には、噴射水流の中にキャビテーション気泡を早い段階において発生させる、即ち上記二層ノズルのノズル先端に近い位置においてキャビテーション崩壊エネルギを発生させることができる。そのため、被加工体と二層ノズルとの間の距離を小さくしても、充分にキャビテーション気泡による孔表面加工処理を行うことができる。その結果、所望の位置に効率的な孔表面加工処理を行うことができる。
Further, a two-layer nozzle having a first jet port for ejecting the high-pressure water flow and a second jet port surrounding the first jet port and for ejecting the low-pressure water flow is disposed in water, and the two-layer nozzle is used to It is preferable that the jet water flow be jetted into the air.
In this case, cavitation bubbles can be generated in the jet water flow at an early stage, that is, cavitation collapse energy can be generated at a position near the nozzle tip of the two-layer nozzle. Therefore, even if the distance between the workpiece and the two-layer nozzle is reduced, the hole surface processing with cavitation bubbles can be performed sufficiently. As a result, efficient hole surface processing can be performed at a desired position.

また、上記高圧水流を噴出する第1噴出口と該第1噴出口を取り囲み、上記低圧水流を噴出する第2噴出口とを有する二層ノズルから、上記噴射水流を噴出し、上記第1噴射口は、該第1噴射口のノズル先端を上記孔の内部に挿入した状態で上記高圧水流を噴出することもできる(請求項6)。
この場合には、孔の内部に配置した流れ制御治具の反射面に対して、高圧水流の圧力を低下させることなく、照射し反射させることができる。そのため、効率的な孔表面加工処理を行うことができる。
In addition, the jet water flow is ejected from a two-layer nozzle having a first jet port for jetting the high-pressure water flow and a second jet port surrounding the first jet port and jetting the low-pressure water flow, and the first jet The mouth can also eject the high-pressure water flow in a state where the nozzle tip of the first injection port is inserted into the hole (Claim 6).
In this case, it is possible to irradiate and reflect the reflection surface of the flow control jig disposed inside the hole without reducing the pressure of the high-pressure water flow. Therefore, efficient hole surface processing can be performed.

(実施例1)
本発明の実施例にかかる金属孔表面加工処理方法につき、図1〜図3を用いて説明する。
本例の孔表面加工処理方法は、図1、図2に示すごとく、被加工体3の表面に開口した主孔31の内側面311に対して、表面加工処理を行う方法である。
Example 1
A metal hole surface processing method according to an embodiment of the present invention will be described with reference to FIGS.
The hole surface processing method of this example is a method of performing surface processing on the inner side surface 311 of the main hole 31 opened on the surface of the workpiece 3 as shown in FIGS.

即ち、まず、上記主孔31の内部に、該主孔31の軸Z方向に対して90°の角度をもった反射面61を有する流れ制御治具6を配置しておく。そして、キャビテーション気泡23を含む噴射水流2を、主孔31に導入すると共に流れ制御治具6の反射面61を介して反射させる。噴射水流2は、高圧水流21と該高圧水流21を取り囲む低圧水流22とからなる。
また、流れ制御冶具6は、例えばSUS303、SUS304、樹脂、SCM等からなる。
図2に示すごとく、流れ制御治具6と主孔31の内側面311との間のクリアランスcは、400μm以下である。なお、本例においては、クリアランスcは5μmとした。
That is, first, the flow control jig 6 having the reflection surface 61 having an angle of 90 ° with respect to the axis Z direction of the main hole 31 is arranged inside the main hole 31. Then, the jet water flow 2 including the cavitation bubbles 23 is introduced into the main hole 31 and reflected through the reflection surface 61 of the flow control jig 6. The jet water stream 2 includes a high-pressure water stream 21 and a low-pressure water stream 22 surrounding the high-pressure water stream 21.
The flow control jig 6 is made of, for example, SUS303, SUS304, resin, SCM, or the like.
As shown in FIG. 2, the clearance c between the flow control jig 6 and the inner surface 311 of the main hole 31 is 400 μm or less. In this example, the clearance c is 5 μm.

上記被加工体3は、アルミニウムからなり、上記主孔31を穴明け加工してなる。尚、被加工体3は、アルミニウムに限らず、例えば、SCM415、SUS303、SUS304等によって構成することも可能であり、その他、樹脂、セラミック等からなる被加工体にも本加工方法を適用できる。
主孔31は、内径9mmの円筒形状を有し、一方の開口部312は被加工体3の表面に直接開口し、他方の開口部313は凹部314を介して被加工体3の表面に開口している。
The workpiece 3 is made of aluminum and is formed by drilling the main hole 31. Note that the workpiece 3 is not limited to aluminum, and can be constituted by, for example, SCM415, SUS303, SUS304, or the like, and the present machining method can also be applied to workpieces made of resin, ceramic, or the like.
The main hole 31 has a cylindrical shape with an inner diameter of 9 mm, one opening 312 opens directly on the surface of the workpiece 3, and the other opening 313 opens on the surface of the workpiece 3 via the recess 314. is doing.

また、上記噴射水流2を上記被加工体3に噴射するに当たっては、図1に示すごとく、水中に配置した二層ノズル1から気中に配置した被加工体3に向かって噴射水流2を噴出する。
即ち、図1に示すごとく、第1噴出口11と該第1噴出口11を取り囲む第2噴出口12とを有する二層ノズル1を水中に配置する。
Further, in injecting the jet water stream 2 onto the workpiece 3, as shown in FIG. 1, the jet water stream 2 is jetted from the two-layer nozzle 1 arranged in water toward the workpiece 3 arranged in the air. To do.
That is, as shown in FIG. 1, the two-layer nozzle 1 having the first jet port 11 and the second jet port 12 surrounding the first jet port 11 is disposed in the water.

