JP2007046178A - Stainproof fiber structural product - Google Patents
Stainproof fiber structural product Download PDFInfo
- Publication number
- JP2007046178A JP2007046178A JP2005229539A JP2005229539A JP2007046178A JP 2007046178 A JP2007046178 A JP 2007046178A JP 2005229539 A JP2005229539 A JP 2005229539A JP 2005229539 A JP2005229539 A JP 2005229539A JP 2007046178 A JP2007046178 A JP 2007046178A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- antifouling
- fine particles
- metal oxide
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Multicomponent Fibers (AREA)
Abstract
Description
本発明は、多孔質層と緻密層が交互に配列した多層構造を有し、かつ、光触媒活性を有する金属酸化物微粒子が緻密層に含有されている防汚性繊維を少なくとも一部に有する防汚性繊維構造物に関する。 The present invention has a multilayer structure in which a porous layer and a dense layer are alternately arranged, and has an antifouling fiber having at least a part of antifouling fibers containing metal oxide fine particles having photocatalytic activity in the dense layer. The present invention relates to a dirty fiber structure.
光触媒活性を有する金属酸化物微粒子は、光照射により電子と正孔を発生する。発生した電子は高い還元力を、また、正孔は高い酸化力を有するため、有機物等の分解をすることができる。この性質を防汚機能として利用することが近年盛んに検討されている。 The metal oxide fine particles having photocatalytic activity generate electrons and holes when irradiated with light. Since the generated electrons have a high reducing power and the holes have a high oxidizing power, organic substances can be decomposed. The use of this property as an antifouling function has been actively studied in recent years.
例えば、特許文献1や2では、繊維構造物の表面全体にシランカップリング剤や有機物バインダーを介して酸化チタン等の光触媒活性を有する金属酸化物微粒子を固定し、防汚性を付与せしめている。しかし、固定した金属酸化物微粒子は、摩擦や洗濯などで脱落しやすく、耐久性の面において限界がある。加えて、繊維構造物全体がシランカップリング剤や有機物バインダーで覆われることになるため、当該繊維構造物が本来有している有用な機能が十分に利用できない、あるいは、機能を十分利用するには、相当の工夫が必要とされるなどの問題が生じる。さらに、繊維構造物が酸化・還元に弱い繊維を含む場合、その繊維に対しても光触媒活性を有する金属酸化物微粒子を固定することになるため、当該繊維の劣化を促進し、繊維構造物全体の耐久性を低下させる可能性がある。 For example, in Patent Documents 1 and 2, metal oxide fine particles having photocatalytic activity such as titanium oxide are fixed to the entire surface of the fiber structure via a silane coupling agent or an organic binder to impart antifouling properties. . However, the fixed metal oxide fine particles easily fall off due to friction or washing, and have a limit in terms of durability. In addition, since the entire fiber structure is covered with a silane coupling agent or an organic binder, the useful functions inherent to the fiber structure cannot be fully utilized, or the functions can be fully utilized. However, problems such as considerable contrivance arise. Furthermore, when the fiber structure contains fibers that are vulnerable to oxidation / reduction, the metal oxide fine particles having photocatalytic activity are also fixed to the fibers, so that the deterioration of the fibers is promoted, and the entire fiber structure There is a possibility of lowering the durability.
また、特許文献3では光触媒活性を有し酸化チタンと酸化ケイ素を含有する複合金属酸化物微粒子をレーヨン繊維内に分散保持させた繊維が開示されており、該繊維を含有する繊維構造物については、洗濯耐久性が優れていることが示されている。また、該繊維100%で構成された繊維構造物が防汚性に優れることも記載されているが、該繊維を汎用繊維などと併用して繊維構造物とした場合、当該汎用繊維については防汚機能を付与されていないため、繊維構造物全体としての防汚性は物足りないものとなってしまう。 Patent Document 3 discloses a fiber in which composite metal oxide fine particles having photocatalytic activity and containing titanium oxide and silicon oxide are dispersed and held in rayon fiber, and a fiber structure containing the fiber is disclosed. It has been shown that washing durability is excellent. In addition, it is also described that a fiber structure composed of 100% of the fiber is excellent in antifouling property. However, when the fiber is used in combination with a general-purpose fiber to form a fiber structure, the general-purpose fiber is prevented. Since the dirt function is not given, the antifouling property as the whole fiber structure becomes unsatisfactory.
この点について、特許文献4に記載されている多孔質繊維中に光触媒活性を有する金属酸化物等を含有させた繊維であれば、汎用繊維と併用した繊維構造物においても、細孔が多く表面積の広い多孔質繊維に汚れ物質が多く吸着され、汎用繊維への汚れ物質の付着量は少なくなるため、繊維構造物全体として見た場合の防汚性は高いものになると考えられる。しかしながら、多孔質繊維は、紡績加工性(静電気発生)、染色性(発色性)等に難点があるため、加工段階において問題がある。
以上に述べてきたように、従来技術における防汚性を有する繊維構造物は、防汚機能の耐久性、繊維構造物を構成する繊維に対する機能面、物性面への影響、加工性などについて問題点を有するものであった。本発明は、これらの問題点に鑑みなされたものであり、その課題は、防汚性に優れた繊維構造物を提供することにある。 As described above, the fiber structure having antifouling properties in the prior art has problems with durability of the antifouling function, functional aspects of the fibers constituting the fiber structure, influence on physical properties, processability, etc. It had a point. This invention is made | formed in view of these problems, The subject is providing the fiber structure excellent in antifouling property.
本発明者は、上述の目的を達成するために鋭意検討を進めた結果、以下に示す本発明に到達した。 As a result of diligent studies to achieve the above-mentioned object, the present inventor has reached the present invention shown below.
(1)多孔質層と緻密層が交互に配列した多層構造繊維であって、かつ、光触媒活性を有する金属酸化物微粒子が緻密層に含有されている防汚性繊維を少なくとも一部に使用したことを特徴とする防汚性繊維構造物。
(2)防汚性繊維の細孔表面積が10〜40m2/gであることを特徴とする(1)に記載の防汚性繊維構造物。
(3)金属酸化物微粒子が酸化チタンであることを特徴とする(1)または(2)に記載の防汚性繊維構造物。
(4)金属酸化物微粒子の粒子径が10〜100nmであることを特徴とする(1)〜(3)のいずれかに記載の防汚性繊維構造物。
(5)防汚性繊維の母体100重量部に対して、金属酸化物微粒子が1〜10重量部含有されていることを特徴とする(1)〜(4)のいずれかに記載の防汚性繊維構造物。
(1) A multi-layer structure fiber in which a porous layer and a dense layer are alternately arranged, and an antifouling fiber in which metal oxide fine particles having photocatalytic activity are contained in the dense layer is used at least in part. An antifouling fiber structure characterized by that.
