JP2007049520A - 画像信号の高能率符号化装置 - Google Patents

画像信号の高能率符号化装置 Download PDF

Info

Publication number
JP2007049520A
JP2007049520A JP2005233039A JP2005233039A JP2007049520A JP 2007049520 A JP2007049520 A JP 2007049520A JP 2005233039 A JP2005233039 A JP 2005233039A JP 2005233039 A JP2005233039 A JP 2005233039A JP 2007049520 A JP2007049520 A JP 2007049520A
Authority
JP
Japan
Prior art keywords
frame
frames
image signal
processing
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233039A
Other languages
English (en)
Inventor
Motoharu Ueda
基晴 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2005233039A priority Critical patent/JP2007049520A/ja
Publication of JP2007049520A publication Critical patent/JP2007049520A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】周波数変換処理を必要とする画像の高能率符号化処理に対して、符号化装置全体の回路規模や消費電力を増大させることなく、周波数変換処理を必要としない高能率符号化処理で処理可能な水平・垂直解像度と同等解像度の符号化処理を実現する。
【解決手段】MPEG2画像符号化装置は、入力信号取得制御処理部102、画像信号相関検出処理部104、及びフレーム周波数変換情報出力処理部105を有し、半分以下のフレーム周波数に変換する画像信号の周波数変換処理において、複数フレーム間隔で入力信号をメモリ205に格納し、格納された画像情報のみを用いて両処理部104及び105を通して周波数変換処理を行なう。この周波数変換処理と画像信号入力処理の動作タイミングを入力信号取得制御処理部102にて管理し、同時のデータアクセスを避ける。これにより瞬間的に必要となるデータバスの伝送パフォーマンスを削減する。
【選択図】 図1

Description

本発明は、画像信号に対して情報圧縮を施し、伝送・記録を行なう、高能率符号化装置もしくはプログラムに係り、少ないハードウェア資産やプロセッサ能力を有効に用いて高精細な動画像の符号化処理を実現可能な技術に関する。
近年、デジタル化された画像信号及び音声信号に対して高能率符号化による圧縮された情報を用いて、記録媒体により長時間のコンテンツを記録する装置や、衛星波、地上波、電話回線などの伝送路により情報を配信するサービスが実用化されている。このようなサービスにおける動画像・音声の高能率符号化方式として、国際規格であるMPEG2(Moving Picture Experts Group phase 2)、MPEG4(Moving Picture Experts Group phase 4)、ASP(Advanced Simple Profile)、MPEG4 AVC(Advanced Video Coding)等の方式が用いられている。これらの規格の画像符号化に関しては、画像信号の隣接画素間(空間方向)の相関および、隣接フレーム間もしくは隣接フィールド間(時間方向)の相関を利用して情報量を圧縮する方式を用いている。
例えば、MPEG2規格における画像符号化装置は、以下のようなアルゴリズムで符号化処理を行なう。まず、時間的に連続する画像フレームを、基準フレームと予測フレームに振り分ける。基準フレームは、空間方向の相関のみを用いて符号化することで、そのフレームの符号化データのみで復元することができる。予測フレームは、基準となるフレームからの時間方向の相関と空間方向の相関を共に用いて符号化することにより、基準フレームに対してより符号化効率を高めることができる。予測フレームの符号化データは、復元された基準フレームと予測フレームの符号化データより復元される。
具体的なMPEG2画像符号化で用いられる符号化体系について、図10(A)を用いて説明する。
図10(A)中の「I」で示す基準フレームであるIピクチャ(Iフレーム)は定期的に存在し、復号処理の基準となる。また、予測フレームには、同図に「P」で示す時間的に前(過去)の基準フレームからの予測のみで符号化されるPピクチャ(Pフレーム)と、同図に「B」で示す時間的に前後(過去と未来)の2つの基準フレームから予測符号化されるBピクチャ(Bフレーム)が存在する。図10(A)中の矢印は、予測方向を示す。
Iピクチャは、自身が予測フレームであると共に、続くBピクチャやPピクチャの基準フレームにもなる。Iピクチャの画像信号は、輝度信号で水平16画素×垂直16画素のマクロブロックと呼ばれる処理単位に分割される。分割されたマクロブロックのデータは、更に8×8画素単位の2次元ブロックに分割され、直交変換の一種であるDCT(Discrete Cosine Transform:離散コサイン変換)処理が行なわれる。
DCT変換後の信号は、その2次元ブロックの周波数成分に準じた値を示すため、一般的な画像では低域に成分が集中する。また、高周波数成分の情報劣化は、低周波数成分の情報劣化よりも視覚的に目立ちにくい性質がある。よって、低域成分を細かく高域成分を粗く量子化し、その係数成分と成分が無い係数0の連続する長さを可変長符号化することにより、情報量を圧縮している。
Pピクチャの画像信号は、Iピクチャと同様に、輝度信号で水平16画素×垂直16画素のマクロブロックの単位に分割される。Pピクチャでは、マクロブロック毎に基準フレームとの間の動きベクトルを計算する。動きベクトルの検出は、一般的にブロックマッチングにより求められる。このブロックマッチングでは、マクロブロックの各画素と動きベクトル値だけマクロブロックの存在する水平及び垂直の位置を動かした場所の基準フレームを水平16×垂直16画素にブロック化した各画素の差分絶対値総和(もしくは差分二乗総和)を求め、その最小値を取る動きベクトルの値を、検出された動きベクトルとして出力する。
マクロブロックの各画素は、動きベクトルにより切り出された2次元ブロックの各画素との差分が取られる。正確な動きベクトルが検出された場合には、差分ブロックの情報量は元のマクロブロックの持っている情報量よりも大幅に少なくなるため、Iピクチャよりも粗い量子化処理が可能となる。実際には、差分ブロックを符号化するか非差分ブロック(Intraブロック)を符号化するかを選択し(予測モード判定)、選択されたブロックに対してIピクチャと同様のDCT・可変長符号化処理を施し、情報量が圧縮される。
Bピクチャは、Pピクチャと同様の処理が行なわれるが、基準フレームであるI、Pピクチャが時間的に前後に存在するため、それぞれの基準フレームとの間で動きベクトルを検出する。Bピクチャでは、予測の選択肢が前基準フレームからの予測(Forward予測)、後基準フレームからの予測(Backward予測)、2つの予測ブロックの画素毎平均値(Average予測)の3種類存在し、Intraブロックを合わせた4種類から予測モード判定を行なう。
Bピクチャは、時間的に前後の基準フレームから予測が可能となるため、Pピクチャよりも更に予測効率が向上する。よって、一般的にPピクチャよりも更に粗く量子化される。選択されたブロックはI、Pピクチャと同様の符号化処理がなされる。
Bピクチャは、復号されるために、時間的に後の基準フレームからの予測処理が行なわれる。このため、基準フレームは、Bピクチャに先行して符号化される。そのため、入力された画像信号は、図10(B)に示されるように、Bピクチャは、基準フレームであるIピクチャ又はPピクチャの後の順番に並べ替えが行われ、符号化される。復号処理では、図10(C)に示すように、図10(B)とは逆の並べ替えを行ない出力することにより、入力された画像信号の順番に復号画像が再生される。
映画フィルムに記録されている画像をデジタル画像信号として媒体に記録・再生する方式として、TVの表示系の出力周波数にあわせるためのフレーム周波数変換処理を施して記録する2−3プルダウン方式が用いられている。
2−3プルダウン方式とは、24フレーム/秒で作成された映像信号を、元信号における2フレーム単位でそれぞれ1フレーム及び2フレームのリピートフレームを挿入することによって、5フレームの画像信号に変換することにより、60フレーム/秒の映像信号を生成する方式である。変換前と変換後のフレーム構成と時間間隔に関する関係を図11に示す。
NTSC信号のようなインターレース信号に変換する場合には、上記変換された60フレーム/秒の画像信号を順番に奇数フィールド走査位置取り込み/偶数フィールド走査位置取り込みと行なうことにより、60フィールド/秒の画像信号を生成する。
上記のように2−3プルダウン方式で変換された画像信号に対して、MPEG2符号化のような高能率符号化処理を行なう場合に、リピートフレームのパターンを検出し、リピート情報をフレーム毎の制御情報として伝送することにより、実質24フレームの符号化処理を行なうことで符号化情報を生成できる方法が存在する。具体的には、MPEG2符号化ストリームのピクチャヘッダ内に、「repeat_first_field」と「top_field_first」というフラグが存在し、この2つのフラグを用いてリピートされたフィールドもしくはフレームを表現する。また、画像のシーケンス全体を24フレーム/秒に変換し、符号化処理を行なう方法も可能である。
上記手法を用いるためには、符号化を行なう24フレーム/秒の画像信号を生成する必要がある。リピートフレームのパターンを検出する手法としては、特許文献2において従来技術として示されているように、映像信号の隣接するフレーム単位での相関を調べることによりリピートフレームを検出する方法や、デジタル画像信号の垂直ブランキング区間の補助情報領域にリピートを示すフラグを予め立てておき、そのフラグを検出する方法が実現可能である。
上記方法の内、隣接するフレーム単位での相関を検出することにより60フレーム/秒から24フレーム/秒への変換処理を施し、MPEG2画像符号化を行なう、画像符号化装置の構成図を図12に示し、動作を説明する。
まず、入力端子201より入力された画像信号は、画像信号入力装置202により符号化処理を行なう領域の画像信号を取り込み、メモリ制御部203、データバス204を介して入力画像メモリ205に格納される。格納された画像データは、時間的に連続する2フレームの輝度信号データが画像信号相関検出回路206に読み込まれ、フレーム間の相関値を計測する。相関値の計測方法としては、2フレームの空間的に同位置に存在する輝度信号の差分絶対値の総和を取得し、その値がある閾値よりも小さい場合に、リピートフレームであると判断する。判断されたリピートフレーム情報は、フレーム周波数変換情報出力処理部207に送られる。
フレーム周波数変換情報出力処理部207では、入力された判定情報のパターンより、1フレームのリピートと、2フレーム連続のリピートのパターンを検出し、24フレーム/秒のパターンを生成する。前記相関値計測方法及びパターン検出処理としては、例えば特許文献1にて提案されているような変換処理を用いることにより、編集処理が加わった素材に対しての変換処理も可能となる。生成されたパターンに従い、24フレーム/秒の画像信号として使用される画像フレームのID情報(バンク番号、メモリアドレス値等)を、制御バス208を介して符号化制御部209に出力する。
また、色差信号に関しては、フレーム毎に色差サブサンプリング処理210に1フレーム分の色差信号がメモリ制御部203及びデータバス204を介して入力され、MPEG2符号化処理において4:2:2フォーマットで構成される入力画像信号に対して、垂直方向にサブサンプリング処理を行ない、4:2:0フォーマットの色差信号に変換され、メモリ制御部203、データバス204を介して、入力画像メモリ205に格納される。
符号化処理部20においては、24フレーム/秒の画像信号に対してMPEG2符号化処理が行なわれる。以下、符号化処理部20の内部の構成と動作を説明する。
まず、基準フレームにおいては、入力画像メモリ205からメモリ制御部203及びデータバス204を介して、符号化制御部209より制御バス208を介して指令されるフレームID情報に従って、符号化を行なう画像フレーム信号を2次元ブロック変換回路211に入力する。
2次元ブロック変換回路211においては、マクロブロックが切り出され、マクロブロックデータは減算器212を介して直交変換回路213に供給され、水平8画素×垂直8画素単位でDCT変換が行われてDCT係数が出力される。基準フレームの場合には、予測処理は行なわれず、減算器212への予測値は0となる。DCT係数は、さらに輝度信号で水平16画素×垂直16画素のマクロブロック単位にまとめられて、量子化回路214に送られる。
量子化回路214においては、DCT係数を周波数成分毎に異なった値を持つ量子化マトリクスにより係数毎に異なった値で除算されることにより、量子化処理される。量子化処理されたDCT係数は、符号化回路215において符号化テーブル216の係数に対応したアドレスを参照することにより可変長または固定長の符号化が行われる。
マルチプレクサ217は、符号化回路215から出力された符号化データと符号化制御部209より制御バス208を介して入力された画面内でのマクロブロックの場所等を示す付加情報が多重化され、メモリ制御部203、データバス204を介して画像ストリームバッファ218に格納される。
一方、量子化回路214において量子化されたDCT係数は、逆量子化回路219及び逆直交変換回路220において、逆量子化及び逆DCT処理が行われ、量子化されたDCT係数が復号され、加算器221及びデブロック回路222、メモリ制御部203、データバス204を介して参照画像メモリ223に供給されて格納される。参照画像メモリ223に格納された画像は、予測フレームの符号化処理時に使用される。
続いて、予測フレームにおいては、入力画像メモリ205から切り出された画像信号は、2次元ブロック変換回路211と共に動きベクトル検出回路224に入力される。動きベクトル検出回路224には、参照画像メモリ223よりメモリ制御部203、データバス204を介して予測符号化を行なうための参照画像が入力される。
動きベクトル検出回路224では、符号化を行なう画像と参照画像の間でパターンマッチングによる最小誤差値の検索によりの画像間の動きベクトルが求められる。動きベクトル検出回路224から出力された動きベクトルと動きベクトルにより切り出された予測ブロックは、動き補償予測回路225に供給される。
動き補償予測回路225では、複数切り出された予測ブロックの中から最適な予測モードの選択を行ない、予測画像ブロックを減算器212に出力すると共に、動きベクトル値と予測モード値を制御バス208を介して、符号化制御部209に伝送する。
2次元ブロック変換回路211から出力されたマクロブロックデータは、減算器212により、予測ブロックとの差分信号が生成され、直交変換回路213に供給される。差分信号は、前記基準フレームの各ブロックと同様の処理が行われ、DCT係数が量子化処理され符号化回路215により、符号化制御部209から制御バス208を介して設定された動きベクトル値や予測モード値と重畳され、ビットストリームとしてマルチプレクサ217から、画像ストリームバッファ218に出力される。
画像データの入出力は、データバス204を介して行なわれるため、複数の処理・回路よりデータ転送の要求があった場合の調停を行なうために、メモリ制御部203が存在する。
上記符号化装置において、符号化処理のパフォーマンスに影響する処理としては、符号化処理部20の内部処理の処理速度と共に、データバス204において伝送できるデータ量が存在する。データ量が増大すると、各処理より要求されるデータ伝送要求が待たされる時間も増大し、データを確保することにより動作可能な符号化処理の処理速度にも影響を与える。リピートフレームの検出を行なう場合に、従来の手法では、常に隣接するフレーム間での相関情報を算出し、リピートパターンを検出しているために、データバス204において伝送すべきデータ量が増大する。
一例として、1280×720画素、4:2:2フォーマット、60フレーム/秒の入力画像信号において、24フレーム/秒への変換処理を行ない、符号化処理を行なう際の、データバス204の必要な伝送レートを算出すると、
1)画像信号入力処理部202からのデータ伝送:
((1280×720)+(640×720×2))×60=110592000バイト/秒
2)画像信号相関検出処理部206に関するデータ伝送:
(1280×720)×2×60=110592000バイト/秒
3)色差サブサンプリング処理部210に関するデータ伝送:
((640×720×2)+(640×360×2))×60=82944000バイト/秒
4)符号化処理部20に関するデータ伝送(ストリームの伝送を除く:Bフレームを想定)
((1280×720)+(640×360×2))×3×24=99532800バイト/秒
となる。この例は、動きベクトル検出回路224内部にキャッシュメモリを持ち、動きベクトルの探索処理は、キャッシュメモリをアクセスすることでデータバス204の負荷を低減する構成を想定した場合のデータ伝送量となっている。
この場合、純粋に符号化処理に有するデータ伝送量が約100MB/秒に対して、画像入力処理と24フレーム/秒への変換処理に要するデータ伝送量が約305MB/秒となり、データバス204に対する負荷を増大させている。
特開平7−327164号公報 特開2003−309823号公報
しかし、上記特許文献1、2の従来例にて示されるような、従来のリピートフレーム検出手法による60フレーム/秒から24フレーム/秒への画像信号の周波数変換処理においては、データバスにおけるデータ伝送量が増大するため、符号化処理の処理速度に影響を与えてしまう。
また、符号化処理の処理速度として同じ水平・垂直画素数を持つ画像信号を30フレーム/秒処理できるような符号化処理回路においても、データバスにおけるデータ伝送量より生じる速度低下により、24フレーム/秒の符号化処理の実現に影響を与えてしまう。
そこで、上記問題を解決する方法として、データバスの動作スピードを向上させる方法や、データバスのバス幅を拡張する方法でデータバス自体の性能を向上させ、影響を解消する方法が考えられるが、符号化装置全体の回路規模や消費電力を増大させることになる。
本発明は、上記に鑑みてなされたもので、その目的としては、半分以下のフレーム周波数に変換する画像信号の周波数変換処理において、複数フレーム間隔で入力信号をメモリに格納し、格納された画像情報のみを用いて周波数変換処理を実現する手法を提供し、周波数変換処理と画像信号入力処理の動作タイミングを管理することにより、瞬間的に必要となるデータバスの伝送パフォーマンスを削減することを可能とし、周波数変換処理を必要とする画像の高能率符号化処理に対して、符号化装置全体の回路規模や消費電力を増大させることなく、周波数変換処理を必要としない高能率符号化処理で処理可能な水平・垂直解像度と同等解像度の符号化処理を実現させることができる画像信号の高能率符号化装置を提供することにある。
上記目的を達成するため、請求項1記載の発明に係る画像信号の高能率符号化装置は、Mフレーム/秒の入来画像信号をNフレーム間隔(M>N≧2)で取り込むための画像取り込み指令を出力すると共に、前記画像取り込み指令が与えられるフレームの次のフレームに対応するタイミングで第1及び第2の処理実行指令を出力する指令付与手段と、 前記指令付与手段から前記画像取り込み指令を受けたときに、前記Mフレーム/秒の入来画像信号をNフレーム間隔で取り込み、M/Nフレーム/秒の画像信号としてメモリに格納する画像入力手段と、前記指令付与手段から前記第1の処理実行指令を受けたときに、前記メモリから前記M/Nフレーム/秒の画像信号を読み出し、その画像信号の時間的に前後に隣接する2つのフレーム間の相関を検出する相関検出処理手段と、前記指令付与手段から前記第2の処理実行指令を受けたときに、前記2つのフレーム間の相関検出結果に基づいて、前記2つのフレームが互いに同一内容のフレームと判断された場合、前記2つのフレームのうち時間的に前のフレームをスキップさせることにより、前記M/Nフレーム/秒の画像信号からLフレーム/秒(L<M/N)の画像信号へのフレーム周波数変換を行なうフレーム周波数変換処理手段と、周波数変換された前記Lフレーム/秒の画像信号に対して符号化処理を行なう符号化処理手段とを備えたことを特徴とする。
請求項2記載の発明では、前記相関検出処理手段は、前記2つのフレームの輝度信号を対象として、画面分割された領域における、フレーム間同空間位置の差分信号の絶対値和と、同一フレーム内の輝度信号平均値と、同一フレーム内隣接画素の信号間差分絶対値の総和とのうち少なくとも1つの値を算出し、画面分割された領域毎の算出値及び算出値の総和に基づいて、前記2つのフレーム間の相関を検出することを特徴とする。
請求項3記載の発明では、前記フレーム周波数変換処理手段は、可変パラメータを用いて前記Lフレーム/秒の間隔に対する画像出力の過多及び過少を管理する手段を備えたことを特徴とする。
請求項1〜3記載の発明によれば、半分以下のフレーム周波数に変換する画像信号の周波数変換処理において、複数フレーム間隔で入力信号をメモリに格納し、格納された画像情報のみを用いて周波数変換処理を実現する手法を提供し、周波数変換処理と画像信号入力処理の動作タイミングを管理する。これにより、瞬間的に必要となるデータバスの伝送パフォーマンスを削減することを可能とし、周波数変換処理を必要とする画像の高能率符号化処理に対して、符号化装置全体の回路規模や消費電力を増大させることなく、周波数変換処理を必要としない高能率符号化処理で処理可能な水平・垂直解像度と同等解像度の符号化処理を実現させることができる。
請求項1記載の発明によれば、M/Nフレーム/秒の画像信号の時間的に前後に隣接する2つのフレーム間の相関を検出してこの相関検出結果に基づいて、2つのフレームが互いに同一内容のフレームと判断された場合に、時間的に前のフレームをスキップさせることにより、M/Nフレーム/秒の画像信号からLフレーム/秒(L<M/N)の画像信号へのフレーム周波数変換を行なうので、スキップさせたフレーム分に相当するデータバスの伝送パフォーマンスを瞬間的に削減することができる。
また、請求項2記載の発明によれば、画面分割された領域毎の算出値及び算出値の総和に基づいて、2つのフレーム間の相関を検出することで、2つのフレームの輝度信号の相関検出処理の効率を向上することができ、データバスの負担を削減することができる。
さらに、請求項3記載の発明によれば、可変パラメータを用いてLフレーム/秒の間隔に対する画像出力の過多及び過少を管理するので、フレームスキップを管理して制御することができる。
以下、図面を参照しながら、本発明に係る画像信号の高能率符号化装置を実施するための最良の形態について説明する。
図1は、本実施の形態に係る画像信号の高能率符号化装置の構成を示す。図1に示す高能率符号化装置は、周波数変換処理を伴ったMPEG2画像符号化装置(画像ストリーム変換記録装置)を適用したものである。この画像符号化装置は、図12の従来例と比べ、符号化処理部20(2次元ブロック変換回路211、減算器212、直交変換回路213、量子化回路214、符号化回路215、符号化テーブル216、マルチプレクサ217、逆量子化回路219、逆直交変換回路220、加算器221、デブロック回路222、動きベクトル検出回路224)と、入力端子201、メモリ制御部203、データバス204、入力画像メモリ205、制御バス208、画像ストリームバッファ218、及び参照画像メモリ223に関しては、同一構成になっているため、同一符号を付して、その説明は省略する。
符号化制御部101は、フレーム周波数変換処理を行なう指令、及び画像信号を取得するフレーム間隔を示す情報N(N≧2)を、制御バス208を介して、入力信号取得制御処理部102に設定する。
入力信号取得制御処理部102は、符号化制御部101により設定された上記フレーム間隔を示す情報Nの間隔で、画像信号入力処理部103に対して取り込み指令を与えると共に、画像信号相関検出処理部104、及びフレーム周波数変換情報出力処理部105に対して、上記取り込み指令を与えたフレームの次のフレームにて、検出指令及び情報出力指令を与える。
画像信号入力処理部103は、入力信号取得制御処理部102から上記取り込み指令が与えられたフレームの画像信号に対して入力端子201からその画像入力を行ない、入力された画像信号を、メモリ制御部203及びデータバス204を介して入力画像メモリ205に格納する。
画像信号相関検出処理部104は、上記検出指令が与えられたフレームのタイミングにて取り込まれた画像信号の時間順の2フレームの輝度信号を、入力画像メモリ205からメモリ制御部203及びデータバス204を介して取り込み、相関値の計測を行なう。
この相関値の計測方法として、本実施例では、2フレームの空間的に同位置に存在する輝度信号(Luma信号)の差分絶対値の総和と合わせて、同一フレーム内の輝度信号平均値、同一フレーム内隣接画素の信号間差分絶対値の総和を取得する方法を用いる。
この方法で取得する単位としては、画面内を水平・垂直に数分割を行ない、それぞれの総和を個別に取得する。個別に取得した、2フレーム間の差分絶対値総和をDiff(x,y)、同一フレーム内の輝度平均値をDC1(x,y)、DC2(x,y)、同一フレーム内の隣接画素間差分絶対値和をAct1(x,y)、Act2(x,y)とすると、これらのフレーム総和も計算する。
Diff=ΣDiff(x,y)
DC1=ΣDC1(x,y)、DC2=ΣDC2(x,y)
Act1=ΣAct1(x,y)、Act2=ΣAct2(x,y)
画像信号相関検出処理部104は、上記値を用いて、2つのフレーム間の関係を3種類のパターンに分ける処理を行なう。3種類のパターンは、静止もしくはリピート状態、シーン変化状態、その他の(定常)状態の3つである。
ここで、図2に示すフローチャートを参照して、画像信号相関検出処理部104による状態判断処理について説明する。
図2において、画像信号相関検出処理部104は、最初に、静止もしくはリピート状態であるかどうかの判断処理を行なう。すなわち、全ての分割された領域のDiff(x,y)に対して、閾値α(Diff)との比較を行ない、全ての領域で、
Diff(x,y)≦α(Diff)
であるかどうかを判断する(ステップS301)。
その結果、条件を満たさない場合(NO)には、静止もしくはリピート状態ではないと判断し(ステップS304)、条件成立(YES)の場合には、続いてDC及びActの2フレームでの比較を行なう。これらの比較も全ての領域に対して行なう。全ての領域に対して、
ABS(DC1(x,y)−DC2(x,y))≦α(DC)
であるかどうかを判断する(ステップS302)。ABSは、絶対値演算を示す。
その結果、条件を満たさない場合(NO)には、静止もしくはリピート状態ではないと判断し(ステップS304)、条件成立の場合(YES)には、Actの比較処理を行なう。Actの比較処理も、同様に全ての領域に対して、
ABS(Act1(x,y)−Act2(x,y))≦α(Act)
であるかどうかを判断する(ステップS303)。
その結果、条件を満たさない場合(NO)には、静止もしくはリピート状態ではないと判断し(ステップS304)、条件成立の場合(YES)には、静止もしくはリピート状態であると判断する(ステップ305)。
上記処理にて、静止もしくはリピート状態ではないと判断された場合(ステップS304)には、続いてシーン変化状態であるかどうかの判断を行なう。シーン変化状態の判断には、Diffの分割された領域の値の最大値MaxDiffにより補正された全体の総和の値Diff(Mod)及び、画面全体のDC及びActの差分絶対値DiffDC、DiffActを用いて行なう。それぞれの計算は、
MaxDiff=Max(Diff(x,y))
Diff(Mod)=(Diff×β)/MaxDiff
DiffDC=ABS(DC1−DC2)
DiffAct=ABS(Act1−Act2)
となる(ステップS306)。βは固定の乗数である。
まず、Diff(Mod)と閾値γの比較を行ない(ステップS307)、
Diff(Mod)≦γ
の場合(YES)には、シーン変化状態ではないと判断し、定常状態となる(ステップS308)。それ以外の場合(NO)には、DiffDC及びDiffActに関して、直前に同様の計測を行なった結果の値PrevDiffDC、PrevDiffActを保持しておき、差分絶対値の変化を計測する。
DCに関しては、
(DiffDC+Δ(DC))/(PrevDiffDC+Δ(DC))>ε(DC)
の条件判断を行ない(ステップS309)、条件が成立する場合(YES)には、シーン変化状態となり(ステップS310)、成立しない場合(NO)には、Actに関しての判断が行なわれる。Δ(DC)及びε(DC)は、固定値及び閾値である。
Actに関しても同様に、
(DiffAct+Δ(Act))/(PrevDiffAct+Δ(Act))>ε(Act)
の条件判断を行ない(ステップS311)、条件が成立する場合(YES)には、シーン変化状態となり(ステップS310)、成立しない場合(NO)には定常状態となる(ステップS308)。
上記処理にて状態が確定した後、DiffDC及びDiffActは、次の相関判断のためにPrevDiffDC及びPrevDiffActに格納され(ステップS312)、処理が終了する。
上記のようにして決定された2つのフレーム間の関係情報(定常状態、静止もしくはリピート状態、シーン変化状態)は、フレーム周波数変換情報出力処理部105に送られる。
フレーム周波数変換情報出力処理部105は、入力された上記関係情報のパターンにより、入力したフレームの中から24フレーム/秒のパターンを生成する。基本的には、静止もしくはリピート状態の間隔を計測し、5回の間隔でリピート状態が生じている場合にパターンが確定される。
図3〜図7は、符号化処理開始時における2−3プルダウン(テレシネプルダウン)の各種位相におけるリピート状態の検出及び、24フレーム/秒への変換タイミングを、5つの位相パターン(2−3プルダウンパターン1〜5)に分けて説明するものである。
図3〜図7の例では、A、B、C、D、E、F、G、H、…は、入力端子201に入力される60フレーム/秒(M=60)の画像信号を構成するフレーム、入力処理は、画像信号入力処理部103により2フレーム間隔(N=2)で取り込まれるフレーム、比較は、画像信号相関検出処理部104により比較される2つのフレームを示す。相関情報は、画像信号相関検出処理部104により前述のように確定される2フレーム間の相関情報で、図の例では、0は定常状態、1は静止もしくはリピート状態、2はシーン変化状態をそれぞれ示す。Cnt及びNext_Skipは、フレーム周波数変換情報出力処理部105内に設定されるカウンタ及びフラグである(詳細は後述参照)。Luma判定は、フレーム周波数変換情報出力処理部105により周波数変換される24フレーム/秒(L=24)の画像信号のうちの輝度信号を示す。図中のStartは処理開始タイミング、Repは同一フレームのリピート状態、Skipはスキップされたフレームを示す。
ここでは、フレーム周波数変換情報出力処理部105において、図示しないメモリ内に、静止もしくはリピート状態の間隔を計測するカウンタCntと、処理開始タイミングと24フレーム/秒出力画像の生成タイミング(図中のLuma判定タイミング)とのずれを計測するパラメータOffsetと、現在のCnt値に対し直前のCnt値を保持しておくPrevCntとを用意し、素材編集が行なわれた際の2−3パターンのずれやシーケンスが静止画像になった場合の補正を行なう。
具体的に、フレーム周波数変換情報出力処理部105は、次のような処理を行なう。
1)2つのフレーム間の関係情報が静止もしくはリピート状態を示している場合(図中の相関情報=1の場合)には、Cnt値を0にリセットする(図3のフレームA、E、図4のフレームC、図5のフレームE、図6のフレームC、図7のフレームE参照)。
2)Cnt値が4である時に、静止もしくはリピート状態を示すことを確認することで、60フレーム/秒の入力画像に対して、24フレーム/秒のフレーム周波数変換出力を正常に行っていると判断する。
3)Cnt値を0にリセットした場合には、次の状態判断時の時間的に前に入力された画像信号をスキップするためのフラグNext_Skipを1にセットする。
4)Cnt値が0で、PrevCnt値が4未満の値であって、2−3パターン検出の同期が確定しており、尚且つ静止もしくはリピート状態であると判断した場合には、スキップ処理を行なわずにPrevCnt値をPrevCnt+1の値にセットし、Cnt値を0にする。
5)上記以外の場合には、Cnt値をPrevCntに代入し、Cnt値をCnt+1の値にセットする。この処理により、静止状態(図中の相関情報=1の場合)に置いては、5フレーム間隔以外のパターンを無視できる。
6)フラグNext_Skipが1にセットされており、修正されたPrevCnt値が0である場合には、2つのフレームの時間的に前に入力されたフレームの画像信号をスキップする情報を、制御バス経由208で符号化制御部101へ伝送する。
7)上記スキップを行なわない場合(24フレーム/秒の画像信号と判断した場合)に、色差サブサンプリング処理部106に処理実行命令を出力する。
色差サブサンプリング処理部106は、上記処理実行命令を受信したフレーム及び次のフレームのタイミングにおいて、スキップを行なわないと判断したフレームの色差信号(Chroma信号)を、入力画像メモリ205からメモリ制御部203及びデータバス204を介して取り込み、垂直方向のサブサンプリング処理を施し、メモリ制御部203及びデータバス204を介して入力画像メモリ205に4:2:0フォーマットの色差信号を格納する。
図8は、図3の例と同様の処理タイミングで、入力画像から色差信号出力及び符号化処理開始までの動作タイミングを説明するものである。図中の入力処理、比較、相関情報、Cnt、Next_Skip、Lnma判定は、前述の図3〜図7と同様である。図中のCroma判定は、色差サブサンプリング処理部106により生成され、入力画像メモリ205に格納される色差信号を示す。また、符号化は、符号化処理部20により符号化処理される24フレーム/秒の画像信号を示す。
図8に示すように、最初の画像信号(図中のフレームB)が符号化処理されるタイミングは、60フレーム/秒(M=60)の入力画像信号を2フレーム間隔(N=2)で取り込む場合、画像入力から9フレーム後であるため、その時刻より24フレーム/秒(L=24)の間隔で符号化処理動作を行なうことにより、24フレーム/秒の符号化処理が実現できる。
従来例で算出した条件と同じ条件として、1280×720画素、4:2:2フォーマット、60フレーム/秒の入力画像信号において、24フレーム/秒への変換処理を行ない、符号化処理を行なう際の、データバス204の必要な伝送レートを算出すると、入力処理を行なっているフレームをAフレーム、行なっていないフレームをBフレームと区別して、
1)画像信号入力処理部103からのデータ伝送:
A: ((1280×720)+(640×720×2))×60=110592000バイト/秒
B: 0バイト/秒
2)画像信号相関検出処理部104に関するデータ伝送:
A: 0バイト/秒
B: (1280×720)×2×60=110592000バイト/秒
3)色差サブサンプリング処理部106に関するデータ伝送:
A: ((640×720×2)+(640×360×2))×60/2=41472000バイト/秒
B: ((640×720×2)+(640×360×2))×60/2=41472000バイト/秒
となり、符号化処理部20に関するデータ伝送を除いた、データ伝送レートは、Aフレームの場合もBフレームの場合も、約152MB/秒(110592000バイト/秒+41472000バイト/秒)となり、前述した従来例と比べ、伝送レートが半減する。
平均伝送レートとしては、24フレームのみの色差信号変換となるため、色差サブサンプリング処理部106に関するデータ伝送は、33177600バイト/秒となり、更に約7MB/秒の削減が行なわれる。
続いて、フレーム周波数変換情報出力処理部105による、素材編集時の2−3パターン追従処理の一例におけるパラメータ推移を図9に示し、その動作を説明する。図中の入力処理、比較、相関情報、Cnt、Next_Skip、Lnma判定、Croma判定は、前述の図3〜図8と同様である。図中のOffsetは、前述したように処理開始タイミングと24フレーム/秒出力画像の生成タイミングのずれを計測するパラメータである。
フレーム周波数変換情報出力処理部105は、処理開始タイミングと24フレーム/秒出力画像の生成タイミングのずれを計測するパラメータOffsetが4以上になった場合に、編集ポイントにおいて強制的に1フレーム抜き取る処理を行ない、24フレーム/秒の出力処理とのタイミングを補正する。
図9の例では、Offset=4において、時間的に前のフレームEを取り込むタイミングで編集ポイントが存在した場合に、相関情報が2となっていることより、フレーム周波数変換情報出力処理部105は、編集ポイントであると認識する。これにより、強制的に1フレーム抜き取る処理を行なう。
フレーム周波数変換情報出力処理部105は、強制的に1フレーム抜き取る処理を行なう場合、Next_Skip値を0にすると共に、Cnt値を0にセットし、直前のCnt値(図9の例では2)を4から引いた値(図9の例では4−2=2)をOffset(図9の例では4)から引く(図9の例では4−2)。その結果、図9の場合には、Offsetが4から2に変化する(4−2=2)。
その後、フレーム周波数変換情報出力処理部105により、シーン変化後に最初に認識したリピートフレーム(図9の例ではフレームG)でCnt値が0にセットされた場合に、直前のCnt値が4でない場合(図9の例では2であり、この場合に該当する)には、シーン変化後の2−3プルダウンパターンの位相が補正されており、Cnt値が4よりも小さかった場合(図9の例はこの場合に該当する)には、フレーム周波数変換情報出力処理部105は、更にOffset値(図9の例では2)から、直前のCnt値(図9の例では2)を4から引いた値(図9の例では4−2=2)を引く(図9の例では2−2)。
一方、フレーム周波数変換情報出力処理部105により、シーン変化後に最初に認識したリピートフレーム(図9の例ではフレームG)でCnt値が4よりも大きかった場合(図9の例はこの場合に該当しない)には、フレーム周波数変換情報出力処理部105は、直前のCnt値から4を引いた値をOffset値に加算する。
このようにして、フレーム周波数変換情報出力処理部105により、シーン変化に伴うリピートフレームの位相パターンの修正値をOffset値に反映させることにより、24フレーム/秒の画像フレーム取得と符号化処理を保持できる。図9の場合には、Offset値は最終的に0になる(2−2=0)。
上記のように24フレーム/秒の間隔に対する出力の過多及び過少を管理するパラメータOffsetを用いると、3つの状態情報の時間的なパターンから、符号化開始時、シーン変化検出時、及びフレームスキップのパターンが検出できなかった場合に、パラメータOffsetを増減させ、そのOffset値に基づいてフレームスキップを制御することができる。
なお、本実施の形態は、MPEG2符号化装置を専用ハードウェア構成にて実現する場合の構成であったが、ソフトウェアにて符号化プログラムを動作させることにより実現する場合においても、同様に有効である。コンピュータにて高解像度の画像信号をアクセスする場合には、HDDや外部メモリに蓄えられた画像信号をCPU内部で処理させるために、従来の構成ではハードウェア構成の場合と同様にデータ伝送に大きな負荷がかかるため、符号化処理速度の低下や、メモリに格納できる画像の解像度や量の低下を招く。本発明は、プログラムにてフレーム周波数変換処理を伴った符号化処理を実装する場合にも、有効であることは明らかである。
また、本実施の形態では、MPEG2規格の画像ストリーム変換記録装置を説明したが、同様の画像信号の隣接画素間(空間方向)の相関および、隣接フレーム間もしくは隣接フィールド間(時間方向)の相関を利用して情報量を圧縮するMPEG4 ASPやMPEG4 AVCを用いた符号化記録装置においても、同様の効果を持った符号化処理装置として適用可能である。
なお、本実施の形態では、60フレーム/秒(M=60)の画像信号を2フレーム間隔(N=2)で取り込み、30フレーム/秒(M/N=60/2=30)の画像信号として画像メモリに格納し、30フレーム/秒の画像信号から24フレーム/秒(L=24)の画像信号に周波数変換する場合、すなわちM=60、N=2、L=24の場合を説明しているが、本発明はこれに限定されるものではない。
例えば、NTSC方式からPAL方式に変換するときにM=60、N=2、L=25とする場合や、テレシネ方式からPAL方式に変換するときにM=50、N=2、L=24とする場合や、テレシネ方式からNTSC方式に変換するときにM=60*(1000/1001)、N=2、L=24*(1000/1001)の場合等にも適用することができる。
なお、上記した装置の機能をプログラムによりコンピュータに実現させるようにしてもよい。このプログラムは、記録媒体から読み取られてコンピュータに取り込まれてもよいし、通信ネットワークを介して伝送されてコンピュータに取り込まれてもよい。
以上、本発明の実施の形態について説明したが、本発明の好適な実施の態様を以下のとおり列挙する。
本発明によれば、MPEG2規格の画像ストリーム変換記録装置のほか、MPEG4 ASPやMPEG4 AVCを用いた符号化記録装置等の高能率符号化装置の用途にも適用できる。
本発明の実施の形態による周波数変換処理を伴ったMPEG2画像符号化装置の全体構成を示す概略ブロック図である。 本発明の実施の形態による画像符号化装置の画像信号相関検出処理の処理アルゴリズムを説明する概略フローチャートである。 符号化処理開始時におけるテレシネプルダウンパターン(2−3プルダウンパターン1の場合)の各タイミングにおける周波数変換処理及び符号化処理の動作タイミングを説明する図である。 符号化処理開始時におけるテレシネプルダウンパターン(2−3プルダウンパターン2の場合)の各タイミングにおける周波数変換処理及び符号化処理の動作タイミングを説明する図である。 符号化処理開始時におけるテレシネプルダウンパターン(2−3プルダウンパターン3の場合)の各タイミングにおける周波数変換処理及び符号化処理の動作タイミングを説明する図である。 符号化処理開始時におけるテレシネプルダウンパターン(2−3プルダウンパターン4の場合)の各タイミングにおける周波数変換処理及び符号化処理の動作タイミングを説明する図である。 符号化処理開始時におけるテレシネプルダウンパターン(2−3プルダウンパターン5の場合)の各タイミングにおける周波数変換処理及び符号化処理の動作タイミングを説明する図である。 図3に示すテレシネプルダウン位相パターンにおける入力画像信号に対する色差信号出力及び符号化処理の動作タイミングを説明する図である。 素材編集時の場合に対しての2−3パターン追従処理の一例におけるパラメータ推移を示す図である。 MPEG2画像符号化で用いられている符号化体系、符号化時の符号化順並べ替えのタイミング、及び復号時のストリーム到達順と復号画像出力順を示す模式図である。 (A)〜(C)は、2−3プルダウン方式における、60フレーム/秒の画像信号と、変換前の24フレーム/秒の画像信号との関係を示す模式図である。 従来例の周波数変換処理を伴ったMPEG2画像符号化装置の構成図である。
符号の説明
20 符号化処理部
101 符号化制御部
102 入力信号取得制御処理部
103 画像信号入力処理部
104 画像信号相関検出処理部
105 周波数変換情報出力処理部
106 色差サブサンプリング処理部
201 入力端子
202 画像信号入力処理
203 メモリ制御部
204 データバス
205 入力画像メモリ
206 画像信号相関検出回路
207 周波数変換情報出力処理部
208 制御バス
209 符号化制御部
210 色差サブサンプリング処理部
211 2次元ブロック変換回路
212 減算器
213 直交変換回路
214 量子化回路
215 符号化回路
216 符号化テーブル
217 マルチプレクサ
218 画像ストリームバッファ
219 逆量子化回路
220 逆直交変換回路
221 加算器
222 デブロック回路
223 参照画像メモリ
224 動きベクトル検出回路
225 動き補償予測回路

Claims (3)

  1. Mフレーム/秒の入来画像信号をNフレーム間隔(M>N≧2)で取り込むための画像取り込み指令を出力すると共に、前記画像取り込み指令が与えられるフレームの次のフレームに対応するタイミングで第1及び第2の処理実行指令を出力する指令付与手段と、
    前記指令付与手段から前記画像取り込み指令を受けたときに、前記Mフレーム/秒の入来画像信号をNフレーム間隔で取り込み、M/Nフレーム/秒の画像信号としてメモリに格納する画像入力手段と、
    前記指令付与手段から前記第1の処理実行指令を受けたときに、前記メモリから前記M/Nフレーム/秒の画像信号を読み出し、その画像信号の時間的に前後に隣接する2つのフレーム間の相関を検出する相関検出処理手段と、
    前記指令付与手段から前記第2の処理実行指令を受けたときに、前記2つのフレーム間の相関検出結果に基づいて、前記2つのフレームが互いに同一内容のフレームと判断された場合、前記2つのフレームのうち時間的に前のフレームをスキップさせることにより、前記M/Nフレーム/秒の画像信号からLフレーム/秒(L<M/N)の画像信号へのフレーム周波数変換を行なうフレーム周波数変換処理手段と、
    周波数変換された前記Lフレーム/秒の画像信号に対して符号化処理を行なう符号化処理手段とを備えたことを特徴とする画像信号の高能率符号化装置。
  2. 前記相関検出処理手段は、
    前記2つのフレームの輝度信号を対象として、画面分割された領域における、フレーム間同空間位置の差分信号の絶対値和と、同一フレーム内の輝度信号平均値と、同一フレーム内隣接画素の信号間差分絶対値の総和とのうち少なくとも1つの値を算出し、画面分割された領域毎の算出値及び算出値の総和に基づいて、前記2つのフレーム間の相関を検出することを特徴とする請求項1記載の画像信号の高能率符号化装置。
  3. 前記フレーム周波数変換処理手段は、
    可変パラメータを用いて前記Lフレーム/秒の間隔に対する画像出力の過多及び過少を管理する手段を備えたことを特徴とする請求項1又は2記載の画像信号の高能率符号化装置。


JP2005233039A 2005-08-11 2005-08-11 画像信号の高能率符号化装置 Pending JP2007049520A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233039A JP2007049520A (ja) 2005-08-11 2005-08-11 画像信号の高能率符号化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233039A JP2007049520A (ja) 2005-08-11 2005-08-11 画像信号の高能率符号化装置

Publications (1)

Publication Number Publication Date
JP2007049520A true JP2007049520A (ja) 2007-02-22

Family

ID=37851976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233039A Pending JP2007049520A (ja) 2005-08-11 2005-08-11 画像信号の高能率符号化装置

Country Status (1)

Country Link
JP (1) JP2007049520A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011114817A1 (ja) * 2010-03-18 2013-06-27 日本電気株式会社 発熱が小さい、テレビ電話機能を持つ携帯電話機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011114817A1 (ja) * 2010-03-18 2013-06-27 日本電気株式会社 発熱が小さい、テレビ電話機能を持つ携帯電話機
US9277175B2 (en) 2010-03-18 2016-03-01 Lenovo Innovations Limited (Hong Kong) Mobile telephone set having video-phone function low in amount of heat generation

Similar Documents

Publication Publication Date Title
JP4014263B2 (ja) 映像信号変換装置及び映像信号変換方法
US8170097B2 (en) Extension to the AVC standard to support the encoding and storage of high resolution digital still pictures in series with video
US6301304B1 (en) Architecture and method for inverse quantization of discrete cosine transform coefficients in MPEG decoders
US20090141809A1 (en) Extension to the AVC standard to support the encoding and storage of high resolution digital still pictures in parallel with video
JP2001292451A (ja) 動画像信号圧縮装置及び方法
JP3092280B2 (ja) 画像信号の高能率符号化及び復号化装置
JP3651941B2 (ja) 画像再生装置
JP2007104231A (ja) トランスコーダ、記録装置及びトランスコード方法
JPH0818979A (ja) 画像処理装置
KR100364748B1 (ko) 영상 변환 부호화 장치
JP2898413B2 (ja) 所要メモリ容量の低減化を伴う圧縮ビデオデータ流の復号化及び符号化のための方法
US6040875A (en) Method to compensate for a fade in a digital video input sequence
JP2007049520A (ja) 画像信号の高能率符号化装置
JP3822821B2 (ja) 画像再生表示装置
JP2005518728A (ja) 画像処理方法及び装置
JPH0698311A (ja) 画像信号の高能率符号化及び復号化装置
JP2002171530A (ja) スーパーインポーズ機能を備えた再符号化装置および方法
JP2883592B2 (ja) 動画像復号化装置及び動画像復号化方法
JP3384739B2 (ja) 動画像復号化方法
JP2002016924A (ja) トランスコーダ装置およびトランスコード方法
JP3687458B2 (ja) 圧縮復号化方法及び圧縮復号化装置
JP3416505B2 (ja) 動画像復号化方法
JP4184223B2 (ja) トランスコーダ
JP2009290387A (ja) エンコーダ、デコーダ、及び記録再生装置
KR19980054366A (ko) 디지탈 티브이의 피아이피(pip)구현장치 및 그 방법