JP2007047014A - 三次元測定装置 - Google Patents
三次元測定装置 Download PDFInfo
- Publication number
- JP2007047014A JP2007047014A JP2005231599A JP2005231599A JP2007047014A JP 2007047014 A JP2007047014 A JP 2007047014A JP 2005231599 A JP2005231599 A JP 2005231599A JP 2005231599 A JP2005231599 A JP 2005231599A JP 2007047014 A JP2007047014 A JP 2007047014A
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- probe
- measurement probe
- force
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
【課題】 測定者の使い勝手を向上させると共に、再現性の高い測定を可能にする。
【解決手段】 被測定物200を測定するための測定プローブ101と、この測定プローブ101を三次元測定空間内で外部からの力に対して移動自在に支持すると共に前記測定プローブの位置を検出するための位置情報S1を出力する測定アーム100と、位置情報S1に基づいて測定プローブ101の三次元測定空間内の位置を検出するとともに、測定プローブ101の三次元測定空間内における移動を任意の線上又は面上に制限するように測定アーム100を制御する制御部300とを備える。
【選択図】 図1
【解決手段】 被測定物200を測定するための測定プローブ101と、この測定プローブ101を三次元測定空間内で外部からの力に対して移動自在に支持すると共に前記測定プローブの位置を検出するための位置情報S1を出力する測定アーム100と、位置情報S1に基づいて測定プローブ101の三次元測定空間内の位置を検出するとともに、測定プローブ101の三次元測定空間内における移動を任意の線上又は面上に制限するように測定アーム100を制御する制御部300とを備える。
【選択図】 図1
Description
本発明は、測定者が測定プローブを直接手で動かして、被測定物上の任意の点の三次元座標値を取り込むことにより、被測定物の三次元形状、表面性状等の測定を行う三次元測定装置に関する。
この種の手動操作型の三次元測定装置として、例えば多関節三次元測定装置が知られている。この多関節三次元測定装置では、各関節に角度センサが内蔵されており、角度センサが検出する各関節の回転角度と、測定アームの関節−関節間や関節−プローブ間等の長さとに基づいて、プローブ先端の空間座標が計算される。
このような多関節三次元測定装置においては、測定者が測定プローブを直接手に持って測定対象に接触させるなどの簡単な操作で測定対象の測定が可能である事に加え、多関節アームが屈曲自在であるため、直交型CMM(coordinate measuring machine)では測定が不可能な測定箇所でも測定が可能であるという利点を有する。
このような多関節三次元測定装置においては、測定者が測定プローブを直接手に持って測定対象に接触させるなどの簡単な操作で測定対象の測定が可能である事に加え、多関節アームが屈曲自在であるため、直交型CMM(coordinate measuring machine)では測定が不可能な測定箇所でも測定が可能であるという利点を有する。
しかし、上述した多関節型三次元測定装置の場合、測定中に、測定者が、常に多関節三次元測定機本体部分を保持しなければならない。また、その姿勢には冗長性があるために、同じ測定点に対して複数の測定姿勢が存在する。そのため、測定位置・測定姿勢を保つことが困難であり、これらに起因する測定の不確かさが生じる。
また、測定者が測定機から手を離すと、姿勢を保持することが出来ず、測定プローブの部分が落下して機械が破損する危険性がある。同様に、測定を中断すると、測定姿勢の再現が難しく、誤差の要因となる。さらに、測定が長時間になる場合、測定者の疲労から、同じ姿勢を保つことができなくなり、不確かさが増大する原因となる。
なお、以上の問題は、多関節型CMMに限定されるものではなく、手動操作が可能な直交型CMMでも同様に生じる。
また、測定者が測定機から手を離すと、姿勢を保持することが出来ず、測定プローブの部分が落下して機械が破損する危険性がある。同様に、測定を中断すると、測定姿勢の再現が難しく、誤差の要因となる。さらに、測定が長時間になる場合、測定者の疲労から、同じ姿勢を保つことができなくなり、不確かさが増大する原因となる。
なお、以上の問題は、多関節型CMMに限定されるものではなく、手動操作が可能な直交型CMMでも同様に生じる。
このような問題に対し、特許文献1には、エアシリンダーを用いたバランサ機能を兼ね備え、さらに測定アームが、測定精度を良好に保つ測定姿勢をとっているかどうかを測定者に知らせることのできる多関節三次元測定装置が開示されている。これにより、プローブ落下による破損は防がれ、測定姿勢の乱れは測定者に通知される。
特開2004−264135号公報
しかしながら、上記従来技術においても、測定中のプローブの姿勢の維持は依然として測定者に委ねられている。すなわち、測定誤差は測定者の操作に委ねられたままである。さらに、測定を中断すれば、プローブを中断前の測定姿勢に戻すことは困難であるという問題もある。
本発明は、このような問題に鑑みてなされたもので、測定プローブの移動経路を拘束する機能を付加することにより、測定者の使い勝手を向上させると共に、再現性の高い測定を可能にする三次元測定装置を提供することを目的とする。
本発明に係る三次元測定装置は、被測定物を測定するための測定プローブと、この測定プローブを三次元測定空間内で外部からの力に対して移動自在に支持すると共に前記測定プローブの位置を検出するための位置情報を出力するプローブ支持手段と、前記位置情報に基づいて前記測定プローブの前記三次元測定空間内の位置を検出するとともに、前記測定プローブの前記三次元測定空間内における移動を任意の線上又は面上に制限するように前記プローブ支持手段を制御する制御手段とを備えたことを特徴とする。
本発明の一つの実施形態において、前記プローブ支持手段は、複数のリンクが関節部を介して直列に連結された多関節アームと、前記各関節部に設けられ各関節部が連結する前記複数のリンクの相対角度を検出して前記位置情報として出力する角度検出部と、前記複数のリンクの相対角度を制御するアクチュエータとを備え、前記制御手段は、前記角度検出部からの位置情報を用いて前記アクチュエータに位置フィードバックをかけることにより前記測定プローブの移動を前記任意の線上又は面上に制限するものであることを特徴とする。
本発明の他の実施態様においては、前記測定プローブに外部から加えられた力ベクトルを検出する力センサを備え、前記制御手段は、前記力センサが検出した力ベクトルを任意の座標系に座標変換し、前記力ベクトルを前記任意の座標系で表された前記任意の線上又は面上に正射し、正射されたベクトルをもとに前記測定プローブが移動する位置を生成し、この位置をフィードバック制御の位置指令とすることで、前記測定プローブの移動を制限するものである。
この場合、前記制御手段は、例えば、測定プローブの位置の微分値から測定プローブの基準位置に発生させるべき仮想的な摩擦力を算出する摩擦力演算部と、この摩擦力演算部で算出された仮想的な摩擦力と仮想的な質量とが前記測定プローブに発生するように、前記各アクチュエータにトルクを発生させる摩擦力発生手段とを備えるようにしても良い。
また、前記制御手段は、例えば、前記関節部毎の相対角度と前記リンク毎の長さとに基づき、前記関節部毎に作用する重力トルクを算出する重力トルク算出部と、前記算出された重力トルクを相殺するように前記各アクチュエータにトルクを発生させる重力補償部とを備えるようにしても良い。
本発明によれば、制御手段が、測定プローブの三次元測定空間内における移動を任意の線上又は面上に制限するようにプローブ支持手段を制御するようにしているので、測定者の使い勝手を向上させると共に、再現性の高い測定が可能になる。
また、制御手段に摩擦力演算部及び摩擦力発生手段を備えるようにすると、測定プローブと被測定物間に生じる摩擦力を仮想的に算出し、この摩擦力を考慮して、より正確な測定プローブの拘束制御を実行することが可能となる。
また、制御手段に重力トルク演算部及び重力補償部を備えるようにすると、関節部毎の相対角度とリンク毎の長さに基づき、関節部毎に作用する重力によるトルクを算出することができるので、重力による測定プローブの位置ずれを抑制することが可能となる。したがって、測定者が誤って、測定プローブを手から離した場合であっても、測定プローブを落とし、破損することはない。
更に、制御手段に、角度検出器から出力される複数のリンクの相対角度の総和が、予め定めた一定の角度を維持するように前記アクチュエータにトルクを発生させる角度制御ループを有するようにすれば、測定プローブがどの位置にあっても、測定プローブの姿勢は一定の姿勢を保つことになるので、これにより測定誤差を削減することができる。
以下、図面を参照して、本発明の一実施形態に係る多関節三次元測定装置について説明する。図1は、本発明の一実施形態に係る多関節三次元測定装置の概要を示す図である。
この多関節三次元測定装置は、被測定物200を測定する接触型のボールプローブからなる測定プローブ101と、この測定プローブ101の支持手段である測定アーム100と、この測定アーム100を特定の位置及び姿勢に制御する制御部300とを備えている。
測定アーム100は、第1〜第3リンク106,108,110、支柱112及びこれらを連結する第1〜第3関節107,109,111を備えている。支柱112は、作業台等に固定された基台113に垂直に立設され、第3関節111を介して第3リンク110の一端と連結されている。第3関節111は、支柱112に対する第3リンク110の水平面内での回転トルクを発生させるアクチュエータ111a及びその回転角度を検出する角度センサ111cと、支柱112に対する第3リンク110の垂直面内での回転トルクを発生させるアクチュエータ111b及びその回転角度を検出する角度センサ111dとを備える。第3リンク110の他端は、第2関節109を介して第2リンク108の一端と連結されている。第2関節109は、第3リンク110に対する第2リンク108の、第3リンク110の中心軸と平行な面内での回転トルクを発生させるアクチュエータ109a及びその回転角度を検出する角度センサ109bを備える。さらに、第2リンク108の他端は、第1関節107を介して第1リンク106と連結されている。第1関節107は、第2リンク108に対する第1リンク106の、第2リンク108の中心軸周りの回転トルクを発生させるアクチュエータ107b及びその回転角度を検出する角度センサ107dと、第2リンク108に対する第1リンク106の、第2リンク108の中心軸と平行な面内での回転トルクを発生させるアクチュエータ107a及びその回転角度を検出する角度センサ107cとを備える。また、第1リンク106の第1関節107との連結部には、第1リンク106の中心軸周りの回転トルクを発生させるアクチュエータ106a及びその角度を検出する角度センサ106bが備えられている。以上、この測定アーム100は合わせて6軸により操作可能に構成されている。
この第1リンク106の他端にはプローブヘッド103が取り付けられている。プローブヘッド103は、その側面にハンドル104及び受動測定ボタン105、先端にプローブ取り付け部102を有する。測定プローブ101はプローブ取り付け部102を介してプローブヘッド103に取り付けられている。測定者はハンドル104を掴んで操作することにより、被測定物200に対して測定プローブ101を自由な方向から接近させ、自由な角度で接触させて測定する。また、ハンドル104は、ハンドルに作用した荷重(測定者の手の力)を検出する水晶圧電式センサ等による3次元方向の力を検出可能である力センサ104aを備えている。また、プローブ取り付け部102は、様々なプローブを取り付け可能に構成されている。したがって、図1の測定プローブ101は、その先端を被測定物200の表面に接触させて、接触点の座標を求めるものであるが、これを例えばCCDカメラやイメージセンサを用いた画像プローブ、レーザ走査方式のレーザプローブなどの非接触型のプローブに付け替えることができる。また、図1に示したように回転軸は6軸に限らず、5軸以下又は7軸以上の関節を備えていてもよい。また、被測定面の輪郭形状データを連続的に測定する倣いプローブであっても良い。
上記測定アーム100からは、角度センサ106b,107d,…で検出された各関節107,109,111の相対角度を示す位置情報としての角度検出信号S1と、力センサ104aからの力ベクトル検出信号S2が出力されている。これらの検出信号S1,S2は、制御部300に入力されている。
図2は、制御部300の詳細を示すブロック図である。測定点算出部301は、入力された角度検出信号S1と測定アーム100の各リンクの長さとに基づいて、測定プローブ101の先端球の中心座標を求める。先端球の中心座標は、測定プローブ101が被測定物200と接触することによって測定プローブ101から出力されたタッチ信号の入力時に保持される。指令信号発生部311、減算器304および制御補償部313は、測定プローブ101の先端球の中心座標(非接触式プローブでは、その測定範囲に設定した測定位置座標)の指令値と現在位置との差分をフィードバック値とした位置制御ループを構成する。位置制御ループは、指令信号発生部311から与えられる、入力部312から入力された目標位置、現在位置、前回記憶された位置又は後述する移動経路制限部309によって設定される位置に測定プローブ101の先端球の中心を位置又は維持させるべく制御信号S3を出力して各アクチュエータ106a,107a,…を制御する。制御補償部313は、系を安定化するためのPID制御等を実行する。この位置制御ループは、受動測定ボタン105が押され、且つ移動経路に拘束条件が設定されていない場合には無効とされる。
移動経路制限部309は、入力部312を介して測定プローブ101の移動経路に拘束条件が与えられている場合に、受動測定ボタン105が押されている間、測定プローブ101の先端球が予め設定された任意の線上又は面上のみを移動するように、力センサ104aからの力ベクトルに基づいて位置制御ループのもと各アクチュエータ106a,107a,…の回転トルクを制御するべく、位置信号を指令信号発生部311に出力する。座標変換部302は、力センサ104aからの力センサ104aの座標系における力ベクトルを、拘束条件を規定する測定座標系に変換する。
また、重力トルク算出部306は、角度検出信号S1と各リンクの長さとに基づいて測定アーム100の姿勢に起因した重力トルクを算出する。減算器308は、この重力トルクを前記入力された力ベクトルから差し引くための重力補償部を構成する。
更に、差分器303及び摩擦力演算部307は、測定プローブ101の移動速度に基づいて先端球の中心に生じさせるべき摩擦力を算出する。測定プローブ101が静止状態であるときには、最大の摩擦力を生じさせる。減算器308は、算出された摩擦力を前記入力された力ベクトルに抗する力として力ベクトルから差し引く摩擦力発生手段を構成する。
次に、このように構成された本実施形態に係る多関節三次元測定装置の動作を説明する。
図3(a)に示すように、受動測定ボタン105を押下げていないオフの場合、制御部300の測定点算出部301、指令信号発生部311、減算器304及び制御補償部313からなる位置制御ループが機能して、測定プローブ101の先端球の中心位置が現在位置、前回記憶位置又は入力部312により入力された位置となるように制御される。一方、図3(b)に示すように、受動測定ボタン105を押し下げたオン状態の場合で、移動経路に拘束がかかっていない場合には、前記位置制御ループがオフになり、測定プローブ101は、手動操作によって任意の位置に移動可能となる。また、受動測定ボタン105がオン状態で、移動経路に拘束がかかっている場合には、位置制御ループが機能して、その指令信号として、移動経路制限部309で算出された指令値が与えられる。
図3(a)に示すように、受動測定ボタン105を押下げていないオフの場合、制御部300の測定点算出部301、指令信号発生部311、減算器304及び制御補償部313からなる位置制御ループが機能して、測定プローブ101の先端球の中心位置が現在位置、前回記憶位置又は入力部312により入力された位置となるように制御される。一方、図3(b)に示すように、受動測定ボタン105を押し下げたオン状態の場合で、移動経路に拘束がかかっていない場合には、前記位置制御ループがオフになり、測定プローブ101は、手動操作によって任意の位置に移動可能となる。また、受動測定ボタン105がオン状態で、移動経路に拘束がかかっている場合には、位置制御ループが機能して、その指令信号として、移動経路制限部309で算出された指令値が与えられる。
拘束条件付きの受動測定の場合、測定プローブ101の先端球の中心位置は、図4に示すように、予め入力部312を介して設定された(a)任意の直線上、(b)任意の平面上、(c)任意の曲線上、又は(d)任意の曲面上に制限される。
以下、拘束条件付きの受動測定の具体的方法について説明する。
(1)測定プローブ101の先端球の中心位置を任意の直線内に拘束する方法:
いま、図5に示すように、力センサ104aの座標系、すなわちプローブヘッド103の座標系をPΣとし、座標系PΣで表された力ベクトルがPFであるとし、測定プローブ101の先端球の中心の移動経路が、これとは別の座標系MΣのXm軸に拘束されるものとする。また、座標系PΣの原点を通り、Xmに直交する軸をYm軸、Xm軸とYm軸の交点を座標系MΣの原点とし、Zm軸は、Xm軸とYm軸から右手座標系により定義するものとする。
(1)測定プローブ101の先端球の中心位置を任意の直線内に拘束する方法:
いま、図5に示すように、力センサ104aの座標系、すなわちプローブヘッド103の座標系をPΣとし、座標系PΣで表された力ベクトルがPFであるとし、測定プローブ101の先端球の中心の移動経路が、これとは別の座標系MΣのXm軸に拘束されるものとする。また、座標系PΣの原点を通り、Xmに直交する軸をYm軸、Xm軸とYm軸の交点を座標系MΣの原点とし、Zm軸は、Xm軸とYm軸から右手座標系により定義するものとする。
力ベクトルPFは、座標変換部302にて、拘束する直線Xmを規定する座標系MΣへ座標変換される。座標変換後の、ハンドル104に作用した力ベクトルをMFと定義する。なお、この座標変換は、例えば式(1)に示すような周知の座標変換式によって容易に実行可能である。
次に、力ベクトルMFのXm軸方向成分MFXから下記式(2)の演算を行うことにより、Xm軸方向の加速度‥xM_C(この明細書中ではxの二次微分を「‥x」、一次微分を「・x」と示すことがある。)を求める。なお、式中mは仮想質量、Dは粘性摩擦係数である。これらの定数は、拘束された直線上において測定プローブ101をより違和感なく操作するために導入するものである。これにより、ハンドル104に急激な力が入力された場合でも、測定プローブ101の先端球中心位置が滑らかに動作するようになる。
求められた‥xM_Cを2階積分することで、xM_Cを求め、これを測定プローブ球中心位置の位置制御ループの位置指令として用いる。但し、前記積分の定数は、本機能動作開始時に初期化する。以上の演算式に基づく拘束を実行するための移動経路制限部309の具体的構成は、図6のようなブロック線図で表される。
(2)測定プローブ101の先端球の中心位置を任意の平面内に拘束する方法:
いま、拘束する平面を座標系MΣにおけるXm軸及びZm軸で規定される平面であるとすると、力ベクトルMFのXm軸およびをZm軸方向成分MFX,MFZから式(3)、式(4)により、加速度‥xM_C,‥zM_Cを求める。上記直線上の拘束と同様に、mは仮想質量、Dは粘性摩擦係数である。これらの定数は、拘束された平面上においてプローブをより違和感なく操作するために導入するものである。
いま、拘束する平面を座標系MΣにおけるXm軸及びZm軸で規定される平面であるとすると、力ベクトルMFのXm軸およびをZm軸方向成分MFX,MFZから式(3)、式(4)により、加速度‥xM_C,‥zM_Cを求める。上記直線上の拘束と同様に、mは仮想質量、Dは粘性摩擦係数である。これらの定数は、拘束された平面上においてプローブをより違和感なく操作するために導入するものである。
上記方法で得られた加速度‥xM_C,‥zM_Cを2階積分することでxM_C,zM_Cを求め、これを測定プローブ101の先端球中心位置の位置制御ループの位置指令として用いる。但し、前記積分の定数は、本機能動作開始時に初期化する。
(3)測定プローブ101の先端球の中心位置を、任意の曲線上に拘束する方法:
拘束する曲線が、例えば、入力部312から入力されたx,y,zによる関数;f(x,y,z)=0で表されるとして、f(x,y,z)=0を、前記座標系MΣで表した関数を、Mf(x,y,z)=0とする。
測定プローブ101の先端球の中心位置が、Mf(x,y,z)=0上に存在する点(MPx,MPy,MPz)に存在しているとして、点(MPx,MPy,MPz)における、Mf(x,y,z)=0の接線方向の単位ベクトルに対する力ベクトルMFの正射に基づき、測定プローブ101の移動位置を決定する。これを指令信号発生部311における指令信号として使用する。また、指令信号は、単位ベクトル毎に算出する。
拘束する曲線が、例えば、入力部312から入力されたx,y,zによる関数;f(x,y,z)=0で表されるとして、f(x,y,z)=0を、前記座標系MΣで表した関数を、Mf(x,y,z)=0とする。
測定プローブ101の先端球の中心位置が、Mf(x,y,z)=0上に存在する点(MPx,MPy,MPz)に存在しているとして、点(MPx,MPy,MPz)における、Mf(x,y,z)=0の接線方向の単位ベクトルに対する力ベクトルMFの正射に基づき、測定プローブ101の移動位置を決定する。これを指令信号発生部311における指令信号として使用する。また、指令信号は、単位ベクトル毎に算出する。
(4)測定プローブ101の先端球の中心位置を任意の曲面上に拘束する方法:
拘束する曲面が、任意の点列データ、関数データ等で規定されており、前記座標系MΣで表される曲面MCとして表されるとする。
測定プローブ101の先端球の中心位置が、曲面MC上に存在する点、(MPx,MPy,MPz)に存在しているとして、
点(MPx,MPy,MPz)における、曲面MCの接平面上の単位ベクトルに対する力ベクトルMFの正射に基づき、測定プローブ101の移動位置を決定する。これを指令信号発生部311における指令信号として使用する。また、指令信号は、単位ベクトル毎に算出する。
拘束する曲面が、任意の点列データ、関数データ等で規定されており、前記座標系MΣで表される曲面MCとして表されるとする。
測定プローブ101の先端球の中心位置が、曲面MC上に存在する点、(MPx,MPy,MPz)に存在しているとして、
点(MPx,MPy,MPz)における、曲面MCの接平面上の単位ベクトルに対する力ベクトルMFの正射に基づき、測定プローブ101の移動位置を決定する。これを指令信号発生部311における指令信号として使用する。また、指令信号は、単位ベクトル毎に算出する。
以上の機能により、測定プローブ101の移動経路を任意の線上又は面上に制限することができ、これにより、測定者の使い勝手を向上させ、再現性の高い測定が可能となる。なお、任意の直線、曲線、平面及び曲面は、被測定物200上の座標系で表すことも可能である。
次に、プローブ先端球の中心位置の保持機能について説明する。受動測定ボタン105がオフの場合、測定プローブ101は、特定の位置に位置決められる。特定の位置は、位置制御ループの位置指令信号によって決定される。位置制御ループの位置指令信号が、現在座標値である場合には、受動測定ボタン105をオフにしたときの位置及び姿勢をそのまま保持するように動作する。位置制御ループの位置指令値が、前回記憶時の座標値である場合、受動測定ボタン105がオフしたときに、前回記憶した位置へ復帰するように動作する。このとき、測定点算出部301で、各角度センサ106b,107b,…の検出信号S1も保持しておけば、測定プローブ101の姿勢も再現可能になる。これにより、繰り返し測定時の測定位置及び測定姿勢がまちまちになることを防止して、測定誤差の発生を防止することができる。
また、拘束条件付きの受動測定時には、測定プローブ101の先端球の中心位置に仮想的な質量と摩擦力が発生するように、各軸のアクチュエータ106a,107a,…を制御することにより、測定プローブ101を保持する。この場合には、図2に示す制御部300の差分回路303で測定プローブ101の先端球の中心位置の座標Pの時間微分(速度)・Pを求め、この速度・Pから摩擦力演算部307で仮想的な摩擦力を算出する。摩擦力演算部307は、例えば図4に示すように、速度・Pがゼロに近いとき(静止状態又はそれに近い状態)、摩擦力が大きくなり、ある一定の速度以上になると、摩擦力が小さくなるように設定されている。これらはそれぞれ静止摩擦力、動摩擦力に対応する。座標変換部302から出力される力ベクトルから算出された摩擦力を減算することで、静止領域では、測定プローブ101にある一定の力が加わらないと、測定プローブ101は静止状態を保つように動作する。
この他、例えば、図8に示すように、受動測定時に、プローブヘッド103を一定の姿勢に拘束制御することも可能である。この場合には、測定アーム100の角度センサ107b,109b,…の検出角度の総和が予め設定された一定の角度を維持するように、各アクチュエータ107a,109a,…に回転トルクを発生させる。このため、制御部300には、角度の総和と設定角度との差分が0になるようなアクチュエータ制御を行う角度制御ループが備えられる。
この実施形態によれば、測定プローブ101の姿勢が常に一定の姿勢となるため、姿勢がまちまちにより生ずる測定誤差を防止することが出来るという効果がある。
この実施形態によれば、測定プローブ101の姿勢が常に一定の姿勢となるため、姿勢がまちまちにより生ずる測定誤差を防止することが出来るという効果がある。
なお、以上では多関節三次元測定装置を例に挙げて本発明を説明したが、本発明は、門型のような直交移動型の三次元測定装置にも適用可能であることは言うまでもない。
100…測定アーム
101…測定プローブ
102…プローブ取り付け部
103…プローブヘッド
104…ハンドル
104a…力センサ
105…受動測定ボタン
106…第1リンク
106a,107a,107b,109a,111a,111b…アクチュエータ
106b,107c,107d,109b,111c,111d…角度センサ
107…第1関節
108…第2リンク
109…第2関節
110…第3リンク
111…第3関節
112…支柱
113…基台
200…被測定物
300…制御部
301…測定点算出部
302…座標変換部
303…差分器
304,308…減算器
306…重力トルク算出部
307…摩擦力演算部
309…移動経路制限部
311…指令信号発生部
312…入力部
313…制御補償部
101…測定プローブ
102…プローブ取り付け部
103…プローブヘッド
104…ハンドル
104a…力センサ
105…受動測定ボタン
106…第1リンク
106a,107a,107b,109a,111a,111b…アクチュエータ
106b,107c,107d,109b,111c,111d…角度センサ
107…第1関節
108…第2リンク
109…第2関節
110…第3リンク
111…第3関節
112…支柱
113…基台
200…被測定物
300…制御部
301…測定点算出部
302…座標変換部
303…差分器
304,308…減算器
306…重力トルク算出部
307…摩擦力演算部
309…移動経路制限部
311…指令信号発生部
312…入力部
313…制御補償部
Claims (6)
- 被測定物を測定するための測定プローブと、
この測定プローブを三次元測定空間内で外部からの力に対して移動自在に支持すると共に前記測定プローブの位置を検出するための位置情報を出力するプローブ支持手段と、
前記位置情報に基づいて前記測定プローブの前記三次元測定空間内の位置を検出するとともに、前記測定プローブの前記三次元測定空間内における移動を任意の線上又は面上に制限するように前記プローブ支持手段を制御する制御手段と
を備えたことを特徴とする三次元測定装置。 - 前記プローブ支持手段は、
複数のリンクが関節部を介して直列に連結された多関節アームと、
前記各関節部に設けられ各関節部が連結する前記複数のリンクの相対角度を検出して前記位置情報として出力する角度検出部と、
前記複数のリンクの相対角度を制御するアクチュエータと
を備え、
前記制御手段は、前記角度検出部からの位置情報を用いて前記アクチュエータに位置フィードバックをかけることにより前記測定プローブの移動を前記任意の線上又は面上に制限するものである
ことを特徴とする請求項1記載の三次元測定装置。 - 前記測定プローブに外部から加えられた力ベクトルを検出する力センサを備え、
前記制御手段は、前記力センサが検出した力ベクトルを任意の座標系に座標変換し、前記力ベクトルを前記任意の座標系で表された前記任意の線上又は面上に正射し、正射されたベクトルをもとに前記測定プローブが移動する位置を生成し、この位置を前記位置フィードバックの位置指令とすることで、前記測定プローブの移動を制限するものである
ことを特徴とする請求項1又は2記載の三次元測定装置。 - 前記制御手段は、
測定プローブの位置の微分値から測定プローブの基準位置に発生させるべき仮想的な摩擦力を算出する摩擦力演算部と、
この摩擦力演算部で算出された仮想的な摩擦力と仮想的な質量とが前記測定プローブに発生するように、前記各アクチュエータにトルクを発生させる摩擦力発生手段と
を備えたことを特徴とする請求項2記載の三次元測定装置。 - 前記制御手段は、
前記関節部毎の相対角度と前記リンク毎の長さとに基づき、前記関節部毎に作用する重力トルクを算出する重力トルク算出部と、
前記算出された重力トルクを相殺するように前記各アクチュエータにトルクを発生させる重力補償部と
を備えたことを特徴とする請求項2又は4記載の三次元測定装置。 - 前記制御手段は、
前記角度検出器から出力される前記複数のリンクの相対角度の総和が、予め定めた一定の角度を維持するように前記アクチュエータにトルクを発生させる角度制御ループを有する
ことを特徴とする請求項2,4又は5記載の三次元測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005231599A JP2007047014A (ja) | 2005-08-10 | 2005-08-10 | 三次元測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005231599A JP2007047014A (ja) | 2005-08-10 | 2005-08-10 | 三次元測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007047014A true JP2007047014A (ja) | 2007-02-22 |
Family
ID=37849951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005231599A Pending JP2007047014A (ja) | 2005-08-10 | 2005-08-10 | 三次元測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007047014A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009236698A (ja) * | 2008-03-27 | 2009-10-15 | Kayaba System Machinery Kk | 揺動トルク測定方法及び装置 |
EP2722644A1 (en) | 2012-10-18 | 2014-04-23 | Mitutoyo Corporation | Surface roughness measuring unit and coordinate measuring apparatus |
EP2752640A1 (en) | 2013-01-08 | 2014-07-09 | Mitutoyo Corporation | Method and program for using gestures to control a coordinate measuring device |
EP2752639A1 (en) | 2013-01-08 | 2014-07-09 | Mitutoyo Corporation | Method and program for using gestures to control a coordinate measuring device |
CN104697466A (zh) * | 2013-12-10 | 2015-06-10 | 株式会社三丰 | 多轴型三维测量设备 |
KR20160135560A (ko) * | 2015-05-18 | 2016-11-28 | 국방과학연구소 | 구동장치의 불균형 토크 보상 제어장치 및 방법 |
US9651370B2 (en) | 2014-01-29 | 2017-05-16 | Mitutoyo Corporation | Manual measuring system |
CN113916086A (zh) * | 2021-10-15 | 2022-01-11 | 安徽江淮汽车集团股份有限公司 | 车轮总成跳动测量装置 |
-
2005
- 2005-08-10 JP JP2005231599A patent/JP2007047014A/ja active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009236698A (ja) * | 2008-03-27 | 2009-10-15 | Kayaba System Machinery Kk | 揺動トルク測定方法及び装置 |
US9250053B2 (en) | 2012-10-18 | 2016-02-02 | Mitutoyo Corporation | Surface roughness measuring unit and coordinate measuring apparatus |
EP2722644A1 (en) | 2012-10-18 | 2014-04-23 | Mitutoyo Corporation | Surface roughness measuring unit and coordinate measuring apparatus |
EP2752640A1 (en) | 2013-01-08 | 2014-07-09 | Mitutoyo Corporation | Method and program for using gestures to control a coordinate measuring device |
EP2752639A1 (en) | 2013-01-08 | 2014-07-09 | Mitutoyo Corporation | Method and program for using gestures to control a coordinate measuring device |
US9377283B2 (en) | 2013-01-08 | 2016-06-28 | Mitutoyo Corporation | Method and program for using gestures to control a coordinate measuring device |
US9109868B2 (en) | 2013-01-08 | 2015-08-18 | Mitutoyo Corporation | Method and program for using gestures to control a coordinate measuring device |
CN104697466A (zh) * | 2013-12-10 | 2015-06-10 | 株式会社三丰 | 多轴型三维测量设备 |
DE102014225278A1 (de) | 2013-12-10 | 2015-06-11 | Mitutoyo Corporation | Mehrachsiges dreidimensionales Messgerät |
US9395169B2 (en) | 2013-12-10 | 2016-07-19 | Mitutoyo Corporation | Multi-axis type three-dimensional measuring apparatus |
US9651370B2 (en) | 2014-01-29 | 2017-05-16 | Mitutoyo Corporation | Manual measuring system |
US10066922B2 (en) | 2014-01-29 | 2018-09-04 | Mitutoyo Corporation | Manual measuring system |
KR20160135560A (ko) * | 2015-05-18 | 2016-11-28 | 국방과학연구소 | 구동장치의 불균형 토크 보상 제어장치 및 방법 |
KR101689627B1 (ko) * | 2015-05-18 | 2016-12-26 | 국방과학연구소 | 구동장치의 불균형 토크 보상 제어장치 및 방법 |
CN113916086A (zh) * | 2021-10-15 | 2022-01-11 | 安徽江淮汽车集团股份有限公司 | 车轮总成跳动测量装置 |
CN113916086B (zh) * | 2021-10-15 | 2022-12-09 | 安徽江淮汽车集团股份有限公司 | 车轮总成跳动测量装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007047014A (ja) | 三次元測定装置 | |
US7542872B2 (en) | Form measuring instrument, form measuring method and form measuring program | |
US7464481B2 (en) | Measuring apparatus, method of measuring surface texture and computer readable medium having program for measuring surface texture | |
Joubair et al. | Non-kinematic calibration of a six-axis serial robot using planar constraints | |
JP6795540B2 (ja) | ロボットを用いた負荷の重量及び重心位置を推定するための装置、方法及びプログラム | |
JP2008268210A (ja) | 一定の走査速度を備えた走査プローブを用いた測定対象物の表面の走査方法 | |
JP2008509386A (ja) | 表面測定用プローブの使用法 | |
US11221201B2 (en) | Profile measuring machine and profile measuring method | |
CN105588533A (zh) | 形状测定装置以及形状测定方法 | |
CN107883882B (zh) | 用于光学测量系统的测量装置 | |
JP2012026865A (ja) | 形状測定装置 | |
JP2019536032A (ja) | 座標位置決め装置および操作方法 | |
EP2998696B1 (en) | Method for compensating lobing behaviour of a CMM touch probe | |
JP6003312B2 (ja) | ロボットシステム | |
JP3636792B2 (ja) | ペン先座標入力装置 | |
JPH0464562B2 (ja) | ||
JP6918599B2 (ja) | 表面性状測定機、表面性状測定システム及びプログラム | |
JP5629883B2 (ja) | 形状測定装置、形状測定方法及び形状測定プログラム | |
JP5205643B2 (ja) | 表面性状測定装置、その接触子モデル生成方法、及びプログラム | |
JP4652011B2 (ja) | 三次元座標測定システム及びそれに用いるパートプログラム | |
JP2009288227A (ja) | 三次元測定機 | |
JPH0639070B2 (ja) | ロボツト装置の力センサ較正方法 | |
JP4595042B2 (ja) | 3次元測定方法およびシステム並びにマニピュレータの制御方法および装置 | |
JP2013234951A (ja) | 三次元測定装置 | |
JP2579726B2 (ja) | 接触式プローブ |