(2) The antifouling fiber structure according to (1), wherein the antifouling fiber has a pore surface area of 10 to 40 m 2 / g.
(3) The antifouling fiber structure according to (1) or (2), wherein the metal oxide fine particles are titanium oxide.
(4) The antifouling fiber structure according to any one of (1) to (3), wherein the metal oxide fine particles have a particle size of 10 to 100 nm.
(5) The antifouling according to any one of (1) to (4), wherein 1 to 10 parts by weight of metal oxide fine particles are contained with respect to 100 parts by weight of the base of the antifouling fiber. Fiber structure.
本発明の防汚性繊維構造物は、防汚性繊維として光触媒活性を有する金属酸化物微粒子を含有する繊維を採用しているので、光照射により繊維表面上に付着した汚れ物質を分解することができる。また、該防汚性繊維は多孔質層と緻密層が交互に配列した多層構造を有しているので、細孔が多く表面積の広い多孔質層に汚れ物質が多く吸着され、その結果繊維構造物を構成する他の繊維への汚れの付着が抑制される。さらに、汚れ物質が多孔質層の細孔内に入り込んで目立たなくなる。これらの機能を併せ持つ本発明の防汚性繊維構造物は優れた防汚性を発揮するものである。加えて、本発明に採用する防汚性繊維は、紡績性、染色性など繊維構造物とする際の加工性にも優れているため、本発明の防汚性繊維構造物は製造工程においても取り扱いやすいものである。 Since the antifouling fiber structure of the present invention employs a fiber containing metal oxide fine particles having photocatalytic activity as the antifouling fiber, it decomposes dirt substances adhering to the fiber surface by light irradiation. Can do. Further, since the antifouling fiber has a multilayer structure in which the porous layer and the dense layer are alternately arranged, a large amount of dirt substances are adsorbed to the porous layer having many pores and a large surface area. The adhesion of dirt to other fibers constituting the object is suppressed. Furthermore, the dirt substance enters the pores of the porous layer and becomes inconspicuous. The antifouling fiber structure of the present invention having both of these functions exhibits excellent antifouling properties. In addition, the antifouling fiber employed in the present invention is excellent in processability when making it into a fiber structure such as spinnability and dyeability, so that the antifouling fiber structure of the present invention is also used in the production process. It is easy to handle.
以下に本発明を詳細に説明する。本発明に採用する防汚性繊維においては、その母体となる繊維が多孔質層と緻密層が繊維断面方向に交互に配列した多層構造繊維であることが必要である。多層構造繊維の構造は、一層の多孔質層と一層の緻密層からなる二層以上の多層構造であり、三層以上の場合は、かかる多孔質層と緻密層が交互に配列している。さらに、光触媒活性を有する金属酸化物微粒子は緻密層側に含有されている。該金属酸化物微粒子は、緻密層側に含有されていれば多孔質層側にも含有されていても構わないが、多孔質層側の微粒子は脱落しやすいため、また、緻密層側に含有されていれば十分な機能が得られるため、コストの面からも緻密層側にのみ含有せしめる方が好ましい。 The present invention is described in detail below. In the antifouling fiber employed in the present invention, it is necessary that the base fiber is a multilayer structure fiber in which a porous layer and a dense layer are alternately arranged in the fiber cross-sectional direction. The structure of the multilayer structure fiber is a multilayer structure of two or more layers consisting of one porous layer and one dense layer. In the case of three or more layers, the porous layers and the dense layers are alternately arranged. Furthermore, metal oxide fine particles having photocatalytic activity are contained on the dense layer side. The metal oxide fine particles may be contained on the porous layer side as long as they are contained on the dense layer side, but the fine particles on the porous layer side easily fall off, and are also contained on the dense layer side. If sufficient, a sufficient function can be obtained. Therefore, it is preferable to contain it only on the dense layer side from the viewpoint of cost.
上述したように本発明に採用する防汚性繊維において母体となる繊維は多孔質層と緻密層が交互に配列した多層構造繊維であるが、該繊維の細孔表面積としては、好ましくは10〜40m2/g、更に好ましくは20〜40m2/gであることが望ましい。該繊維の細孔表面積が10m2/g未満の場合は、汚れ物質の吸着面積が小さくなり、汚れ物質の吸着量が少なくなるため、繊維構造物を構成する他の繊維への汚れ付着が増え、繊維構造物全体としての汚れ具合が大きくなる場合がある。また、40m2/gを超える場合には紡績性(静電気)、染色性(発色性)等の加工性に難を生ずる可能性がある。 As described above, the base fiber in the antifouling fiber employed in the present invention is a multilayer structure fiber in which a porous layer and a dense layer are alternately arranged, and the pore surface area of the fiber is preferably 10 to 10. 40 m 2 / g, further preferably at 20 to 40 m 2 / g. When the pore surface area of the fiber is less than 10 m 2 / g, the adsorption area of the dirt substance becomes small and the adsorption amount of the dirt substance decreases, so that the adhesion of dirt to other fibers constituting the fiber structure increases. In some cases, the degree of contamination of the entire fiber structure may increase. Moreover, when it exceeds 40 m < 2 > / g, there exists a possibility of producing difficulty in workability, such as spinnability (static electricity) and dyeability (coloring property).
上記多層構造繊維としては、特に限定はなく、例えば、ポリエステル繊維、ポリアミド繊維、ポリオレフィン系繊維、エチレン−ビニルアルコール系共重合体繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリウレタン繊維、アクリル系繊維、ポリビニルアルコール系繊維、ポリクラール繊維、フッ素系繊維、蛋白−アクリロニトリル共重合体系繊維、ポリグリコール酸繊維、フェノール樹脂繊維などの合成繊維、アセテート繊維などの半合成繊維、レーヨン、キュプラなどの再生繊維を挙げることができる。中でも、アクリロニトリル系重合体からなるアクリル系繊維は、光触媒活性に対し耐性が高いことから、上記多層構造繊維として最も好適なものである。 The multilayer structure fiber is not particularly limited, and examples thereof include polyester fiber, polyamide fiber, polyolefin fiber, ethylene-vinyl alcohol copolymer fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyurethane fiber, and acrylic fiber. Fiber, polyvinyl alcohol fiber, polyclar fiber, fluorine fiber, protein-acrylonitrile copolymer fiber, polyglycolic acid fiber, phenol resin fiber and other synthetic fibers, acetate fiber and other semi-synthetic fibers, rayon and cupra Mention may be made of fibers. Among them, acrylic fiber made of acrylonitrile polymer is most suitable as the multilayer structure fiber because it has high resistance to photocatalytic activity.