上記第1噴出口11から高圧水流21を気中へ向かって噴出すると共に、上記第2噴出口12から上記高圧水流21よりも低圧の低圧水流22を気中へ向かって噴出する。
上記高圧水流21と該高圧水流21を取り囲む上記低圧水流22とからなる噴射水流2は、キャビテーション気泡23を含む。
上記噴射水流2を、気中に配置した被加工体3の主孔31に導入すると共に上記流れ制御治具6の反射面61へ向けて噴射する。
A high-pressure water stream 21 is ejected from the first ejection port 11 toward the air, and a low-pressure water stream 22 having a lower pressure than the high-pressure water stream 21 is ejected from the second ejection port 12 toward the air.
The jet water stream 2 composed of the high-pressure water stream 21 and the low-pressure water stream 22 surrounding the high-pressure water stream 21 includes cavitation bubbles 23.
The jet water flow 2 is introduced into the main hole 31 of the workpiece 3 disposed in the air and jetted toward the reflecting surface 61 of the flow control jig 6.

上記二層ノズル1は、第1噴出口11に繋がる高圧水ノズル131と、第2噴出口12に繋がる低圧水ノズル132とを有する。該低圧水ノズル132は、上記高圧水ノズル131を囲むように同軸状に配置されている。高圧水ノズル131は、第1噴出口11にオリフィス133を設けてなる。また、オリフィス133の外側部分には、先端へ向かうほど縮径する第1テーパ部134が形成されている。   The two-layer nozzle 1 has a high-pressure water nozzle 131 connected to the first jet port 11 and a low-pressure water nozzle 132 connected to the second jet port 12. The low-pressure water nozzle 132 is coaxially disposed so as to surround the high-pressure water nozzle 131. The high-pressure water nozzle 131 is provided with an orifice 133 at the first jet port 11. In addition, a first taper portion 134 whose diameter decreases toward the tip is formed in the outer portion of the orifice 133.

また、低圧水ノズル132は、上記第1テーパ部134の外側部分において、先端へ向かうほど縮径する第2テーパ部135が形成されている。
上記高圧水ノズル131には高圧水210が供給され、低圧水ノズル132には低圧水220が供給される。高圧水210の供給圧力は例えば10〜50MPaであり、低圧水220の供給圧力は例えば0.05〜0.1MPaである。
The low-pressure water nozzle 132 is formed with a second taper portion 135 whose diameter decreases toward the tip at the outer portion of the first taper portion 134.
High pressure water 210 is supplied to the high pressure water nozzle 131, and low pressure water 220 is supplied to the low pressure water nozzle 132. The supply pressure of the high-pressure water 210 is, for example, 10 to 50 MPa, and the supply pressure of the low-pressure water 220 is, for example, 0.05 to 0.1 MPa.

上記二層ノズル1は、同軸状に配置したが、低圧水ノズル132を高圧水ノズル131に対し偏心させることにより、部分的に加工能力を上げることも可能である。これにより低圧流路を大きく設けた側にキャビテーション気泡を集中できる。すなわち加工能力を上げたい側の低圧流路を大きくするように偏心させることにより、より効果的に表面加工を行うことが可能となる。   Although the two-layer nozzle 1 is arranged coaxially, the processing capability can be partially increased by decentering the low-pressure water nozzle 132 with respect to the high-pressure water nozzle 131. As a result, cavitation bubbles can be concentrated on the side where the low-pressure channel is largely provided. That is, it is possible to perform surface processing more effectively by decentering the low-pressure channel on the side where the processing capability is desired to be increased.

また、上記二層ノズル1は、水槽41に貯留された貯留水42の中に配置されている。そして、第1噴出口11及び第2噴出口12は鉛直上方を向いており、貯留水42の中、即ち水面421の下方に位置している。
具体的には、二層ノズル1のノズル先端14と水面421との距離dが15mm以下となる位置に、二層ノズル1を配置している。
Further, the two-layer nozzle 1 is disposed in the stored water 42 stored in the water tank 41. And the 1st spout 11 and the 2nd spout 12 have faced the vertically upper direction, and are located in the stored water 42, ie, the lower part of the water surface 421.
Specifically, the two-layer nozzle 1 is arranged at a position where the distance d between the nozzle tip 14 of the two-layer nozzle 1 and the water surface 421 is 15 mm or less.

このような配置、構成により、二層の噴射水流2の中にキャビテーション気泡23を早い段階において発生させる、すなわち二層ノズル1のノズル先端14に近い位置においてキャビテーション崩壊エネルギを発生させることができる。そのため、被加工体3と二層ノズル1との間の距離を小さくしても、充分にキャビテーション気泡による孔表面加工処理を行うことができる。   With such an arrangement and configuration, cavitation bubbles 23 can be generated in the two-layer jet water flow 2 at an early stage, that is, cavitation collapse energy can be generated at a position close to the nozzle tip 14 of the two-layer nozzle 1. Therefore, even if the distance between the workpiece 3 and the two-layer nozzle 1 is reduced, the hole surface processing with cavitation bubbles can be performed sufficiently.

その結果、狭い空間において、被加工体3の孔表面加工処理を行うことが可能となる。また、二層ノズル1からの距離が近く、流れの安定した二層の噴射水流2を反射面61を介して被加工体3の主孔31の内側面311に当てることができるため、所望の位置に集中して噴射水流2を当てることができる。そのため、必要な部分に効率的に孔表面加工処理を行うことができる。
また、二層ノズル1のノズル先端14と水面421との距離dが15mm以下であるため、噴射水流2が流れ制御治具6の反射面61に衝突する際の衝撃力を充分に確保することができ、被加工体3の孔表面加工処理を充分に行うことができる。
As a result, the hole surface processing of the workpiece 3 can be performed in a narrow space. Moreover, since the distance from the two-layer nozzle 1 is short and the two-layer jet water flow 2 having a stable flow can be applied to the inner side surface 311 of the main hole 31 of the workpiece 3 through the reflecting surface 61, a desired flow rate can be obtained. The jet water stream 2 can be applied in a concentrated manner. Therefore, it is possible to efficiently perform hole surface processing on necessary portions.
Further, since the distance d between the nozzle tip 14 of the two-layer nozzle 1 and the water surface 421 is 15 mm or less, a sufficient impact force is ensured when the jet water flow 2 collides with the reflecting surface 61 of the flow control jig 6. The hole surface processing of the workpiece 3 can be sufficiently performed.

