JP2007046493A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2007046493A
JP2007046493A JP2005229342A JP2005229342A JP2007046493A JP 2007046493 A JP2007046493 A JP 2007046493A JP 2005229342 A JP2005229342 A JP 2005229342A JP 2005229342 A JP2005229342 A JP 2005229342A JP 2007046493 A JP2007046493 A JP 2007046493A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
storage
exhaust gas
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005229342A
Other languages
Japanese (ja)
Inventor
Shigeki Miyashita
茂樹 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005229342A priority Critical patent/JP2007046493A/en
Publication of JP2007046493A publication Critical patent/JP2007046493A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the discharge of unburnt HC and CO at the time of discharging NO<SB>x</SB>from an NO<SB>x</SB>occlusion reduction catalyst. <P>SOLUTION: In the exhaust emission control device, an engine exhaust passage is branched into a pair of branch passages 12, 13 to arrange NO<SB>x</SB>occlusion reduction catalysts 14, 15 in respective branch passage 12, 13 as shown in the Figure 1. When the difference between NO<SB>x</SB>discharge completion timings of the NO<SB>x</SB>occlusion reduction catalysts 14, 15 is determined to exist, the air-fuel ratio of exhaust gas flowing in the respective NO<SB>x</SB>occlusion reduction catalysts 14, 15 when controlling NO<SB>x</SB>discharge from the NO<SB>x</SB>occlusion reduction catalysts 14, 15 is first maintained in a rich condition and subsequently in a theoretical air-fuel ratio. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

通常リーン空燃比のもとで燃焼が行われる内燃機関において、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出し還元するNOx吸蔵還元触媒を機関排気通路内に配置し、NOx吸蔵還元触媒下流の機関排気通路内に空燃比に応じた出力を発生する酸素濃度センサを配置し、NOx吸蔵還元触媒からNOxを放出すべきときには還元剤を供給することによってNOx吸蔵還元触媒に流入する排気ガスの空燃比をリーンからリッチに切換えるようにした内燃機関が公知である(例えば特許文献1を参照)。 In the normal lean air-fuel ratio of an internal combustion engine the combustion under performed, the air-fuel ratio is stoichiometric or rich exhaust gas air-fuel ratio of the inflowing exhaust gas when the lean occluding flow of NO x in the exhaust gas comes to the the NO x storage reduction catalyst for releasing occluded NO x arranged in the engine exhaust passage, arranging the oxygen concentration sensor which generates an output corresponding to the air-fuel ratio in the NO x storage reduction catalyst downstream of the engine exhaust passage and, when it should be released NO x from the NO x storage reduction catalyst internal combustion engine which is adapted to the air-fuel ratio of the exhaust gas flowing into the NO x storage-reduction catalyst switched from lean to rich it is known by supplying the reducing agent (For example, refer to Patent Document 1).

この場合、NOx吸蔵還元触媒からNOx又はO2が放出され続けている間はNOx吸蔵還元触媒から流出する排気ガスの空燃比はわずかばかりリーンとなっており、NOx吸蔵還元触媒からのNOxの放出作用の完了時期が近ずくとNOx吸蔵還元触媒から流出する排気ガスの空燃比はリッチになり始める。従ってこの内燃機関ではNOxの放出作用が開始された後に、NOx吸蔵還元触媒から流出する排気ガスの空燃比がリッチになり始めたことが酸素濃度センサにより検出されたときに、間もなくNOxの放出作用が完了すると判断され、それによってNOx吸蔵還元触媒に流入する排気ガスの空燃比がリッチからリーンに切換えられる。 In this case, the air-fuel ratio of the exhaust gas during the flowing out from the NO x storage reduction catalyst NO x or O 2 from the NO x storage-reduction catalyst is continuously released and is just only lean, the NO x storage-and-reduction catalyst When the completion timing of the NO x releasing action approaches, the air-fuel ratio of the exhaust gas flowing out from the NO x storage reduction catalyst begins to become rich. Thus after the releasing action of the NO x is started in this internal combustion engine, when the air-fuel ratio of the exhaust gas flowing out from the NO x storage-reduction catalyst that began rich is detected by the oxygen concentration sensor, shortly NO x Is determined to be completed, and the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst is switched from rich to lean.

ところでこの場合、NOxを放出させるために供給される還元剤の量、例えば燃料量が還元すべきNOx量に比べて多すぎると多量の未燃HC,COが大気中に排出されることになり、これに対して還元剤、即ち燃料の量が還元すべきNOx量に比べて少なすぎるとNOx吸蔵還元触媒からNOxを十分に放出できないためにNOx吸蔵還元触媒が次第にNOxを吸蔵しえなくなる。そこでこの内燃機関ではNOx吸蔵還元触媒からのNOxの放出作用が完了したときにNOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチからリーンに切換えるようにしており、それによって還元すべきNOx量に対応した量の還元剤、即ち燃料を供給するようにしている。
特開2003−56379号公報
By the way, in this case, if the amount of reducing agent supplied to release NO x , for example, the amount of fuel is too large compared to the amount of NO x to be reduced, a large amount of unburned HC and CO is discharged into the atmosphere. to become, the nO x storage-reduction catalyst gradually nO to the reducing agent, i.e., the amount of fuel can not be sufficiently release the nO x from the too small compared to the amount of nO x to be reduced the nO x storage-reduction catalyst with respect to this Cannot occlude x . Therefore, in this internal combustion engine is the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst when the releasing action of the NO x from the NO x storage-reduction catalyst is completed from rich to switch to a lean, to reduction whereby An amount of reducing agent corresponding to the amount of NO x , that is, fuel, is supplied.
JP 2003-56379 A

ところで車両の構造上、機関排気通路を一対の枝通路に分岐して各枝通路内に夫々NOx吸蔵還元触媒を配置しなければならない場合があり、この場合には各NOx吸蔵還元触媒のNOx及びO2吸蔵能力等の差や各枝通路内に流入する排気ガス量の差によって各NOx吸蔵還元触媒に吸蔵されるNOx量に差を生じる場合が多々ある。しかしながらこのように各NOx吸蔵還元触媒に吸蔵されるNOx量に差が生じると、これらNOx吸蔵還元触媒からNOxを放出すべくNOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチにしたときに、両方のNOx吸蔵還元触媒からのNOxの放出が完了した時点で排気ガスの空燃比をリッチからリーンに切換えることはできない。即ち、この場合には少なくとも一方のNOx吸蔵還元触媒に供給される還元剤の量が過剰になるか、又は不足し、斯くして多量の未燃HC,COが大気中に放出されるか、又はNOx吸蔵還元触媒のNOx及びO2吸蔵能力が低下するという問題を生ずる。 By the way the structure of the vehicle, may need to place the respective NO x storage-and-reduction catalyst by branching the engine exhaust passage to the pair of branch passages in each branch passage, in this case of the NO x storage-and-reduction catalyst In many cases, there is a difference in the amount of NO x stored in each NO x storage-reduction catalyst due to the difference in NO x and O 2 storage capacities and the like and the difference in the amount of exhaust gas flowing into each branch passage. However, when a difference in amount of NO x occluded in this way in the NO x storage-and-reduction catalyst occurs, the air-fuel ratio of the exhaust gas flowing into the NO x storage-reduction catalyst so as to release the NO x from these the NO x storage-reduction catalyst When rich, the exhaust gas air-fuel ratio cannot be switched from rich to lean at the time when NO x release from both NO x storage reduction catalysts is completed. That is, in this case, the amount of reducing agent supplied to at least one NO x storage reduction catalyst is excessive or insufficient, and thus a large amount of unburned HC and CO is released into the atmosphere. , or the NO x storage-reduction NO x and O 2 storage capacity of the catalyst occurs the problem of reduction.

上記問題を解決するために本発明によれば、機関排気通路を複数の枝通路に分岐して各枝通路内に夫々、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出し還元するNOx吸蔵還元触媒を配置し、これらNOx吸蔵還元触媒間においてNOxの放出完了時期に差がないと判断されたときにはNOx吸蔵還元触媒からのNOx放出制御開始時から完了時まで各NOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチに維持し、差があると判断されたときにはNOx放出制御開始時からNOx放出制御期間の途中まで各NOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチに維持すると共にNOx放出制御期間の途中からNOx放出制御完了時までは各NOx吸蔵還元触媒に流入する排気ガスの空燃比をほぼ理論空燃比に維持するようにしている。 According to the present invention in order to solve the above problems, people husband splits the engine exhaust passage into a plurality of branch passages in each branch passage, the air-fuel ratio of the inflowing exhaust gas to NO x in the exhaust gas when the lean occluded air-fuel ratio of the inflowing exhaust gas is arranged the NO x storage reduction catalyst release and reduce NO x occluding becomes the stoichiometric air-fuel ratio or rich, the release completion time of the NO x in between the NO x storage-and-reduction catalyst determined that when it is determined that there is no difference to maintain the air-fuel ratio of the exhaust gas flowing into the nO x storage-and-reduction catalyst until completion from the time the nO x releasing control start from the nO x storage reduction catalyst rich, there is a difference way from the NO x releasing control of the NO x releasing control period while maintaining the air-fuel ratio of the exhaust gas flowing into the NO x storage-and-reduction catalyst from the time of the NO x releasing control start to the middle of the NO x releasing control period to rich when it is Complete Until so as to maintain the air-fuel ratio of the exhaust gas flowing into the NO x storage-and-reduction catalyst substantially stoichiometric air-fuel ratio at the time.

NOx放出時に多量の未燃HC,COが外気中に排出されることなく、吸蔵されているNOxを良好に放出させることができる。 A large amount of unburned HC and CO is not discharged into the outside air when NO x is released, and the stored NO x can be released well.

図1は第1のバンク1と第2のバンク2とを有するV型6気筒エンジンを示している。
図1に示されるように第1のバンク1を構成する第1の気筒群は燃料噴射弁3と点火栓4との備えた3つの気筒5を有しており、第2のバンク2を構成する第2の気筒群も燃料噴射弁3と点火栓4とを備えた3つの気筒5を有している。これらの各気筒5へは共通の吸気通路6を介して吸入空気が供給される。
FIG. 1 shows a V-type 6-cylinder engine having a first bank 1 and a second bank 2.
As shown in FIG. 1, the first cylinder group constituting the first bank 1 has three cylinders 5 including a fuel injection valve 3 and a spark plug 4, and constitutes the second bank 2. The second cylinder group also has three cylinders 5 each having a fuel injection valve 3 and a spark plug 4. These cylinders 5 are supplied with intake air via a common intake passage 6.

第1の気筒群には第1の排気通路7が連結され、この第1の排気通路7内には三元触媒8が配置される。また、第2の気筒群には第2の排気通路9が連結され、この第2の排気通路9内にも三元触媒10が配置される。これら第1の排気通路7および第2の排気通路9は共通の排気通路11に合流せしめられる。共通の排気通路11からは複数個の枝通路が、図1に示される例では一対の枝通路12,13が分岐され、各枝通路12,13内に夫々NOx吸蔵還元触媒14,15が配置される。各枝通路12,13の下流端は共通の排気通路16に合流せしめられ、この共通の排気通路16内に酸素濃度センサ17が配置される。 A first exhaust passage 7 is connected to the first cylinder group, and a three-way catalyst 8 is disposed in the first exhaust passage 7. A second exhaust passage 9 is connected to the second cylinder group, and a three-way catalyst 10 is also disposed in the second exhaust passage 9. The first exhaust passage 7 and the second exhaust passage 9 are joined to a common exhaust passage 11. A plurality of branch passages are branched from the common exhaust passage 11, and in the example shown in FIG. 1, a pair of branch passages 12 and 13 are branched, and NO x storage reduction catalysts 14 and 15 are respectively provided in the branch passages 12 and 13. Be placed. The downstream ends of the branch passages 12 and 13 are joined to a common exhaust passage 16, and an oxygen concentration sensor 17 is disposed in the common exhaust passage 16.

電子制御ユニット20はデジタルコンピュータからなり、双方向性バス21によって互いに接続されたROM(リードオンリメモリ)22、RAM(ランダムアクセスメモリ)23、CPU(マイクロプロセッサ)24、入力ポート25および出力ポート26を具備する。酸素濃度センサ17の出力信号は対応するAD変換器27を介して入力ポート25に入力される。アクセルペダル30にはアクセルペダル30の踏込み量に比例した出力電圧を発生する負荷センサ31が接続され、負荷センサ31の出力電圧は対応するAD変換器27を介して入力ポート25に入力される。更に入力ポート25にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ32が接続される。一方、出力ポート26は対応する駆動回路28を介して各燃料噴射弁3および各点火栓4に接続される。   The electronic control unit 20 comprises a digital computer and is connected to each other by a bidirectional bus 21. A ROM (read only memory) 22, a RAM (random access memory) 23, a CPU (microprocessor) 24, an input port 25 and an output port 26 are connected. It comprises. The output signal of the oxygen concentration sensor 17 is input to the input port 25 via the corresponding AD converter 27. A load sensor 31 that generates an output voltage proportional to the amount of depression of the accelerator pedal 30 is connected to the accelerator pedal 30, and the output voltage of the load sensor 31 is input to the input port 25 via the corresponding AD converter 27. Further, a crank angle sensor 32 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 25. On the other hand, the output port 26 is connected to each fuel injection valve 3 and each spark plug 4 via a corresponding drive circuit 28.

NOx吸蔵還元触媒14,15は例えば三次元網目構造をなす基体を具備しており、この基体上に例えばアルミナからなる触媒担体が担持されている。図2(A)および(B)はこの触媒担体40の表面部分の断面を図解的に示している。図2(A)および(B)に示されるように触媒担体40の表面上には貴金属触媒41が分散して担持されており、更に触媒担体40の表面上にはNOx吸収剤42の層が形成されている。 The NO x storage reduction catalysts 14 and 15 have a base having a three-dimensional network structure, for example, and a catalyst carrier made of alumina, for example, is supported on the base. 2A and 2B schematically show a cross section of the surface portion of the catalyst carrier 40. FIG. As shown in FIGS. 2A and 2B, a noble metal catalyst 41 is dispersedly supported on the surface of the catalyst carrier 40, and a layer of NO x absorbent 42 is further formed on the surface of the catalyst carrier 40. Is formed.

本発明による実施例では貴金属触媒41として白金Ptが用いられており、NOx吸収剤42を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。 In the embodiment according to the present invention, platinum Pt is used as the noble metal catalyst 41, and the constituents of the NO x absorbent 42 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, calcium Ca. At least one selected from alkaline earths such as these, lanthanum La, and rare earths such as yttrium Y is used.

機関吸気通路、燃焼室およびNOx吸蔵還元触媒14,15上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOx吸収剤42は排気ガスの空燃比がリーンのときにはNOxを吸蔵或いは吸収し、排気ガス中の酸素濃度が低下すると吸蔵或いは吸収したNOxを放出するNOxの吸放出作用を行う。
即ち、NOx吸収剤42を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、即ち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図2(A)に示されるように白金Pt41上において酸化されてNO2となり、次いでNOx吸収剤42内に吸収されて酸化バリウムBaOと結合しながら硝酸イオンNO3 -の形でNOx吸収剤42内に拡散する。このようにしてNOxがNOx吸収剤42内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt41の表面でNO2が生成され、NOx吸収剤42のNOx吸収能力が飽和しない限りNO2がNOx吸収剤42内に吸収されて硝酸イオンNO3 -が生成される。
When the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber, and the exhaust passage upstream of the NO x storage reduction catalysts 14 and 15 is referred to as the air-fuel ratio of the exhaust gas, the NO x absorbent 42 is exhausted. air-fuel ratio of the gas is occluded or absorbed NO x when the lean performs absorbing and releasing action of the NO x to be emitted when the oxygen concentration in the exhaust gas falls occluded or absorbed NO x.
That is, the case where barium Ba is used as a component constituting the NO x absorbent 42 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, it is contained in the exhaust gas. As shown in FIG. 2 (A), NO is oxidized on platinum Pt 41 to become NO 2 , and then absorbed into the NO x absorbent 42 and combined with barium oxide BaO in the form of nitrate ions NO 3 −. x Diffuses in the absorbent 42. In this way, NO x is absorbed into the NO x absorbent 42. Oxygen concentration in the exhaust gas, NO 2 is produced on the surface as long as the platinum Pt41 high, the NO x absorbent 42 of the NO x absorbing capability as long as NO 2 not to saturate been absorbed in the NO x absorbent 42 nitrate ions NO 3 - is generated.

これに対し、排気ガスの空燃比がリッチ或いは理論空燃比にされると排気ガス中の酸化濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして図2(B)に示されるようにNOx吸収剤42内の硝酸イオンNO3 -がNO2の形でNOx吸収剤42から放出される。次いで放出されたNOxは排気ガス中に含まれる未燃HC,COによって還元される。
このように排気ガスの空燃比がリーンであるとき、即ちリーン空燃比のもとで燃焼が行われているときには排気ガス中のNOxがNOx吸収剤42内に吸収される。しかしながらリーン空燃比のもとでの燃焼が継続して行われるとその間にNOx吸収剤42のNOx吸収能力が飽和してしまい、斯くしてNOx吸収剤42によりNOxを吸収できなくなってしまう。そこで本発明による実施例ではNOx吸収剤42の吸収能力が飽和する前に燃焼室内における混合気の空燃比をリッチにすることによって排気ガスの空燃比を一時的にリッチにし、それによってNOx吸収剤42からNOxを放出させるようにしている。
On the other hand, when the air-fuel ratio of the exhaust gas is made rich or stoichiometric, the oxidation concentration in the exhaust gas decreases, so that the reaction proceeds in the reverse direction (NO 3 → NO 2 ). (B) as shown in the NO x absorbent in the 42 nitrate ions NO 3 - is released from the NO x absorbent 42 in the form of NO 2. Next, the released NO x is reduced by unburned HC and CO contained in the exhaust gas.
Thus, when the air-fuel ratio of the exhaust gas is lean, that is, when combustion is performed under the lean air-fuel ratio, NO x in the exhaust gas is absorbed into the NO x absorbent 42. However becomes saturated the absorption of NO x capacity of the NO x absorbent 42 during the combustion of the fuel under a lean air-fuel ratio is continued, no longer able to absorb NO x by the NO x absorbent 42 and thus End up. Therefore, in this embodiment of the present invention to temporarily make the air by the air-fuel ratio of the mixture in the combustion chamber before the absorbing capability of the NO x absorbent 42 is saturated in rich, whereby NO x NO x is released from the absorbent 42.

図3は酸素濃度センサ17の出力電圧E(V)と排気ガスの空燃比との関係を示している。図3からわかるようにこの酸素濃度センサの出力電圧E(V)は空燃比が理論空燃比のときに0.5(V)程度となり、空燃比がリッチになると0.9(V)程度となり、空燃比がリーンになると0.1(V)程度となる。   FIG. 3 shows the relationship between the output voltage E (V) of the oxygen concentration sensor 17 and the air-fuel ratio of the exhaust gas. As can be seen from FIG. 3, the output voltage E (V) of this oxygen concentration sensor is about 0.5 (V) when the air-fuel ratio is the stoichiometric air-fuel ratio, and about 0.9 (V) when the air-fuel ratio becomes rich. When the air-fuel ratio becomes lean, it becomes about 0.1 (V).

図4は図1の内燃機関のみを取り出した図であって、この図4には図5から図7に示される排気ガスの空燃比の計測点A,B,Cが表示されている。即ち、A地点ではNOx吸蔵還元触媒14から流出した排気ガスの空燃比が検出され、B地点ではNOx吸蔵還元触媒15から流出した排気ガスの空燃比が検出され、C地点では各NOx吸蔵還元触媒14,15から流出して混合した排気ガスの空燃比が検出される。この排気ガスの空燃比は図3に示すような出力特性を有する酸素濃度センサにより検出される。 FIG. 4 shows only the internal combustion engine shown in FIG. 1, and the measurement points A, B, and C of the exhaust gas air-fuel ratio shown in FIGS. 5 to 7 are displayed in FIG. That is, the air-fuel ratio of the exhaust gas flowing out from the NO x storage reduction catalyst 14 is detected at point A, the air-fuel ratio of the exhaust gas flowing out from the NO x storage reduction catalyst 15 is detected at point B, and each NO x is detected at point C. The air-fuel ratio of the exhaust gas that has flowed out of and mixed with the storage reduction catalysts 14 and 15 is detected. The air-fuel ratio of the exhaust gas is detected by an oxygen concentration sensor having output characteristics as shown in FIG.

図5(A),(B)は、良好なNOx放出制御が行われているときのリッチ信号と空燃比の変化とを示している。なお、図5(A),(B)に示されるリッチ信号は、燃焼室内における空燃比をリッチにするために噴射燃料量を増量すべく燃料噴射弁3に印加される駆動信号である。また、図5(A)に示される空燃比A/Fは燃焼室内における空燃比を示しており、図5(B)に示されるO2センサの出力は図4のA地点、B地点、C地点における酸素濃度センサの出力電圧の変化を示しており、図5(B)において未燃HC,COは図4のA地点、B地点、C地点における排気ガス中の未燃HC,COの量を表している。これらのことは図6および図7についても同様である。 FIG. 5 (A), the shows the change in the fuel-rich signal and the air-fuel ratio when (B) is being made good the NO x releasing control. Note that the rich signal shown in FIGS. 5A and 5B is a drive signal applied to the fuel injection valve 3 to increase the amount of injected fuel in order to make the air-fuel ratio in the combustion chamber rich. Also, the air-fuel ratio A / F shown in FIG. 5A indicates the air-fuel ratio in the combustion chamber, and the output of the O 2 sensor shown in FIG. 5B is the points A, B, C in FIG. 5 shows the change in the output voltage of the oxygen concentration sensor at the point. In FIG. 5B, unburned HC and CO are the amounts of unburned HC and CO in the exhaust gas at points A, B and C in FIG. Represents. The same applies to FIG. 6 and FIG.

さて、本発明による実施例ではNOx吸蔵還元触媒14,15からNOxを放出すべくリッチ信号が発生せしめられると、リッチ信号が発生せしめられている間、燃焼室内の空燃比はリッチにされる。この場合、図5(A)に示されるように燃焼室内の空燃比のリッチの度合は前半は大きくされ、後半は小さくされる。 In the embodiment according to the present invention, when a rich signal is generated to release NO x from the NO x storage reduction catalysts 14 and 15, the air-fuel ratio in the combustion chamber is made rich while the rich signal is generated. The In this case, as shown in FIG. 5A, the richness of the air-fuel ratio in the combustion chamber is increased in the first half and decreased in the second half.

即ち、三元触媒8,10およびNOx吸蔵還元触媒14,15は共に、排気ガスの空燃比がリーンのときに排気ガス中の過剰酸素を貯蔵しておく機能、即ちO2ストレージ機能を有しており、従って通常、三元触媒8,10およびNOx吸蔵還元触媒14,15には多量の酸素が貯蔵されている。このような状態でNOx吸蔵還元触媒からNOxを放出すべく燃焼室内の空燃比がリッチにされるとこのとき排気ガス中に含まれる多量の未燃HC,COは貯蔵されている多量の酸素により酸化される。このように未燃HC,COが貯蔵されている多量の酸素により酸化されても排気ガスの空燃比がリッチに維持されるようにリッチ信号が発生している期間の前半ではリッチの度合が大きくされる。 That is, the three-way catalysts 8 and 10 and the NO x storage reduction catalysts 14 and 15 both have a function of storing excess oxygen in the exhaust gas when the air-fuel ratio of the exhaust gas is lean, that is, an O 2 storage function. Therefore, usually, a large amount of oxygen is stored in the three-way catalysts 8 and 10 and the NO x storage reduction catalysts 14 and 15. In this state, when the air-fuel ratio in the combustion chamber is made rich to release NO x from the NO x storage reduction catalyst, a large amount of unburned HC and CO contained in the exhaust gas at this time are stored in a large amount. Oxidized by oxygen. In this way, the degree of richness is large in the first half of the period in which the rich signal is generated so that the air-fuel ratio of the exhaust gas is maintained rich even if the unburned HC and CO are oxidized by a large amount of stored oxygen. Is done.

リッチ信号が発せられてNOx吸蔵還元触媒14,15に流入する排気ガスの空燃比がリッチとなり、それによってNOx吸蔵還元触媒14,15からNOxの放出作用が行われている間は、NOx吸蔵還元触媒14,15から流出する排気ガスの空燃比はややリーンとなっている。このときNOx吸蔵還元触媒14,15からは全く未燃HC,COが排出されない。 While the air-fuel ratio of the exhaust gas flowing in the rich signal is issued to the NO x storage-reduction catalyst 15 becomes rich, it releasing action of the NO x from the NO x storage-reduction catalyst 14, 15 by is performed, The air-fuel ratio of the exhaust gas flowing out from the NO x storage reduction catalysts 14 and 15 is slightly lean. At this time, no unburned HC and CO are discharged from the NO x storage reduction catalysts 14 and 15.

次いでNOx吸蔵還元触媒14,15に吸蔵されているNOx量が少なくなると、即ちNOxの放出作用の完了が近ずくと酸素濃度センサの出力電圧が次第に上昇し、NOx吸蔵還元触媒14,15に吸蔵されているNOxがほとんどなくなると、即ちNOxの放出作用が完了すると酸素濃度センサの出力電圧が急激に上昇する。このときリッチ信号の発生が停止されて排気ガスの空燃比がリッチからリーンに切換えられる。従って図5(B)に示されるようにNOx吸蔵還元触媒14,15からは少量の未燃HC,COしか排出されない。 Then, when the amount of NO x is reduced, which is occluded in the NO x storage-reduction catalyst 14, i.e., the completion of the releasing action of the NO x increases gradually the output voltage of the near Nuisance and the oxygen concentration sensor, the NO x storage-reduction catalyst 14 and which is not little NO x occluded in the 15, i.e. the output voltage of the oxygen concentration sensor when the releasing action is completed of the NO x increases rapidly. At this time, generation of the rich signal is stopped and the air-fuel ratio of the exhaust gas is switched from rich to lean. Accordingly, as shown in FIG. 5B, only a small amount of unburned HC and CO are discharged from the NO x storage reduction catalysts 14 and 15.

図5(B)はNOx吸蔵還元触媒14とNOx吸蔵還元触媒15とで同時にNOxの放出作用が完了した場合を示している。この場合、リッチ信号の発生を停止するタイミング、即ち空燃比をリッチからリーンに切換えるタイミングは両NOx吸蔵還元触媒14,15からNOxの放出作用が完了する直前に設定される。具体的にはこのリッチからリーンへの切換タイミングは、NOx吸蔵還元触媒14,15内に吸蔵されたNOx量を算出してこの算出されたNOx量から必要なリッチ時間を計算することによって求められ、或いは酸素濃度センサの出力電圧が設定レベルを越えたときがリッチからリーンへの切換タイミングとされる。 FIG. 5B shows the case where the NO x storage and reduction catalyst 14 and the NO x storage and reduction catalyst 15 simultaneously complete the NO x release action. In this case, the timing at which the generation of the rich signal is stopped, that is, the timing at which the air-fuel ratio is switched from rich to lean is set immediately before the NO x releasing action from both the NO x storage reduction catalysts 14 and 15 is completed. Specifically, the rich to lean switching timing is calculated by calculating the amount of NO x stored in the NO x storage reduction catalysts 14 and 15 and calculating the required rich time from the calculated amount of NO x. Or when the output voltage of the oxygen concentration sensor exceeds the set level is the timing for switching from rich to lean.

しかしながら場合によっては、或いは経年変化によりNOx吸蔵還元触媒14のNOx及びO2吸収能力とNOx吸蔵還元触媒15のNOx及びO2吸収能力とに差が生ずるために、或いはNOx吸蔵還元触媒14に流入する排気ガス量とNOx吸蔵還元触媒15に流入する排気ガス量とに差が生ずるためにNOx吸蔵還元触媒14,15間においてNOxの吸蔵量に差を生ずることが多々ある。また、NOx吸蔵還元触媒14,15が貯蔵しうる酸素貯蔵量が多い場合にはNOxの還元のために使用される還元剤の量は減少し、NOx吸蔵還元触媒14,15が貯蔵しうる酸素貯蔵量が少ない場合にはNOxの還元のために使用される還元剤の量は増大する。従って、NOx吸蔵還元触媒14,15間のNOx吸蔵量の差や酸素貯蔵量の差によってNOx吸蔵還元触媒14,15間においてNOxの放出完了時期に差を生ずることになる。 However in some cases, or to a difference between the NO x and O 2 absorption capacity of the NO x storage NO x and O 2 absorption capacity of the reduction catalyst 14 and the NO x storage-reduction catalyst 15 caused by aging, or the NO x storage Since there is a difference between the amount of exhaust gas flowing into the reduction catalyst 14 and the amount of exhaust gas flowing into the NO x storage reduction catalyst 15, there may be a difference in the storage amount of NO x between the NO x storage reduction catalysts 14 and 15. There are many. In addition, when the amount of oxygen stored in the NO x storage reduction catalysts 14 and 15 is large, the amount of reducing agent used for NO x reduction decreases, and the NO x storage reduction catalysts 14 and 15 store. the amount of reducing agent used for reduction of when the oxygen storage amount which can be less in NO x increases. Accordingly, the resulting difference in release completion time of the NO x in between the NO x storage-reduction catalyst 14, 15 by the difference of the difference and the oxygen storage amount of the NO x storage amount between the NO x storage-reduction catalyst 14, 15.

図6(B)はこのようにNOx吸蔵還元触媒14,15間においてNOxの放出完了時期に差が生じた場合の酸素濃度センサの出力電圧の変化および未燃HC,COの排出量の変化を示している。なお、この場合も図6(A)からわかるようにリッチ信号が発せられたときの燃焼室内の空燃比のリッチの度合は図5(A)に示される場合と同様に変化せしめられる。また図6(B)のA地点およびB地点における酸素濃度センサの出力電圧の変化からわかるように図6(B)は、NOx吸蔵還元触媒14のNOx放出が完了したときに空燃比がリッチからリーンに切換えられ、かつNOx吸蔵還元触媒14のNOx放出完了時期に比べてNOx吸蔵還元触媒15のNOx放出完了時期の方が早い場合を示している。 FIG 6 (B) is changed and unburnt HC in the output voltage of the oxygen concentration sensor when a difference in release completion time of the NO x occurs in between thus the NO x storage-reduction catalyst 14, 15, CO emissions It shows a change. In this case as well, as can be seen from FIG. 6A, the richness of the air-fuel ratio in the combustion chamber when the rich signal is generated is changed in the same manner as in FIG. 5A. Further, as can be seen from the change in the output voltage of the oxygen concentration sensor at points A and B in FIG. 6B, FIG. 6B shows that the air-fuel ratio increases when the NO x release of the NO x storage reduction catalyst 14 is completed. is switched from rich to lean, and towards the NO x releasing completion time of the NO x storage-reduction catalyst 15 in comparison with the NO x releasing completion time of the NO x storage-reduction catalyst 14 indicates the case earlier.

このようにNOx吸蔵還元触媒14のNOx放出完了時期に比べてNOx吸蔵還元触媒15のNOx放出完了時期の方が早い場合には、図6(B)のB地点に示されるようにNOx吸蔵還元触媒15から排出される未燃HC,COの量が増大する。なお、このときC地点における酸素濃度センサの出力電圧は、A地点およびB地点における酸素濃度センサの出力電圧の和の平均値のような値となり、ピーク値に達するまでに段差のある特異な変動パターンとなる。 If this towards the NO x releasing completion time of the NO x storage-reduction catalyst 15 in comparison with the NO x releasing completion time of the NO x storage-reduction catalyst 14 is fast so, as shown in the point B shown in FIG. 6 (B) In addition, the amount of unburned HC and CO discharged from the NO x storage reduction catalyst 15 increases. At this time, the output voltage of the oxygen concentration sensor at the point C becomes a value such as an average value of the sum of the output voltages of the oxygen concentration sensors at the points A and B, and there is a specific fluctuation with a step until the peak value is reached. It becomes a pattern.

このように、A地点およびB地点における酸素濃度センサの出力電圧の変動パターン、或いはC地点における酸素濃度センサの出力電圧の変動パターンから、言い換えると各NOx吸蔵還元触媒14,15から流出する排気ガスの空燃比のNOx放出制御完了時における変動パターンからNOx放出完了時期に差があるかないかを判断することができる。 Thus, from the fluctuation pattern of the output voltage of the oxygen concentration sensor at the points A and B, or the fluctuation pattern of the output voltage of the oxygen concentration sensor at the point C, in other words, the exhaust gas flowing out from the NO x storage reduction catalysts 14 and 15. It can be determined whether or not there is a difference in the completion timing of NO x release from the fluctuation pattern when the NO x release control of the gas air-fuel ratio is completed.

この場合、本発明による実施例では図1からわかるように共通の排気通路16内に酸素濃度センサ17を一個だけ設け、この酸素濃度センサ17の出力電圧のみに基づいて、即ちC地点における酸素濃度センサの出力電圧のみに基づいてNOx放出完了時期に差があるかないかを判断するようにしている。この場合、NOx放出制御完了時に酸素濃度センサ17の出力電圧が、図6(B)のC地点に示されるようにピーク値に対しほぼ半分である中間値に維持された後にピーク値に達し、このとき中間値に維持された時間が予め定められた設定時間以上であるときにNOx放出完了時期に差があると判断される。 In this case, in the embodiment according to the present invention, as shown in FIG. 1, only one oxygen concentration sensor 17 is provided in the common exhaust passage 16, and based on only the output voltage of the oxygen concentration sensor 17, that is, the oxygen concentration at the point C. difference in completion time the nO x releasing on the basis of only the output voltage of the sensor so that it is determined whether or not there. In this case, when the NO x release control is completed, the output voltage of the oxygen concentration sensor 17 reaches the peak value after being maintained at an intermediate value that is substantially half of the peak value as shown at point C in FIG. 6B. At this time, it is determined that there is a difference in the NO x release completion timing when the time maintained at the intermediate value is equal to or longer than a predetermined set time.

なお、NOx放出完了時期に差があるときに酸素濃度センサ17の出力電圧が図6(B)のC地点に示されるようにピーク値に達する前に中間値をとるようにするには、NOxの放出作用完了時期が遅い方のNOx吸蔵還元触媒におけるNOxの放出作用が完了したときに、図6(B)に示す例ではNOx吸蔵還元触媒14におけるNOx放出作用が完了したときに空燃比をリッチからリーンに切換える必要がある。この場合、例えばC地点における酸素濃度センサの出力電圧が設定レベルを越えたときがリッチからリーンへの切換タイミングとされる。 Note that to take an intermediate value before the output voltage of the oxygen concentration sensor 17 reaches a peak value as shown in point C shown in FIG. 6 (B) when there is a difference in the NO x releasing completion timing, when the releasing action of the NO x has been completed in the NO x NO x storage-and-reduction catalysts towards slow releasing action completion time of, NO x releasing action of the NO x storage-reduction catalyst 14 in the example shown in FIG. 6 (B) is completed When this happens, it is necessary to switch the air-fuel ratio from rich to lean. In this case, for example, when the output voltage of the oxygen concentration sensor at point C exceeds the set level, the switching timing from rich to lean is set.

さて、本発明によれば各NOx吸蔵還元触媒14,15のNOx放出完了時期に差があると判断されたときには図7(A)に示されるようにNOx放出制御開始時からNOx放出制御期間の途中まで燃焼室内の空燃比がリッチに維持され、NOx放出制御期間の途中からNOx放出制御完了時までは燃焼室内の空燃比が理論空燃比或いはほぼ理論空燃比に維持される。言い換えると、NOx吸蔵還元触媒14,15のNOx放出完了時期に差があると判断されたときにはNOx放出制御開始時からNOx放出制御期間の途中まで各NOx吸蔵還元触媒14,15に流入する排気ガスの空燃比がリッチに維持され、NOx放出制御期間の途中からNOx放出制御完了時までは各NOx吸蔵還元触媒14,15に流入する排気ガスの空燃比が理論空燃比或いはほぼ理論空燃比に維持される。このようにすると図7(B)に示されるようにA地点およびB地点における未燃HC,COの量は少なくなる。 Now, when it is determined that there is a difference in the NO x releasing completion time of each NO x storage-and-reduction catalyst 14, 15 according to the present invention Figure 7 NO from the NO x releasing control at the start, as shown in (A) x The air-fuel ratio in the combustion chamber is kept rich until the middle of the release control period, and the air-fuel ratio in the combustion chamber is maintained at the stoichiometric or almost stoichiometric air-fuel ratio from the middle of the NO x release control period to the completion of the NO x release control. The In other words, the NO x storage-reduction NO x each the NO x storage halfway when it is determined that there is a difference in the release completion time from when the NO x releasing control start the NO x releasing control period reduction catalyst 14 of the catalyst 14, 15 The air-fuel ratio of the exhaust gas flowing into the exhaust gas is maintained rich, and the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalysts 14 and 15 is stoichiometrically from the middle of the NO x release control period until the completion of the NO x release control. The fuel ratio is maintained at or approximately the stoichiometric air-fuel ratio. If it does in this way, as shown in Drawing 7 (B), the quantity of unburned HC and CO in A point and B point will decrease.

即ち、各NOx吸蔵還元触媒14,15に流入する排気ガスの空燃比がリッチから理論空燃比或いはほぼ理論空燃比に切換えられると、NOx吸蔵還元触媒14,15内にNOxが残存している場合にはこの残存NOxは、排気ガスの空燃比がリッチであるときに比べればゆっくりであるがNOx吸蔵還元触媒14,15から放出され還元される。このときはNOx吸蔵還元触媒14,15から未燃HC,COは排出されない。 That is, when the air-fuel ratio of the exhaust gas flowing into each NO x storage reduction catalyst 14, 15 is switched from rich to the stoichiometric air fuel ratio or substantially the stoichiometric air fuel ratio, NO x remains in the NO x storage reduction catalyst 14, 15. In this case, the residual NO x is released from the NO x storage reduction catalysts 14 and 15 and is reduced, although it is slower than when the air-fuel ratio of the exhaust gas is rich. At this time, unburned HC and CO are not discharged from the NO x storage reduction catalysts 14 and 15.

次いでNOx吸蔵還元触媒14,15からのNOxの放出作用が完了するとNOx吸蔵還元触媒14,15から流出する排気ガスの空燃比は理論空燃比或いはほぼ理論空燃比となるために図7(A)のA地点やB地点に示されるように酸素濃度センサの出力電圧は上昇する。このときNOx吸蔵還元触媒14,15から流出する排気ガスの空燃比はリッチにはならないのでこのときNOx吸蔵還元触媒14,15から排出される未燃HC,COの量は少ない。このようにNOx吸蔵還元触媒14,15間においてNOxの放出作用完了時期に差があるときにはリッチ信号が発せられたときの空燃比を図6(A)に示されるリッチ空燃比から図7(A)に示されるリッチ空燃比と理論空燃比の組合せに切換えることによって未燃HC,COの排出量を抑制することができる。 Then the NO x storage-reduction when releasing action of the NO x from the catalyst 14, 15 is completed the NO x storage-reduction air-fuel ratio of the exhaust gas flowing out from the catalyst 14, 15 the stoichiometric air-fuel ratio or 7 to substantially the stoichiometric air-fuel ratio As shown at points A and B in (A), the output voltage of the oxygen concentration sensor increases. At this time, since the air-fuel ratio of the exhaust gas flowing out from the NO x storage reduction catalysts 14 and 15 does not become rich, the amounts of unburned HC and CO discharged from the NO x storage reduction catalysts 14 and 15 at this time are small. Figure fuel ratio when the fuel-rich signal is issued when this way there is a difference in releasing action completion time of the NO x in between the NO x storage-reduction catalyst 14, 15 from the rich air-fuel ratio shown in FIG. 6 (A) 7 By switching to the combination of the rich air-fuel ratio and the stoichiometric air-fuel ratio shown in (A), the amount of unburned HC and CO emissions can be suppressed.

なお、前述したように排気ガスの空燃比を理論空燃比或いはほぼ理論空燃比にしたときにはNOxはNOx吸蔵還元触媒14,15からゆっくりと放出され、従ってこの場合にはNOxを放出されるのに時間を要する。従って、図7(A)に示されるように排気ガスの空燃比が理論空燃比にされるときには図5(A)、図6(A)に示される場合に比べてリッチ信号の発生期間、即ちNOx放出制御の期間が長くされる。 As described above, when the air-fuel ratio of the exhaust gas is made the stoichiometric air-fuel ratio or substantially the stoichiometric air-fuel ratio, NO x is slowly released from the NO x storage reduction catalysts 14 and 15, and therefore in this case NO x is released. It takes time to complete. Therefore, as shown in FIG. 7A, when the air-fuel ratio of the exhaust gas is made the stoichiometric air-fuel ratio, the generation period of the rich signal, that is, compared with the cases shown in FIGS. 5A and 6A, that is, The period of NO x release control is lengthened.

なお、図7(A)において空燃比を理論空燃比からリーンに戻す時期を多少遅らしてもNOxはもとより未燃HC,COの排出量が増大することはない。従って、空燃比を理論空燃比からリーンに戻す時期は比較的自由に設定することができる。 Note that, in FIG. 7A, even if the timing for returning the air-fuel ratio from the stoichiometric air-fuel ratio to lean is slightly delayed, the emission amount of unburned HC and CO as well as NO x does not increase. Therefore, the timing for returning the air-fuel ratio from the stoichiometric air-fuel ratio to lean can be set relatively freely.

図8にNOx放出制御ルーチンを示す。
図8を参照するとまず初めにステップ50においてNOx吸蔵還元触媒14,15からNOxを放出させるべき時期であるか否かが判別される。NOxを放出させるべき時期でないときには処理サイクルを完了する。これに対し、NOxを放出させるべき時期であるときにはステップ51に進んで図5(A)に示される通常のリッチ制御を行うべきか否かが判別される。通常のリッチ制御を行うべきときにはステップ52に進んで図5(A)に示される通常のリッチ制御が行われる。
FIG. 8 shows the NO x release control routine.
Whether it is the time from the NO x storage-reduction catalyst 14, 15 to the release of NO x at first, at step 50 and reference to FIG. 8 is determined. When it is not time to release NO x , the processing cycle is completed. On the other hand, when it is time to release NO x , the routine proceeds to step 51, where it is judged if the normal rich control shown in FIG. When normal rich control is to be performed, the routine proceeds to step 52, where the normal rich control shown in FIG. 5A is performed.

次いでステップ53では酸素濃度センサ17の出力電圧が読込まれ、次いでステップ54では酸素濃度センサ17の出力電圧の変動パターンからNOx吸蔵還元触媒14,15間においてNOx放出完了時期に差があるか否かが判別される。NOx放出完了時期に差がないと判断されたときにはステップ55に進んで次回も図5(A)に示される通常のリッチ制御を継続して行うことが決定される。これに対し、NOx放出完了時期に差があると判断されたときにはステップ56に進んでリッチ制御を図7(A)に示されるリッチ制御に変更すべきであることが決定される。リッチ制御を変更すべきであることが決定されると次にステップ50においてNOxを放出すべきであると判断されたときにステップ51からステップ57に進んで図7(A)に示されるリッチ制御が行われる。 Next, at step 53, the output voltage of the oxygen concentration sensor 17 is read. Next, at step 54, is there a difference in the NO x release completion timing between the NO x storage reduction catalysts 14 and 15 from the fluctuation pattern of the output voltage of the oxygen concentration sensor 17? It is determined whether or not. When it is determined that there is no difference in the NO x release completion timing, the routine proceeds to step 55 where it is determined that the normal rich control shown in FIG. In contrast, it is determined that when it is determined that there is a difference in the NO x releasing completion time should be changed to the rich control shown in FIG. 7 (A) rich control proceeds to step 56. When it is determined that the rich control should be changed, the routine proceeds from step 51 to step 57 when it is determined in step 50 that NO x should be released, and the rich shown in FIG. Control is performed.

内燃機関の全体図である。1 is an overall view of an internal combustion engine. NOxの吸放出作用を説明するための図である。It is a diagram for explaining the absorbing and releasing action of NO x. 酸素濃度センサの出力電圧Eを示す図である。It is a figure which shows the output voltage E of an oxygen concentration sensor. 図1に示す内燃機関を示す図である。It is a figure which shows the internal combustion engine shown in FIG. リッチ信号が発せられたときの空燃比の変動パターン等を示す図である。It is a figure which shows the fluctuation pattern etc. of an air fuel ratio when a rich signal is emitted. リッチ信号が発せられたときの空燃比の変動パターン等を示す図である。It is a figure which shows the fluctuation pattern etc. of an air fuel ratio when a rich signal is emitted. リッチ信号が発せられたときの空燃比の変動パターン等を示す図である。It is a figure which shows the fluctuation pattern etc. of an air fuel ratio when a rich signal is emitted. NOx放出制御を行うためのフローチャートである。3 is a flowchart for performing NO x release control.

符号の説明Explanation of symbols

7 第1の排気通路
9 第2の排気通路
12,13 枝通路
14,15 NOx吸蔵還元触媒
17 酸素濃度センサ
7 First exhaust passage 9 Second exhaust passage 12, 13 Branch passage 14, 15 NO x storage reduction catalyst 17 Oxygen concentration sensor

Claims (5)

機関排気通路を複数の枝通路に分岐して各枝通路内に夫々、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出し還元するNOx吸蔵還元触媒を配置し、これらNOx吸蔵還元触媒間においてNOxの放出完了時期に差がないと判断されたときにはNOx吸蔵還元触媒からのNOx放出制御開始時から完了時まで各NOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチに維持し、該差があると判断されたときには該NOx放出制御開始時からNOx放出制御期間の途中まで各NOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチに維持すると共に該NOx放出制御期間の途中からNOx放出制御完了時までは各NOx吸蔵還元触媒に流入する排気ガスの空燃比をほぼ理論空燃比に維持するようにした内燃機関の排気浄化装置。 The engine exhaust passage is branched into a plurality of branch passages, and when the air-fuel ratio of the exhaust gas flowing into each branch passage is lean, the air-fuel ratio of the exhaust gas that stores NO x in the exhaust gas and flows in is the stoichiometric air-fuel ratio. or becomes rich to release occluded nO x arranged the nO x storage-reduction catalyst that reduces, the nO x storage reduction catalyst when it is determined that there is no difference in the release completion time of the nO x in between the nO x storage-and-reduction catalyst From the start of NO x release control to the completion of NO x , the air-fuel ratio of the exhaust gas flowing into each NO x storage reduction catalyst is maintained rich, and when it is determined that there is a difference, the NO x release control starts from the start of NO x the the NO x releasing control the way from the NO x releasing control completion until each NO x storage-and-reduction catalyst period while maintaining the air-fuel ratio of the exhaust gas up to the middle of the x releasing control period flowing into the NO x storage-and-reduction catalyst in a rich Inflow An exhaust gas purification apparatus for an internal combustion engine in which the air-fuel ratio of exhaust gas to be maintained is maintained at a substantially stoichiometric air-fuel ratio. 上記差があると判断されたときには上記差がないと判断されたときに比べて上記NOx放出制御期間が長くされる請求項1に記載の内燃機関の排気浄化装置。 The exhaust emission control device for an internal combustion engine according to claim 1, wherein the NO x release control period is made longer when it is determined that there is the difference than when it is determined that there is no difference. 各NOx吸蔵還元触媒から流出する排気ガスの空燃比の上記NOx放出制御完了時における変動パターンから上記差があるかないかが判断される請求項1に記載の内燃機関の排気浄化装置。 The exhaust emission control device for an internal combustion engine according to claim 1, wherein whether or not there is the difference is determined from a fluctuation pattern of the air-fuel ratio of the exhaust gas flowing out from each NO x storage reduction catalyst when the NO x release control is completed. 上記の各枝通路が一つの共通の排気通路に合流せしめられると共に該共通の排気通路内に酸素濃度センサを配置し、該酸素濃度センサの出力値の上記NOx放出制御完了時における変動パターンから上記差があるかないかが判断される請求項1に記載の内燃機関の排気浄化装置。 Each branch passage is joined to one common exhaust passage, and an oxygen concentration sensor is arranged in the common exhaust passage. From the fluctuation pattern of the output value of the oxygen concentration sensor when the NO x release control is completed. The exhaust emission control device for an internal combustion engine according to claim 1, wherein whether or not there is the difference is determined. 上記差が全くないときには上記NOx放出制御完了時に酸素濃度センサの出力値が急激に上昇してピーク値に達する場合において、NOx放出制御完了時に酸素濃度センサの出力値がピーク値に対しほぼ半分である中間値に維持された後にピーク値に達し、このとき中間値に維持される時間が設定時間以上であるときに上記差があると判断される請求項4に記載の内燃機関の排気浄化装置。 In the case when the difference is not at all reach the peak value output value of the oxygen concentration sensor when the the NO x releasing control completion rises sharply, the output value of the oxygen concentration sensor when the NO x releasing control completion almost to peak value The exhaust of the internal combustion engine according to claim 4, wherein the difference is determined when the peak value is reached after being maintained at an intermediate value that is half and the time that the intermediate value is maintained at this time is equal to or longer than a set time. Purification equipment.
JP2005229342A 2005-08-08 2005-08-08 Exhaust emission control device of internal combustion engine Withdrawn JP2007046493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229342A JP2007046493A (en) 2005-08-08 2005-08-08 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229342A JP2007046493A (en) 2005-08-08 2005-08-08 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007046493A true JP2007046493A (en) 2007-02-22

Family

ID=37849527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229342A Withdrawn JP2007046493A (en) 2005-08-08 2005-08-08 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007046493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217596A (en) * 2021-07-21 2022-10-21 广州汽车集团股份有限公司 Engine and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217596A (en) * 2021-07-21 2022-10-21 广州汽车集团股份有限公司 Engine and control method thereof
CN115217596B (en) * 2021-07-21 2024-02-23 广州汽车集团股份有限公司 Engine and control method thereof

Similar Documents

Publication Publication Date Title
JP4420048B2 (en) Exhaust gas purification device for internal combustion engine
KR0165951B1 (en) Apparatus of detecting depletion of absorptive nox
JP3228006B2 (en) Exhaust purification element deterioration detection device for internal combustion engine
JP4512080B2 (en) Exhaust gas purification device for internal combustion engine
US20120017587A1 (en) Control system of internal combustion engine
JP2000345830A (en) Exhaust emission control device of internal combustion engine
JP2005113801A (en) Exhaust emission control device for internal combustion engine
US7305820B2 (en) Exhaust gas control apparatus for internal combustion engine
JP3203931B2 (en) Exhaust gas purification device for internal combustion engine
JP2001303937A (en) Exhaust emission control device for internal combustion engine
JP2002161781A (en) Exhaust emission control device for internal combustion engine
JP4120563B2 (en) Exhaust gas purification device for internal combustion engine
JP2006348904A (en) Exhaust emission control device for internal combustion engine
JP2016109041A (en) Control device for internal combustion engine
JP2007046493A (en) Exhaust emission control device of internal combustion engine
JP2008208739A (en) Exhaust purification device of internal combustion engine
US8297041B2 (en) Exhaust gas purification apparatus for internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP2009024521A (en) Exhaust emission control device of internal combustion engine
JP3573030B2 (en) Catalyst deterioration judgment device for internal combustion engine
JP2010024990A (en) Exhaust emission control device for internal combustion engine
JP3512062B2 (en) Exhaust gas purification device for internal combustion engine
JP5206597B2 (en) Exhaust gas purification device for internal combustion engine
JP2009180128A (en) Exhaust emission control device for internal combustion engine
JP2005042734A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090114