なお、多孔質層と緻密層が交互に配列した多層構造繊維は、同種あるいは異種の重合体からなる所謂複合繊維である。かかる多層構造繊維を得るための手段としては、それ自体公知の複合繊維の製造方法(サイドバイサイド型、ランダム複合型)から任意に選択出来るが、好ましくは特公昭59−7802号公報記載のような2成分の紡糸原液を任意のエレメント数を設置した登録商標名Kenics Mixer(米国ケニックス社製)、ISG Mixerを通過させた後、口金導入孔の分流板で複合流を導き吐出するいわゆるランダム複合型を採用することによって本発明の目的を有利に達成することが出来る。 The multilayer structure fiber in which the porous layer and the dense layer are alternately arranged is a so-called composite fiber made of the same or different polymer. As a means for obtaining such a multilayer structure fiber, it can be arbitrarily selected from known composite fiber production methods (side-by-side type, random composite type), but preferably 2 as described in JP-B-59-7802. A so-called random composite type, in which a component stock spinning solution is passed through a registered trade name Kenics Mixer (manufactured by Kenix, USA) and ISG Mixer with an arbitrary number of elements, and a composite flow is guided and discharged by a flow dividing plate of a mouthpiece introduction hole. By adopting, the object of the present invention can be advantageously achieved.
本発明に採用する防汚性繊維は、光触媒活性を有する金属酸化物微粒子を含んでいる。かかる金属酸化物微粒子は、紫外線照射によりその表面で電子と正孔が発生し、周囲の水や酸素から強力な酸化力を有する活性酸素を発生させる物質である。具体的には、Se、Ge、Si、Ti、Zn、Cu、Al、Sn、Ga、In、P、As、Sb、C、Cd、S、Te、Ni、Fe、Co、Ag、Mo、Sr、W、Cr、Ba、Pb等の酸化物などの化合物であって水に不溶のものが挙げられる。これらの中でも酸化チタン、酸化亜鉛及び酸化タングステンから選ばれる1種を単独で又は2種以上を組み合わせたものが好適であり、さらに、安全性や価格の面から酸化チタンを用いるのが好ましい。 The antifouling fiber employed in the present invention contains metal oxide fine particles having photocatalytic activity. Such metal oxide fine particles are substances that generate electrons and holes on the surface thereof when irradiated with ultraviolet rays, and generate active oxygen having strong oxidizing power from the surrounding water and oxygen. Specifically, Se, Ge, Si, Ti, Zn, Cu, Al, Sn, Ga, In, P, As, Sb, C, Cd, S, Te, Ni, Fe, Co, Ag, Mo, Sr , W, Cr, Ba, Pb and other compounds such as oxides which are insoluble in water. Among these, one selected from titanium oxide, zinc oxide and tungsten oxide alone or in combination of two or more is preferable, and titanium oxide is preferably used from the viewpoint of safety and price.
また、光触媒活性を有する金属酸化物微粒子の粒子径は、特に限定されるものではないが、平均一次粒子径として、好ましくは10〜100nm、より好ましくは10〜50nm、更に好ましくは15〜30nmであることが望ましい。無論、平均一次粒子径が小さいほど光触媒としての活性は高いわけであるが、平均一次粒子径が10nm未満の場合、繊維に含有させる際の取り扱い性(粉塵)、及び分散性(凝集性)に問題を生ずる可能性がある。一方、平均一次粒子径が100nmを超える場合には、十分な機能が得られない可能性がある。 Further, the particle diameter of the metal oxide fine particles having photocatalytic activity is not particularly limited, but the average primary particle diameter is preferably 10 to 100 nm, more preferably 10 to 50 nm, still more preferably 15 to 30 nm. It is desirable to be. Of course, the smaller the average primary particle diameter is, the higher the activity as a photocatalyst is. However, when the average primary particle diameter is less than 10 nm, the handleability (dust) and dispersibility (aggregation) when contained in the fiber are improved. May cause problems. On the other hand, when the average primary particle diameter exceeds 100 nm, there is a possibility that a sufficient function cannot be obtained.
光触媒活性を有する金属酸化物微粒子の量は、必要とされる防汚性に応じて広い範囲から選択できる。該微粒子の量が少ないと、必要な能力が得られない場合があり、また多すぎると能力としては優れているものの、母体繊維を劣化させたり、繊維の物性を損なったりする恐れがあるため、繊維の母体100重量部に対して、好ましくは1〜10重量部、より好ましくは1.5〜8重量部であることが望ましい。 The amount of the metal oxide fine particles having photocatalytic activity can be selected from a wide range according to the required antifouling property. If the amount of the fine particles is small, the necessary ability may not be obtained, and if it is too much, the ability is excellent, but the base fiber may be deteriorated or the physical properties of the fiber may be impaired. The amount is preferably 1 to 10 parts by weight, more preferably 1.5 to 8 parts by weight, based on 100 parts by weight of the fiber matrix.
以下に、本発明に採用する防汚性繊維の製法の一例として、アクリロニトリル含有量の異なる2種類の重合体を用いたアクリル系繊維の製法について詳述する。まず、ポリアクリロニトリル系重合体としては、単独重合体、公知のモノマーとの共重合体を用いることができるが、混在して繊維を構成する2種類の重合体共にアクリロニトリル(以下、ANともいう)比率が60重量%以上、より好ましくは80重量%以上であることが望ましい。また2種類の重合体のアクリロニトリル含有量の差は、同じ紡糸条件で、一方を多孔質層、他方を緻密層とするためには、それぞれの緻密化条件にある程度の差が必要となるため、その差が1重量%以上、好ましくは2重量%以上であるものが好ましい。 Below, the manufacturing method of the acrylic fiber using two types of polymers from which acrylonitrile content differs as an example of the manufacturing method of the antifouling fiber employ | adopted for this invention is explained in full detail. First, as the polyacrylonitrile-based polymer, a homopolymer or a copolymer with a known monomer can be used, but acrylonitrile (hereinafter also referred to as AN) is used for both of the two types of polymers that are mixed to form a fiber. It is desirable that the ratio is 60% by weight or more, more preferably 80% by weight or more. Also, the difference in the acrylonitrile content of the two types of polymers requires a certain degree of difference in the respective densification conditions in order to make one porous layer and the other dense layer under the same spinning conditions. It is preferable that the difference is 1% by weight or more, preferably 2% by weight or more.
共重合に用いられるコモノマーとしては重合性不飽和ビニル化合物など、アクリロニトリルと共重合するものであれば特に制限はなく、例えばアルキルアクリレート、アルキルメタクリレート、アクリル酸、メタクリル酸、メタクリロニトリル、アクリルアミド、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、臭化ビニリデン、スチレン、スチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸塩、アリルスルホン酸塩、メタリルスルホン酸塩、エチレン、プロピレン等を使用することができる。 The comonomer used for copolymerization is not particularly limited as long as it is copolymerizable with acrylonitrile, such as a polymerizable unsaturated vinyl compound. For example, alkyl acrylate, alkyl methacrylate, acrylic acid, methacrylic acid, methacrylonitrile, acrylamide, chloride Vinyl, vinyl bromide, vinyl fluoride, vinylidene chloride, vinylidene bromide, styrene, styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonate, allyl sulfonate, methallyl sulfonate, ethylene, Propylene or the like can be used.
以上のような2種類のアクリロニトリル系重合体を混在させ繊維を形成させる方法としては、2種類のアクリロニトリル系重合体をそれぞれ単独にポリアクリロニトリルの溶剤に溶解した後、その重合体溶液を特定の紡糸装置・口金に導きサイドバイサイド型とする方法、2種類の重合体溶液を原液多層形成装置を通して紡糸口金に導きランダム複合型とする方法などが挙げられる。中でもランダム複合型が2層を超える多層構造の繊維が得られるため推奨される。なお、光触媒活性を有する金属酸化物微粒子は、緻密層側の重合体溶液に添加、あるいは重合体に添加して紡糸原液を作成する。 As a method of forming a fiber by mixing the two kinds of acrylonitrile polymers as described above, after dissolving two kinds of acrylonitrile polymers individually in a solvent of polyacrylonitrile, the polymer solution is subjected to specific spinning. Examples thereof include a method of introducing a side-by-side type into an apparatus / die, and a method of introducing a random composite type by introducing two types of polymer solutions into a spinning die through an undiluted multilayer forming apparatus. Above all, the random composite type is recommended because it can obtain a fiber having a multilayer structure exceeding two layers. The metal oxide fine particles having photocatalytic activity are added to the polymer solution on the dense layer side or added to the polymer to prepare a spinning dope.
かかるランダム複合型のアクリル系繊維の製造は、例えば以下のようにして行われる。まず、それぞれの重合体を溶剤に溶解して2種の紡糸原液(a,b)とする。この2種の原液a,bは原液多層形成装置に導かれる。かかる装置の例としてはスタティックミキサーである登録商標名Kenics Mixer,あるいはISG Mixer等が挙げられるが、該装置は原液を通過させることにより供給側の原液層数の2〜10倍の原液層数として出口側から送出するものである。かかる装置を複数段使用することで形成される原液の層数は自由に設定できる。 Such a random composite type acrylic fiber is manufactured, for example, as follows. First, the respective polymers are dissolved in a solvent to obtain two spinning stock solutions (a, b). These two types of stock solutions a and b are guided to a stock solution multilayer forming apparatus. Examples of such devices include the registered trade name Kenics Mixer or ISG Mixer, which are static mixers, but the device allows the stock solution to pass 2-10 times the number of stock layers on the supply side. It is sent from the exit side. The number of layers of the stock solution formed by using a plurality of such devices can be freely set.
原液多層形成装置の出口側には紡糸口金を装着する。a,b,a,b‥‥の如くにn層に形成された原液がホール数Hを持つ紡糸口金に供給される場合、紡出孔1ホールに供給される原液層数は平均的にはn/H0.5に比例する。比例係数は原液多層形成装置や紡糸口金の形状(紡出孔の配置)、該口金の取り付け方向等の装置条件に依存するので、1本の繊維の断面に要求される層の数に応じてこれらの条件を適合させるのである。 A spinneret is mounted on the outlet side of the stock solution multilayer forming apparatus. When the stock solution formed in the n layer as a, b, a, b,... is supplied to the spinneret having the hole number H, the number of stock solution layers supplied to one hole of the spinning hole is on average. It is proportional to n / H 0.5 . The proportionality coefficient depends on the apparatus conditions such as the stock solution multilayer forming apparatus, the shape of the spinneret (arrangement of the spinning holes), the mounting direction of the base, and so on, depending on the number of layers required for the cross section of one fiber These conditions are met.
紡糸口金から吐出された紡糸原液は凝固、水洗、延伸の各工程を経て、続いて湿熱処理を行う。この際、一方が緻密層、他方が多孔質層となるように、凝固条件、湿熱処理条件を設定する。なおここでいう湿熱処理とは、飽和水蒸気や過熱水蒸気の雰囲気下で加熱を行う処理を意味する。その後、多孔質層が緻密化しない温度で乾燥することにより、本発明に採用する防汚性繊維が得られる。 The spinning dope discharged from the spinneret is subjected to coagulation, water washing and stretching processes, followed by wet heat treatment. At this time, solidification conditions and wet heat treatment conditions are set so that one is a dense layer and the other is a porous layer. In addition, the wet heat treatment here means a treatment in which heating is performed in an atmosphere of saturated steam or superheated steam. Then, the antifouling fiber employ | adopted for this invention is obtained by drying at the temperature which a porous layer does not densify.
なお、AN含有率が同じであっても、例えば一方のAN系重合体のコモノマーを親水性のものとし、他方を疎水性のものとするように、異なるコモノマーを用いることによって、本発明に採用する防汚性繊維を得ることができる。 Even if the AN content is the same, for example, a different comonomer is used in the present invention so that the comonomer of one AN polymer is hydrophilic and the other is hydrophobic. It is possible to obtain antifouling fibers.
かくして得られる本発明に採用する防汚性繊維は、光触媒活性を有する金属酸化物微粒子が、多孔質層と緻密層が交互に配列した多層構造繊維の緻密層に含有されている。そのため、多孔質層に多くの汚れ物質が吸着され、細孔内に入り込んで目立たなくなることに加え、該多孔質層に接する緻密層の光触媒活性を有する金属酸化物により分解されることによって、特に優れた機能を有するものと考えられる。さらに、光触媒活性を有する金属酸化物微粒子が、緻密層に含有されているため、該微粒子の染色時の脱落を抑えることができ、また優れた洗濯耐久性を有している。加えて、多孔質層のみの繊維の場合に惹起される静電気の発生による紡績性の悪化や染色性の悪化も抑えることができる。 In the antifouling fiber employed in the present invention thus obtained, metal oxide fine particles having photocatalytic activity are contained in a dense layer of a multilayer structure fiber in which a porous layer and a dense layer are alternately arranged. Therefore, in addition to the fact that a lot of dirt substances are adsorbed on the porous layer and get into the pores and become inconspicuous, it is decomposed by the metal oxide having the photocatalytic activity of the dense layer in contact with the porous layer. It is considered to have an excellent function. Furthermore, since the metal oxide fine particles having photocatalytic activity are contained in the dense layer, the fine particles can be prevented from falling off during dyeing, and have excellent washing durability. In addition, it is possible to suppress deterioration of spinnability and dyeability due to generation of static electricity caused in the case of a fiber having only a porous layer.
本発明の防汚性繊維構造物は、上述してきた防汚性繊維を少なくともその一部に用いた繊維構造物であり、該防汚性繊維のみからなるものであっても、木綿、羊毛、ポリエステル繊維、アクリル繊維、ナイロン繊維等の他の繊維と混用したものであっても構わない。また、他の繊維と混用する場合において、他の繊維の種類や混合割合は、特に限定されるものではなく、最終製品に必要とされる特性に応じて適宜選択すればよいが、あまりに該防汚性繊維の含有率が小さいと繊維構造物としての防汚性能が乏しくなるため、好ましくは5重量%以上、より好ましくは10重量%以上含有させておくのが望ましい。なお、防汚性繊維の混用形態としては紡績における混綿及び精紡・撚糸工程での交撚等が例示されるが、これらに限定されるものではない。 The antifouling fiber structure of the present invention is a fiber structure using at least a part of the antifouling fiber described above, and even if it consists only of the antifouling fiber, cotton, wool, It may be mixed with other fibers such as polyester fiber, acrylic fiber, nylon fiber and the like. In addition, when mixed with other fibers, the type and mixing ratio of the other fibers are not particularly limited, and may be appropriately selected according to the characteristics required for the final product. When the content of the dirty fiber is small, the antifouling performance as a fiber structure becomes poor. Therefore, the content is preferably 5% by weight or more, more preferably 10% by weight or more. In addition, examples of the mixed use form of the antifouling fibers include mixed cotton in spinning and cross-twisting in the fine spinning / twisting process, but are not limited thereto.
本発明の防汚性繊維構造物の外観形態としては、糸、ヤ−ン(ラップヤ−ンも含む)、フィラメント、織物、編物、不織布、紙状物、シ−ト状物、積層体、綿状体(球状や塊状のものを含む)等がある。該構造物内における本発明繊維の含有形態としては、他素材との混合により、実質的に均一に分布したもの、複数の層を有する構造の場合には、いずれかの層(単数でも複数でも良い)に集中して存在せしめたものや、夫々の層に特定比率で分布せしめるもの等がある。 As the appearance form of the antifouling fiber structure of the present invention, yarn, yarn (including wrap yarn), filament, woven fabric, knitted fabric, non-woven fabric, paper-like material, sheet-like material, laminate, cotton And the like (including spherical and massive). The inclusion form of the fiber of the present invention in the structure is substantially uniformly distributed by mixing with other materials, and in the case of a structure having a plurality of layers, either layer (single or plural) There are things that are concentrated in the (good) and others that are distributed at a specific ratio in each layer.
したがって本発明の防汚性繊維構造物は、上記に例示した外観形態及び含有形態の組合わせとして、無数のものが存在する。いかなる構造物とするかは、最終製品の使用態様、要求される性能、かかる性能を発現することへの防汚性繊維の寄与の仕方等を勘案して適宜決定される。 Therefore, the antifouling fiber structure of the present invention has innumerable combinations of the appearance form and the inclusion form exemplified above. What kind of structure is to be used is appropriately determined in consideration of the usage mode of the final product, the required performance, the way the antifouling fibers contribute to exhibiting such performance, and the like.
本発明の防汚性繊維構造物は、防汚性が必要とされるさまざまな用途に利用でき、例えば衣類、履物類、カーテンやカーペットなどのインテリア用品、椅子、ソファ、車両の座席などのシート材、家屋の壁や家具などの壁装材、自動車、列車などの内装材、エアフィルターをはじめとする多種の用途に有用である。 The antifouling fiber structure of the present invention can be used for various applications that require antifouling properties, such as clothing, footwear, interior goods such as curtains and carpets, seats such as chairs, sofas, and vehicle seats. It is useful for various applications including wood materials, wall coverings such as house walls and furniture, interior materials such as automobiles and trains, and air filters.
以下、本発明を実施例に基づいて説明するが、本発明は実施例に限定されるものではない。なお、以下の実施例に記載の%あるいは部は、特に断りのない限り重量%あるいは重量部である。また、実施例及び比較例中で用いた評価試験の方法は以下の通りである。 EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example. In the following examples, “%” or “part” means “% by weight” or “part by weight” unless otherwise specified. The evaluation test methods used in the examples and comparative examples are as follows.
[細孔表面積評価]
繊維10mgを短繊維状にカットし、島津製作所製MICROMERITICS Auto Pore IVにて水銀圧4.14×10−2〜4.14×102MPaまで変化させ評価した。得られる細孔表面積(A1)は繊維間空隙を含むため、次式により繊維間空隙分(A2)を減じたものを繊維の細孔表面積とした。
繊維の細孔表面積=A1−A2
A1:水銀圧4.14×10−2〜4.14×102MPaの細孔表面積
A2:水銀圧4.14×10−2〜1.38MPaの細孔表面積
[Evaluation of pore surface area]
Cut the fibers 10mg to short fibers were evaluated varied manufactured by Shimadzu Corporation MICROMERITICS Auto Pore IV to mercury pressure 4.14 × 10 -2 ~4.14 × 10 2 MPa. Since the obtained pore surface area (A1) includes inter-fiber voids, the pore surface area of the fiber was determined by subtracting the inter-fiber void (A2) according to the following formula.
Fiber pore surface area = A1-A2
A1: pore surface area of the mercury pressure 4.14 × 10 -2 ~4.14 × 10 2 MPa A2: pore surface area of the mercury pressure 4.14 × 10 -2 ~1.38MPa
[多層化層数評価]
繊維200本を引き揃え蝋で固めた後、ライカ社製ミクロトーム2065を用い繊維断面方向に厚さ50nmの薄片試料を作成した。作成した薄片試料をNikon社製光学顕微鏡AFX−IIにて観察、繊維一本当りの層数を数え、200本の平均層数を多層化層数とした。なお、薄片試料を染料等で薄く色づけするとより容易に層数を数えることが出来る。
[Evaluation of the number of multilayered layers]
After 200 fibers were drawn and hardened with wax, a thin sample with a thickness of 50 nm was prepared in the fiber cross-sectional direction using a microtome 2065 manufactured by Leica. The prepared flake sample was observed with an optical microscope AFX-II manufactured by Nikon, the number of layers per fiber was counted, and the average number of 200 layers was defined as the number of multilayered layers. Note that the number of layers can be more easily counted by thinly coloring the thin sample with a dye or the like.
[実施例1]
アクリロニトリル、アクリル酸メチル、メタリルスルホン酸ナトリウムからなるアクリロニトリル含有率が90%のアクリロニトリル共重合体からなる紡糸原液(A)及び、アクリロニトリル、アクリル酸メチル、メタリルスルホン酸ナトリウムからなるアクリロニトリル含有率が88%のアクリロニトリル共重合体と平均一次粒子径15nmの酸化チタン微粒子(テイカ株式会社製TK522)からなる紡糸原液(B)をISG Mixer(理論原液層数432)に1:1の割合で供給して多層化混合し、湿式紡糸した。ここで、アクリロニトリル系共重合体の溶媒としては、チオシアン酸ナトリウム水溶液を用いた。また、酸化チタン微粒子は紡糸原液(B)のアクリロニトリル重合体100部に対して、5部となるよう調整した。凝固液には12%チオシアン酸ナトリウム水溶液を1.5℃で用いた。次いで水洗、熱延伸を施し、得られた繊維を乾燥することなく弛緩状態で115℃のスチーム処理を行い、さらに110℃で15分間乾燥し、ランダム複合型のアクリル繊維である本発明に採用する防汚性繊維を得た。得られた繊維の細孔表面積および多層化層数を表1に示した。
[Example 1]
Spinning stock solution (A) consisting of acrylonitrile copolymer consisting of acrylonitrile, methyl acrylate, sodium methallyl sulfonate 90% and acrylonitrile content consisting of acrylonitrile, methyl acrylate, sodium methallyl sulfonate A spinning stock solution (B) comprising 88% acrylonitrile copolymer and titanium oxide fine particles (TK522 manufactured by Teika Co., Ltd.) having an average primary particle size of 15 nm is supplied to ISG Mixer (theoretical stock solution layer number 432) at a ratio of 1: 1. Were mixed and multilayered and wet-spun. Here, a sodium thiocyanate aqueous solution was used as a solvent for the acrylonitrile copolymer. The titanium oxide fine particles were adjusted to 5 parts with respect to 100 parts of the acrylonitrile polymer of the spinning dope (B). A 12% aqueous sodium thiocyanate solution was used at 1.5 ° C. as the coagulation liquid. Next, washing with water and hot drawing are performed, and the obtained fiber is subjected to a steam treatment at 115 ° C. in a relaxed state without being dried, and further dried at 110 ° C. for 15 minutes to be adopted in the present invention which is a random composite type acrylic fiber. An antifouling fiber was obtained. Table 1 shows the pore surface area and the number of multilayered layers of the obtained fibers.
[比較例1]
アクリロニトリル、アクリル酸メチル、メタリルスルホン酸ソーダからなるアクリロニトリル含有率が88%のアクリロニトリル共重合体からなる紡糸原液(C)のみを用いた以外は、実施例1と同様の方法で評価用繊維を得た。得られた繊維の細孔表面積および多層化層数を表1に示した。
[Comparative Example 1]
An evaluation fiber was prepared in the same manner as in Example 1 except that only the spinning stock solution (C) made of an acrylonitrile copolymer having an acrylonitrile content of 88% consisting of acrylonitrile, methyl acrylate and sodium methallyl sulfonate was used. Obtained. Table 1 shows the pore surface area and the number of multilayered layers of the obtained fibers.
[比較例2]
実施例1の紡糸原液(B)に代えて、実施例1の紡糸原液(A)を用いた以外は、実施例1と同様の方法で評価用繊維を得た。得られた繊維の細孔表面積および多層化層数を表1に示した。
[Comparative Example 2]
An evaluation fiber was obtained in the same manner as in Example 1, except that the spinning dope (A) in Example 1 was used instead of the spinning dope (B) in Example 1. Table 1 shows the pore surface area and the number of multilayered layers of the obtained fibers.
[実施例2]
実施例1の紡糸原液(B)に代えて、アクリロニトリル、アクリル酸メチル、メタリルスルホン酸ソーダからなるアクリロニトリル含有率が88%と平均一次粒子径100nmの酸化チタン微粒子(富士チタン社製TAF−520J)からなる紡糸原液(D)を用いる他は、実施例1と同様の方法で評価用繊維を得た。なお、酸化チタン微粒子は紡糸原液(D)のアクリロニトリル重合体100部に対して、0.5部となるよう調整した。得られた繊維の細孔表面積および多層化層数を表1に示した。
[Example 2]
In place of the spinning dope (B) of Example 1, titanium oxide fine particles (TAF-520J manufactured by Fuji Titanium Co., Ltd.) having an acrylonitrile content of 88% and an average primary particle size of 100 nm consisting of acrylonitrile, methyl acrylate and sodium methallylsulfonate. The evaluation fiber was obtained in the same manner as in Example 1 except that the spinning stock solution (D) consisting of The titanium oxide fine particles were adjusted to 0.5 parts with respect to 100 parts of the acrylonitrile polymer of the spinning dope (D). Table 1 shows the pore surface area and the number of multilayered layers of the obtained fibers.
[実施例3]
凝固液として12%ロダン酸ソーダを5℃で用いる他は、実施例1と同様の方法で評価用の防汚性繊維を得た。得られた繊維の細孔表面積および多層化層数を表1に示した。
[Example 3]
An antifouling fiber for evaluation was obtained in the same manner as in Example 1 except that 12% sodium rhodanate was used as the coagulation liquid at 5 ° C. Table 1 shows the pore surface area and the number of multilayered layers of the obtained fibers.
[実施例4]
実施例1で用いたテイカ株式会社製酸化チタンTK522に代えて、平均一次粒子径5nmの酸化チタン微粒子(テイカ株式会社製酸化チタンAMT100)を用い、紡糸原液(B)に代えて、酸化チタン微粒子が紡糸原液(B)中のアクリロニトリル共重合体100部に対して、2.5部となるように調整した紡糸原液(E)を用いる他は、実施例1と同一の方法で評価用の防汚性繊維を得た。得られた繊維の細孔表面積および多層化層数を表1に示した。
[Example 4]
In place of the titanium oxide TK522 manufactured by Teika Co., Ltd. used in Example 1, titanium oxide fine particles having an average primary particle diameter of 5 nm (titanium oxide AMT100 manufactured by Teika Co., Ltd.) were used, and the titanium oxide fine particles were used instead of the spinning dope (B). Is the same as in Example 1 except that the spinning stock solution (E) is adjusted to 2.5 parts with respect to 100 parts of the acrylonitrile copolymer in the spinning stock solution (B). A dirty fiber was obtained. Table 1 shows the pore surface area and the number of multilayered layers of the obtained fibers.
[実施例5]
実施例1で用いたテイカ株式会社製酸化チタンTK522に代えて、平均一次粒子径30nmの酸化チタン微粒子(テイカ株式会社製酸化チタンAMT600)を用いる他は、実施例1と同様の方法で評価用の防汚性繊維を得た。得られた繊維の細孔表面積および多層化層数を表1に示した。
[Example 5]
For evaluation in the same manner as in Example 1 except that titanium oxide fine particles having an average primary particle size of 30 nm (titanium oxide AMT600 manufactured by Teika Co., Ltd.) are used in place of the titanium oxide TK522 manufactured by Teika Co., Ltd. used in Example 1. An antifouling fiber was obtained. Table 1 shows the pore surface area and the number of multilayered layers of the obtained fibers.
上記実施例および比較例で得られた各繊維について、当該繊維を40%、アクリル繊維NB8−3.3TV64(日本エクスラン工業(株)製)を30%、K65−2.8TV64(日本エクスラン工業(株)製)を30%混綿し、常法に従って紡績し、メートル番手2/10の紡績糸を得た。得られた紡績糸から、ミシンタフト機で、パイル長さ14mm、目付け850g/m2の白色のマットを作成した。 About each fiber obtained by the said Example and comparative example, the said fiber is 40%, acrylic fiber NB8-3.3TV64 (made by Nippon Exlan Industry Co., Ltd.) 30%, K65-2.8TV64 (Nippon Exlan Industry ( Co., Ltd.) was mixed 30% and spun according to a conventional method to obtain a spun yarn having a metric count of 2/10. A white mat having a pile length of 14 mm and a weight per unit area of 850 g / m 2 was prepared from the obtained spun yarn by a sewing machine.
得られたマットを30cm×30cmの正方形に切断し、蛍光灯の設置された窓のない喫煙室内に2週間放置して汚れを付着させた後のマットの汚れ具合を目視で比較したところ、表1のような結果が得られた。 The resulting mat was cut into a 30cm x 30cm square and left for 2 weeks in a smoking room without a fluorescent lamp. A result like 1 was obtained.
続いて、上記の汚れたマットを屋外に2日間放置して日光に曝し、汚れの分解の程度を以下に示す三段階で評価した。
○:汚れを付着させる前の状態とほぼ同じ
△:幾分汚れが残る
×:汚れを付着させた後の状態とほぼ同じ
Subsequently, the above-mentioned soiled mat was left outdoors for 2 days and exposed to sunlight, and the degree of soil degradation was evaluated in the following three stages.
○: almost the same as before the dirt is attached Δ: some dirt remains ×: almost the same as the state after the dirt is attached
表1の結果からも明らかなように、実施例1、3、4、5の防汚性繊維構造物は、繊維構造物全体の汚れ具合が小さく、また、日光に曝すことにより汚れ物質が分解され、汚れを付着させる前の状態とほぼ同じに戻るという、優れた防汚性を有するものであった。なお、実施例3の防汚性繊維は紡績時カーディング等で静電気が発生しやすく、紡績等の加工性がやや低いものではあるが、加工時の温湿度、もしくは、混率等の適正化により十分実用可能なものであった。また、実施例4の防汚性繊維を作成するにあたっては、酸化チタン微粒子の水分散液を作成する際、酸化チタン微粒子が粉塵となりやすく防塵マスク等の装着が必要であり、また、酸化チタン微粒子が一次粒子にまで分散しにくく分散にかなりの時間が必要であるなど作業上、生産上の注意点がある。 As is clear from the results in Table 1, in the antifouling fiber structures of Examples 1, 3, 4, and 5, the degree of soiling of the entire fiber structure is small, and the soiling substances are decomposed by exposure to sunlight. And had an excellent antifouling property of returning to almost the same state as before the dirt was adhered. In addition, although the antifouling fiber of Example 3 is likely to generate static electricity by carding at the time of spinning and the workability of spinning is somewhat low, the temperature / humidity at the time of processing or the mixing ratio is optimized. It was sufficiently practical. Further, in preparing the antifouling fiber of Example 4, when preparing an aqueous dispersion of titanium oxide fine particles, the titanium oxide fine particles easily become dust, and it is necessary to wear a dust mask, etc. However, it is difficult to disperse to primary particles, and it takes a considerable amount of time for dispersion.
実施例2の防汚性繊維構造物は、繊維構造物全体の汚れ具合は小さく、また、日光に曝すことによる汚れ物質の分解も起こり実用可能なものであるが、汚れ物質の分解については、採用している防汚性繊維に含有される酸化チタンの粒径が100nmと大きく、含有量も少ないため、光触媒として有効に働く部分が少なくなり、分解の程度がやや低くなったと考えられる。 In the antifouling fiber structure of Example 2, the degree of soiling of the entire fiber structure is small, and the soiling material can be decomposed by exposure to sunlight. Since the particle size of titanium oxide contained in the antifouling fiber employed is as large as 100 nm and the content is small, it is considered that the portion that works effectively as a photocatalyst is reduced, and the degree of decomposition is slightly reduced.
比較例1では細孔表面積が小さいため、繊維構造物全体の汚れ具合が大きく、酸化チタンを含まないため、日光に曝しても汚れは分解されなかった。比較例2では細孔表面積が大きく、繊維構造物全体の汚れ具合は小さかったが、酸化チタンを含まないため、日光に曝しても汚れは分解されなかった。 In Comparative Example 1, since the pore surface area was small, the degree of soiling of the entire fiber structure was large, and since it did not contain titanium oxide, the soil was not decomposed even when exposed to sunlight. In Comparative Example 2, the pore surface area was large and the degree of soiling of the entire fiber structure was small. However, since it did not contain titanium oxide, the soil was not decomposed even when exposed to sunlight.
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005229539A JP4560791B2 (en) | 2005-08-08 | 2005-08-08 | Method for imparting antifouling property to the entire fiber structure |
CN2005800070484A CN1930331B (en) | 2004-10-04 | 2005-09-20 | Functional fiber having photocatalyst activity and fiber structure containing the same |
KR1020067017526A KR101250109B1 (en) | 2004-10-04 | 2005-09-20 | Functional fiber having photocatalyst activity and fiber structure containing the same |
PCT/JP2005/017271 WO2006038452A1 (en) | 2004-10-04 | 2005-09-20 | Functional fiber having photocatalyst activity and fiber structure containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005229539A JP4560791B2 (en) | 2005-08-08 | 2005-08-08 | Method for imparting antifouling property to the entire fiber structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007046178A true JP2007046178A (en) | 2007-02-22 |
JP4560791B2 JP4560791B2 (en) | 2010-10-13 |
Family
ID=37849240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005229539A Expired - Fee Related JP4560791B2 (en) | 2004-10-04 | 2005-08-08 | Method for imparting antifouling property to the entire fiber structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4560791B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018186210A1 (en) * | 2017-04-04 | 2018-10-11 | 東レ株式会社 | Porous fiber and adsorption column |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6367577B2 (en) * | 1981-08-17 | 1988-12-26 | Japan Exlan Co Ltd | |
JPH08284011A (en) * | 1995-02-15 | 1996-10-29 | Takeda Chem Ind Ltd | Deodorizing fiber and its production |
JPH1037023A (en) * | 1996-07-17 | 1998-02-10 | Kuraray Co Ltd | Deodorizing fiber |
JP2000045126A (en) * | 1998-07-28 | 2000-02-15 | Japan Exlan Co Ltd | Improved acrylic composite fiber and its production |
JP3162211B2 (en) * | 1992-10-23 | 2001-04-25 | 日本バイリーン株式会社 | Porous fiber |
JP2003040705A (en) * | 2001-07-26 | 2003-02-13 | Nichimo Co Ltd | Rod material having pollution-preventing function |
JP2006265811A (en) * | 2005-02-28 | 2006-10-05 | Japan Exlan Co Ltd | Volatile organic compound removing fiber |
JP2006291391A (en) * | 2005-04-11 | 2006-10-26 | Japan Exlan Co Ltd | Deodorizing fiber structure |
-
2005
- 2005-08-08 JP JP2005229539A patent/JP4560791B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6367577B2 (en) * | 1981-08-17 | 1988-12-26 | Japan Exlan Co Ltd | |
JP3162211B2 (en) * | 1992-10-23 | 2001-04-25 | 日本バイリーン株式会社 | Porous fiber |
JPH08284011A (en) * | 1995-02-15 | 1996-10-29 | Takeda Chem Ind Ltd | Deodorizing fiber and its production |
JPH1037023A (en) * | 1996-07-17 | 1998-02-10 | Kuraray Co Ltd | Deodorizing fiber |
JP2000045126A (en) * | 1998-07-28 | 2000-02-15 | Japan Exlan Co Ltd | Improved acrylic composite fiber and its production |
JP2003040705A (en) * | 2001-07-26 | 2003-02-13 | Nichimo Co Ltd | Rod material having pollution-preventing function |
JP2006265811A (en) * | 2005-02-28 | 2006-10-05 | Japan Exlan Co Ltd | Volatile organic compound removing fiber |
JP2006291391A (en) * | 2005-04-11 | 2006-10-26 | Japan Exlan Co Ltd | Deodorizing fiber structure |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018186210A1 (en) * | 2017-04-04 | 2018-10-11 | 東レ株式会社 | Porous fiber and adsorption column |
JPWO2018186210A1 (en) * | 2017-04-04 | 2020-02-13 | 東レ株式会社 | Porous fiber and adsorption column |
US11135566B2 (en) | 2017-04-04 | 2021-10-05 | Toray Industries, Inc. | Porous fiber and adsorption column |
JP7031577B2 (en) | 2017-04-04 | 2022-03-08 | 東レ株式会社 | Porous fiber and adsorption column |
Also Published As
Publication number | Publication date |
---|---|
JP4560791B2 (en) | 2010-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5400330B2 (en) | Photocatalyst-containing ultrafine fiber and method for producing the same | |
US20130183495A1 (en) | Antimicrobial Fabrics | |
JP2003089924A (en) | Acrylic conjugate fiber and method for producing the same and fiber composite using the same | |
JP4517247B1 (en) | Ultrafine fiber and ultrafine fiber fabric having antibacterial and water absorption properties | |
CN1930331B (en) | Functional fiber having photocatalyst activity and fiber structure containing the same | |
US6528162B1 (en) | Acrylic synthetic fiber, use thereof, and process for producing acrylic synthetic fiber | |
JP4560791B2 (en) | Method for imparting antifouling property to the entire fiber structure | |
JP2010119970A (en) | Deodorizing fiber and manufacturing method therefor | |
JP4560787B2 (en) | Deodorant fiber structure | |
JP5916471B2 (en) | Antibacterial ethylene-vinyl alcohol fiber and fiber assembly | |
TWI739033B (en) | Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber | |
JP4560795B2 (en) | Volatile organic compound removal fiber structure | |
KR101250109B1 (en) | Functional fiber having photocatalyst activity and fiber structure containing the same | |
US20060127335A1 (en) | Deodorant fiber structure and method for production thereof | |
JP2011089222A (en) | Deodorization functional agent-containing ultrafine fiber and method for producing the same | |
JP2945264B2 (en) | Antimicrobial fiber and method for producing the same | |
JP3349028B2 (en) | Textile products made of deodorant and antibacterial acrylic synthetic fibers | |
JP6108171B2 (en) | Acrylic composite fiber having antibacterial and deodorant properties and deodorant property, and spun yarn and woven / knitted fabric containing the same | |
JP3579606B2 (en) | Antibacterial and anti-mite fiber | |
JP5341673B2 (en) | Deodorant fiber and method for producing the same | |
CN1542215A (en) | Fibre construct and manufacturing method thereof | |
JP2011042908A (en) | Deodorant sheath-core conjugated fiber and method for producing the same | |
JP2010031403A (en) | Photocatalyst-containing shath-core conjugate fiber and method for producing the same | |
JPH09176917A (en) | Deodorizing antibacterial acrylic synthetic fiber and its production | |
JPH0987924A (en) | Deodorizing/antimicrobial acrylic synthetic yarn and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100525 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100525 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100702 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100715 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4560791 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |