JP2007045671A - Panel-shaped discharge cell for ozone generation unit - Google Patents

Panel-shaped discharge cell for ozone generation unit Download PDF

Info

Publication number
JP2007045671A
JP2007045671A JP2005232142A JP2005232142A JP2007045671A JP 2007045671 A JP2007045671 A JP 2007045671A JP 2005232142 A JP2005232142 A JP 2005232142A JP 2005232142 A JP2005232142 A JP 2005232142A JP 2007045671 A JP2007045671 A JP 2007045671A
Authority
JP
Japan
Prior art keywords
plate
gas
discharge
discharge cell
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005232142A
Other languages
Japanese (ja)
Inventor
Takashi Matsuno
敬 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2005232142A priority Critical patent/JP2007045671A/en
Publication of JP2007045671A publication Critical patent/JP2007045671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To generate an ozone gas of high cleanliness by avoiding the pollution of the gas from a discharge cell in a panel-shaped discharge cell for an ozone generation unit. <P>SOLUTION: A laminate block is structured by connecting a plurarity of panels 10, 20, 30 and 40 comprising a sintered compact of high purity ceramic bonded by a glass binder 50. A closed void (discharge void 70) for discharge is formed between neighboring two panels 10 and 10 among the plurarity of panels. A first gas flow route 80 for introducing a feed gas to the discharge void 70 and a second gas flow route 80 to discharge ozone gas from the discharge void 70 are formed in the layered direction of the laminate communicated with the discharge void 70. Electrode layers 15, 15 are located on the back side of the panels 10, 10 for discharge in the discharge void 70, they are sealed between the panels 10 and 20 so as not to interfere with the above-mentioned gas flow routes 80, 80. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はオゾン発生装置に使用される放電セルに関し、特に板状の誘電体を用いた板型放電セルに関する。   The present invention relates to a discharge cell used in an ozone generator, and more particularly to a plate-type discharge cell using a plate-like dielectric.

オゾン発生装置に使用される放電セルは板型と管型に大別され、板型はさらに円板型と角板型に細分される。板型放電セルは、1対の誘電板の間の放電空隙を狭くしやすいこと、その放電空隙寸法を均等化しやすいことなどから、高濃度オゾンの生成に多用されている。板型放電セルの典型的な構造を以下に説明する。   The discharge cells used in the ozone generator are roughly classified into a plate type and a tube type, and the plate type is further subdivided into a disc type and a square plate type. Plate-type discharge cells are frequently used to generate high-concentration ozone because the discharge gap between a pair of dielectric plates is easily narrowed and the discharge gap dimensions are easily equalized. A typical structure of the plate discharge cell will be described below.

四角形のセラミック板などからなる誘電板を所定の隙間をあけて対向配置して、その間に放電空隙を形成する。1対の誘電板は、背面側の各表面に被覆形成された電極層を有している。一対の誘電板の間の隙間(放電空隙)で放電を発生させるべく、各背面側に設けられた電極層の間に所定の高周波高電圧を印加する。この状態で誘電板の間の放電空隙に酸素ガスなどの原料ガスを流通させる。これにより原料ガスがオゾン化する。   A dielectric plate made of a square ceramic plate or the like is disposed opposite to each other with a predetermined gap, and a discharge gap is formed therebetween. The pair of dielectric plates have electrode layers coated on the respective surfaces on the back side. A predetermined high-frequency high voltage is applied between the electrode layers provided on each back side in order to generate discharge in a gap (discharge gap) between the pair of dielectric plates. In this state, a source gas such as oxygen gas is circulated in the discharge gap between the dielectric plates. Thereby, the source gas is ozonized.

放電空隙は一対の誘電板の背面側から強制的に冷却されるのが通例である。一対の誘電板の背面側に冷却部を形成するために、その背面側に誘電板と同様のセラミック系の板材が積層される。つまり、板型放電セルの典型的な構造の一つは、セラミック板を積層したセラミック積層構造であり、その一つが特許文献1に記載されたセラミックブロック構造である。   Usually, the discharge gap is forcibly cooled from the back side of the pair of dielectric plates. In order to form the cooling part on the back side of the pair of dielectric plates, a ceramic plate similar to the dielectric plate is laminated on the back side. That is, one of the typical structures of the plate-type discharge cell is a ceramic laminated structure in which ceramic plates are laminated, and one of them is the ceramic block structure described in Patent Document 1.

特開平11−268902号公報JP-A-11-268902

特許文献1に記載された放電セルでは、ほぼ正方形をした複数枚のセラミック板が板厚方向に積層される。より詳しくは、焼結前のセラミック板であるグリーンシートを積層し、これを焼結してセラミックブロックに一体化する。中間の2枚のセラミック板は誘電板であり、放電空隙を形成するためのスペーサーを間に挟む。   In the discharge cell described in Patent Document 1, a plurality of substantially square ceramic plates are laminated in the plate thickness direction. More specifically, green sheets, which are ceramic plates before sintering, are laminated and sintered to be integrated into a ceramic block. The two ceramic plates in the middle are dielectric plates, and a spacer for forming a discharge gap is sandwiched between them.

各セラミック板は、平行な2つの側縁部にその側縁に沿った横長のガス流通用貫通孔を有し、他の2つの平行な側縁部にはその側縁に沿った横長の冷媒流通用貫通孔を有する。1組のガス流通用貫通孔は積層方向に合体して横長で縦向きの1組のガス流路を形成し、1組の冷媒流通用貫通孔は積層方向に合体して横長で縦向きの1組の冷媒流路を形成する。電極層は、ガス流通用貫通孔及び冷媒流通用貫通孔に囲まれた四角形の領域に形成されている。   Each ceramic plate has a horizontally long gas flow through hole along two side edges of the parallel plate, and a horizontally long refrigerant along the side edge of the other two parallel side edges. It has a through hole for circulation. One set of gas circulation through holes are combined in the stacking direction to form a pair of horizontally long and vertically oriented gas flow paths, and one set of refrigerant flow through holes are combined in the stacking direction to be horizontally long and vertically long. A set of refrigerant channels is formed. The electrode layer is formed in a quadrangular region surrounded by the gas circulation through hole and the refrigerant circulation through hole.