また、図3は、噴射水流2を発生させるための装置全体を示す図であり、二層ノズル1の高圧水ノズル131には高圧ポンプ53から高圧水210が供給され、低圧水ノズル132には低圧ポンプ54から低圧水220が供給される。高圧ポンプ53及び低圧ポンプ54は、上記水槽41とは異なる給水槽51に貯留された供給用水52の中に配置されている。そして、この供給用水52を高圧ポンプ53及び低圧ポンプ54によって、それぞれ高圧水210及び低圧水220として、二層ノズル1に供給している。
高圧水ノズル131に供給された高圧水210は、第1噴出口11から高圧水流21として噴射される。また、低圧水ノズル132に供給された低圧水220は、第2噴出口12から低圧水流22として噴射される。
FIG. 3 is a diagram showing the entire apparatus for generating the jet water flow 2. The high-pressure water nozzle 131 of the two-layer nozzle 1 is supplied with high-pressure water 210 from the high-pressure pump 53, and the low-pressure water nozzle 132 is supplied with Low pressure water 220 is supplied from the low pressure pump 54. The high-pressure pump 53 and the low-pressure pump 54 are arranged in supply water 52 stored in a water supply tank 51 different from the water tank 41. The supply water 52 is supplied to the two-layer nozzle 1 as high-pressure water 210 and low-pressure water 220 by a high-pressure pump 53 and a low-pressure pump 54, respectively.
The high-pressure water 210 supplied to the high-pressure water nozzle 131 is jetted as the high-pressure water stream 21 from the first jet nozzle 11. The low-pressure water 220 supplied to the low-pressure water nozzle 132 is jetted as the low-pressure water stream 22 from the second jet nozzle 12.

次に、本例の作用効果につき説明する。
上記孔表面加工処理方法においては、高圧水流21を噴出させると共にその周りを取り囲むように低圧水流22を噴出させることによって発生させたキャビテーション気泡23を含む噴射水流2が、上記流れ制御治具6の反射面61において反射する。
Next, the function and effect of this example will be described.
In the hole surface processing method, the jet water stream 2 including the cavitation bubbles 23 generated by jetting the high-pressure water stream 21 and jetting the low-pressure water stream 22 so as to surround the periphery of the high-pressure water stream 21 is Reflected at the reflecting surface 61.

そして、上記流れ制御冶具6と、被加工体3の主孔31の内側面311とのクリアランスc(図2)を400μm以下とすることにより、キャビテーション気泡23が流れ制御冶具6の後方へ流出することを防止することができる。また、高圧水流21が反射面61に反射することによる反射面周囲における噴射水流2の圧力の急激な昇圧により、キャビテーション気泡23を効率的に崩壊させることができる。このとき、極めて大きな衝撃圧力が局部的に発生し、被加工体3の主孔31の内側面に充分な大きさの圧縮応力を付与することができる。即ち、主孔31の内側面311に効率的に圧縮応力を付与することができる。
また、孔表面にバリが生じていればこのバリを効率的に除去することができ、汚れが付着していればこの汚れを効率的に洗浄することができる。
Then, the clearance c (FIG. 2) between the flow control jig 6 and the inner surface 311 of the main hole 31 of the workpiece 3 is set to 400 μm or less, so that the cavitation bubbles 23 flow out to the rear of the flow control jig 6. This can be prevented. Further, the cavitation bubbles 23 can be efficiently collapsed by the rapid pressure increase of the pressure of the jet water flow 2 around the reflection surface due to the reflection of the high-pressure water flow 21 on the reflection surface 61. At this time, an extremely large impact pressure is locally generated, and a sufficiently large compressive stress can be applied to the inner surface of the main hole 31 of the workpiece 3. That is, the compressive stress can be efficiently applied to the inner side surface 311 of the main hole 31.
Further, if burrs are generated on the hole surface, the burrs can be efficiently removed, and if dirt is adhered, the dirt can be efficiently cleaned.

以上のごとく、本例によれば、被加工体に設けた孔の内側面に効率的に表面加工処理を施すことができる孔表面加工処理方法を提供することができる。   As described above, according to this example, it is possible to provide a hole surface processing method that can efficiently perform surface processing on the inner surface of a hole provided in a workpiece.

(実施例2)
本例は、図4、5に示すごとく、被加工体3の表面に開口した主孔31に交差するように該主孔31の内側面311に開口した交差孔32に対して表面加工処理を行う方法である。以下、記述しない構成については、実施例1の構成と同様である。
即ち、まず、上記主孔31の内部に、該主孔31の軸Z方向に対して90〜30°の角度θをもって上記交差孔32側へ傾斜した反射面61を有する流れ制御治具6を配置しておく。なお、本例においては、上記角度θは60°とした。
(Example 2)
In this example, as shown in FIGS. 4 and 5, the surface processing is performed on the cross hole 32 opened on the inner surface 311 of the main hole 31 so as to cross the main hole 31 opened on the surface of the workpiece 3. How to do it. Hereinafter, configurations not described are the same as those in the first embodiment.
That is, first, the flow control jig 6 having the reflection surface 61 inclined to the cross hole 32 side at an angle θ of 90 to 30 ° with respect to the axis Z direction of the main hole 31 is provided inside the main hole 31. Arrange it. In this example, the angle θ is 60 °.

そして、キャビテーション気泡23を含む噴射水流2を、被加工体3における主孔31に導入すると共に流れ制御治具6の反射面61を介して交差孔32へ向けて反射させ、主孔31と交差孔32との間の交差角部33及び交差孔32の内側面321に当てる。
流れ制御治具6は、反射面61の中心611が交差孔32の中心329に対して1.2〜2.0mm上方(主孔31の軸Z方向の上方)となるように配置する。
Then, the jet water flow 2 including the cavitation bubbles 23 is introduced into the main hole 31 in the workpiece 3 and is reflected toward the cross hole 32 through the reflection surface 61 of the flow control jig 6, and crosses the main hole 31. It is applied to the crossing corner 33 between the hole 32 and the inner surface 321 of the crossing hole 32.
The flow control jig 6 is arranged so that the center 611 of the reflecting surface 61 is 1.2 to 2.0 mm above the center 329 of the cross hole 32 (upward in the axis Z direction of the main hole 31).

また、図4、図5に示すごとく、交差孔32は、交差角部33とは反対側において被加工体3の表面に開口した開口部322を有し、噴射水流2を交差孔32に当てる。その際、開口部322に流量制御手段としてのリーク制御治具60を配置することにより、交差孔32の開口部322からの水流のリークを制御する。
上記流れ制御治具6及び上記リーク制御治具60は、SUS、樹脂、SCM等からなる。
上記被加工体3は、アルミニウムからなり、上記主孔31及び交差孔32を穴明け加工してなる。この穴明け加工により、特に交差孔32の交差角部33にバリが生ずることがある。このバリは、本発明の孔表面加工処理方法により除去される。
As shown in FIGS. 4 and 5, the cross hole 32 has an opening 322 opened on the surface of the workpiece 3 on the side opposite to the cross corner 33, and applies the jet water flow 2 to the cross hole 32. . At that time, the leakage of the water flow from the opening 322 of the cross hole 32 is controlled by disposing a leak control jig 60 as a flow rate control means in the opening 322.
The flow control jig 6 and the leak control jig 60 are made of SUS, resin, SCM, or the like.
The workpiece 3 is made of aluminum and is formed by drilling the main hole 31 and the cross hole 32. Due to this drilling process, burr may occur particularly at the crossing corner portion 33 of the crossing hole 32. This burr is removed by the hole surface processing method of the present invention.

このような構成により、所定の角度で傾斜した反射面61に照射された噴射水流2は、交差孔32へ向けて反射され、主孔31と交差孔32との間の交差角部33及び交差孔32の内側面321および内側面311に当たる。このとき、交差孔32に流入した噴射水流2は、リーク制御冶具60により開口部322から流出する噴射水流2の流量が調整される。これにより、交差孔32内における噴射水流2の流速が適度に制御され、所望のキャビテーション気泡23の崩壊を生じさせることが可能となり、交差孔32に対し、適度な表面処理加工を施すことが可能となる。
その他、実施例1と同様の作用効果を有する。
With such a configuration, the jet water flow 2 irradiated on the reflecting surface 61 inclined at a predetermined angle is reflected toward the cross hole 32, and the cross angle portion 33 and the cross between the main hole 31 and the cross hole 32. It hits the inner surface 321 and the inner surface 311 of the hole 32. At this time, the flow rate of the jet water flow 2 flowing out from the opening 322 of the jet water flow 2 flowing into the cross hole 32 is adjusted by the leak control jig 60. Thereby, the flow velocity of the jet water flow 2 in the cross hole 32 is appropriately controlled, and it is possible to cause the desired cavitation bubbles 23 to collapse, and it is possible to perform an appropriate surface treatment on the cross hole 32. It becomes.
In addition, the same effects as those of the first embodiment are obtained.

また、上記リーク制御治具60の代わりに、上記交差孔32の開口部322の全体を閉塞する閉塞治具を配置することもできる。
この場合には、上記交差孔32の内部およびその付近において、噴射水流2の淀み領域がより形成されやすくなる。そのため、上記交差孔32に導かれたキャビテーション気泡23が、上記交差角部33や交差孔32の内側面321付近において充分に崩壊し、交差孔32の孔表面加工処理を効率的に行うことができる。
In place of the leak control jig 60, a closing jig for closing the entire opening 322 of the cross hole 32 may be arranged.
In this case, the stagnation region of the jet water flow 2 is more easily formed in the cross hole 32 and in the vicinity thereof. Therefore, the cavitation bubble 23 guided to the cross hole 32 is sufficiently collapsed in the vicinity of the cross corner portion 33 and the inner side surface 321 of the cross hole 32, and the hole surface processing of the cross hole 32 can be performed efficiently. it can.

(実施例3)
本例は、図6に示すように、主孔31が細長く、加工部位315が主孔開口部313から大きく離れている場合の孔表面加工処理方法に関する。
本例においては、高圧水ノズル131の外径を主孔31の内径よりも小さい径とすると共に、高圧水ノズル131の先端141を低圧水ノズル132の先端142よりも突出させている。そして、その高圧水ノズル131の先端141が加工部位315、すなわち流れ制御冶具6の反射面61の近傍まで延設される構成としている。
その他は、実施例1と同様である。
(Example 3)
This example relates to a hole surface processing method when the main hole 31 is elongated and the processing site 315 is greatly separated from the main hole opening 313 as shown in FIG.
In this example, the outer diameter of the high-pressure water nozzle 131 is smaller than the inner diameter of the main hole 31, and the tip 141 of the high-pressure water nozzle 131 is protruded from the tip 142 of the low-pressure water nozzle 132. And the front-end | tip 141 of the high pressure water nozzle 131 is set as the structure extended to the process site | part 315, ie, the vicinity of the reflective surface 61 of the flow control jig 6. FIG.
Others are the same as in the first embodiment.

このような構成とすることにより、高圧水ノズル131から噴出する高圧水流21の圧力を低下させることなく反射面61に照射すると共に反射させ、効率のよい孔表面加工処理を実現することが可能となる。
その他、実施例1と同様の作用効果を有する。
By adopting such a configuration, it is possible to irradiate and reflect the reflecting surface 61 without reducing the pressure of the high-pressure water stream 21 ejected from the high-pressure water nozzle 131 and to realize efficient hole surface processing. Become.
In addition, the same effects as those of the first embodiment are obtained.

(実施例4)
本例は、図7に示すごとく、交差孔32を有する被加工体の加工方法において、実施例2におけるリーク制御治具60(図4、図5参照)を取り除いた例である。
その他は、実施例2と同様である。
本例のように、リーク制御治具60が配設されず、開口部322が開放されている場合には、交差孔32に導かれた噴射水流2は開口部322から外部へ流れていく。この場合においても、一定のキャビテーション気泡23を発生させ、交差孔32の内側面321や交差角部33の表面加工を行うことは可能である。
その他、実施例2と同様の作用効果を有する。
Example 4
This example is an example in which the leakage control jig 60 (see FIGS. 4 and 5) in the second embodiment is removed in the processing method of the workpiece having the cross holes 32 as shown in FIG.
Others are the same as in the second embodiment.
When the leak control jig 60 is not disposed and the opening 322 is opened as in this example, the jet water flow 2 guided to the cross hole 32 flows from the opening 322 to the outside. Even in this case, it is possible to generate a certain cavitation bubble 23 and to perform the surface processing of the inner side surface 321 of the intersecting hole 32 and the intersecting corner portion 33.
In addition, the same effects as those of the second embodiment are obtained.

