JPH1099728A - Nozzle device in liquid for forming cavitation bubbles - Google Patents

Nozzle device in liquid for forming cavitation bubbles

Info

Publication number
JPH1099728A
JPH1099728A JP27395096A JP27395096A JPH1099728A JP H1099728 A JPH1099728 A JP H1099728A JP 27395096 A JP27395096 A JP 27395096A JP 27395096 A JP27395096 A JP 27395096A JP H1099728 A JPH1099728 A JP H1099728A
Authority
JP
Japan
Prior art keywords
space
diameter
water
nozzle device
injection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27395096A
Other languages
Japanese (ja)
Other versions
JP3301322B2 (en
Inventor
Naohisa Abe
直久 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyama Manufacturing Co Ltd
Original Assignee
Maruyama Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyama Manufacturing Co Ltd filed Critical Maruyama Manufacturing Co Ltd
Priority to JP27395096A priority Critical patent/JP3301322B2/en
Publication of JPH1099728A publication Critical patent/JPH1099728A/en
Application granted granted Critical
Publication of JP3301322B2 publication Critical patent/JP3301322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a liquid jet stream just after jetting from an ejecting hole due to a wall effect from adhering to a wall surface by providing a tapered shape gradually increasing a diameter toward the front and providing a tapered space communicated with an expanded space at the back end and passing the liquid jet stream from the ejecting hole to an opening at the front end. SOLUTION: High pressure water jetted from an orifice 30 becomes a water jet stream 50 and passes through an expanded cylindrical space 32 and a truncated cone space 34, and jets forward from the opening 36. The water 52 in the outside becomes a relative water stream 56 from the periphery of the opening 36 in accordance with discharge of the water jet stream 50 and enter the truncated cone space 34 and goes forward toward the interior in the vicinity of the wall of the truncated cone space 34, and advances toward the opening 36 in accordance with the water jet stream 50 in the vicinity of the water jet stream 50. Since the space between the wall surface and the water jet, stream 50 becomes narrower at the deeper place of the truncated cone space 34, reduction in an advancing speed of the relative water stream 56 toward the expanded cylindrical space part 32 is suppressed and reduction in the relative speed of the water jet stream 50 against the relative water stream 56 at the boundary between the water jet stream 50 and the water 52 in the truncated cone space 34, is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、液中で高圧噴流
を噴射することにより生成したキャビテーション気泡
(=減圧気泡)を利用して洗浄、切断、ピーニング、及
びバリ取り等の作業を行うキャビテーション気泡生成用
液中ノズル装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cavitation bubble for performing operations such as cleaning, cutting, peening, and deburring using cavitation bubbles (= decompression bubbles) generated by injecting a high-pressure jet in a liquid. The present invention relates to a submerged nozzle device for production.

【0002】[0002]

【従来の技術】特公平4−43712号公報のキャビテ
ーション気泡生成用液中ノズル装置では、前方へ向かっ
て径を漸増する円錐空間部を、液体噴流を噴出する噴孔
の直前に連設し、噴孔からの液体噴流を、円錐空間部に
通過させ、円錐空間部の前端開口から外へ放出してい
る。また、特開平5−212317号公報のキャビテー
ション気泡生成用液中ノズル装置では、径が一定の円柱
空間部を、液体噴流を噴出する噴孔に前側に連設し、噴
孔からの液体噴流を、円柱空間部に通過させ、円柱空間
部の前端開口から外へ放出している。
2. Description of the Related Art In a submerged nozzle device for generating cavitation bubbles disclosed in Japanese Patent Publication No. 4-43712, a conical space portion whose diameter gradually increases forward is continuously provided immediately before an injection hole for ejecting a liquid jet. The liquid jet from the injection hole passes through the conical space and is discharged outside from the front end opening of the conical space. In the cavitation bubble generating submerged nozzle apparatus disclosed in Japanese Patent Application Laid-Open No. 5-212317, a cylindrical space having a constant diameter is provided in front of an injection hole for ejecting a liquid jet, and a liquid jet from the injection hole is formed. , And passes through the cylindrical space, and is discharged to the outside through the front end opening of the cylindrical space.

【0003】[0003]

【発明が解決しようとする課題】噴孔の前側に円錐空間
部を連設するキャビテーション気泡生成用液中ノズル装
置では、噴孔と円錐空間部との中心線同士がずれると、
噴孔から出た直後の液体噴流が、壁効果により、近接偏
倚した方の円錐空間部壁面の部位に部分的にくっついて
しまい、その摩擦損失により液体噴流の勢いが低下し
て、キャビテーション気泡の生成効率が低下する。これ
を回避するためには、加工精度を十分に上げる必要があ
るが、これは製造の繁雑化に繋がる。
In a submerged nozzle apparatus for generating cavitation bubbles in which a conical space portion is provided in front of the injection hole, if the center lines of the injection hole and the conical space portion are shifted from each other,
Due to the wall effect, the liquid jet immediately after exiting from the injection hole partially adheres to the portion of the wall of the conical space part that is deviated to the vicinity, and the frictional loss lowers the momentum of the liquid jet and reduces the cavitation bubbles. The production efficiency decreases. In order to avoid this, it is necessary to sufficiently increase the processing accuracy, but this leads to complication of manufacturing.

【0004】噴孔の前側に円柱空間部を連設するキャビ
テーション気泡生成用液中ノズル装置では、円錐空間部
の場合のような不具合はないが、空間部からの液体噴流
の放出に伴って、空間部の前端開口から空間部内へ進入
して来る相対液流と液体噴流との間に適切な相対速度が
生成されず、結果、相対速度効果を十分に利用できず、
キャビテーション気泡の生成効率が低下してしまう。
In a submerged nozzle for cavitation bubble generation, in which a cylindrical space is continuously provided in front of an injection hole, there is no problem as in the case of a conical space, but with the discharge of a liquid jet from the space, An appropriate relative velocity is not generated between the relative liquid flow entering the space from the front end opening of the space and the liquid jet, and as a result, the relative velocity effect cannot be fully utilized,
Cavitation bubble generation efficiency is reduced.

【0005】この発明の目的は、前端開口から進入する
相対液流を利用してキャビテーション気泡の生成効率増
大を図るキャビテーション気泡生成用液中ノズル装置に
おいて、壁効果による噴孔からの噴射直後の液体噴流の
壁面への付着を防止することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cavitation bubble generating submerged nozzle device for increasing cavitation bubble generation efficiency by utilizing a relative liquid flow entering from a front end opening. The purpose is to prevent the jet from adhering to the wall surface.

【0006】[0006]

【課題を解決するための手段】この発明の前提となるキ
ャビテーション気泡生成用液中ノズル装置(10)では、液
体(52)中に配設され噴孔(30)から液体噴流(50)を噴射し
てキャビテーション気泡(64)を生成する。そして、この
キャビテーション気泡生成用液中ノズル装置(10)は次の
要素(a)及び(b)を有している。 (a)噴孔(30)から噴射直後の液体噴流(50)が壁面へ付
着を回避されるように噴孔(30)の直前より噴孔(30)の径
より十分に大きくなって噴孔(30)の前側に連設される拡
径空間部(32) (b)前方へ向かって径を漸増するテーパ形状を備え後
端において拡径空間部(32)へ連通して噴孔(30)から液体
噴流(50)を前端開口(36)の方へ通すテーパ状空間部(34)
In the submerged nozzle device for generating cavitation bubbles (10) which is a premise of the present invention, a liquid jet (50) is injected from an injection hole (30) disposed in a liquid (52). To generate cavitation bubbles (64). The cavitation bubble generating submerged nozzle device (10) has the following elements (a) and (b). (A) The diameter of the injection hole (30) becomes sufficiently larger than the diameter of the injection hole (30) immediately before the injection hole (30) so that the liquid jet (50) immediately after injection from the injection hole (30) is prevented from adhering to the wall surface. (B) a tapered shape that gradually increases in diameter toward the front side and communicates with the enlarged diameter space (32) at the rear end to form an injection hole (30); ) Through which the liquid jet (50) passes toward the front end opening (36).

【0007】噴孔(30)は拡径空間部(32)に臨み、噴孔(3
0)からの液体噴流(50)は拡径空間部(32)内へ噴射され
る。拡径空間部(32)は、噴孔(30)の径に対して噴孔(30)
の直前より十分に大きくなっているので、噴孔(30)から
の液体噴流(50)は、拡径空間部(32)の壁面へ付着するこ
となく、拡径空間部(32)を通過して、テーパ状空間部(3
4)へ至る。テーパ状空間部(34)では、拡径空間部(32)か
らテーパ状空間部(34)の前端開口(36)の方への液体噴流
(50)の通過に伴い、テーパ状空間部(34)の外部の液体(5
2)が、前端開口(36)の周縁よりテーパ状空間部(34)内へ
進入して、液体噴流(50)に対する相対液流(56)となる。
これにより、テーパ状空間部(34)内において、液体噴流
(50)の周辺部では、液体噴流(50)と相対液流(56)との間
に適切な相対速度が生じ、キャビテーション気泡(64)が
適切に生成される。このように、テーパ状空間部(34)に
よる相対液流(56)を利用して、キャビテーション気泡(6
4)の生成効率の増大を図りつつ、噴孔(30)の直前の拡径
空間部(32)により、壁効果による壁面への液体噴流(50)
の付着を防止できる。
The injection hole (30) faces the enlarged diameter space (32), and the injection hole (3)
The liquid jet (50) from (0) is jetted into the enlarged-diameter space (32). The diameter-enlarged space (32) has a diameter corresponding to the diameter of the injection hole (30).
The liquid jet (50) from the injection hole (30) passes through the large-diameter space (32) without adhering to the wall surface of the large-diameter space (32) because it is sufficiently larger than immediately before. And the tapered space (3
4). In the tapered space (34), the liquid jet flows from the enlarged diameter space (32) toward the front end opening (36) of the tapered space (34).
With the passage of the liquid (50), the liquid outside the tapered space (34) (5
2) enters the tapered space (34) from the periphery of the front end opening (36) and becomes a relative liquid flow (56) to the liquid jet (50).
As a result, the liquid jet flows in the tapered space (34).
In the periphery of (50), an appropriate relative velocity is generated between the liquid jet (50) and the relative liquid flow (56), and cavitation bubbles (64) are appropriately generated. In this way, the cavitation bubble (6) is utilized by utilizing the relative liquid flow (56) of the tapered space (34).
While increasing the generation efficiency of 4), the enlarged diameter space (32) immediately before the injection hole (30) allows the liquid jet (50)
Can be prevented from adhering.

【0008】この発明の他のキャビテーション気泡生成
用液中ノズル装置(10)はさらに次の(c)の要素を有し
ている。 (c)拡径空間部(32)とテーパ状空間部(34)との間に存
在する絞り部(38)
Another cavitation bubble generating submerged nozzle device (10) of the present invention further has the following element (c). (C) A throttle (38) existing between the enlarged diameter space (32) and the tapered space (34).

【0009】拡径空間部(32)とテーパ状空間部(34)との
間の絞り部(38)の存在により、前端開口(36)からテーパ
状空間部(34)内へ進入してテーパ状空間部(34)の奥の方
へ進む液体(52)は、テーパ状空間部(34)から拡径空間部
(32)への進入を抑制される。結果、拡径空間部(32)内の
圧力が適切に低下し、拡径空間部(32)内におけるキャビ
テーション気泡(64)の生成効率が高まる。また、絞り部
(38)の拡径空間部(32)側では段部が形成され、その段部
には、液体(52)が滞留して、絞り部(38)を通過して行く
液体噴流(50)との間の相対速度が増大し、段部において
キャビテーション気泡(64)が効率良く生成される。この
キャビテーション気泡(64)は、液体噴流(50)に巻き込ま
れて、運ばれるので、液体噴流(50)内のキャビテーショ
ン気泡(64)をさらに増大できる。
Due to the presence of the throttle (38) between the enlarged diameter space (32) and the tapered space (34), the tapered space enters the tapered space (34) from the front end opening (36). The liquid (52) that proceeds toward the back of the tapered space (34) flows from the tapered space (34)
Approach to (32) is suppressed. As a result, the pressure in the enlarged diameter space (32) is appropriately reduced, and the generation efficiency of the cavitation bubbles (64) in the enlarged diameter space (32) is increased. Also, the aperture
A step is formed on the side of the expanded space portion (32) of (38), and the liquid (52) stays in the step, and the liquid jet (50) that passes through the throttle (38) is formed. The cavitation bubble (64) is efficiently generated in the step portion. Since the cavitation bubbles (64) are entrained and carried by the liquid jet (50), the cavitation bubbles (64) in the liquid jet (50) can be further increased.

【0010】この発明の他のキャビテーション気泡生成
用液中ノズル装置(10)によれば、拡径空間部(32)は、液
体噴流(50)の流れ方向の長さを調整自在とされている。
According to another submerged-nozzle device for generating cavitation bubbles of the present invention, the enlarged-diameter space portion (32) is capable of adjusting the length of the liquid jet (50) in the flow direction. .

【0011】キャビテーション気泡(64)の生成効率が最
大となる液体噴流(50)の流れ方向への噴孔(30)とテーパ
状空間部(34)との距離、したがって、液体噴流(50)の流
れ方向への拡径空間部(32)の長さは、液体噴流(50)の速
度、噴射圧等により変化する。このキャビテーション気
泡生成用液中ノズル装置(10)では、拡径空間部(32)の流
れ方向の液体噴流(50)の長さを調整することにより、液
体噴流(50)の速度、噴射圧等の状況の変化にもかかわら
ず、キャビテーション気泡(64)の生成効率を的確にする
ことができる。
[0011] The distance between the injection hole (30) and the tapered space (34) in the flow direction of the liquid jet (50) at which the generation efficiency of the cavitation bubbles (64) is maximized, and hence the liquid jet (50) The length of the radially enlarged space portion (32) in the flow direction changes depending on the speed, injection pressure, and the like of the liquid jet (50). In the cavitation bubble generating submerged nozzle device (10), by adjusting the length of the liquid jet (50) in the flow direction of the enlarged-diameter space (32), the speed of the liquid jet (50), the injection pressure, etc. Despite the change in the situation, the generation efficiency of the cavitation bubbles (64) can be made accurate.

【0012】この発明の他のキャビテーション気泡生成
用液中ノズル装置(10)によれば、テーパ状空間部(34)の
縦断面のテーパ角(θ/2)が、噴孔(30)からの液体噴流
(50)の広がりのテーパ角(γ/2)より大きい。
According to another cavitation bubble generating submerged nozzle device (10) of the present invention, the taper angle (θ / 2) of the vertical section of the tapered space (34) is set so that the taper angle (θ / 2) from the injection hole (30) increases. Liquid jet
It is larger than the taper angle (γ / 2) of the spread of (50).

【0013】前端開口(36)からテーパ状空間部(34)内へ
進入した液体(52)は、テーパ状空間部(34)の奥へ向かう
に連れて、進行速度を低下する傾向がある。しかし、テ
ーパ状空間部(34)の縦断面のテーパ角(θ/2)が、噴孔
(30)からの液体噴流(50)の広がりのテーパ角(γ/2)よ
り大きいことにより、テーパ状空間部(34)の奥程、テー
パ状空間部(34)の壁面と液体噴流(50)との間隔が狭まる
ので、これにより、テーパ状空間部(34)内を奥へ進む液
体(52)の進行速度の低下を抑制することができる。こう
して、テーパ状空間部(34)の奥においても、相対液流(5
6)と液体噴流(50)との間に適切な相対速度が保持され
て、キャビテーション気泡(64)の生成効率が増大する。
The liquid (52) which has entered the tapered space (34) from the front end opening (36) tends to have a lower traveling speed toward the inside of the tapered space (34). However, the taper angle (θ / 2) of the vertical section of the tapered space (34) is
Since the expansion of the liquid jet (50) from (30) is larger than the taper angle (γ / 2), the depth of the tapered space (34), the wall surface of the tapered space (34) and the liquid jet (50) ) Is narrowed, whereby a decrease in the traveling speed of the liquid (52) traveling deep inside the tapered space (34) can be suppressed. In this way, even in the back of the tapered space (34), the relative liquid flow (5
An appropriate relative speed is maintained between 6) and the liquid jet (50), and the generation efficiency of the cavitation bubbles (64) is increased.

【0014】この発明の他のキャビテーション気泡生成
用液中ノズル装置(10)によれば、下記の寸法関係となっ
ている。 4・d≦D1≦8・d、0<La≦5・d、2・d≦D2
≦7・d、10°≦θ/2≦45°、2・d≦Lb≦・
12d。 ただし、各記号の意味は次のとおりである。 d:噴孔(30)の直径 D1:拡径空間部(32)の直径 D2:絞り部(38)の直径 La:中心線方向の拡径空間部(32)の長さ Lb:中心線方向のテーパ状空間部(34)の長さ θ/2:テーパ状空間部(34)の縦断面において中心線に
対する壁面の傾斜角
According to another cavitation bubble generating submerged nozzle apparatus (10) of the present invention, the following dimensional relationship is obtained. 4 · d ≦ D1 ≦ 8 · d, 0 <La ≦ 5 · d, 2 · d ≦ D2
≦ 7 · d, 10 ° ≦ θ / 2 ≦ 45 °, 2 · d ≦ Lb ≦ ・
12d. However, the meaning of each symbol is as follows. d: Diameter of injection hole (30) D1: Diameter of enlarged diameter space portion (32) D2: Diameter of throttle portion (38) La: Length of enlarged diameter space portion (32) in center line direction Lb: Center line direction Length of tapered space (34) θ / 2: Angle of inclination of wall surface with respect to center line in longitudinal section of tapered space (34)

【0015】[0015]

【発明の実施の形態】以下、図面を参照してこの発明を
説明する。図1は水中ノズル装置10の縦断面図である。
水中ノズル装置10はノズル装着管12を備え、高圧水生成
装置14からの高圧水が高圧水管路16を介してノズル装着
管12の基端側へ供給される。ノズル装着管12は、前端部
の外周部にねじ部18を備え、前面には所定厚、円形のオ
リフィスチップ20を当てられる。キャップ22は、オリフ
ィスチップ20の外側に嵌装しつつ、後端開口の凹部のね
じ溝24をノズル装着管12のねじ部18に螺合し、オリフィ
スチップ20をノズル装着管12の前面に締め付ける。通路
孔26は、ノズル装着管12の内部に中心線に沿って形成さ
れ、高圧水生成装置14からの高圧水を導かれる。逆テー
パ部28、オリフィス30、拡径円柱空間部32、円錐台空間
部34、及び開口36は、通路孔26の中心線に中心線を揃え
て、通路孔26から水中ノズル装置10の前方へ順番に、連
設される。逆テーパ部28及びオリフィス30はオリフィス
チップ20に穿設され、拡径円柱空間部32及び円錐台空間
部34はキャップ22に連設される。逆テーパ部28は、後端
の径を通路孔26の径に等しくされ、前方へ向かって径を
漸減し、前端の径はdとなっている。オリフィス30は長
さ方向へ等径(=d)となっている。拡径円柱空間部32
は、オリフィス30より十分に大きな径であり、円錐台空
間部34は後端から開口36へ向かって径を漸増させてい
る。円錐台空間部34の前端の径は拡径円柱空間部32の径
より小さく、これにより、絞り部38が拡径円柱空間部32
と円錐台空間部34との境に形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of the underwater nozzle device 10.
The underwater nozzle device 10 includes a nozzle mounting pipe 12, and high-pressure water from a high-pressure water generator 14 is supplied to a base end side of the nozzle mounting pipe 12 via a high-pressure water pipe 16. The nozzle mounting tube 12 has a screw portion 18 on the outer peripheral portion of the front end portion, and a circular orifice tip 20 having a predetermined thickness and a predetermined thickness is applied to the front surface. The cap 22 is fitted on the outside of the orifice tip 20, and the screw groove 24 of the concave portion of the rear end opening is screwed into the screw portion 18 of the nozzle mounting pipe 12, and the orifice tip 20 is fastened to the front face of the nozzle mounting pipe 12. . The passage hole 26 is formed inside the nozzle mounting pipe 12 along the center line, and guides high-pressure water from the high-pressure water generator 14. The reverse taper portion 28, the orifice 30, the large-diameter cylindrical space portion 32, the truncated cone space portion 34, and the opening 36 are aligned with the center line of the passage hole 26, and from the passage hole 26 to the front of the submerged nozzle device 10. They are installed in sequence. The inverted taper portion 28 and the orifice 30 are bored in the orifice tip 20, and the enlarged cylindrical space portion 32 and the truncated conical space portion 34 are connected to the cap 22. The diameter of the reverse tapered portion 28 is made equal to the diameter of the passage hole 26 at the rear end, gradually decreases toward the front, and the diameter at the front end is d. The orifice 30 has the same diameter (= d) in the length direction. Large-diameter cylindrical space 32
Has a diameter sufficiently larger than that of the orifice 30, and the diameter of the truncated cone space 34 gradually increases from the rear end toward the opening 36. The diameter of the front end of the truncated cone space portion 34 is smaller than the diameter of the enlarged cylindrical space portion 32.
And at the boundary between the truncated cone space portion 34.

【0016】図2は拡径円柱空間部32及び円錐台空間部
34の各部の諸元を示している。図2の各記号の意味は次
のとおりである。 d:オリフィス30の直径 D1:拡径円柱空間部32の直径 D2:絞り部38の直径 La:中心線方向の拡径円柱空間部32の長さ Lb:中心線方向の円錐台空間部34の長さ θ/2:円錐台空間部34の縦断面において中心線に対す
る壁面の傾斜角
FIG. 2 shows an enlarged cylindrical space 32 and a truncated cone space.
The specifications of each part of 34 are shown. The meaning of each symbol in FIG. 2 is as follows. d: Diameter of the orifice 30 D1: Diameter of the expanded cylindrical space 32 D2: Diameter of the throttle 38 La: Length of the expanded cylindrical space 32 in the centerline direction Lb: Truncated conical space 34 in the centerline direction Length θ / 2: The inclination angle of the wall surface with respect to the center line in the longitudinal section of the truncated cone space portion 34

【0017】各諸元の関係は例えば次のように規定され
る。 4・d≦D1≦8・d、0<La≦5・d、2・d≦D2
≦7・d、10°≦θ/2≦45°、2・d≦Lb≦・
12d。
The relationship between the specifications is defined, for example, as follows. 4 · d ≦ D1 ≦ 8 · d, 0 <La ≦ 5 · d, 2 · d ≦ D2
≦ 7 · d, 10 ° ≦ θ / 2 ≦ 45 °, 2 · d ≦ Lb ≦ ・
12d.

【0018】下記は各寸法の典型例である。 d=1mm,D1=6mm,D2=4mm,La=2mm,Lb
=5mm。
The following is a typical example of each dimension. d = 1 mm, D1 = 6 mm, D2 = 4 mm, La = 2 mm, Lb
= 5mm.

【0019】噴流コア(オリフィス30から水噴流50中に
延びる密度の高い部分)の長さxcを実験により目視観
察し、xc/dが約5.5となるように、各部寸法を規
定すると、dや噴射圧が多少変化しても、加工能力の高
いキャビテーション気泡が生成されることが分かってい
る。なお、噴射圧100kgf/cm^2、レイノルス数11.
2×10^4の下で、観察すると、xcは約5.5mmであ
った。なお、本明細書において、^はべき乗を示してお
り、^nとはn乗を意味する。
The length xc of the jet core (the high-density portion extending from the orifice 30 into the water jet 50) is visually observed by an experiment, and the dimensions of each portion are defined so that xc / d is approximately 5.5. It is known that cavitation bubbles having high processing ability are generated even if d and the injection pressure slightly change. The injection pressure is 100 kgf / cm ^ 2 and the Reynolds number is 11.
Observed under 2.times.10@4, xc was about 5.5 mm. In this specification, ^ indicates a power, and ^ n indicates the nth power.

【0020】図3は円錐台空間部34の壁面と水噴流50と
の間の相対水流56の速度分布を示している。θ/2,γ
/2は、水中ノズル装置10の縦断面において、水中ノズ
ル装置10の中心線(=水噴流50の中心線)に対する円錐
台空間部34の壁面及び水噴流50の束線の角度を示し、θ
>γとなっている。水中ノズル装置10は、所定のタンク
の水52内に沈められて、高圧水生成装置14から高圧水を
供給される。オリフィス30から噴射された高圧水は、水
噴流50となって、拡径円柱空間部32及び円錐台空間部34
を通過し、円錐台空間部34の開口36から水中ノズル装置
10の前方の対象物(図示せず)へ向かって噴射される。
開口36からの水噴流50の放出に伴い、水中ノズル装置10
の外の水52が、開口36の周縁より相対水流56となって、
円錐台空間部34内へ進入する。円錐台空間部34における
相対水流56の相対速度が、水中ノズル装置10の中心線方
向に円錐台空間部34の3個所において図示されており、
相対水流56は、円錐台空間部34の壁面近傍では円錐台空
間部34の奥へ向かって進み、水噴流50の近傍では水噴流
50に連れ添われて、開口36の方へ進む。相対水流56は、
通常、円錐台空間部34の奥へ進むに連れて、その進行速
度を低下する傾向があるが、θ>γの関係により、円錐
台空間部34の奥程、円錐台空間部34の壁面と水噴流50と
の間隔が狭まるので、拡径円柱空間部32の方への相対水
流56の進行速度の低下が抑制され、水噴流50と円錐台空
間部34内の水52との境界における水噴流50と相対水流56
との相対速度の低下が抑制される。結果、キャビテーシ
ョン気泡の生成効率を増大できる。
FIG. 3 shows the velocity distribution of the relative water flow 56 between the wall surface of the truncated cone space 34 and the water jet 50. θ / 2, γ
/ 2 indicates the angle of the bundle of the water jet 50 and the wall surface of the frustoconical space 34 with respect to the center line of the submersible nozzle device 10 (= the center line of the water jet 50) in the vertical cross section of the submersible nozzle device 10.
> Γ. The underwater nozzle device 10 is submerged in water 52 of a predetermined tank, and supplied with high-pressure water from the high-pressure water generator 14. The high-pressure water injected from the orifice 30 becomes a water jet 50, and the expanded cylindrical space portion 32 and the truncated cone space portion 34
Through the opening 36 of the truncated cone space 34
It is fired toward an object (not shown) in front of the object.
With the release of the water jet 50 from the opening 36, the underwater nozzle device 10
Outside water 52 becomes a relative water flow 56 from the periphery of the opening 36,
It enters into the truncated cone space 34. The relative velocity of the relative water flow 56 in the truncated cone space 34 is shown at three places in the truncated cone space 34 in the direction of the center line of the submerged nozzle device 10,
The relative water flow 56 advances toward the inside of the truncated cone space 34 near the wall surface of the truncated cone space 34, and the water jet flows near the water jet 50.
Followed by 50, proceed towards opening 36. The relative water flow 56 is
Normally, as the depth of the truncated cone space 34 increases, the traveling speed tends to decrease. However, due to the relationship of θ> γ, the depth of the truncated cone space 34, the wall surface of the truncated cone space 34 Since the distance between the water jet 50 and the water jet 50 is reduced, a decrease in the traveling speed of the relative water flow 56 toward the enlarged cylindrical space 32 is suppressed, and the water at the boundary between the water jet 50 and the water 52 in the truncated cone space 34 is suppressed. Jet 50 and relative water flow 56
The decrease in relative speed with respect to is suppressed. As a result, cavitation bubble generation efficiency can be increased.

【0021】図4はキャビテーション気泡64等の生成状
態を示している。水噴流50により、相対水流56が開口36
から円錐台空間部34内へ流入するとともに、拡径円柱空
間部32及び円錐台空間部34では水噴流50と相対水流56と
の境界部に大きな相対速度が生じ、水噴流50は乱流状態
になり、水噴流50内にキャビテーション気泡64が生成さ
れる。また、相対水流56は、絞り部38の存在により拡径
円柱空間部32内への進入し難くなっているので、拡径円
柱空間部32内の圧力は十分に低下する。そして、少量の
進入水58が、絞り部38を越えて、拡径円柱空間部32内へ
侵入し、拡径円柱空間部32内で渦を生成するので、水噴
流50の外側でキャビテーション気泡66が効率的に生成さ
れる。このキャビテーション気泡66は、水噴流50に巻き
込まれ、キャビテーション気泡64と一緒に水噴流50によ
り水中ノズル装置10の前方の対象物(図示せず)へ運ば
れ、対象物の洗浄、切断、ピーニング、バリ取り等の処
理を行う。
FIG. 4 shows a state in which cavitation bubbles 64 and the like are generated. The water jet 50 causes the relative water flow 56 to open 36
Flows into the frusto-conical space 34, and a large relative velocity is generated at the boundary between the water jet 50 and the relative water flow 56 in the expanded cylindrical space 32 and the frusto-conical space 34, and the water jet 50 is in a turbulent state. And cavitation bubbles 64 are generated in the water jet 50. Further, since the relative water flow 56 is difficult to enter into the enlarged cylindrical space 32 due to the presence of the throttle portion 38, the pressure in the enlarged cylindrical space 32 is sufficiently reduced. Then, a small amount of entering water 58 passes through the constricted portion 38 and penetrates into the enlarged-diameter cylindrical space 32, and generates a vortex in the enlarged-diameter cylindrical space 32, so that cavitation bubbles 66 are formed outside the water jet 50. Is generated efficiently. This cavitation bubble 66 is entrained in the water jet 50 and is carried by the water jet 50 together with the cavitation bubble 64 to an object (not shown) in front of the submerged nozzle device 10 to clean, cut, peen, Perform processing such as deburring.

【0022】図5は図4の絞り部38の近傍の拡大図であ
る。絞り部38の存在により絞り部38の拡径円柱空間部32
側には段部が形成され、その段部に水52が滞留し、水噴
流50との間の相対速度差が増大して、キャビテーション
気泡68の生成を促進する。このキャビテーション気泡68
も、図4のキャビテーション気泡66と同様に、水噴流50
に巻き込まれて、キャビテーション気泡64と共に対象物
へ向かう。
FIG. 5 is an enlarged view of the vicinity of the diaphragm 38 in FIG. Due to the presence of the constricted portion 38, the enlarged cylindrical space 32 of the constricted portion 38
A step is formed on the side, and water 52 stays in the step, and the relative speed difference between the water jet 50 and the water jet 50 increases, thereby promoting the generation of the cavitation bubbles 68. This cavitation bubble 68
4 is similar to the cavitation bubble 66 in FIG.
And heads for the object together with the cavitation bubbles 64.

【0023】図6は従来技術(破線)と本発明(実線)
とを対比して加工間距離(水中ノズル装置10から対象物
までの距離)とキャビテーション気泡による壊食量との
関係を示している。本発明において採用した各部寸法は
前述の典型例で提示した寸法のものである。噴射圧とし
て100kgf/cm^2、300kgf/cm^2の2個の条件で調べ
たが、噴射圧100kgf/cm^2の下では、壊食量について
本発明の方が従来技術を上回っており、上回り率は最大
約30%に達している。噴射圧300kgf/cm^2の下で
は、中間の加工間距離範囲で本発明の壊食量が従来技術
の壊食量より下回っているものの、最大加工間距離は本
発明の方が従来技術より増大しており、加工間距離の大
きい領域における最大壊食量は本発明の方が従来技術よ
り大きくなっている。
FIG. 6 shows the prior art (broken line) and the present invention (solid line).
The relationship between the processing distance (the distance from the underwater nozzle device 10 to the target object) and the amount of erosion caused by cavitation bubbles is shown in comparison with FIG. The dimensions of each part employed in the present invention are those shown in the above-mentioned typical example. The injection pressure was 100 kgf / cm ^ 2 and 300 kgf / cm ^ 2, but under the injection pressure of 100 kgf / cm ^ 2, the erosion amount of the present invention was higher than that of the prior art under the injection pressure of 100 kgf / cm ^ 2. The upturn rate reaches a maximum of about 30%. Under the injection pressure of 300 kgf / cm ^ 2, although the erosion amount of the present invention is lower than the erosion amount of the prior art in the intermediate inter-work distance range, the maximum inter-work distance is larger in the present invention than in the prior art. Therefore, the maximum erosion amount in the region where the distance between the processes is large is larger in the present invention than in the conventional technology.

【0024】図7は別の水中ノズル装置10の縦断面図で
ある。相違点についてのみ説明する。オリフィスチップ
20が省略され、逆テーパ部28及びオリフィス30はノズル
装着管12に形成される。円周溝74は、オリフィス30を中
心とする円でノズル装着管12の前端部に形成され、ノズ
ル装着管12の前面に開口している。円周突条76は、キャ
ップ22に形成され、円周溝74に密に嵌挿自在となってい
る。こうして、拡径円柱空間部32が、放射方向へは円周
突条76により画定され、軸方向へはノズル装着管12の前
面と拡径円柱空間部32の奥部の底面とにより画定され
て、形成される。ロックナット78は、キャップ22の後端
に隣接して、ねじ部18に螺合し、キャップ22の回転を抑
制する。ノズル装着管12のねじ部18へのキャップ22のね
じ溝24の螺合位置の変更により、水中ノズル装置10の中
心線方向の拡径円柱空間部32の長さが変化する。水噴流
50の速度、噴射圧等の使用条件が変わると、キャビテー
ション気泡64の生成効率を最大にする拡径円柱空間部32
の長さも微妙に変化する。この水中ノズル装置10では、
拡径円柱空間部32の長さを使用条件に合わせて適宜変更
して、キャビテーション気泡64の生成効率を増大でき
る。
FIG. 7 is a longitudinal sectional view of another underwater nozzle device 10. Only the differences will be described. Orifice tip
20 is omitted, and the reverse tapered portion 28 and the orifice 30 are formed in the nozzle mounting tube 12. The circumferential groove 74 is formed at the front end of the nozzle mounting pipe 12 in a circle centered on the orifice 30 and opens at the front of the nozzle mounting pipe 12. The circumferential ridge 76 is formed on the cap 22 and can be closely fitted and inserted into the circumferential groove 74. Thus, the enlarged cylindrical space portion 32 is defined by the circumferential ridge 76 in the radial direction, and is defined by the front surface of the nozzle mounting tube 12 and the bottom surface of the deep portion of the enlarged cylindrical space portion 32 in the axial direction. ,It is formed. The lock nut 78 is screwed into the screw portion 18 adjacent to the rear end of the cap 22 to suppress the rotation of the cap 22. By changing the screwing position of the screw groove 24 of the cap 22 to the screw portion 18 of the nozzle mounting tube 12, the length of the enlarged cylindrical space portion 32 in the center line direction of the underwater nozzle device 10 changes. Water jet
When the operating conditions such as speed, injection pressure, etc. change, the diameter of the expanded cylindrical space 32 maximizes the generation efficiency of the cavitation bubbles 64.
Also varies slightly. In this underwater nozzle device 10,
By appropriately changing the length of the enlarged cylindrical space 32 in accordance with the use conditions, the generation efficiency of the cavitation bubbles 64 can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水中ノズル装置の縦断面図である。FIG. 1 is a longitudinal sectional view of an underwater nozzle device.

【図2】拡径円柱空間部及び円錐台空間部の各部の諸元
を示している図である。
FIG. 2 is a diagram showing the specifications of each part of a large-diameter cylindrical space portion and a truncated cone space portion.

【図3】円錐台空間部の壁面と水噴流との間の相対水流
の速度分布を示している図である。
FIG. 3 is a diagram showing a velocity distribution of a relative water flow between a wall surface of a truncated cone space portion and a water jet.

【図4】キャビテーション気泡等の生成状態を示してい
る図である。
FIG. 4 is a diagram showing a state of generation of cavitation bubbles and the like.

【図5】図4の絞り部の近傍の拡大図である。FIG. 5 is an enlarged view of the vicinity of a diaphragm in FIG. 4;

【図6】従来技術(破線)と本発明(実線)とを対比し
て加工間距離(水中ノズル装置から対象物までの距離)
とキャビテーション気泡による壊食量との関係を示して
いる図である。
FIG. 6 compares the prior art (broken line) with the present invention (solid line) and compares the distance between processing (the distance from the underwater nozzle device to the object).
FIG. 4 is a diagram showing a relationship between the erosion amount due to cavitation bubbles.

【図7】別の水中ノズル装置の縦断面図である。FIG. 7 is a longitudinal sectional view of another underwater nozzle device.

【符号の説明】[Explanation of symbols]

10 水中ノズル装置(キャビテーション気泡生成用
液中ノズル装置) 30 オリフィス(噴孔) 32 拡径円柱空間部(拡径空間部) 34 円錐台空間部(テーパ状空間部) 36 開口(前端開口) 38 絞り部 50 水噴流(液体噴流) 52 水(液体) 56 相対水流(相対液流) 64 キャビテーション気泡(キャビテーション気
泡)
DESCRIPTION OF SYMBOLS 10 Underwater nozzle apparatus (submerged nozzle apparatus for cavitation bubble generation) 30 Orifice (injection hole) 32 Expanded cylindrical space section (expanded space section) 34 Truncated cone space section (tapered space section) 36 Opening (front end opening) 38 Restrictor 50 Water jet (liquid jet) 52 Water (liquid) 56 Relative water flow (relative liquid flow) 64 Cavitation bubbles (cavitation bubbles)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液体(52)中に配設され噴孔(30)から液体
噴流(50)を噴射してキャビテーション気泡(64)を生成す
るキャビテーション気泡生成用液中ノズル装置(10)にお
いて、(a)噴孔(30)から噴射直後の液体噴流(50)が壁
面へ付着を回避されるように前記噴孔(30)の直前より前
記噴孔(30)の径より十分に大きくなって前記噴孔(30)の
前側に連設される拡径空間部(32)、及び(b)前方へ向
かって径を漸増するテーパ形状を備え後端において前記
拡径空間部(32)へ連通して前記噴孔(30)から前記液体噴
流(50)を前端開口(36)の方へ通すテーパ状空間部(34)、
を有していることを特徴とするキャビテーション気泡生
成用液中ノズル装置。
A cavitation bubble generating submerged nozzle device (10) that is disposed in a liquid (52) and injects a liquid jet (50) from an injection hole (30) to generate a cavitation bubble (64). (A) Immediately before the injection hole (30), the diameter of the injection hole (30) becomes sufficiently larger so that the liquid jet (50) immediately after injection from the injection hole (30) is prevented from adhering to the wall surface. (B) a tapered shape which gradually increases in diameter toward the front, and communicates with the enlarged diameter space (32) at the rear end. A tapered space (34) for passing the liquid jet (50) from the injection hole (30) toward the front end opening (36),
A submerged nozzle device for generating cavitation bubbles, comprising:
【請求項2】 (c)前記拡径空間部(32)と前記テーパ
状空間部(34)との間に存在する絞り部(38)、を有してい
ることを特徴とする請求項1記載のキャビテーション気
泡生成用液中ノズル装置。
2. The method according to claim 1, further comprising: (c) a throttle section (38) existing between the enlarged diameter space section (32) and the tapered space section (34). A submerged nozzle device for generating cavitation bubbles as described in the above.
【請求項3】 前記拡径空間部(32)は、液体噴流(50)の
流れ方向の長さを調整自在とされていることを特徴とす
る請求項1又は2記載のキャビテーション気泡生成用液
中ノズル装置。
3. The liquid for generating cavitation bubbles according to claim 1, wherein the diameter of the enlarged space portion (32) is adjustable in length in a flow direction of the liquid jet (50). Medium nozzle device.
【請求項4】 前記テーパ状空間部(34)の縦断面のテー
パ角(θ/2)が、前記噴孔(30)からの液体噴流(50)の広
がりのテーパ角(γ/2)より大きいことを特徴とする請
求項1〜3のいずれかに記載のキャビテーション気泡生
成用液中ノズル装置。
4. The taper angle (θ / 2) of the longitudinal section of the tapered space portion (34) is larger than the taper angle (γ / 2) of the spread of the liquid jet (50) from the injection hole (30). The submerged nozzle device for generating cavitation bubbles according to any one of claims 1 to 3, which is large.
【請求項5】 下記の寸法関係となっていることを特徴
とする請求項1〜4のいずれかに記載のキャビテーショ
ン気泡生成用液中ノズル装置。 4・d≦D1≦8・d、0<La≦5・d、2・d≦D2
≦7・d、10°≦θ/2≦45°、2・d≦Lb≦・
12d。 ただし、各記号の意味は次のとおりである。 d:噴孔(30)の直径 D1:拡径空間部(32)の直径 D2:絞り部(38)の直径 La:中心線方向の拡径空間部(32)の長さ Lb:中心線方向のテーパ状空間部(34)の長さ θ/2:テーパ状空間部(34)の縦断面において中心線に
対する壁面の傾斜角
5. The submerged nozzle device for generating cavitation bubbles according to claim 1, wherein the dimensional relationship is as follows. 4 · d ≦ D1 ≦ 8 · d, 0 <La ≦ 5 · d, 2 · d ≦ D2
≦ 7 · d, 10 ° ≦ θ / 2 ≦ 45 °, 2 · d ≦ Lb ≦ ・
12d. However, the meaning of each symbol is as follows. d: Diameter of injection hole (30) D1: Diameter of enlarged diameter space portion (32) D2: Diameter of throttle portion (38) La: Length of enlarged diameter space portion (32) in center line direction Lb: Center line direction Length of tapered space (34) θ / 2: Angle of inclination of wall surface with respect to center line in longitudinal section of tapered space (34)
JP27395096A 1996-09-26 1996-09-26 Submerged nozzle device for cavitation bubble generation Expired - Fee Related JP3301322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27395096A JP3301322B2 (en) 1996-09-26 1996-09-26 Submerged nozzle device for cavitation bubble generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27395096A JP3301322B2 (en) 1996-09-26 1996-09-26 Submerged nozzle device for cavitation bubble generation