運転中は、1組の縦向きガス流路の一方に原料ガスが導入される。その原料ガスは2枚の誘電板間に形成された放電空隙を誘電板に平行な方向に流通し、この間にオゾン化して他方の縦向きガス流路から排出される。冷媒としては冷却水が使用され、これが1組の縦向き冷媒流路の一方に導入される。その冷却水は、1組の誘電板の背面側を誘電板に沿って流通して奪熱を行い、他方の縦向き冷媒流路から排出される。   During operation, the source gas is introduced into one of the set of vertically oriented gas flow paths. The source gas flows through the discharge gap formed between the two dielectric plates in a direction parallel to the dielectric plate, and is ozonized during this time and is discharged from the other vertical gas flow path. Cooling water is used as the refrigerant, and this is introduced into one of the set of vertically oriented refrigerant flow paths. The cooling water flows along the dielectric plate on the back side of the pair of dielectric plates to remove heat, and is discharged from the other vertically oriented refrigerant flow path.

特許文献1に記載されたセラミックブロック構造の放電セルでは、複数枚のセラミック板が焼結により一体化されたブロック構造が採用されているために、セルも個々の板材も非常に高剛性である。それにもかかわらず、誘電板の変形による放電ギャップ量の面内均一性の低下、これによるオゾン発生効率の低下が問題になっている。なぜなら、セラミック板の焼結過程での、セラミック板(グリーンシート)の変形が避けられないからである。   In the discharge cell having a ceramic block structure described in Patent Document 1, since a block structure in which a plurality of ceramic plates are integrated by sintering is employed, both the cells and the individual plate materials are extremely high in rigidity. . Nevertheless, there is a problem that the in-plane uniformity of the discharge gap amount due to the deformation of the dielectric plate and the ozone generation efficiency due to this decrease. This is because deformation of the ceramic plate (green sheet) is inevitable during the sintering process of the ceramic plate.

これに加えて、この放電セルは、高純度のクリーンなオゾンガスの製造には適しないという本質的な問題がある。なぜなら、オゾンガスの汚染防止のためにセラミック板の純度を高めると、焼結による一体化が困難になるからである。   In addition to this, this discharge cell has an essential problem that it is not suitable for producing high-purity clean ozone gas. This is because if the purity of the ceramic plate is increased to prevent ozone gas contamination, integration by sintering becomes difficult.

本発明の目的は、高剛性なブロック構造であり、しかもクリーンなオゾンガスの発生に適し、放電ギャップ量の面内均一性も高いオゾン発生装置用板型放電セルを提供することにある。   An object of the present invention is to provide a plate-type discharge cell for an ozone generator that has a highly rigid block structure, is suitable for generating clean ozone gas, and has high in-plane uniformity of the discharge gap amount.

上記目的を達成するために、本発明のオゾン発生装置用板型放電セルは、高純度セラミックスの焼結体からなる複数枚の板材を非金属の無機系接合材により接合して構成された積層体ブロックからなり、複数枚の板材のうちの隣接する2枚の板材間に放電用の閉空隙が形成されると共に、前記閉空隙に原料ガスを導入するための第1ガス流路及び前記閉空隙からオゾンガスを導出するための第2ガス流路が、前記積層体内の積層方向に前記閉空間と連通して形成されており、且つ前記閉空隙における放電のために前記2枚の板材の各背面側に配置される電極層が、前記第1ガス流路及び第2ガス流路と干渉することなく板材間に封入されていることを構成上の特徴点とする。   In order to achieve the above object, a plate discharge cell for an ozone generator according to the present invention is a laminate formed by joining a plurality of plate materials made of a sintered body of high-purity ceramics using a nonmetallic inorganic bonding material. A closed block for discharging is formed between two adjacent plates of the plurality of plates, and the first gas flow path for introducing the source gas into the closed gap and the closed A second gas flow path for deriving ozone gas from the gap is formed in communication with the closed space in the stacking direction in the stack, and each of the two plate members for discharging in the closed gap A feature of the configuration is that the electrode layer disposed on the back side is sealed between the plate members without interfering with the first gas flow path and the second gas flow path.

本発明のオゾン発生装置用板型放電セルにおいては、そのセルが積層体により構成されている。積層体は高純度セラミックスの焼結体からなる複数枚の板材を非金属の無機系接合材により接合して構成されたブロック体であり、高剛性である。高純度セラミックスが事前に焼結されたバルク材であり、焼結の必要がないため、焼結に伴う変形が生じない。また高剛性であることにより、製品段階での変形も生じない。これらのために放電ギャップ量の面内均一性が高い。   In the plate-type discharge cell for an ozone generator of the present invention, the cell is constituted by a laminate. The laminated body is a block body formed by joining a plurality of plate members made of a sintered body of high-purity ceramics with a nonmetallic inorganic bonding material, and has high rigidity. Since high-purity ceramics are pre-sintered bulk materials and do not require sintering, deformation associated with sintering does not occur. In addition, due to the high rigidity, deformation at the product stage does not occur. For these reasons, the in-plane uniformity of the discharge gap amount is high.

積層体ブロックにおいて、原料ガスは積層体内の積層方向に形成された第1ガス流路を通って積層体内の放電用の閉空隙、すなわち周囲が密閉された放電空隙に流入する。放電空隙で生成されたオゾンガスは、積層体内の積層方向に形成された第2ガス流路を通って積層体外へ排出される。いずれのガスも積層体内では高純度セラミックスの焼結体を含む非金属の無機材料としか接触しない。換言すれば、接ガス部材の全てが非金属の無機材料である。このため、原料ガスもオゾンガスも積層体ブロックからの汚染を効果的に回避できる。   In the laminated body block, the raw material gas flows into the closed gap for discharge in the laminated body, that is, the discharge gap whose periphery is sealed, through the first gas flow path formed in the laminating direction in the laminated body. The ozone gas generated in the discharge gap is discharged out of the stacked body through the second gas flow path formed in the stacking direction in the stacked body. Both gases contact only non-metallic inorganic materials including sintered bodies of high-purity ceramics in the laminate. In other words, all of the gas contact members are non-metallic inorganic materials. For this reason, it is possible to effectively avoid contamination from the laminated body block of both the source gas and the ozone gas.