なお、上記実施例1〜4において、被加工体3又は被加工体3を保持する保持治具に、噴射水流2が被加工体3へ与えた衝撃エネルギーを検知することができる衝撃センサを配設することもできる(図示略)。そして、該衝撃センサにより検知した衝撃エネルギーの積算値に基づき、加工時間を制御する。   In Examples 1 to 4, an impact sensor capable of detecting the impact energy applied to the workpiece 3 by the jet water flow 2 is arranged on the workpiece 3 or the holding jig that holds the workpiece 3. It can also be provided (not shown). Then, the processing time is controlled based on the integrated value of the impact energy detected by the impact sensor.

例えば、噴射水流2が被加工体3へ与えた衝撃エネルギーの積算値と、孔表面加工処理の進行状況との関係を、予め、実験やシミュレーション等の手段により把握しておく。そして、衝撃センサにより検知した衝撃エネルギーの積算値が、所定の値に到達した時点で、加工を終える。
なお、上記衝撃センサとしては、圧電フィルムセンサを用いることができる。
この場合には、被加工体3に適切な孔表面加工処理を容易かつ効率的に行うことができる。
For example, the relationship between the integrated value of the impact energy applied to the workpiece 3 by the jet water flow 2 and the progress of the hole surface processing is previously grasped by means such as experiments and simulations. Then, when the integrated value of the impact energy detected by the impact sensor reaches a predetermined value, the processing is finished.
A piezoelectric film sensor can be used as the impact sensor.
In this case, it is possible to easily and efficiently perform an appropriate hole surface processing on the workpiece 3.

(比較例)
本例は、図8に示すごとく、流れ制御治具6の反射面61と主孔31の軸Z方向とのなす角度θを45°とすると共に、流れ制御治具6と主孔31の内側面311とのクリアランスcを1.5mmとした例である。
その他は、実施例1と同様である。
(Comparative example)
In this example, as shown in FIG. 8, the angle θ formed by the reflection surface 61 of the flow control jig 6 and the axis Z direction of the main hole 31 is 45 °, and the flow control jig 6 and the main hole 31 In this example, the clearance c with the side surface 311 is 1.5 mm.
Others are the same as in the first embodiment.

本例の場合には、実施例2に比べて、交差角部33におけるバリを充分に除去することが困難となる。また、交差孔32の内側面321に対する圧縮応力の付与や洗浄の効果が低下する。
これは、クリアランスcが1.5mmとなり、400μm以下という適切なクリアランスの範囲を超えることにより、キャビテーション気泡23を効率的に交差孔32に導くことが困難となり、交差角部33や交差孔32の内側面321において、効率的にキャビテーション気泡23を崩壊させることが困難となる。即ち、上記クリアランス範囲を外れることにより、交差孔32付近において、流速の低い、いわゆる淀み領域が形成され難くなるため、キャビテーション気泡23が後方へ流出してしまいキャビテーション気泡23が崩壊し難くなる。これにより、効率的に交差孔32の孔表面加工処理を行うことが困難となる。
In the case of this example, it is difficult to sufficiently remove burrs at the crossing corner portion 33 as compared to the second embodiment. In addition, the effect of applying compressive stress to the inner surface 321 of the cross hole 32 and the cleaning effect are reduced.
This is because when the clearance c is 1.5 mm and exceeds the appropriate clearance range of 400 μm or less, it becomes difficult to efficiently guide the cavitation bubbles 23 to the cross holes 32. On the inner side 321, it becomes difficult to efficiently collapse the cavitation bubbles 23. That is, when the clearance is out of the clearance range, a so-called stagnation region having a low flow velocity is hardly formed in the vicinity of the cross hole 32, so that the cavitation bubble 23 flows backward and the cavitation bubble 23 is difficult to collapse. Thereby, it becomes difficult to perform the hole surface processing of the cross hole 32 efficiently.

(実験例1)
本例は、上記実施例において示した孔表面加工処理方法を用いた場合の加工処理効率を評価した例である。
高圧水210の圧力を30MPa、低圧水220の圧力を0.06MPaとして、連続60秒間被加工体3に対して噴射水流2を当てた。また、本発明の方法においては、ノズル先端14と水面421との距離dを2mm、ノズル先端14と流れ制御治具6の反射面61との距離を50mmとした。
また、交差孔32の内側面321には、塗料を塗布しておいた。
(Experimental example 1)
This example is an example of evaluating the processing efficiency when the hole surface processing method shown in the above embodiment is used.
The pressure of the high-pressure water 210 was 30 MPa, the pressure of the low-pressure water 220 was 0.06 MPa, and the jet water flow 2 was applied to the workpiece 3 for 60 seconds continuously. In the method of the present invention, the distance d between the nozzle tip 14 and the water surface 421 is 2 mm, and the distance between the nozzle tip 14 and the reflection surface 61 of the flow control jig 6 is 50 mm.
In addition, paint was applied to the inner side surface 321 of the cross hole 32.

そして、実施例2、4、及び比較例の方法によって加工処理を施した後において、交差角部33における壊食状態、交差孔32の内側面321における塗料の剥離状態を確認した。
この壊食状態及び剥離状態を、加工処理能力として評価した。即ち、壊食量や剥離量が大きいほど、キャビテーション気泡23を含む噴射水流2による加工エネルギーが高く、加工処理能力が高いといえる。
試験の結果を表1に示す。
And after processing by the method of Example 2, 4 and a comparative example, the erosion state in the crossing angle part 33 and the peeling state of the coating material in the inner surface 321 of the crossing hole 32 were confirmed.
This erosion state and peeling state were evaluated as processing ability. That is, it can be said that the greater the amount of erosion and the greater the amount of separation, the higher the processing energy by the jet water flow 2 including the cavitation bubbles 23 and the higher the processing capacity.
The test results are shown in Table 1.

Figure 2007050492
Figure 2007050492

表1から分かるように、実施例2の場合には、交差角部33の壊食も、交差孔32の塗料の剥離も起こり、充分な加工処理能力がある。
また、実施例4の場合には、交差角部33の壊食は起こるが、交差孔32への加工処理能力は不充分である。
また、比較例の場合には、交差角部33の壊食も、交差孔32の塗料の剥離も起こらず、実施例2に対して加工処理能力に劣る。
以上により、本発明、特に実施例2の方法によれば、交差孔32に効率的に孔表面加工処理を施すことができることが分かる。
As can be seen from Table 1, in the case of Example 2, erosion of the crossing corner portion 33 and peeling of the coating material of the crossing hole 32 occur, and there is sufficient processing capability.
Moreover, in the case of Example 4, although the erosion of the crossing angle part 33 occurs, the processing capacity to the crossing hole 32 is insufficient.
Moreover, in the case of a comparative example, neither the erosion of the crossing angle part 33 nor the peeling of the coating material of the crossing hole 32 occurs, and the processing ability is inferior to that of Example 2.
From the above, it can be seen that according to the present invention, in particular, the method of Example 2, the cross hole 32 can be efficiently subjected to the hole surface processing.

(実験例2)
本例においては、図8に示すごとく、流れ制御治具6と被加工体3の主孔31の内側面311との間のクリアランスcの大きさと、壊食量との関係を調べた。
即ち、実施例1に示す孔表面加工処理方法において、高圧水210の圧力を30MPa、低圧水220の圧力を0.06MPaとして、連続60秒間被加工体3の主孔31の内側面311に対して噴射水流2を、流れ制御治具6を介して当てた。また、ノズル先端14と水面421との距離dを2mm、ノズル先端14と流れ制御治具6の反射面61との距離を50mmとした。
(Experimental example 2)
In this example, as shown in FIG. 8, the relationship between the size of the clearance c between the flow control jig 6 and the inner surface 311 of the main hole 31 of the workpiece 3 and the amount of erosion was examined.
That is, in the hole surface processing method shown in Example 1, the pressure of the high-pressure water 210 is set to 30 MPa and the pressure of the low-pressure water 220 is set to 0.06 MPa, and the inner surface 311 of the main hole 31 of the workpiece 3 is continuously 60 seconds. The jet water flow 2 was applied through the flow control jig 6. The distance d between the nozzle tip 14 and the water surface 421 was 2 mm, and the distance between the nozzle tip 14 and the reflecting surface 61 of the flow control jig 6 was 50 mm.

そして、流れ制御治具6の外径を種々変化させることにより上記クリアランスcを種々変化させて、上記の孔表面加工処理を行い、それぞれの場合の壊食量を測定した。
測定結果を図8に示す。
同図より分かるように、クリアランスcが小さくなるほど、壊食量が大きくなる。
And the said clearance c was changed variously by changing the outer diameter of the flow control jig | tool 6 variously, said hole surface processing was performed, and the amount of erosion in each case was measured.
The measurement results are shown in FIG.
As can be seen from the figure, the smaller the clearance c, the greater the amount of erosion.

そして、クリアランスcが400μm以下であると、壊食量が5mg以上となり、実質的な圧縮応力の付与、汚れの付着洗浄、バリ取り除去が可能となる。また、上記クリアランスcが400μmを超えて大きくなると、上記噴射水流2を効率的に主孔31に導くことが困難となるおそれがある。そして、上記クリアランスcが1.5mmとなると、壊食量が2mg未満となり、孔表面加工処理を充分に行うことが困難となるおそれがある。   If the clearance c is 400 μm or less, the amount of erosion becomes 5 mg or more, and it becomes possible to apply substantial compressive stress, clean and remove dirt, and remove burrs. In addition, when the clearance c exceeds 400 μm, it may be difficult to efficiently guide the jet water flow 2 to the main hole 31. When the clearance c is 1.5 mm, the amount of erosion becomes less than 2 mg, and it may be difficult to sufficiently perform the hole surface processing.

実施例1における、孔表面加工処理方法を示す断面説明図。Sectional explanatory drawing which shows the hole surface processing method in Example 1. FIG. 実施例1における、流れ制御治具を配置した被加工体の断面説明図。Sectional explanatory drawing of the to-be-processed object which has arrange | positioned the flow control jig | tool in Example 1. FIG. 実施例1における、噴射水流を発生させるための装置を示す全体説明図。BRIEF DESCRIPTION OF THE DRAWINGS General explanatory drawing which shows the apparatus for generating a jet water flow in Example 1. FIG. 実施例2における、孔表面加工処理方法を示す断面説明図。Sectional explanatory drawing which shows the hole surface processing method in Example 2. FIG. 実施例2における、流れ制御冶具を配置した被加工体の断面説明図。Sectional explanatory drawing of the to-be-processed body which has arrange | positioned the flow control jig in Example 2. FIG. 実施例3における、孔表面加工処理方法を示す断面説明図。Sectional explanatory drawing which shows the hole surface processing method in Example 3. FIG. 実施例4における、流れ制御治具を配置した被加工体の断面説明図。Sectional explanatory drawing of the to-be-processed body which has arrange | positioned the flow control jig | tool in Example 4. FIG. 比較例における、流れ制御治具を配置した被加工体の断面説明図。Sectional explanatory drawing of the to-be-processed object which has arrange | positioned the flow control jig | tool in a comparative example. 実験例2における、クリアランスと壊食量との関係を示す線図。The diagram which shows the relationship between clearance and the amount of erosion in Experimental example 2. FIG.

符号の説明Explanation of symbols

1 二層ノズル
2 噴射水流
21 高圧水流
22 低圧水流
23 キャビテーション気泡
3 被加工体
31 主孔
311 内側面
32 交差孔
321 内側面
33 交差角部
6 流れ制御治具
60 リーク制御治具
61 反射面
DESCRIPTION OF SYMBOLS 1 Two-layer nozzle 2 Jet water flow 21 High pressure water flow 22 Low pressure water flow 23 Cavitation bubble 3 Work piece 31 Main hole 311 Inner side surface 32 Cross hole 321 Inner side surface 33 Crossing corner 6 Flow control jig 60 Leak control jig 61 Reflective surface

Claims (6)

被加工体に穿設された孔の内部に、所定の水圧を有する噴射水流を噴出して上記孔の内側面を加工処理する方法であって、
上記噴射水流は、高圧水流と該高圧水流を取り囲む低圧水流とからなる二層の噴射水流であり、キャビテーション気泡を含み、
上記孔の内部に、上記高圧水流を反射する反射面を有する流れ制御治具を配置しておき、
上記流れ制御治具と上記孔の内側面との間のクリアランスを400μm以下として、
上記高圧水流を上記反射面に噴出して反射させることにより、上記噴射水流を上記孔の内側面に当てることを特徴とする孔表面加工処理方法。
A method of processing an inner surface of the hole by ejecting a jet water flow having a predetermined water pressure inside a hole drilled in a workpiece,
The jet stream is a two-layer jet stream composed of a high-pressure stream and a low-pressure stream surrounding the high-pressure stream, including cavitation bubbles,
A flow control jig having a reflective surface for reflecting the high-pressure water flow is disposed inside the hole,
The clearance between the flow control jig and the inner surface of the hole is 400 μm or less,
The hole surface processing method according to claim 1, wherein the jet water stream is applied to an inner surface of the hole by jetting the high-pressure water stream to the reflecting surface and reflecting the jet.
請求項1において、上記被加工体は、上記孔に交差するように該孔の内側面に開口した交差孔を設けてなり、上記流れ制御治具の上記反射面は、上記孔の軸方向に対し所定の角度を有するように傾斜してなり、上記噴射水流を上記流れ制御冶具の反射面を介して上記交差孔へ向けて反射させ、上記孔と上記交差孔との交差角部及び/又は上記交差孔の内側面に上記キャビテーション気泡を含む上記噴射水流を当てることを特徴とする孔表面加工処理方法。   In Claim 1, the said to-be-processed object provides the cross hole opened on the inner surface of this hole so that it may cross | intersect the said hole, and the said reflective surface of the said flow control jig | tool is an axial direction of the said hole. And the jet water flow is reflected toward the cross hole through the reflection surface of the flow control jig, and an intersection angle portion between the hole and the cross hole, and / or The hole surface processing method, wherein the jet water flow containing the cavitation bubbles is applied to an inner surface of the cross hole. 請求項2において、上記交差孔は、上記交差角部とは反対側において上記被加工体の表面に開口した開口部を有し、該開口部から流出する上記噴射水流の流量を制御する流量制御手段により上記開口部からの上記噴射水流の流出量を調整することを特徴とする孔表面加工処理方法。   3. The flow rate control according to claim 2, wherein the cross hole has an opening portion opened on a surface of the workpiece on a side opposite to the cross corner portion, and controls a flow rate of the jet water flow flowing out from the opening portion. The hole surface processing method characterized by adjusting the outflow amount of the jet water flow from the opening by means. 請求項2において、上記交差孔は、上記交差角部とは反対側において上記被加工体の表面に開口した開口部を有し、該開口部には該開口部を閉塞する閉塞手段を配置することを特徴とする孔表面加工処理方法。   3. The crossing hole according to claim 2, wherein the crossing hole has an opening that opens on the surface of the workpiece on the side opposite to the crossing corner, and a closing unit that closes the opening is disposed in the opening. The hole surface processing method characterized by the above-mentioned. 請求項1〜4のいずれか一項において、上記高圧水流を噴出する第1噴出口と、該第1噴出口を取り囲み上記低圧水流を噴出する第2噴出口とを有する二層ノズルを、水中に配置し、該二層ノズルから上記噴射水流を気中へ向かって噴出することを特徴とする孔表面加工処理方法。 5. The two-layer nozzle according to claim 1, wherein a two-layer nozzle having a first jet port that jets the high-pressure water flow and a second jet port that surrounds the first jet port and jets the low-pressure water flow is The hole surface processing method characterized by arrange | positioning and ejecting the said jet water flow toward air | atmosphere from this two-layer nozzle. 請求項1〜5のいずれか一項において、上記高圧水流を噴出する第1噴出口と該第1噴出口を取り囲み、上記低圧水流を噴出する第2噴出口とを有する二層ノズルから、上記噴射水流を噴出し、上記第1噴射口は、該第1噴射口のノズル先端を上記孔の内部に挿入した状態で上記高圧水流を噴出することを特徴とする孔表面加工処理方法。   In any one of Claims 1-5, From the two-layer nozzle which has the 1st jet nozzle which ejects the said high pressure water flow, and the 2nd jet nozzle which surrounds this 1st jet port, and ejects the said low pressure water flow, A hole surface processing method, wherein a jet water stream is jetted and the first jet port jets the high-pressure water stream in a state where a nozzle tip of the first jet port is inserted into the hole.
JP2005238868A 2005-08-19 2005-08-19 Hole surface processing method Expired - Fee Related JP4581910B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005238868A JP4581910B2 (en) 2005-08-19 2005-08-19 Hole surface processing method
DE200610037069 DE102006037069B4 (en) 2005-08-19 2006-08-08 Method for modifying a hole surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238868A JP4581910B2 (en) 2005-08-19 2005-08-19 Hole surface processing method

Publications (2)

Publication Number Publication Date
JP2007050492A true JP2007050492A (en) 2007-03-01
JP4581910B2 JP4581910B2 (en) 2010-11-17

Family

ID=37697520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238868A Expired - Fee Related JP4581910B2 (en) 2005-08-19 2005-08-19 Hole surface processing method

Country Status (2)

Country Link
JP (1) JP4581910B2 (en)
DE (1) DE102006037069B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253667A (en) * 2009-03-30 2010-11-11 Jfe Steel Corp Manufacturing method of shaft with hole excellent in fatigue characteristics
CN111558899A (en) * 2019-02-13 2020-08-21 波音公司 System and method for surface treating an interior surface of a part
JP7433738B1 (en) 2023-04-28 2024-02-20 株式会社スギノマシン Cavitation treatment method and cavitation treatment device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102303226B (en) * 2011-07-20 2013-07-17 沈阳飞机工业(集团)有限公司 Method for controlling distortion of large-sized integral structural member in numerical control machining
CN109048464A (en) * 2017-02-14 2018-12-21 丽水市信裕机械制造有限公司 A kind of numerically-controlled machine tool
US11679454B2 (en) 2017-08-31 2023-06-20 The Boeing Company Portable cavitation peening method and apparatus
RU2018124439A (en) * 2017-08-31 2020-01-13 Зе Боинг Компани METHOD FOR CAVITATION NAKLEPP AND MOBILE DEVICE FOR ITS IMPLEMENTATION
US10836012B2 (en) 2017-08-31 2020-11-17 The Boeing Company Method and apparatus for fluid cavitation abrasive surface finishing
US10265833B2 (en) * 2017-08-31 2019-04-23 The Boeing Company Portable cavitation peening method and apparatus
US11633835B2 (en) 2018-12-14 2023-04-25 The Boeing Company Systems for managing abrasive media in cavitated fluid
CN110026371B (en) * 2019-03-29 2020-07-10 中国海洋石油集团有限公司 Tool for cleaning and oiling screw threads of petroleum drilling tool
CN109939989B (en) * 2019-04-19 2023-05-16 徐州万达回转支承有限公司 Spiral cavitation cleaner based on cavitation jet technology and use method
CN110861323B (en) * 2019-10-29 2021-09-14 合肥工业大学 Surface modification device and method capable of reducing surface outgassing rate of plastic material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647667A (en) * 1992-07-30 1994-02-22 Babcock Hitachi Kk Processing method utilizing underwater high-speed water jet
JPH1076467A (en) * 1996-07-12 1998-03-24 Mitsubishi Heavy Ind Ltd Liquid jet peening method for tube inner surface, and nozzle used in the method
JPH1119608A (en) * 1997-07-03 1999-01-26 Hitachi Ltd Washing device
JP2001232524A (en) * 2000-02-21 2001-08-28 Rix Corp Method and device for deburring deep hole
JP2002200528A (en) * 2000-12-27 2002-07-16 Mitsubishi Heavy Ind Ltd Residual stress reducing method for small-bore pipe interior surface
JP2004141811A (en) * 2002-10-25 2004-05-20 Sugino Mach Ltd Washing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583031B2 (en) * 1998-08-12 2004-10-27 株式会社日立製作所 Water jet peening method and water jet peening apparatus for internal structural member of nuclear reactor pressure vessel
JP2000263337A (en) * 1999-01-13 2000-09-26 Japan Science & Technology Corp Surface refining method of metal part, washing method and device
JP2003062492A (en) * 2001-08-23 2003-03-04 Japan Science & Technology Corp Surface treatment and cleaning methods for mechanical part, etc., and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647667A (en) * 1992-07-30 1994-02-22 Babcock Hitachi Kk Processing method utilizing underwater high-speed water jet
JPH1076467A (en) * 1996-07-12 1998-03-24 Mitsubishi Heavy Ind Ltd Liquid jet peening method for tube inner surface, and nozzle used in the method
JPH1119608A (en) * 1997-07-03 1999-01-26 Hitachi Ltd Washing device
JP2001232524A (en) * 2000-02-21 2001-08-28 Rix Corp Method and device for deburring deep hole
JP2002200528A (en) * 2000-12-27 2002-07-16 Mitsubishi Heavy Ind Ltd Residual stress reducing method for small-bore pipe interior surface
JP2004141811A (en) * 2002-10-25 2004-05-20 Sugino Mach Ltd Washing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253667A (en) * 2009-03-30 2010-11-11 Jfe Steel Corp Manufacturing method of shaft with hole excellent in fatigue characteristics
CN111558899A (en) * 2019-02-13 2020-08-21 波音公司 System and method for surface treating an interior surface of a part
JP2020157470A (en) * 2019-02-13 2020-10-01 ザ・ボーイング・カンパニーThe Boeing Company System and method for fluid cavitation processing of part
JP7471813B2 (en) 2019-02-13 2024-04-22 ザ・ボーイング・カンパニー System and method for fluid cavitation treatment of a component - Patents.com
JP7433738B1 (en) 2023-04-28 2024-02-20 株式会社スギノマシン Cavitation treatment method and cavitation treatment device

Also Published As

Publication number Publication date
JP4581910B2 (en) 2010-11-17
DE102006037069A1 (en) 2007-02-22
DE102006037069B4 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP4581910B2 (en) Hole surface processing method
JP4706388B2 (en) Surface processing method
JP4151796B1 (en) Deburring and cleaning apparatus and deburring and cleaning method
JP5039757B2 (en) Laser processing head in laser processing equipment
JP5192216B2 (en) Laser processing equipment
TW201249583A (en) Laser machining apparatus
JPH1085634A (en) Jet stream working device, jet stream working system and jet stream working method
JP2002210657A (en) Device and method for applying polishing jet surface treatment to deep recessed surface using magneto rheological fluid
JP2009241138A (en) Laser beam machining device
JP2006255769A (en) Hybrid laser beam machining apparatus
GB2524337A (en) A method of forming a membrane, a membrane and an ultrasonic atomiser using the membrane
JP3349386B2 (en) Liquid jet peening method for pipe inner surface
CN210497393U (en) Cleaning machine
JP3566241B2 (en) Injection nozzle
JP2007075958A (en) Under-liquid surface processing nozzle device
JPH1099728A (en) Nozzle device in liquid for forming cavitation bubbles
JP6004711B2 (en) Laser processing equipment
JPS6116562B2 (en)
JP4525475B2 (en) Surface processing method
JP2008036731A (en) Cutting tool and cutting method
JP5015637B2 (en) Inner surface reforming method and inner surface reforming apparatus for cylindrical workpiece
JP2010155267A (en) Method of processing fine pore in structural component
JP4484739B2 (en) Water jet nozzle device
JP6054765B2 (en) Chip removal method, chip removal nozzle and chip removal apparatus
JP2681255B2 (en) Injection nozzle in cavitation cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R151 Written notification of patent or utility model registration

Ref document number: 4581910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees