JP2007049833A - Input voltage detection circuit and power supply unit therewith - Google Patents

Input voltage detection circuit and power supply unit therewith Download PDF

Info

Publication number
JP2007049833A
JP2007049833A JP2005232091A JP2005232091A JP2007049833A JP 2007049833 A JP2007049833 A JP 2007049833A JP 2005232091 A JP2005232091 A JP 2005232091A JP 2005232091 A JP2005232091 A JP 2005232091A JP 2007049833 A JP2007049833 A JP 2007049833A
Authority
JP
Japan
Prior art keywords
voltage
winding
power supply
transformer
smoothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005232091A
Other languages
Japanese (ja)
Inventor
Masayasu Tomiyama
正康 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005232091A priority Critical patent/JP2007049833A/en
Publication of JP2007049833A publication Critical patent/JP2007049833A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a commercial power supply voltage at low cost without using a transformer. <P>SOLUTION: A flyback voltage is peak-charged using a diode and a capacitor, and resistance synthesis is made with a DC output voltage of a switching power to generate a voltage corresponding to the commercial power supply voltage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、商用電源電圧を検知するための回路構成に関するものであり、特に商用電源電圧を整流平滑して得られた高圧直流電圧を、機器が必要とする数V〜数十Vの低電圧の直流電圧に変換するスイッチング電源において、主にフライバック電圧を利用してピークチャージを行う際の入力電圧検知方法及び回路方式に関するものである。   The present invention relates to a circuit configuration for detecting a commercial power supply voltage, and in particular, a high voltage DC voltage obtained by rectifying and smoothing a commercial power supply voltage is a low voltage of several V to several tens of V required by an apparatus. The present invention relates to an input voltage detection method and a circuit system when performing peak charge mainly using a flyback voltage in a switching power supply for converting to a direct current voltage.

一般に商用電源電圧の検知回路としては特登録03240591に具体的な回路例が記述されているように、ダイオードブリッジ、コンデンサにて平滑整流する前段の商用電源電圧を直接商用周波数用トランスの1次側に入力して、配置したトランスの2次側からダイオード及びコンデンサを用いてピークチャージすることで商用電源電圧を検知するのが一般的である。
特登録03240591号公報
In general, as a circuit example for detecting a commercial power supply voltage, a specific circuit example is described in Japanese Patent Registration No. 03240591, the commercial power supply voltage of the previous stage that is smoothed and rectified by a diode bridge and a capacitor is directly used as the primary side of a commercial frequency transformer. In general, the commercial power supply voltage is detected by performing peak charging from the secondary side of the arranged transformer using a diode and a capacitor.
Japanese Patent Registration No. 03240591

しかしながら、上記の特登録03240591に具体的に記述されている商用電源電圧検知回路では、商用電源電圧側である1次側と直流出力電圧側である2次側との絶縁のためにトランスを用いているため、入力電圧検知回路を搭載しようとする部品の実装面積により装置自体が大きくなってしまうという問題がある。また、商用電源電圧を検知するためのためにトランスを配置するため、部品点数が増加し低コスト化を図りにくいという問題があった。   However, in the commercial power supply voltage detection circuit specifically described in the above special registration 03240591, a transformer is used for insulation between the primary side which is the commercial power supply voltage side and the secondary side which is the DC output voltage side. Therefore, there is a problem that the device itself becomes large due to the mounting area of the component to be mounted with the input voltage detection circuit. Further, since a transformer is arranged for detecting the commercial power supply voltage, there is a problem that the number of parts increases and it is difficult to reduce the cost.

以下回路例を用いて詳細に説明する。   This will be described in detail below using a circuit example.

(スイッチング電源装置部の基本動作)
従来のスイッチング電源装置を図2に示した自励型フライバックコンバータ(RCC:リンギングチョークコンバータ)を基本回路として説明する。絶縁トランスT21は入力側の1次巻線Npと出力側の2次巻線Nsおよび1次側の補助巻線Nbにて構成されている。補助巻線Nbは主スイッチング素子Q21の制御端子のオン/オフ制御を行うスイッチング素子Q22の駆動用巻線である。商用電源電圧はブリッジダイオードD23で整流し、アルミ電界コンデンサC25にて直流入力電圧Eに整流平滑される。直流入力電圧Eは1次巻線Npの一端と主スイッチング素子Q21の電流流出端子の間に印加され、入力電圧の(+)側は1次巻線Npの一端、入力電圧の(−)側は主スイッチング素子Q21の電流流出端子に接続されている。また、補助巻き線Nbは1次巻き線Npと同極に、2次巻線Nsは異極に接続されている。入力電圧の(+)側と主スイッチング素子Q21の制御端子間には起動抵抗R201が接続されている。また、主スイッチング素子Q21の制御端子と直流電圧Eの(−)側との間には抵抗R202が接続され、起動抵抗R201と直流入力電圧Eを分圧することにより主スイッチング素子Q21がオンするに充分な電圧を発生する。主スイッチング素子Q21の制御端子と補助巻線Nbの1次巻線との同極側との間にはコンデンサC21と抵抗R203、R204が接続されている。抵抗R204の両端には補助巻線Nb側をカソードの向きにしたダイオードD21が接続されており、主スイッチング素子Q21のターンオン、ターンオフのスピードを調整している。スイッチング素子Q22は主スイッチング素子Q21のオン、オフを制御するために設けられており、電流流入端子は主スイッチング素子Q21の制御端子に、電流流出端子は直流電圧Eの(−)側に接続され、制御端子と電流流出端子との間にはコンデンサC22が接続されている。補助巻線Nbとスイッチング素子Q22の制御端子との間には抵抗R205が接続され、コンデンサC22との間で時定数回路を構成している。オプトカプラIC21の1次側の電流流入端子と主スイッチング素子Q21の制御端子との間には抵抗R202が接続され、オプトカプラIC21に流れる電流を制限している。オプトカプラIC21のフォトトランジスタの電流流出端子はスイッチング素子Q22の制御端子に接続されている。絶縁トランスT21の2次巻線Nsの1次巻線との異極側には整流用のダイオードD22のアノード側が接続され、ダイオードD22のカソード側と2次巻線Nsの1次巻線と同極側との間には電界コンデンサC23が接続され、ダイオードD22にて整流された交番電圧の平滑を行っている。出力電圧Voは抵抗R207、R208によって分圧され、分圧された電圧は差動増幅器IC22の反転入力端子に接続され、ツェナーダイオードZD21と抵抗R209とで生成された基準電圧は差動増幅器IC22の非反転入力端子に入力され、差動増幅器IC22は反転入力端子の入力電圧を、基準電圧と比較することで出力端子の電圧変化され、抵抗R210を介してオプトカプラIC21の発光側のダイオードに流れる電流を制御している。差動増幅器IC22の反転入力端子と出力端子との間に接続された抵抗R211とコンデンサC24は閉ループの利得、位相を調整するためのものである。
(Basic operation of switching power supply unit)
A conventional switching power supply device will be described with a self-excited flyback converter (RCC: ringing choke converter) shown in FIG. 2 as a basic circuit. The insulating transformer T21 includes an input-side primary winding Np, an output-side secondary winding Ns, and a primary-side auxiliary winding Nb. The auxiliary winding Nb is a driving winding for the switching element Q22 that performs on / off control of the control terminal of the main switching element Q21. The commercial power supply voltage is rectified by the bridge diode D23 and rectified and smoothed to the DC input voltage E by the aluminum electric field capacitor C25. The DC input voltage E is applied between one end of the primary winding Np and the current outflow terminal of the main switching element Q21. The (+) side of the input voltage is one end of the primary winding Np and the (−) side of the input voltage. Is connected to the current outflow terminal of the main switching element Q21. The auxiliary winding Nb is connected to the same polarity as the primary winding Np, and the secondary winding Ns is connected to a different polarity. A starting resistor R201 is connected between the (+) side of the input voltage and the control terminal of the main switching element Q21. Further, a resistor R202 is connected between the control terminal of the main switching element Q21 and the (−) side of the DC voltage E, and the main switching element Q21 is turned on by dividing the starting resistor R201 and the DC input voltage E. Sufficient voltage is generated. A capacitor C21 and resistors R203 and R204 are connected between the control terminal of the main switching element Q21 and the same polarity side of the primary winding of the auxiliary winding Nb. A diode D21 with the auxiliary winding Nb facing the cathode is connected to both ends of the resistor R204 to adjust the turn-on and turn-off speed of the main switching element Q21. The switching element Q22 is provided for controlling on / off of the main switching element Q21. The current inflow terminal is connected to the control terminal of the main switching element Q21, and the current outflow terminal is connected to the (−) side of the DC voltage E. A capacitor C22 is connected between the control terminal and the current outflow terminal. A resistor R205 is connected between the auxiliary winding Nb and the control terminal of the switching element Q22, and a time constant circuit is configured with the capacitor C22. A resistor R202 is connected between the primary current inflow terminal of the optocoupler IC21 and the control terminal of the main switching element Q21 to limit the current flowing through the optocoupler IC21. The current outflow terminal of the phototransistor of the optocoupler IC21 is connected to the control terminal of the switching element Q22. The anode side of the rectifying diode D22 is connected to the side opposite to the primary winding of the secondary winding Ns of the insulating transformer T21, and is the same as the cathode side of the diode D22 and the primary winding of the secondary winding Ns. An electric field capacitor C23 is connected between the pole side and the alternating voltage rectified by the diode D22 is smoothed. The output voltage Vo is divided by the resistors R207 and R208, the divided voltage is connected to the inverting input terminal of the differential amplifier IC22, and the reference voltage generated by the Zener diode ZD21 and the resistor R209 is the voltage of the differential amplifier IC22. The differential amplifier IC22 is input to the non-inverting input terminal, and the voltage at the output terminal is changed by comparing the input voltage at the inverting input terminal with the reference voltage. Is controlling. A resistor R211 and a capacitor C24 connected between the inverting input terminal and the output terminal of the differential amplifier IC22 are for adjusting the gain and phase of the closed loop.

主スイッチング素子Q21は起動抵抗R201と抵抗R202により制御端子に電圧が印加され導通状態となる。主スイッチング素子Q21が導通状態になると1次巻線Npに入力電圧Eが印加され、補助巻線Nbに1次巻線と同極側を正とする電圧が誘起される。このとき2次巻線Nsにも電圧が誘起されるが、整流ダイオードD22のアノード側を負とする電圧であるため2次側には電圧は伝達されない。従って1次巻線Npを流れる電流は絶縁トランスT21の励磁電流だけで絶縁トランスT21には励磁電流の2乗に比例したエネルギーが蓄積される。この励磁電流は時間に比例して増大する。補助巻線Nbに誘起された電圧によりコンデンサC21、抵抗R203、R204を介して主スイッチング素子Q21の制御端子が充電され、さらに導通状態が継続される。時定数回路を構成している抵抗R205、コンデンサC22には補助巻線Nbから電荷が充電され、コンデンサC22の両端の電圧がスイッチング素子Q22の閾値より高くなるとスイッチング素子Q22が導通状態となり、主スイッチング素子Q21の制御端子電圧が低下することで主スイッチング素子Q21は非導通状態となる。このとき絶縁トランスT21の各巻線には起動時と逆極性の電圧が発生し、2次巻線には整流ダイオードD22のアノード側を正とする電圧が発生するため、絶縁トランスT21に蓄積されたエネルギーが整流、平滑され、2次側に伝達される。絶縁トランスT21に蓄えられているエネルギーが2次側にすべて伝達されると主スイッチング素子Q21は再び導通状態となる。これはスイッチング素子Q21の電流流入、電流流出端子間の電圧の巻線比分の電圧が補助巻線Nbに発生しているが、主スイッチング素子Q21が非導通状態になった直後は制御端子が負にバイアスされているが、2次側にエネルギーの伝達が終わると負のバイアスが徐徐に低下するため、CカップリングしているコンデンサC21から再び主スイッチング素子Q21の制御端子が正方向にバイアスされるためである。フォトカプラIC21からの電流は出力電圧Voが高いときに電流を多く流すので、それによってコンデンサC22に電流が供給され、充電時間が短くなる。これは主スイッチング素子Q21の導通時間が短くなることを示しており、これによって絶縁トランスT21に蓄積されるエネルギーが減少することで出力電圧Voが下がり、定電圧動作を行っている。出力電圧が低い場合は逆の動作になる。   The main switching element Q21 becomes conductive when a voltage is applied to the control terminal by the starting resistor R201 and the resistor R202. When the main switching element Q21 becomes conductive, the input voltage E is applied to the primary winding Np, and a voltage having a positive polarity on the same polarity side as the primary winding is induced in the auxiliary winding Nb. At this time, a voltage is also induced in the secondary winding Ns. However, since the voltage is negative on the anode side of the rectifier diode D22, the voltage is not transmitted to the secondary side. Accordingly, the current flowing through the primary winding Np is only the exciting current of the insulating transformer T21, and energy proportional to the square of the exciting current is accumulated in the insulating transformer T21. This exciting current increases in proportion to time. The control terminal of the main switching element Q21 is charged through the capacitor C21 and the resistors R203 and R204 by the voltage induced in the auxiliary winding Nb, and the conduction state is continued. The resistor R205 and the capacitor C22 constituting the time constant circuit are charged from the auxiliary winding Nb. When the voltage across the capacitor C22 becomes higher than the threshold value of the switching element Q22, the switching element Q22 becomes conductive, and the main switching The main switching element Q21 becomes non-conductive because the control terminal voltage of the element Q21 decreases. At this time, a voltage having a polarity opposite to that at the time of starting is generated in each winding of the insulating transformer T21, and a voltage having a positive polarity on the anode side of the rectifier diode D22 is generated in the secondary winding. Therefore, the voltage is accumulated in the insulating transformer T21. Energy is rectified and smoothed and transmitted to the secondary side. When the energy stored in the insulating transformer T21 is all transmitted to the secondary side, the main switching element Q21 becomes conductive again. This is because a voltage corresponding to the winding ratio of the voltage between the current inflow and current outflow terminals of the switching element Q21 is generated in the auxiliary winding Nb, but the control terminal is negative immediately after the main switching element Q21 is turned off. However, since the negative bias gradually decreases when the transmission of energy to the secondary side is completed, the control terminal of the main switching element Q21 is again biased in the positive direction from the C-coupled capacitor C21. Because. Since a large amount of current flows from the photocoupler IC21 when the output voltage Vo is high, the current is supplied to the capacitor C22, thereby shortening the charging time. This indicates that the conduction time of the main switching element Q21 is shortened. As a result, the energy stored in the insulating transformer T21 is reduced, whereby the output voltage Vo is lowered and the constant voltage operation is performed. The operation is reversed when the output voltage is low.

図3はRCC方式における各部の波形を示している。Vgsは主スイッチング素子Q21の制御端子電圧を、Vdsは主スイッチング素子Q21の電流流入端子、電流流出端子間電圧を、Idは主スイッチング素子Q21に流れる電流を、VNsは2次巻線Nsに発生する電圧を、Isは2次側の整流ダイオードD22に流れる電流を、VNbは補助巻線Nbに発生する電圧を示している。まず、主スイッチング素子Q21のオン期間について説明する。起動抵抗により制御端子に電圧が印加され、Vgsの電位が上昇することによって主スイッチング素子Q21は導通状態となり、Idは時間とともに正の傾きで直線的に増加し、絶縁トランスT21にエネルギーが蓄積される。このときVdsは主スイッチング素子Q21が導通状態であるため、電位はほぼ零になっており、2次側の整流ダイオードにはVNsが印加され、逆バイアスされているため、Isは流れない。このとき補助巻線Nbの電圧を示したのがVNbである。コンデンサが充電され、トランジスタが導通状態になると主スイッチング素子Q21の制御端子電圧Vgsは零になり、主スイッチング素子Q21は非導通状態となるため、Idは零になり、Vdsは直流入力電圧Eと2次側の出力電圧の巻線比倍の電圧、およびサージ電圧を重畳したものとなる。このとき2次側の整流ダイオードは導通状態となり、絶縁トランスT21に蓄積されたエネルギーが2次側に伝達される。Isは負の傾きで直線的に減少する。このとき補助巻線には負電圧が発生するが、その後の負電圧の低下により再度主スイッチング素子が導通状態となることで継続して発振動作を行うことになる。   FIG. 3 shows the waveform of each part in the RCC method. Vgs is a control terminal voltage of the main switching element Q21, Vds is a voltage between the current inflow terminal and the current outflow terminal of the main switching element Q21, Id is a current flowing through the main switching element Q21, and VNs is generated in the secondary winding Ns. , Is is a current flowing through the secondary side rectifier diode D22, and VNb is a voltage generated in the auxiliary winding Nb. First, the ON period of the main switching element Q21 will be described. When the voltage is applied to the control terminal by the starting resistor and the potential of Vgs rises, the main switching element Q21 becomes conductive, and Id increases linearly with a positive slope with time, and energy is stored in the insulating transformer T21. The At this time, since the main switching element Q21 is in a conducting state, Vds has a potential of almost zero, and VNs is applied to the secondary side rectifier diode and is reverse-biased, so Is does not flow. At this time, VNb indicates the voltage of the auxiliary winding Nb. When the capacitor is charged and the transistor becomes conductive, the control terminal voltage Vgs of the main switching element Q21 becomes zero and the main switching element Q21 becomes nonconductive, so that Id becomes zero and Vds is equal to the DC input voltage E. A voltage that is twice the winding ratio of the output voltage on the secondary side and a surge voltage are superimposed. At this time, the rectifier diode on the secondary side becomes conductive, and the energy stored in the insulating transformer T21 is transmitted to the secondary side. Is decreases linearly with a negative slope. At this time, a negative voltage is generated in the auxiliary winding, but the main switching element becomes conductive again due to the subsequent decrease in the negative voltage, and the oscillation operation is continued.

以上の動作により機器動作時であり負荷が大きい場合には、負荷変動に対して一定電圧を出力するよう制御を行う。その際にはマイクロコントローラIC23が備えるモード選択端子はスイッチング素子Q23の制御端子をLOWとする。これによりスイッチング素子Q23は導通状態にはならず、強制的に主スイッチング素子Q21は発振を停止してしまうことはない。一方、機器休止時となり負荷が小さくなると、上記モード選択端子はスイッチング素子Q23の制御端子にHI/LOWを繰り返すパルス状の信号を加える。(以下パルスモードと呼ぶことにする。)スイッチング素子Q23の制御端子がHIの期間、オプトカプラIC21の2次側の発光ダイオードには差動増幅器IC22の出力とは関係なく抵抗R212で制限される電流が流れる。この電流は機器動作時に比べて充分に大きく、オプトカプラIC21の1次側のフォトトランジスタに伝えられると、瞬時にコンデンサC22の電圧を上昇させることでスイッチング素子Q22の導通状態にさせ、主スイッチング素子Q21を非導通状態にする。この状態を自励式スイッチング電源の発振周波数の例えば2〜20倍位継続すると、絶縁トランスT21のエネルギーが完全に放出され、本自励式スイッチング電源の1次側は起動前と同じ状態になる。この状態におけるスイッチング電源の2次側の負荷は小さいため、出力電圧はほぼそのままの状態で維持できる。スイッチング素子Q23の制御端子がHIからLOWに戻ると、オプトカプラIC21の2次側の発光ダイオードの電流もほぼ以前の状態に回復する。抵抗R205によるオプトカプラIC21のフォトトランジスタの電流による電圧降下を、スイッチング素子Q22の閾値電圧よりも大きく設定した場合、スイッチング素子Q32は導通状態を継続し、起動抵抗R201からの電流はスイッチング素子Q22にすべて流れ込む。したがって主スイッチング素子Q21はオンすることができないため、本自励式スイッチング電源は発振停止状態を継続する。時間の経過に伴い、コンデンサC23にたまった電荷が負荷により消費されていくと、2次側の出力電圧も下がる。それに伴い差動増幅回路の出力電圧も上昇し、オプトカプラIC21のフォトトランジスタ側に流れる電流が減少するため、抵抗R205による電圧降下がスイッチング素子Q22の閾値電圧よりも小さくなると、起動抵抗R201よりコンデンサC21に充電が行われ、主スイッチング素子Q21がオンするため、本自励式スイッチング電源は再び発振を開始する。以上のようにスイッチング素子Q23の制御端子に対してHI/LOWの信号を繰り返し入力することにより、本自励式スイッチング電源の単位時間あたりの発振回数を減少させることができるため、負荷が軽いときの損失を低減することができ、より高効率化を図ることができる。   By the above operation, when the device is operating and the load is large, control is performed so as to output a constant voltage with respect to the load fluctuation. At that time, the mode selection terminal provided in the microcontroller IC23 sets the control terminal of the switching element Q23 to LOW. As a result, the switching element Q23 does not become conductive, and the main switching element Q21 is not forced to stop oscillating. On the other hand, when the load is reduced when the device is at rest, the mode selection terminal applies a pulse signal that repeats HI / LOW to the control terminal of the switching element Q23. (Hereinafter referred to as a pulse mode.) During the period when the control terminal of the switching element Q23 is HI, the light-emitting diode on the secondary side of the optocoupler IC21 has a current limited by the resistor R212 regardless of the output of the differential amplifier IC22. Flows. This current is sufficiently larger than that during the operation of the device. When the current is transmitted to the phototransistor on the primary side of the optocoupler IC21, the voltage of the capacitor C22 is instantaneously increased to bring the switching element Q22 into a conductive state, and the main switching element Q21. Is turned off. If this state continues for about 2 to 20 times the oscillation frequency of the self-excited switching power supply, for example, the energy of the insulating transformer T21 is completely released, and the primary side of the self-excited switching power supply is in the same state as before the start-up. Since the load on the secondary side of the switching power supply in this state is small, the output voltage can be maintained almost as it is. When the control terminal of the switching element Q23 returns from HI to LOW, the current of the light emitting diode on the secondary side of the optocoupler IC21 is also almost restored to the previous state. When the voltage drop due to the current of the phototransistor of the optocoupler IC21 due to the resistor R205 is set to be larger than the threshold voltage of the switching element Q22, the switching element Q32 continues to be in a conductive state, and all the current from the starting resistor R201 flows to the switching element Q22. Flows in. Therefore, since the main switching element Q21 cannot be turned on, the self-excited switching power supply continues to be in an oscillation stopped state. As the time passes, as the charge accumulated in the capacitor C23 is consumed by the load, the output voltage on the secondary side also decreases. Along with this, the output voltage of the differential amplifier circuit also rises and the current flowing to the phototransistor side of the optocoupler IC21 decreases. Therefore, when the voltage drop due to the resistor R205 becomes smaller than the threshold voltage of the switching element Q22, the capacitor C21 is activated by the starting resistor R201. Is charged and the main switching element Q21 is turned on, so that the self-excited switching power supply starts to oscillate again. As described above, by repeatedly inputting the HI / LOW signal to the control terminal of the switching element Q23, the number of oscillations per unit time of the self-excited switching power supply can be reduced. Loss can be reduced and higher efficiency can be achieved.

(入力電圧検知回路の動作)
しかしながら、スイッチング電源に入力される平滑整流された直流入力電圧Eの変動により、R201からの起動時間に時間差が生じるため、軽負荷時の効率に違いが生じる。そのためより効率を向上させるためには商用電源電圧の情報が必要となる。そのためにトランスT22の1次側の入力端子にダイオードブリッジD23、平滑コンデンサC25より前段の商用電源電圧を印加し、2次側の出力をダイオードD34、コンデンサC26によりピークチャージを行うことで商用電源電圧に比例した直流出力電圧を生成し、マイクロコントローラIC23に入力する。抵抗R214はピークチャージ電圧の放電用抵抗である。この回路によりマイクロコントローラIC23は商用電源電圧の情報を得ることができ、商用電源電圧に応じて任意に発振状態を変化させることができる。この場合の発振状態の変化のさせ方としては商用電源電圧が高い場合には発振周波数を上昇させるか、あるいはトランジスタQ23の導通時間を長くすることで、商用電源電圧が低い時に比べて発振回数を減少させることでスイッチング損失を低下させ、効率の向上を図ることができる。
(Operation of input voltage detection circuit)
However, since a time difference occurs in the start-up time from R201 due to fluctuations in the smoothed rectified DC input voltage E input to the switching power supply, a difference occurs in efficiency at light load. Therefore, in order to improve the efficiency, information on the commercial power supply voltage is necessary. Therefore, the commercial power supply voltage is applied by applying the commercial power supply voltage before the diode bridge D23 and the smoothing capacitor C25 to the primary side input terminal of the transformer T22, and performing the peak charge on the secondary side output by the diode D34 and the capacitor C26. A DC output voltage proportional to is generated and input to the microcontroller IC23. The resistor R214 is a discharging resistor with a peak charge voltage. With this circuit, the microcontroller IC 23 can obtain information on the commercial power supply voltage, and can arbitrarily change the oscillation state in accordance with the commercial power supply voltage. In this case, the oscillation state can be changed by increasing the oscillation frequency when the commercial power supply voltage is high, or by increasing the conduction time of the transistor Q23, so that the number of oscillations can be increased compared to when the commercial power supply voltage is low. By reducing the switching loss, the switching loss can be reduced and the efficiency can be improved.

上記目的を達成するため、本出願に係る第1の発明はフライバック電圧をダイオード及びコンデンサを用いてピークチャージを行い、スイッチング電源の直流出力電圧と抵抗合成することにより商用電源電圧に対応した電圧を生成する回路を提供することにある。   In order to achieve the above object, according to a first aspect of the present invention, a flyback voltage is peak-charged using a diode and a capacitor, and a voltage corresponding to a commercial power supply voltage is obtained by combining a resistance with a DC output voltage of a switching power supply. Is to provide a circuit for generating

また、本出願に係る第2の発明は第1の発明を利用して生成した商用電源電圧に関する情報を利用して、電源効率の向上を図る方法を提供する。   The second invention according to the present application provides a method for improving the power supply efficiency by using the information on the commercial power supply voltage generated by using the first invention.

従来例における入力電圧検知回路では、電気的に絶縁が必要であるために商用電源電圧検知用にトランスを用いていたが、以上説明したように本発明によれば商用電源電圧検知用のトランスを用いることなく、スイッチング電源に使用しているトランスの出力を用いて入力電圧検知回路を構成することができる。また、上記入力電圧検知回路からの情報を用いて安価な構成にてスイッチング電源装置の効率向上を図ることができる。   The input voltage detection circuit in the conventional example uses a transformer for commercial power supply voltage detection because it requires electrical insulation. However, as described above, according to the present invention, a transformer for commercial power supply voltage detection is used. Without using it, the input voltage detection circuit can be configured using the output of the transformer used in the switching power supply. Further, the efficiency of the switching power supply device can be improved with an inexpensive configuration by using information from the input voltage detection circuit.

図1は本件の実施の形態に係る自励式のスイッチング電源の構成を示す回路図である。従来例と同じ機能である箇所には同負号を付与し、動作説明は省略することにする。本実施例における従来例との違いは商用電源電圧の検知の仕方にある。   FIG. 1 is a circuit diagram showing a configuration of a self-excited switching power supply according to the present embodiment. Parts having the same functions as those of the conventional example are given the same sign, and the explanation of the operation is omitted. The difference between this embodiment and the conventional example is in the method of detecting the commercial power supply voltage.

以下入力電圧検知回路の動作について説明する。   The operation of the input voltage detection circuit will be described below.

トランスT21の2次巻線Nsに発生する電圧VNsは図3にも記載したが、スイッチング素子Q21のオン時に直流入力電圧Eに対してVNs=−E×Ns/Npの電圧が発生し、スイッチング素子Q21のオフ時にVoなる電圧が発生する。そのため、ダイオードD11のカソード端子をトランスT21の2次巻線の巻き始めに接続し、アノード端子はコンデンサC11の陰極側に接続し、コンデンサの陽極端子は直流出力電圧の基準電圧側に接続する。これによりコンデンサC11には−E×Ns/Npにピークチャージされた電圧V1が発生する。このV1とスイッチング電源の直流出力電圧であるVoとを抵抗R101,R102にて合成することにより、V2=(V1×R102+V2×R101)/(R101+R102)の電圧が合成される。この合成によりマイクロコンローラIC23のP2には入力可能な電圧レベルに変換された商用電源電圧の情報が入力されることになる。また、R101とR102を適当に選択することにより任意にマイクロコントローラIC23への入力電圧を調整することが可能となる。   Although the voltage VNs generated in the secondary winding Ns of the transformer T21 is also described in FIG. 3, when the switching element Q21 is turned on, a voltage of VNs = −E × Ns / Np is generated with respect to the DC input voltage E, and switching is performed. A voltage of Vo is generated when the element Q21 is turned off. Therefore, the cathode terminal of the diode D11 is connected to the beginning of the secondary winding of the transformer T21, the anode terminal is connected to the cathode side of the capacitor C11, and the anode terminal of the capacitor is connected to the reference voltage side of the DC output voltage. As a result, a voltage V1 peak-charged to −E × Ns / Np is generated in the capacitor C11. The voltage V2 = (V1 × R102 + V2 × R101) / (R101 + R102) is synthesized by synthesizing this V1 and Vo, which is the DC output voltage of the switching power supply, with resistors R101 and R102. As a result of this synthesis, information on the commercial power supply voltage converted to a voltage level that can be input is input to P2 of the microcontroller IC23. Further, by appropriately selecting R101 and R102, it becomes possible to arbitrarily adjust the input voltage to the microcontroller IC23.

本実施例ではマイクロコンピュータを例にしたが、モード選択が可能であり、電圧レベルを検知することでパルスモードの発振状態を変化させられるものであれば、マイクロコントローラに限定したものではないことを明記しておく。また、自励式スイッチング電源の構成を示す回路例としてはMOSFETを主スイッチング素子として用いたが、例えば主スイッチング素子Q21をバイポーラトランジスタから構成する場合などの如く、適宜構成に変更を加えることが可能である。また、実施例では基準電源をツェナーダイオードで作成したが、本発明は基準電圧の作成方法を本手段に限定したものではない。   In this embodiment, the microcomputer is taken as an example. However, it is not limited to the microcontroller as long as the mode can be selected and the oscillation state of the pulse mode can be changed by detecting the voltage level. Please specify. Further, as a circuit example showing the configuration of the self-excited switching power supply, the MOSFET is used as the main switching element. However, the configuration can be appropriately changed as in the case where the main switching element Q21 is configured from a bipolar transistor, for example. is there. In the embodiment, the reference power source is created by a Zener diode. However, the present invention does not limit the creation method of the reference voltage to this means.

また、スイッチング電源をより効率よく動作させる上で商用電源電圧の情報は非常に有意義であるが、商用電源電圧の情報はスイッチング電源装置に限ったものではない。例えば、特登録03240591では電磁調理器のマグネトロンの駆動制御用に入力電圧の情報を活用しており、本発明の適用可能な範囲はスイッチング電源を使用した製品広範にわたることを言及しておく。   In addition, information on the commercial power supply voltage is very meaningful in operating the switching power supply more efficiently, but the information on the commercial power supply voltage is not limited to the switching power supply apparatus. For example, in Japanese Patent Registration No. 03240591, information on input voltage is utilized for driving control of a magnetron of an electromagnetic cooker, and it should be noted that the applicable range of the present invention is a wide range of products using a switching power supply.

本発明の実施例に係る入力電圧検知回路及び自励式スイッチング電源の構成を示す回路図である。It is a circuit diagram which shows the structure of the input voltage detection circuit and self-excited switching power supply which concern on the Example of this invention. 本発明の従来の実施例に係る入力電圧検知回路及び自励式スイッチング電源の構成を示す回路図である。It is a circuit diagram which shows the structure of the input voltage detection circuit and self-excitation switching power supply which concern on the prior art Example of this invention. 本発明の従来及び実施例に係る自励式スイッチング電源の動作時の各部波形である。It is each part waveform at the time of operation | movement of the self-excited switching power supply which concerns on the prior art and Example of this invention.

符号の説明Explanation of symbols

D11 ピークチャージ回路を構成するダイオード
C11 ピークチャージ回路を構成するコンデンサ
R101、R102 電圧合成するための抵抗
D11 Diode constituting the peak charge circuit C11 Capacitor constituting the peak charge circuit R101, R102 Resistors for voltage synthesis

Claims (4)

1次巻線、補助巻線、2次巻線を有したトランスと、前記トランスの1次巻線の一端と商用電源より生成した直流電源の高電位側が接続され、前記トランスの1次巻線の他端と前記直流電源の低電位側との間に接続され、前記トランスの1次巻線に流れる電流を制御する巻線電流制御手段と、前記2次巻線に発生する交番電圧を平滑整流する平滑整流手段と、前記平滑整流手段の直流出力電圧を基準電圧と比較し、その差に応じた電圧を出力する誤差検出手段と、1次側部分及び2次側部分を備え前記誤差検出手段の出力を1次側に伝達する伝達手段と、前記伝達手段からの帰還信号と前記補助巻線からの帰還信号により前記巻線電流制御手段に流れる電流の導通遮断を制御する制御手段を具備する電源装置の入力電圧検知回路において、前記平滑整流手段とは別に2次側において商用電源電圧に対応した負電圧を生成する入力電圧検知手段を有し、前記平滑整流手段からの直流出力電圧と前記入力電圧検知手段からの直流出力電圧とを抵抗合成して、負荷側の制御回路にて検知可能な直流電圧を生成することを特徴とする入力電圧検知回路。   A transformer having a primary winding, an auxiliary winding, and a secondary winding, one end of the primary winding of the transformer, and a high potential side of a DC power source generated from a commercial power source are connected, and the primary winding of the transformer Winding current control means for controlling the current flowing in the primary winding of the transformer and smoothing the alternating voltage generated in the secondary winding. A smoothing rectifying means for rectifying, an error detecting means for comparing a DC output voltage of the smoothing rectifying means with a reference voltage, and outputting a voltage corresponding to the difference, a primary side portion and a secondary side portion, and the error detection Transmission means for transmitting the output of the means to the primary side, and control means for controlling conduction interruption of the current flowing through the winding current control means by a feedback signal from the transmission means and a feedback signal from the auxiliary winding. In the input voltage detection circuit of the power supply In addition to the smoothing rectification means, the secondary side has input voltage detection means for generating a negative voltage corresponding to the commercial power supply voltage, and a direct current output voltage from the smoothing rectification means and a direct current output voltage from the input voltage detection means An input voltage detection circuit characterized in that a DC voltage that can be detected by a control circuit on the load side is generated by resistance synthesis. 1次巻線、補助巻線、2次巻線を有したトランスと、前記トランスの1次巻線の一端と商用電源より生成した直流電源の高電位側が接続され、前記トランスの1次巻線の他端と前記直流電源の低電位側との間に接続され、前記トランスの1次巻線に流れる電流を制御する巻線電流制御手段と、前記2次巻線に発生する交番電圧を平滑整流する平滑整流手段と、前記平滑整流手段の直流出力電圧を基準電圧と比較し、その差に応じた電圧を出力する誤差検出手段と、1次側部分及び2次側部分を備え前記誤差検出手段の出力を1次側に伝達する伝達手段と、前記伝達手段からの帰還信号と前記補助巻線からの帰還信号により前記巻線電流制御手段に流れる電流の導通遮断を制御する制御手段を具備する電源装置において、前記平滑整流手段とは別に2次側において商用電源電圧に対応した負電圧を生成する入力電圧検知手段を有し、前記平滑整流手段からの直流出力電圧と前記入力電圧検知手段からの直流出力電圧とを抵抗合成して、負荷側の制御回路にて検知可能な直流電圧を生成することを特徴とする入力電圧検知回路を具備した電源装置。   A transformer having a primary winding, an auxiliary winding, and a secondary winding, one end of the primary winding of the transformer, and a high potential side of a DC power source generated from a commercial power source are connected, and the primary winding of the transformer Winding current control means for controlling the current flowing in the primary winding of the transformer and smoothing the alternating voltage generated in the secondary winding. A smoothing rectifying means for rectifying, an error detecting means for comparing a DC output voltage of the smoothing rectifying means with a reference voltage, and outputting a voltage corresponding to the difference, a primary side portion and a secondary side portion, and the error detection Transmission means for transmitting the output of the means to the primary side, and control means for controlling conduction interruption of the current flowing through the winding current control means by a feedback signal from the transmission means and a feedback signal from the auxiliary winding. In the power supply device to And an input voltage detecting means for generating a negative voltage corresponding to the commercial power supply voltage on the secondary side, and combining the resistance of the DC output voltage from the smoothing rectifying means and the DC output voltage from the input voltage detecting means. A power supply apparatus comprising an input voltage detection circuit, wherein a DC voltage that can be detected by a load-side control circuit is generated. 1次巻線、補助巻線、2次巻線を有したトランスと、前記トランスの1次巻線の一端と商用電源より生成した直流電源の高電位側が接続され、前記トランスの1次巻線の他端と前記直流電源の低電位側との間に接続され、前記トランスの1次巻線に流れる電流を制御する巻線電流制御手段と、前記2次巻線に発生する交番電圧を平滑整流する平滑整流手段と、前記平滑整流手段の直流出力電圧を基準電圧と比較し、その差に応じた電圧を出力する誤差検出手段と、1次側部分及び2次側部分を備え前記誤差検出手段の出力を1次側に伝達する伝達手段と、前記伝達手段からの帰還信号と前記補助巻線からの帰還信号により前記巻線電流制御手段に流れる電流の導通遮断を制御する制御手段と前記平滑整流手段とは別に2次側において商用電源電圧に対応した負電圧を生成する入力電圧検知手段と、前記平滑整流手段からの直流出力電圧と前記入力電圧検知手段からの直流出力電圧とを抵抗合成して、負荷側の制御回路にて検知可能な直流電圧を生成することを特徴とする入力電圧検知回路を具備した電源装置において、
前記誤差検出手段の出力を前記巻線電流制御手段が停止するに充分な時間だけ強制的に低下させる発振手段を有する電源装置において、前記入力電圧検知手段からの出力に応じて前記発振手段の動作状態を変化させることを特徴とする電源装置。
A transformer having a primary winding, an auxiliary winding, and a secondary winding, one end of the primary winding of the transformer, and a high potential side of a DC power source generated from a commercial power source are connected, and the primary winding of the transformer Winding current control means for controlling the current flowing in the primary winding of the transformer and smoothing the alternating voltage generated in the secondary winding. A smoothing rectifying means for rectifying, an error detecting means for comparing a DC output voltage of the smoothing rectifying means with a reference voltage, and outputting a voltage corresponding to the difference, a primary side portion and a secondary side portion, and the error detection Transmission means for transmitting the output of the means to the primary side, control means for controlling conduction interruption of the current flowing through the winding current control means by a feedback signal from the transmission means and a feedback signal from the auxiliary winding, and Separately from the smooth rectification means, the commercial power supply on the secondary side An input voltage detecting means for generating a negative voltage corresponding to the voltage, and a DC output voltage from the smoothing rectifying means and a DC output voltage from the input voltage detecting means are combined by resistance and detected by a control circuit on the load side In a power supply device equipped with an input voltage detection circuit characterized by generating a possible DC voltage,
In the power supply apparatus having the oscillation means for forcibly reducing the output of the error detection means for a time sufficient for the winding current control means to stop, the operation of the oscillation means according to the output from the input voltage detection means A power supply device characterized by changing a state.
1次巻線、補助巻線、2次巻線を有したトランスと、前記トランスの1次巻線の一端と商用電源より生成した直流電源の高電位側が接続され、前記トランスの1次巻線の他端と前記直流電源の低電位側との間に接続され、前記トランスの1次巻線に流れる電流を制御する巻線電流制御手段と、前記2次巻線に発生する交番電圧を平滑整流する平滑整流手段と、前記平滑整流手段の直流出力電圧を基準電圧と比較し、その差に応じた電圧を出力する誤差検出手段と、1次側部分及び2次側部分を備え前記誤差検出手段の出力を1次側に伝達する伝達手段と、前記伝達手段からの帰還信号と前記補助巻線からの帰還信号により前記巻線電流制御手段に流れる電流の導通遮断を制御する制御手段と前記平滑整流手段とは別に2次側において商用電源電圧に対応した負電圧を生成する入力電圧検知手段と、前記平滑整流手段からの直流出力電圧と前記入力電圧検知手段からの直流出力電圧とを抵抗合成して、負荷側の制御回路にて検知可能な直流電圧を生成することを特徴とする入力電圧検知回路を具備した電源装置の制御方法において、
前記誤差検出手段の出力を前記巻線電流制御手段が停止するに充分な時間だけ強制的に低下させる発振手段を有する電源装置において、前記入力電圧検知手段からの出力に応じて前記発振手段の動作状態を変化させることを特徴とする電源装置の制御方法。
A transformer having a primary winding, an auxiliary winding, and a secondary winding, one end of the primary winding of the transformer, and a high potential side of a DC power source generated from a commercial power source are connected, and the primary winding of the transformer Winding current control means for controlling the current flowing in the primary winding of the transformer and smoothing the alternating voltage generated in the secondary winding. A smoothing rectifying means for rectifying, an error detecting means for comparing a DC output voltage of the smoothing rectifying means with a reference voltage, and outputting a voltage corresponding to the difference, a primary side portion and a secondary side portion, and the error detection Transmission means for transmitting the output of the means to the primary side, control means for controlling conduction interruption of the current flowing through the winding current control means by a feedback signal from the transmission means and a feedback signal from the auxiliary winding, and Separately from the smooth rectification means, the commercial power supply on the secondary side An input voltage detecting means for generating a negative voltage corresponding to the voltage, and a DC output voltage from the smoothing rectifying means and a DC output voltage from the input voltage detecting means are combined by resistance and detected by a control circuit on the load side In a control method of a power supply device equipped with an input voltage detection circuit, characterized by generating a possible DC voltage,
In the power supply apparatus having the oscillation means for forcibly reducing the output of the error detection means for a time sufficient for the winding current control means to stop, the operation of the oscillation means according to the output from the input voltage detection means A control method of a power supply device, characterized by changing a state.
JP2005232091A 2005-08-10 2005-08-10 Input voltage detection circuit and power supply unit therewith Withdrawn JP2007049833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232091A JP2007049833A (en) 2005-08-10 2005-08-10 Input voltage detection circuit and power supply unit therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232091A JP2007049833A (en) 2005-08-10 2005-08-10 Input voltage detection circuit and power supply unit therewith

Publications (1)

Publication Number Publication Date
JP2007049833A true JP2007049833A (en) 2007-02-22

Family

ID=37852223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232091A Withdrawn JP2007049833A (en) 2005-08-10 2005-08-10 Input voltage detection circuit and power supply unit therewith

Country Status (1)

Country Link
JP (1) JP2007049833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190084323A (en) * 2017-09-22 2019-07-16 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 POWER SUPPLY CIRCUIT, POWER SUPPLY DEVICE AND CONTROL METHOD,
US10671010B2 (en) 2018-01-05 2020-06-02 Toshiba Tec Kabushiki Kaisha Power converting device and image forming apparatus employing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190084323A (en) * 2017-09-22 2019-07-16 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 POWER SUPPLY CIRCUIT, POWER SUPPLY DEVICE AND CONTROL METHOD,
JP2020504589A (en) * 2017-09-22 2020-02-06 オッポ広東移動通信有限公司 Power supply circuit, power supply device and control method
US10819246B2 (en) 2017-09-22 2020-10-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply circuit based on feedback signal, power supply device and control method
KR102298346B1 (en) * 2017-09-22 2021-09-06 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Power supply circuit, power supply equipment and control method
US11469609B2 (en) 2017-09-22 2022-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply circuit, power supply device and control method
US10671010B2 (en) 2018-01-05 2020-06-02 Toshiba Tec Kabushiki Kaisha Power converting device and image forming apparatus employing the same

Similar Documents

Publication Publication Date Title
JP3371962B2 (en) DC-DC converter
US9065348B2 (en) Isolated switching mode power supply and the method thereof
JP5169135B2 (en) Switching power supply
JP5489502B2 (en) Power supply
JP5905689B2 (en) DC / DC converter, power supply device using the same, and electronic device
JP2008048483A (en) Dc-ac converter
JP2005287261A (en) Semiconductor device for controlling switching power supply
JP2009159721A (en) Switching power supply unit and primary-side control circuit
US20210203239A1 (en) Isolated power supply and control circuit thereof
JP2004260977A (en) Ac-to-dc converter
JP2003259641A (en) Direct-current voltage conversion circuit
JP2003284340A5 (en) Power supply
JP2012124993A (en) Switching power supply device and image forming apparatus
JP2007195283A (en) Multi-output switching power unit
CN108696133B (en) Control device and control method
JP7151034B2 (en) Control circuit and DC/DC converter device
JP2007049833A (en) Input voltage detection circuit and power supply unit therewith
JP5381027B2 (en) DC-DC converter
JP7300278B2 (en) PWM controller for switching power supply
JP2008048484A (en) Driving method of dc/ac converter
JP2008061371A (en) Self-excited resonant switching power supply
JP2008043150A (en) Switching power-supply device and electronic device
JP2004180385A (en) Switching power supply
JP2002374672A (en) Switching power source apparatus
JP2004328837A (en) Switching power supply circuit and switching regulator comprising the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104