板材は円板でもよいし、四角形等の角板でもよい。四角形の角板の場合、第1ガス流路は該角板の平行な2側縁の一方に沿った横長形状に形成し、第2ガス流路は前記2側縁の他方に沿った横長形状に形成するのが合理的であり、電極層は、これらのガス流路に挟まれた四角形の領域に配置するのが合理的である。これにより、2枚の角板の間の広い領域をオゾン発生領域に利用することができる。   The plate material may be a circular plate or a square plate such as a quadrangle. In the case of a square plate, the first gas flow path is formed in a horizontally long shape along one of the two parallel side edges of the square plate, and the second gas flow path is formed in a horizontally long shape along the other of the two side edges. It is reasonable to form the electrode layer in a rectangular region sandwiched between these gas flow paths. Thereby, the wide area | region between two square plates can be utilized for an ozone generation area | region.

セラミックスは純度80%以上のアルミナが好ましく、純度90%以上、なかでも95%以上のアルミナが特に好ましい。アルミナが適する理由はセラミックスのなかでは安価であり、かつ耐薬品性及び耐スパッタ性をもつ材料だからである。また高純度が好ましいのはオゾンガスのクリーン度を高めるためである。無機系接合材は接合性、汚染防止の点からガラス系接合材が好ましい。   The ceramic is preferably alumina having a purity of 80% or more, particularly preferably alumina having a purity of 90% or more, particularly 95% or more. Alumina is suitable because it is inexpensive among ceramics and has chemical resistance and sputtering resistance. Moreover, high purity is preferable in order to increase the cleanliness of ozone gas. The inorganic bonding material is preferably a glass bonding material from the viewpoint of bondability and contamination prevention.

セラミック板のうちの誘電板については、剛性、強度を確保し電圧降下を低減するために0.1〜2.0mmの板厚が好ましい。誘電板中の不純物を低減すると、オゾン濃度の低下が問題になる。この問題を解決するために、誘電板の少なくとも放電空隙と接する表層部分に酸化チタンを含有させるのがよく、アルミナ基板中に酸化チタンをTi元素量比率で0.006〜6重量%含有させた焼結体が、オゾン発生特性及びクリーン度の両面から特に好ましい。   Of the ceramic plates, the dielectric plate preferably has a thickness of 0.1 to 2.0 mm in order to ensure rigidity and strength and reduce voltage drop. When impurities in the dielectric plate are reduced, a decrease in ozone concentration becomes a problem. In order to solve this problem, titanium oxide is preferably contained in at least a surface layer portion of the dielectric plate in contact with the discharge gap, and titanium oxide is contained in the alumina substrate in an amount of 0.006 to 6% by weight in terms of the amount of Ti element. A sintered body is particularly preferable from the viewpoints of ozone generation characteristics and cleanliness.

一対の誘電板間に放電空隙(放電用の閉空隙)を形成するためには、例えばガス流路の部分が除去された薄いセラミック板をスペーサとして誘電板間に挟む。また、一対の誘電板の対向面の少なくとも一方に、ガス流路の部分を除いてセラミックス層を積層する。セラミックス層は、汚染防止のためにアルミナ粉末とガラス粉末とで製造したペーストをガス流路以外の部分に印刷し、これを所定厚まで繰り返した後、ガラス粉末の融点以上の温度で焼成することにより形成することができる。ギャップ量は冷却性の向上、電圧降下の低減の点から小さいほど好ましく、ギャップ量が小さい場合(0.2mm以下)は後者のセラミック層の積層が好ましい。   In order to form a discharge gap (a closed gap for discharge) between a pair of dielectric plates, for example, a thin ceramic plate from which a gas flow path has been removed is sandwiched between the dielectric plates as a spacer. Further, a ceramic layer is laminated on at least one of the opposing surfaces of the pair of dielectric plates except for the gas flow path portion. The ceramic layer is printed with paste made of alumina powder and glass powder on the part other than the gas flow path to prevent contamination. After repeating this to a predetermined thickness, firing is performed at a temperature equal to or higher than the melting point of the glass powder. Can be formed. The gap amount is preferably as small as possible in terms of improving the cooling performance and reducing the voltage drop. When the gap amount is small (0.2 mm or less), the latter ceramic layer is preferably laminated.

本発明のオゾン発生装置用板型放電セルは、高純度セラミックスの焼結体からなる複数枚の板材を非金属の無機系接合材により接合して構成された積層体ブロックからなり、複数枚の板材のうちの隣接する2枚の板材間に放電用の閉空隙が形成されると共に、原料ガス用及びオゾンガス用のガス流路が、前記積層体内の積層方向に前記閉空間と連通して形成されており、且つ放電のために前記2枚の板材の各背面側に配置される電極層が前記ガス流路と干渉することなく板材間に封入されていることにより、接ガス部材によるガスの汚染を回避できる。このため、半導体製造プロセス等に適したクリーンなオゾンガスを発生させることができる。   The plate-type discharge cell for an ozone generator of the present invention comprises a laminate block formed by joining a plurality of plate materials made of a sintered body of high-purity ceramics with a nonmetallic inorganic bonding material, A closed gap for discharge is formed between two adjacent plates of the plate material, and gas flow paths for source gas and ozone gas are formed in communication with the closed space in the stacking direction in the stack. And the electrode layer disposed on the back side of each of the two plate members for discharge is sealed between the plate members without interfering with the gas flow path. Contamination can be avoided. For this reason, clean ozone gas suitable for a semiconductor manufacturing process etc. can be generated.

また、セル製造過程での板材の変形及び製品段階での板材の変形を防止できることにより、放電ギャップ量の面内均一性が高く、オゾン発生効率に優れる。   Further, since the deformation of the plate material in the cell manufacturing process and the deformation of the plate material in the product stage can be prevented, the in-plane uniformity of the discharge gap amount is high and the ozone generation efficiency is excellent.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示すオゾン発生装置用板型放電セルの分解斜視図、図2は同板型放電セルに使用されている誘電板の拡大斜視図、図3は同板型放電セルの模式断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view of a plate-type discharge cell for an ozone generator according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of a dielectric plate used in the plate-type discharge cell, and FIG. It is a schematic cross section of a discharge cell.

本実施形態のオゾン発生装置用板型放電セルは、図1及び図3に示すように、正方形をした複数枚の板材を板厚方向に積層した構成になっている。複数枚の板材は、いずれも高純度アルミナの焼成板であり、ガラス系の接合層50を介して接合されている。各板材の四隅部には位置決め用の貫通孔が設けられており、その角部は丸みを付与されている。   As shown in FIGS. 1 and 3, the plate-type discharge cell for an ozone generator of the present embodiment has a configuration in which a plurality of square plate members are stacked in the plate thickness direction. The plurality of plate materials are all fired plates of high-purity alumina, and are joined via a glass-based joining layer 50. Positioning through holes are provided at the four corners of each plate member, and the corners are rounded.

中間の2枚の板材は誘電板10A,10Bである。その厚みは例えば0.2mmである。各誘電板10の平行な両側縁部には、各側縁に沿った長孔形状の貫通孔11,11が設けられている。貫通孔11,11はガス流通用であり、両側縁部の両端部を除くほぼ全域に連続的、直線的に設けられている。各誘電板10の他の平行な両側縁部、すなわち前記貫通孔11,11に直角な両側縁部には、各側縁に沿った長孔形状の貫通孔12,12が設けられている。貫通孔12,12は冷媒流通用であり、両側縁部の両端部を除くほぼ全域に連続的、直線的に設けられている。   The two middle plates are dielectric plates 10A and 10B. The thickness is 0.2 mm, for example. On both side edge portions of each dielectric plate 10 which are parallel to each other, elongated hole-shaped through holes 11, 11 are provided along each side edge. The through-holes 11 and 11 are for gas distribution, and are provided continuously and linearly in almost the whole area except for both ends of both side edges. The other parallel side edges of each dielectric plate 10, that is, both side edges perpendicular to the through holes 11, 11 are provided with through holes 12, 12 having a long hole shape along each side edge. The through-holes 12 and 12 are for refrigerant circulation, and are provided continuously and linearly in almost the whole area except for both ends of both side edges.

各誘電板10の対向面には、図2及び図3に示すように、貫通孔11,11の一方から他方に至る多数の並列したガス流路13を形成するために、ガス流路13の部分を除いてセラミックス層14が積層されている。セラミックス層14は、アルミナ粉末とガラス粉末とで製造したペーストを対向面のガス流路以外の部分に印刷し、これを所定厚(例えば50μm)まで繰り返した後、ガラス粉末の融点以上の温度で焼成することにより形成されている。   As shown in FIGS. 2 and 3, in order to form a large number of parallel gas passages 13 extending from one of the through holes 11 and 11 to the other surface of each dielectric plate 10, The ceramic layer 14 is laminated except for the portion. The ceramic layer 14 is obtained by printing a paste made of alumina powder and glass powder on a portion other than the gas flow path on the opposite surface, repeating this to a predetermined thickness (for example, 50 μm), and then at a temperature equal to or higher than the melting point of the glass powder. It is formed by firing.

各誘電板10の背面側の表面には電極層15が被覆形成されている。電極層15は、例えば銀ペーストの印刷塗布・焼成により形成される厚みが5μmの金属薄膜であり、貫通孔11,11,12,12に囲まれた正方形の領域に設けられている。   An electrode layer 15 is coated on the back surface of each dielectric plate 10. The electrode layer 15 is a metal thin film having a thickness of 5 μm formed by printing and baking silver paste, for example, and is provided in a square region surrounded by the through holes 11, 11, 12, and 12.

電極層15の隣り合う2つのコーナー部は、誘電板10のコーナー部に張り出して、円形の端子部16を形成している。誘電板10の隅部に設けられた位置決め用の貫通孔17は、端子部16の中心部に設けられている。そして、一方の誘電板10Aにおける端子部16,16は、誘電板10Aの隣り合う2つのコーナー部に設けられており、他方の誘電板10Bにおける端子部16,16は、誘電板10Aにおける端子部16,16と重ならないように、誘電板10Bの別の隣り合う2つのコーナー部に設けられている。   Two adjacent corner portions of the electrode layer 15 protrude from the corner portion of the dielectric plate 10 to form a circular terminal portion 16. Positioning through holes 17 provided at the corners of the dielectric plate 10 are provided at the center of the terminal portion 16. The terminal portions 16 and 16 in one dielectric plate 10A are provided at two adjacent corner portions of the dielectric plate 10A, and the terminal portions 16 and 16 in the other dielectric plate 10B are terminal portions in the dielectric plate 10A. 16 and 16 are provided at two adjacent corner portions of the dielectric plate 10B so as not to overlap.

誘電板10A,10Bの外側に配置される板材は絶縁板20A,20Bである。その厚みは例えば2mmである。各絶縁板20の平行な両側縁部には、貫通孔11,11に対応する長孔形状のガス流通用の貫通孔21,21が設けられている。各絶縁板20の他の平行な両側縁部には、貫通孔12,12に対応する長孔形状の冷媒流通用の貫通孔22,22が設けられている。   The plate materials arranged outside the dielectric plates 10A and 10B are the insulating plates 20A and 20B. The thickness is 2 mm, for example. At both side edges of each insulating plate 20, through holes 21 and 21 for gas circulation having long holes corresponding to the through holes 11 and 11 are provided. The other parallel side edges of each insulating plate 20 are provided with through-holes 22 and 22 for refrigerant circulation having a long hole shape corresponding to the through-holes 12 and 12.

絶縁板20A,20Bの外側に配置される板材は冷媒流路を形成するためのスリット板30A,30Bである。その厚みは例えば0.5mmである。各スリット板30の平行な両側縁部には、貫通孔11,11,21,21に対応する長孔形状のガス流通用の貫通孔31,31が設けられている。貫通孔31,31の間には、冷媒流路を形成するために多数のスリット33,33・・が平行に設けられている。スリット33,33・・の両端部は、冷媒流通用の貫通孔22,22とオーバーラップするように、各スリット板30の他の平行な両側縁部に到達している。   The plate materials arranged outside the insulating plates 20A and 20B are the slit plates 30A and 30B for forming the refrigerant flow path. The thickness is 0.5 mm, for example. On the both side edges of each slit plate 30 are provided through holes 31 and 31 for gas circulation having a long hole shape corresponding to the through holes 11, 11, 21 and 21. A large number of slits 33, 33,... Are provided in parallel between the through holes 31, 31 in order to form a refrigerant flow path. Both ends of the slits 33, 33... Reach the other parallel side edges of each slit plate 30 so as to overlap with the through holes 22, 22 for circulating the refrigerant.

スリット板30A,30Bの更に外側に配置される板材は蓋板40A,40Bである。一方の蓋板40Aの厚みは例えば5mm、他方の蓋板40Bの厚みは例えば2mmである。一方の蓋板40Aには、内側のスリット板30Aの貫通孔31,31にそれぞれ連通するガス供給孔41a及びガス排出孔41bが設けられている。蓋板40Aの裏面には、スリット33,33・・の両端部、すなわち貫通孔12,12,22,22に対応するように1対の凹部が設けられている。そして蓋板40Aには、裏面側の1対の凹部に各連通する冷媒供給孔42a及び冷媒排出孔42bが設けられている。   The plate members disposed further outside the slit plates 30A and 30B are the cover plates 40A and 40B. The thickness of one lid plate 40A is, for example, 5 mm, and the thickness of the other lid plate 40B is, for example, 2 mm. One cover plate 40A is provided with a gas supply hole 41a and a gas discharge hole 41b communicating with the through holes 31, 31 of the inner slit plate 30A, respectively. A pair of recesses is provided on the back surface of the cover plate 40A so as to correspond to both end portions of the slits 33, 33,..., That is, the through holes 12, 12, 22, and 22. The lid plate 40A is provided with a refrigerant supply hole 42a and a refrigerant discharge hole 42b that communicate with a pair of recesses on the back surface side.

これらの板材(高純度アルミナの焼結板)は次のようにして接合されている。   These plate materials (sintered plates of high-purity alumina) are joined as follows.

各板材の接合面にガラス系の接合用ペーストを例えば30μm程度の厚みに塗布する。接合用ペーストは、ガラス粉末をバインダーと混練して所定粘度に調整したものである。接合用ペーストの塗布が終わると、板材を加熱炉に装入し、接合用ペーストをガラス粉末の融点である例えば850℃以上の温度で焼成する。接合用ペーストの焼成が終わると、各板材を重ね合せ、四隅部の貫通孔に位置決めピン60を刺し通す。4本の位置決めピン60は棒状リードを兼ねており、そのうちの2本は、誘電板10Aの裏面に設けられた2つの端子部16,16と導通し、残りの2本は、誘電板10Bの裏面に設けられた2つの端子部16,16と導通する。最後に、重ね合わせた板材を加熱炉に装入し、接合用ペーストをガラス粉末の融点である例えば850℃以上の温度で焼成する。   A glass-based bonding paste is applied to the bonding surface of each plate material to a thickness of about 30 μm, for example. The bonding paste is prepared by kneading glass powder with a binder to have a predetermined viscosity. When the application of the bonding paste is finished, the plate material is charged into a heating furnace, and the bonding paste is baked at a temperature of, for example, 850 ° C. or higher, which is the melting point of the glass powder. When the bonding paste is baked, the respective plate materials are overlapped, and the positioning pins 60 are pierced through the through holes at the four corners. The four positioning pins 60 also serve as rod-shaped leads, two of which are electrically connected to the two terminal portions 16 and 16 provided on the back surface of the dielectric plate 10A, and the other two are the dielectric plate 10B. It is electrically connected to the two terminal portions 16 and 16 provided on the back surface. Finally, the stacked plate materials are charged into a heating furnace, and the joining paste is fired at a temperature of, for example, 850 ° C. or higher, which is the melting point of the glass powder.

この焼成により、誘電板10A,10B、その外側の絶縁板20A,20B、その外側のスリット板30A,30B、更にその外側の蓋板40A,40Bが、ガラス系の接合層50を介して接合されることになり、本実施形態の板型放電セルが完成する。完成した板型放電セルの特徴は以下のとおりである。   By this firing, the dielectric plates 10A and 10B, the outer insulating plates 20A and 20B, the outer slit plates 30A and 30B, and the outer lid plates 40A and 40B are bonded via the glass-based bonding layer 50. Thus, the plate discharge cell of this embodiment is completed. The characteristics of the completed plate discharge cell are as follows.

誘電板10A,10Bの間でガス流路13,13が合体することにより、誘電板10A,10Bの間に放電用の閉空間、すなわち放電空隙70が形成される。ガス流路13,13を形成するセラミック層14,14の各厚みは例えば50μmである。このため、放電空隙70のギャップ量は例えば100μmとなる。誘電板10の背面側の表面に被覆形成された電極層15は、端子部16,16と共に、誘電板10とその外側に接合された絶縁板20との間にガラス系の接合層50により封入され絶縁される。   By combining the gas flow paths 13 and 13 between the dielectric plates 10A and 10B, a closed space for discharge, that is, a discharge gap 70 is formed between the dielectric plates 10A and 10B. Each thickness of the ceramic layers 14 and 14 forming the gas flow paths 13 and 13 is, for example, 50 μm. For this reason, the gap amount of the discharge gap 70 is, for example, 100 μm. The electrode layer 15 coated on the back surface of the dielectric plate 10 is sealed together with the terminal portions 16 and 16 by the glass-based bonding layer 50 between the dielectric plate 10 and the insulating plate 20 bonded to the outside thereof. And insulated.

誘電板10Aの背面側に設けられた電極層15は高圧電極である。電極層15の端子部16,16は2本の棒状リード60,60により蓋板40Aの外側に引き出される。一方、誘電板10Bの背面側に設けられた電極層15は接地電極である。この電極層15の端子部16,16は別の2本の棒状リード60,60により蓋板40Aの外側に引き出される。   The electrode layer 15 provided on the back side of the dielectric plate 10A is a high voltage electrode. The terminal portions 16 and 16 of the electrode layer 15 are drawn out to the outside of the cover plate 40A by the two rod-shaped leads 60 and 60. On the other hand, the electrode layer 15 provided on the back side of the dielectric plate 10B is a ground electrode. The terminal portions 16 and 16 of the electrode layer 15 are drawn to the outside of the cover plate 40A by another two rod-shaped leads 60 and 60.

誘電板10の貫通孔11,11、絶縁板20の貫通孔21,21、スリット板30の貫通孔31,31が板材積層方向に連続することにより、放電空隙70に連通する縦向きで横長のガス流路80,80が積層体内に形成される。また、誘電板10の貫通孔12,12、絶縁板20の貫通孔22,22が板材積層方向に連続することにより、スリット板30におけるスリット33,33・・の両端部に連通する縦向きで横長の冷媒流路が積層体内に形成される。   The through holes 11, 11 of the dielectric plate 10, the through holes 21, 21 of the insulating plate 20, and the through holes 31, 31 of the slit plate 30 are continuous in the plate material stacking direction. Gas flow paths 80, 80 are formed in the laminate. Further, the through holes 12 and 12 of the dielectric plate 10 and the through holes 22 and 22 of the insulating plate 20 are continuous in the plate material stacking direction, so that they are communicated with both ends of the slits 33, 33. A horizontally long refrigerant flow path is formed in the laminate.

板型放電セルの運転では、2本の棒状リード60,60を介して、誘電板10Aの背面側に設けられた電極層15に所定の高電圧を印加し、残りの2本の棒状リード60,60を介して、誘電板10Bの背面側に設けられた電極層15を接地する。これと共に、積層方向に形成された2つの縦向きガス流路80,80の一方に、蓋板40Aのガス供給孔41aから原料ガスを導入し、積層方向に形成された2つの縦向き冷媒流路の一方に、蓋板40Aの冷媒供給孔42aから冷却水を導入する。   In the operation of the plate discharge cell, a predetermined high voltage is applied to the electrode layer 15 provided on the back side of the dielectric plate 10A via the two rod-shaped leads 60, 60, and the remaining two rod-shaped leads 60 are applied. , 60, the electrode layer 15 provided on the back side of the dielectric plate 10B is grounded. At the same time, a raw material gas is introduced into one of the two vertical gas flow paths 80, 80 formed in the stacking direction from the gas supply hole 41a of the cover plate 40A, and two vertical refrigerant flows formed in the stacking direction. Cooling water is introduced into one of the paths from the refrigerant supply hole 42a of the lid plate 40A.

ガス流路80,80の一方に導入された原料ガスは、誘電板10A,10Bの間に形成された放電空隙70を一端部から他端部へ向かい、この間にオゾン化されてガス流路80,80の他方に至り、蓋板40Aのガス排出孔41bから外部へ排出される。2つの冷媒流路の一方に導入された冷却水は、スリット板30A,30Bの各スリット33,33・・を長手方向に流通し、2つの冷媒流路の他方を通って蓋板40Aの冷媒排出孔42bから排出される。これにより、誘電板10A,10Bの間に形成された放電空隙70が両面側から冷却される。   The source gas introduced into one of the gas flow paths 80, 80 travels from one end to the other end of the discharge gap 70 formed between the dielectric plates 10 </ b> A, 10 </ b> B, and is ozonized during this time to be gas flow path 80. , 80, and is discharged to the outside through the gas discharge holes 41b of the cover plate 40A. The cooling water introduced into one of the two refrigerant channels flows through the slits 33, 33,... Of the slit plates 30A, 30B in the longitudinal direction, passes through the other of the two refrigerant channels, and passes through the other of the two refrigerant channels. It is discharged from the discharge hole 42b. As a result, the discharge gap 70 formed between the dielectric plates 10A and 10B is cooled from both sides.

このように、本実施形態のオゾン発生装置用板型放電セルでは、原料ガス及びオゾンガスは縦向きガス流路80,80の一方から誘電板10A,10B間の放電空隙70を通り縦向きガス流路80,80の一方に至る。ここで、縦向きガス流路80,80は高純度アルミナの板材をガラス接合層50で接合した積層体内に形成されており、高純度アルミナの板材もガラス接合層50も汚染源を含まないクリーンな無機系の非金属材料である。また、放電空隙70は、高純度アルミナ板からなる誘電板10A,10Bの間にリブ構造のセラミック層14及びガラス接合層50により形成されており、セラミック層14もガラス接合層50と同じくクリーンな無機系の非金属材料である。更に、電極層15は誘電板20とその背面側の絶縁板20との間にガラス接合層50により封入されている。   As described above, in the plate-type discharge cell for the ozone generator of this embodiment, the raw material gas and the ozone gas pass through the discharge gap 70 between the dielectric plates 10A and 10B from one of the vertical gas flow paths 80 and 80, and the vertical gas flow. It reaches one of the roads 80 and 80. Here, the vertical gas flow paths 80, 80 are formed in a laminate in which high-purity alumina plate materials are bonded together by the glass bonding layer 50, and neither the high-purity alumina plate material nor the glass bonding layer 50 contains a contamination source. It is an inorganic non-metallic material. Further, the discharge gap 70 is formed between the dielectric plates 10 </ b> A and 10 </ b> B made of a high-purity alumina plate by the rib-structure ceramic layer 14 and the glass bonding layer 50, and the ceramic layer 14 is as clean as the glass bonding layer 50. It is an inorganic non-metallic material. Further, the electrode layer 15 is sealed by a glass bonding layer 50 between the dielectric plate 20 and the insulating plate 20 on the back side thereof.

かくして、原料ガス及びオゾンガスは、金属に直接接触しないことはもとより、汚染源を含まないクリーンな無機系の非金属材料により形成されたクリーンな流通経路をのみを通過するのである。換言すれば、接ガス部は全てクリーン材料により構成されている。したがって、放電セルによる原料ガス及びオゾンガスの汚染の危険がなく、クリーン度の高いオゾンガスが生成される。   Thus, the raw material gas and the ozone gas do not directly contact the metal, but pass only through a clean distribution path formed of a clean inorganic non-metallic material that does not contain a contamination source. In other words, all gas contact parts are made of a clean material. Therefore, there is no danger of contamination of the raw material gas and ozone gas by the discharge cell, and ozone gas having a high cleanliness is generated.

また、積層方向の縦向きガス流路80を形成する貫通孔11,21,31、例えば誘電板10の貫通孔11、11は、誘電板10の平行な2辺に沿って横方向に細く連続して設けられている。また、積層方向の縦向き冷媒流路を形成する貫通孔12,22、例えば誘電板10の貫通孔12,12は、誘電板10の他の平行な2辺に沿って横方向に細く連続して設けられている。すなわち、電極層15の端子部16,16を、貫通孔11,12が突き合わされるコーナー部に配置したことにより、誘電板10の貫通孔11,12は、誘電板10の側縁部に側縁に沿って横方向に切れ目なく且つ細く形成される。   Further, the through holes 11, 21, 31 that form the vertical gas flow path 80 in the stacking direction, for example, the through holes 11, 11 of the dielectric plate 10 are continuously narrowed in the lateral direction along two parallel sides of the dielectric plate 10. Is provided. Further, the through holes 12 and 22 that form the longitudinal refrigerant flow path in the stacking direction, for example, the through holes 12 and 12 of the dielectric plate 10, are thin and continuous in the lateral direction along the other two parallel sides of the dielectric plate 10. Is provided. That is, by arranging the terminal portions 16 and 16 of the electrode layer 15 at the corner portions where the through holes 11 and 12 are abutted, the through holes 11 and 12 of the dielectric plate 10 are located on the side edges of the dielectric plate 10. It is formed in a continuous and narrow manner in the lateral direction along the edge.

このため、縦向きガス流路80,80の間に形成された放電空隙70をガスが幅方向全域で均等な分布で流通する。また、スリット板30A,30Bの各スリット33,33・・を冷却水が幅方向全域で均等な分布で流通するため、電極層15,15及び放電空隙70が全幅にわたり効率的に冷却される。   For this reason, the gas circulates in the discharge gap 70 formed between the vertically oriented gas flow paths 80, with a uniform distribution over the entire width direction. Further, since the cooling water flows through the slits 33, 33,... Of the slit plates 30A, 30B with a uniform distribution over the entire width direction, the electrode layers 15, 15 and the discharge gap 70 are efficiently cooled over the entire width.

更に、放電セルはセラミックスの焼結板により構成されており、各板材が高剛性である。しかも、各板材は積層接合による一体化、ブロック化により強化されている。このため、放電セルでの板材の変形が生じない。また焼結板の使用により、放電セルの製造過程では、セラミックスの高温焼結(1000℃を超える高温焼結)が不要となり、セラミックスの高温焼結に伴う板材の変形が回避される。これらの変形回避のために、誘電板10A,10B間に形成される放電空隙70のギャップ量の面内分布が均一となる。   Further, the discharge cell is composed of a sintered ceramic plate, and each plate is highly rigid. Moreover, each plate material is reinforced by integration and block formation by lamination bonding. For this reason, the deformation | transformation of the board | plate material in a discharge cell does not arise. Further, the use of the sintered plate eliminates the need for high-temperature sintering of ceramics (high-temperature sintering exceeding 1000 ° C.) in the manufacturing process of the discharge cell, and avoids deformation of the plate material accompanying high-temperature sintering of ceramics. In order to avoid these deformations, the in-plane distribution of the gap amount of the discharge gap 70 formed between the dielectric plates 10A and 10B becomes uniform.

かくして、本実施形態のオゾン発生装置用板型放電セルでは、クリーン度の高いオゾンガスが生成されると共に、冷却能の向上、電極面積の拡大及びギャップ量の面内均一化により、高効率のオゾン発生が可能になる。   Thus, in the plate-type discharge cell for the ozone generator of the present embodiment, ozone gas having a high cleanliness is generated, and high-efficiency ozone is achieved by improving the cooling capacity, expanding the electrode area and making the gap amount in-plane uniform. Can be generated.

なお、上記実施形態は角板型放電セルであるが、円板型放電セルでもよい。その場合、誘電板10におけるガス流通用の貫通孔11,11及び冷媒流通用の貫通孔12,12は、交差する2方向(通常は直角な2方向)において誘電板10の中心を挟んで対設する位置に設けるのが合理的であり、電極層15は、貫通孔11,11の間の領域と貫通孔12,12の間の領域が重なる四角形の領域に設けるのが合理的である。各貫通孔は誘電板10の外周に沿った円弧状でもよいが、外側が該誘電板10の外周に沿った円弧、内側が電極層15に沿った直線かなる半月状の貫通孔の方が孔面積を大きくできる。   In addition, although the said embodiment is a square plate type discharge cell, a disk type discharge cell may be sufficient. In this case, the gas circulation through holes 11 and 11 and the refrigerant circulation through holes 12 and 12 in the dielectric plate 10 are paired with the center of the dielectric plate 10 sandwiched between two intersecting directions (normally two directions perpendicular to each other). It is reasonable to provide the electrode layer 15 at a position where the electrode layer 15 is provided, and it is reasonable to provide the electrode layer 15 in a quadrangular region where the region between the through holes 11 and 11 and the region between the through holes 12 and 12 overlap. Each through hole may have an arc shape along the outer periphery of the dielectric plate 10, but a half-moon shaped through hole in which the outer side is an arc along the outer periphery of the dielectric plate 10 and the inner side is a straight line along the electrode layer 15. The hole area can be increased.

本発明の一実施形態を示すオゾン発生装置用板型放電セルの分解斜視図である。It is a disassembled perspective view of the plate-type discharge cell for ozone generators which shows one Embodiment of this invention. 同板型放電セルに使用されている誘電板の拡大斜視図である。It is an expansion perspective view of the dielectric plate used for the plate type discharge cell. 同板型放電セルの模式断面図である。It is a schematic cross section of the same plate type discharge cell.

符号の説明Explanation of symbols

10 誘電板
11,12 貫通孔
13 ガス流路
14 セラミック層
15 電極層
16 端子部
20 絶縁板
21,22 貫通孔
30 スリット板
31 貫通孔
33 スリット
40 蓋板
41 ガス孔
42 冷媒孔
50 ガラス接合層
60 棒状リード
70 放電空隙
80 縦向きガス流路
DESCRIPTION OF SYMBOLS 10 Dielectric plate 11,12 Through-hole 13 Gas flow path 14 Ceramic layer 15 Electrode layer 16 Terminal part 20 Insulating plate 21,22 Through-hole 30 Slit plate 31 Through-hole 33 Slit 40 Lid plate 41 Gas hole 42 Refrigerant hole 50 Glass bonding layer 60 Rod-shaped lead 70 Discharge gap 80 Vertical gas flow path

Claims (4)

高純度セラミックスの焼結体からなる複数枚の板材を非金属の無機系接合材により接合して構成された積層体ブロックからなり、複数枚の板材のうちの隣接する2枚の板材間に放電用の閉空隙が形成されると共に、前記閉空隙に原料ガスを導入するための第1ガス流路及び前記閉空隙からオゾンガスを導出するための第2ガス流路が、前記積層体内の積層方向に前記閉空間と連通して形成されており、且つ前記閉空隙における放電のために前記2枚の板材の各背面側に配置される電極層が前記第1ガス流路及び第2ガス流路と干渉することなく板材間に封入されていることを特徴とするオゾン発生装置用板型放電セル。   It consists of a laminate block made by joining a plurality of plates made of a sintered body of high-purity ceramics with a nonmetallic inorganic bonding material, and discharges between two adjacent plates among the plurality of plates. A first gas flow path for introducing a source gas into the closed gap and a second gas flow path for deriving ozone gas from the closed gap are formed in the stacking direction in the stacked body. Are formed in communication with the closed space, and electrode layers disposed on the back sides of the two plate members for discharging in the closed gap include the first gas channel and the second gas channel. A plate-type discharge cell for an ozone generator, wherein the plate-type discharge cell is enclosed between plate materials without interfering. 前記板材は四角形の角板であり、前記第1ガス流路は該角板の平行な2側縁の一方に沿った横長形状に形成されると共に、前記第2ガス流路は前記2側縁の他方に沿った横長形状に形成されており、前記電極層は、第1ガス流路及び第2ガス流路に挟まれた四角形の領域に配置されている請求項1に記載のオゾン発生装置用板型放電セル。   The plate member is a rectangular square plate, and the first gas channel is formed in a horizontally long shape along one of two parallel side edges of the square plate, and the second gas channel is formed on the second side edge. 2. The ozone generator according to claim 1, wherein the ozone generator is formed in a horizontally long shape along the other side of the first gas channel, and the electrode layer is disposed in a rectangular region sandwiched between the first gas channel and the second gas channel. Plate type discharge cell. 前記セラミックスは純度80%以上のアルミナである請求項1に記載のオゾン発生装置用板型放電セル。   The plate discharge cell for an ozone generator according to claim 1, wherein the ceramic is alumina having a purity of 80% or more. 前記無機系接合材はガラス系接合材である請求項1に記載のオゾン発生装置用板型放電セル。   The plate-type discharge cell for an ozone generator according to claim 1, wherein the inorganic bonding material is a glass bonding material.
JP2005232142A 2005-08-10 2005-08-10 Panel-shaped discharge cell for ozone generation unit Pending JP2007045671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232142A JP2007045671A (en) 2005-08-10 2005-08-10 Panel-shaped discharge cell for ozone generation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232142A JP2007045671A (en) 2005-08-10 2005-08-10 Panel-shaped discharge cell for ozone generation unit

Publications (1)

Publication Number Publication Date
JP2007045671A true JP2007045671A (en) 2007-02-22

Family

ID=37848823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232142A Pending JP2007045671A (en) 2005-08-10 2005-08-10 Panel-shaped discharge cell for ozone generation unit

Country Status (1)

Country Link
JP (1) JP2007045671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119305A (en) * 2005-10-28 2007-05-17 Mitsubishi Electric Corp Ozonizer
CN102241392A (en) * 2010-05-13 2011-11-16 宜兴市东成陶瓷有限公司 Ceramic totally-closed ozone generating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624707A (en) * 1992-07-08 1994-02-01 Yamanashi Hightech Kk Dielectric cell and ozonizer using the same cell
JPH09142811A (en) * 1995-11-29 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd Ozonizer
JPH11268902A (en) * 1998-03-24 1999-10-05 Sumitomo Precision Prod Co Ltd Discharge cell for ozonizer and its production
JP2002234708A (en) * 2001-02-06 2002-08-23 Meidensha Corp Ozone generator
JP2005068003A (en) * 2003-08-07 2005-03-17 Sumitomo Precision Prod Co Ltd Method of manufacturing electric discharge cell and method of forming rib

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624707A (en) * 1992-07-08 1994-02-01 Yamanashi Hightech Kk Dielectric cell and ozonizer using the same cell
JPH09142811A (en) * 1995-11-29 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd Ozonizer
JPH11268902A (en) * 1998-03-24 1999-10-05 Sumitomo Precision Prod Co Ltd Discharge cell for ozonizer and its production
JP2002234708A (en) * 2001-02-06 2002-08-23 Meidensha Corp Ozone generator
JP2005068003A (en) * 2003-08-07 2005-03-17 Sumitomo Precision Prod Co Ltd Method of manufacturing electric discharge cell and method of forming rib

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119305A (en) * 2005-10-28 2007-05-17 Mitsubishi Electric Corp Ozonizer
CN102241392A (en) * 2010-05-13 2011-11-16 宜兴市东成陶瓷有限公司 Ceramic totally-closed ozone generating device
CN102241392B (en) * 2010-05-13 2013-04-17 宜兴市东成陶瓷有限公司 Ceramic totally-closed ozone generating device

Similar Documents

Publication Publication Date Title
JP4973959B2 (en) Plasma generator and reactor
US20070154365A1 (en) Discharge cell for ozonizer
EP0952108B1 (en) Ozonizer discharge cell and its manufacturing method
JP2007045671A (en) Panel-shaped discharge cell for ozone generation unit
JP4180179B2 (en) Discharge cell for ozone generator
JP2010123585A (en) Block type capacitor
JP5046264B2 (en) Plate type discharge cell
JPH11297341A (en) Solid electrolyte type fuel cell
JP4925087B2 (en) Ozone generator
JP5008170B2 (en) Discharge cell for ozone generator
JP2002343407A (en) Distributor structure for fuel cell
US20120141904A1 (en) Low mass solid oxide fuel device array monolith
JP5545776B2 (en) Discharge cell for ozone generator
JP2705720B2 (en) Surface discharge unit for ozonizer and method of manufacturing the same
JPS58150276A (en) Fuel cell
JP6193780B2 (en) Fuel cell
JP2009019236A (en) Water-vapor electrolysis cell unit
JP2007176723A (en) Discharge cell for ozone generator
JP6437844B2 (en) Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
JP2003301289A (en) Oxygen pump
JP5147300B2 (en) Multilayer piezoelectric element
JP4515856B2 (en) Cooler for discharge cell
JPH0629034A (en) Solid electrolyte fuel cell with mechanical seal structure
JP3558178B2 (en) Refractory for heat exchange and its laminated structure
JP3292471B2 (en) Discharge cell for ozone generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A977 Report on retrieval

Effective date: 20101101

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120521

Free format text: JAPANESE INTERMEDIATE CODE: A02