Publications (2)

Publication Number Publication Date
JPH1099728A true JPH1099728A (en) 1998-04-21
JP3301322B2 JP3301322B2 (en) 2002-07-15

Family

ID=17534837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27395096A Expired - Fee Related JP3301322B2 (en) 1996-09-26 1996-09-26 Submerged nozzle device for cavitation bubble generation

Country Status (1)

Country Link
JP (1) JP3301322B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167497A (en) * 1998-12-08 2000-06-20 Babcock Hitachi Kk Water jet nozzle
JP2000167543A (en) * 1998-12-07 2000-06-20 Babcock Hitachi Kk Device and process for decomposition of underwater trace hazardous organic compound
JP2000254553A (en) * 1999-03-11 2000-09-19 Sugino Mach Ltd Nozzle for ejecting jet in liquid and method for adjusting impact force thereof
JP2003080117A (en) * 2001-09-07 2003-03-18 Keihin Corp Jetting nozzle
JP2003080119A (en) * 2001-09-07 2003-03-18 Keihin Corp Jetting nozzle
JP2003083274A (en) * 2001-09-07 2003-03-19 Keihin Corp Impellor for fuel pump and method for manufacturing the same
JP2012176159A (en) * 2011-02-28 2012-09-13 Seiko Epson Corp Fluid ejection device
JP2014064979A (en) * 2012-09-25 2014-04-17 Sugino Machine Ltd Cavitation nozzle
JP2016534874A (en) * 2013-10-17 2016-11-10 アショク エイドリアン シング Fluid processing apparatus and process
CN108080159A (en) * 2017-12-25 2018-05-29 浙江工业大学 A kind of high pressure cavitation jet combines nozzle
JP2018126283A (en) * 2017-02-07 2018-08-16 パナソニックIpマネジメント株式会社 Oral cavity washing equipment and nozzle therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167543A (en) * 1998-12-07 2000-06-20 Babcock Hitachi Kk Device and process for decomposition of underwater trace hazardous organic compound
JP2000167497A (en) * 1998-12-08 2000-06-20 Babcock Hitachi Kk Water jet nozzle
JP2000254553A (en) * 1999-03-11 2000-09-19 Sugino Mach Ltd Nozzle for ejecting jet in liquid and method for adjusting impact force thereof
JP2003080117A (en) * 2001-09-07 2003-03-18 Keihin Corp Jetting nozzle
JP2003080119A (en) * 2001-09-07 2003-03-18 Keihin Corp Jetting nozzle
JP2003083274A (en) * 2001-09-07 2003-03-19 Keihin Corp Impellor for fuel pump and method for manufacturing the same
JP2012176159A (en) * 2011-02-28 2012-09-13 Seiko Epson Corp Fluid ejection device
JP2014064979A (en) * 2012-09-25 2014-04-17 Sugino Machine Ltd Cavitation nozzle
JP2016534874A (en) * 2013-10-17 2016-11-10 アショク エイドリアン シング Fluid processing apparatus and process
US10441926B2 (en) 2013-10-17 2019-10-15 Ashok Adrian Singh Fluid treatment apparatus and process
US11285447B2 (en) 2013-10-17 2022-03-29 Ashok Adrian Singh Fluid treatment apparatus and process
JP2018126283A (en) * 2017-02-07 2018-08-16 パナソニックIpマネジメント株式会社 Oral cavity washing equipment and nozzle therefor
CN108080159A (en) * 2017-12-25 2018-05-29 浙江工业大学 A kind of high pressure cavitation jet combines nozzle

Also Published As

Publication number Publication date
JP3301322B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
JP3478914B2 (en) Fluid injection nozzle and stress improvement processing method using the nozzle
US4798339A (en) Submerged jet injection nozzle
JP3301322B2 (en) Submerged nozzle device for cavitation bubble generation
CA1128582A (en) Cavitation nozzle assembly
JP4581910B2 (en) Hole surface processing method
EP0110529B1 (en) High velocity fluid abrasive jet
US4819314A (en) Jet nozzles
JP2008161832A (en) Bubble generator
JP3343371B2 (en) Cavitation injection device
US4764180A (en) Method of manufacturing jet nozzles
JPH07241494A (en) Nozzle for water jet
JP2004076573A (en) Injection head of fluid
JPH06500959A (en) Machining method and apparatus with improved chip control
JPH1076467A (en) Liquid jet peening method for tube inner surface, and nozzle used in the method
JPS6116562B2 (en)
JP2681255B2 (en) Injection nozzle in cavitation cleaning device
JP3317723B2 (en) Underwater nozzle for metal reinforcement
JPH02197613A (en) Injector of solidifying agent for large-diameter ground improvement
JP5996348B2 (en) Cavitation nozzle
JPH08257998A (en) Cavitation jet nozzle
JPH11101429A (en) Soot blower
JPH0584452A (en) Water-jet peening nozzle for improving residual stress
JPH0623670A (en) Nozzle for water jet cutting and cutting method by water jet
JPH09253534A (en) In-liquid nozzle device for production of cavitation air bubbles
JP3609518B2 (en) Injection nozzle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees