JP2007044870A - Method of detecting disconnection of wire saw, method of inspection quality, and method of manufacturing cut product - Google Patents

Method of detecting disconnection of wire saw, method of inspection quality, and method of manufacturing cut product Download PDF

Info

Publication number
JP2007044870A
JP2007044870A JP2006256097A JP2006256097A JP2007044870A JP 2007044870 A JP2007044870 A JP 2007044870A JP 2006256097 A JP2006256097 A JP 2006256097A JP 2006256097 A JP2006256097 A JP 2006256097A JP 2007044870 A JP2007044870 A JP 2007044870A
Authority
JP
Japan
Prior art keywords
wire saw
wire
resin
abrasive grains
core wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006256097A
Other languages
Japanese (ja)
Other versions
JP4427531B2 (en
Inventor
Masaaki Yamanaka
正明 山中
Hideki Ogawa
秀樹 小川
Nobuo Urakawa
信夫 浦川
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2006256097A priority Critical patent/JP4427531B2/en
Publication of JP2007044870A publication Critical patent/JP2007044870A/en
Application granted granted Critical
Publication of JP4427531B2 publication Critical patent/JP4427531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin bond wire saw to be used in slicing a silicon wafer, which is electrically conductive by itself, and has a high retention force of abrasive grains and excellent sharpness. <P>SOLUTION: One end of a metal coated abrasive grain is brought into contact with a metallic core wire 1 and part of it is exposed from a bonded surface, thereby providing electric conductivity to the core wire from the external surface of the wire saw so as to detect disconnection during processing. In addition, bonding strength with a resin 3 serving as a bond is improved through the use of the metal coated abrasive grain 2, and further increased by plating the core wire 1 with copper or copper alloy, to thereby prevent the abrasive grain from missing or the bond from peeling. Two conductive rolls are used to inspect the disconnection of the wire saw. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は主としてシリコンインゴットからの半導体や太陽電池用のシリコンウェハーのスライス加工や、或いは、水晶等の難削材のスライス加工に使用されるワイヤーソーに関する。   The present invention mainly relates to a wire saw used for slicing a semiconductor from a silicon ingot or a silicon wafer for solar cells, or slicing a difficult-to-cut material such as crystal.

シリコンインゴットのスライシング加工はインゴットの大径化により、ダイヤモンド内周刃切断砥石による切断から、遊離砥粒を用いたマルチワイヤー切断が多く用いられるようになった。しかし、この切断方式は環境衛生の問題、洗浄工程に時間がかかる、加工能率や加工精度が悪いことから固定砥粒方式のワイヤーソーが提案され始めた。   In slicing processing of silicon ingots, multi-wire cutting using loose abrasive grains is often used from cutting with a diamond inner peripheral cutting wheel due to the increase in diameter of the ingot. However, since this cutting method is a problem of environmental hygiene, the cleaning process takes time, and the processing efficiency and processing accuracy are poor, a fixed abrasive type wire saw has begun to be proposed.

これには、鋼線にダイヤモンド、CBN等の超砥粒を電着したワイヤーソーがあるが、シリコンインゴットのマルチ切断加工には少なくとも数百メーターもの長さを必要とする。このような長尺の鋼線に砥粒を電着するには極めて長時間を要し、製造上の問題から実用に供しない。   This includes a wire saw in which superabrasive grains such as diamond and CBN are electrodeposited on a steel wire, but a multi-cutting process of a silicon ingot requires a length of at least several hundred meters. Electrodeposition of abrasive grains on such a long steel wire requires a very long time and is not practically used due to manufacturing problems.

そこで、短時間で容易に製造できる方法として、芯線に砥粒を合成樹脂にて固着したワイヤーソーが提案され始めた。しかし、合成樹脂で砥粒を芯線に固着する場合、電着による場合に比べ、砥粒の保持力が弱く砥粒の脱落が生じ易い。この為、砥粒の突出量を僅かにする必要があり、この結果、チップポケットが小さくなり水廻りと切粉の排除性が悪く、切れ味の悪いワイヤーソーであった。   Therefore, a wire saw in which abrasive grains are fixed to a core wire with a synthetic resin has been proposed as a method that can be easily manufactured in a short time. However, when the abrasive grains are fixed to the core with the synthetic resin, the holding power of the abrasive grains is weak and the abrasive grains are likely to fall off as compared with the case of electrodeposition. For this reason, it is necessary to make the amount of protrusion of the abrasive grains small. As a result, the chip pocket becomes small, the water and chips are not easily removed, and the wire saw has poor sharpness.

シリコンウェハーのマルチ切断では、1本のワイヤーを複数のメインローラー間に螺旋状に巻き付けて走行させ、通常400枚程度の切断を一挙に行う。これに用いるワイヤーの長さは200〜300kmにもなる。このため、切断加工中のワイヤーに断線があった場合、それを検知し速やかに装置を停止させる必要がある。この異常時の検知手段として、最も一般的には、線の外表面の通電性を利用して、断線を検知する方法がとられており、線の外表面に通電性があることが必要条件である。しかし、レジンボンドワイヤーソーでは、たとえ芯線が通電性のあるものであっても、表面を絶縁体である合成樹脂と砥粒で覆われているので外表面と芯線間に通電性がなく、通常の方法では断線検出ができなくなる。   In the multi-cutting of a silicon wafer, a single wire is spirally wound between a plurality of main rollers to run, and usually about 400 pieces are cut at a time. The length of the wire used for this is as much as 200 to 300 km. For this reason, when there is a disconnection in the wire being cut, it is necessary to detect it and stop the apparatus promptly. As a means for detecting this abnormality, the most commonly used method is to detect disconnection using the electrical conductivity of the outer surface of the wire, and it is necessary that the outer surface of the wire has electrical conductivity. It is. However, in resin bond wire saws, even if the core wire is electrically conductive, the surface is covered with synthetic resin as an insulator and abrasive grains, so there is no electrical conductivity between the outer surface and the core wire. With this method, disconnection cannot be detected.

本発明はレジンボンドワイヤーソーであっても、外表面から芯線に通電性を持たせることができる構造とし、又、製造当初より、砥粒に沿ってボンドが盛り上がるように形成するので、砥粒保持力に優れ、且つ、大きなチップポケットの形成を可能とするものである。   Since the present invention is a resin bond wire saw, it has a structure that allows the core wire to have electrical conductivity from the outer surface, and since the bond is formed along the abrasive grains from the beginning of manufacture, the abrasive grains It has excellent holding power and enables formation of a large chip pocket.

ワイヤーソーの断線検出方法では、通電性を有する芯線の外周表面に金属被覆した超砥粒をレジンボンドにて固着したワイヤーソーに於いて、該砥粒の一端を芯線に接触させ、且つ、一部分をレジンボンド層より突出した砥粒を存在させることで、通電性を持たせたワイヤーソーを準備し、そのワイヤーソーを導電性のある2ケのロールと接触させ、このロール間の電気抵抗の変化を連続的に測定することで、ワイヤーソーの断線を検出する。   In the wire saw disconnection detection method, in a wire saw in which superabrasive particles coated with metal on the outer peripheral surface of a conductive core wire are fixed by a resin bond, one end of the abrasive particle is brought into contact with the core wire, and a part thereof By making the abrasive grains projecting from the resin bond layer present, a wire saw having electrical conductivity was prepared, the wire saw was brought into contact with two conductive rolls, and the electrical resistance between the rolls was reduced. The wire saw is detected by measuring the change continuously.

切断物の製造方法では、上記断線検出方法を用いて断線を検出すると同時にワイヤーソーでワークを切断して切断物を製造する。   In the method for manufacturing a cut object, the disconnection is detected using the above-described disconnection detection method, and at the same time, the workpiece is cut with a wire saw to manufacture the cut object.

ワイヤーソーの品質検査方法では、通電性を有する芯線の外周表面に金属被覆した超砥粒をレジンボンドにて固着したワイヤーソーに於いて、該砥粒の一端を芯線に接触させ、且つ、一部分をレジンボンド層より突出した砥粒を存在させることで、通電性を持たせたワイヤーソーを準備し、そのワイヤーソーを導電性のある2ケのロールと接触させ、このロール間の電気抵抗の変化を連続的に測定することで、ワイヤーソーの品質を検査する。   In the quality inspection method of the wire saw, in a wire saw in which superabrasive particles coated with metal on the outer peripheral surface of a conductive core wire are fixed with a resin bond, one end of the abrasive particle is brought into contact with the core wire, and partly By making the abrasive grains projecting from the resin bond layer present, a wire saw having electrical conductivity was prepared, the wire saw was brought into contact with two conductive rolls, and the electrical resistance between the rolls was reduced. Inspect the quality of wire saws by measuring changes continuously.

切断物の製造方法では、上記品質検査方法を用いて品質を検査すると同時にワイヤーソーでワークを切断して切断物を製造する。   In the method of manufacturing a cut product, the quality is inspected using the quality inspection method, and at the same time, the workpiece is cut with a wire saw to manufacture a cut product.

以下、図面に従って本発明に関わるワイヤーソーについて説明する。
図1に於いて、2は金属被覆した超砥粒である。前述した如く、溶融樹脂が乾燥固化する時、砥粒に沿って盛り上がりを生じるが、金属被覆した砥粒を用いた場合、樹脂との濡れ性と接合性が裸の砥粒に比べ数倍良いため、砥粒に沿った大きな盛り上がり5ができ、砥粒間のレジンボンド層から大きく突出させることができる。この為、ボンド層の厚みtが砥粒径の1/3〜2/3であっても充分な保持力がある。
The wire saw according to the present invention will be described below with reference to the drawings.
In FIG. 1, 2 is a metal-coated superabrasive grain. As described above, when the molten resin is dried and solidified, it rises along the abrasive grains. However, when metal-coated abrasive grains are used, the wettability and bondability with the resin are several times better than bare abrasive grains. Therefore, a large swell 5 along the abrasive grains can be formed, and the resin bond layer between the abrasive grains can be protruded greatly. For this reason, even if the thickness t of the bond layer is 1/3 to 2/3 of the abrasive grain size, there is sufficient holding power.

被覆金属はCu、Ni、Ti、TiC、W等、特に限定しないが、Cuが樹脂との濡れ性、接合性がよく通電性にも優れる。強度的にはNiがよい。ボンドとの濡れ性、接合性を高める上で、砥粒の被覆金属厚みは1μmもあれば充分効果がある。しかし、あまり薄すぎると砥粒保持力を高める効果が小さく、厚すぎると切断開始時、被覆金属と被削材の接触により、いわゆる食いつきが悪くなる。又、砥粒の頂部の被覆金属が摩耗し、砥粒が露出してもその周囲により通電回路を生じさせるには1μm以上は必要である。これらの関係から1〜10μmとする方のが好ましい。超砥粒はあまり細粒であると切断能力が劣り、大きすぎるとワイヤーソー自体の径が太くなり、被削材の取りしろを大きくするので好ましくない。よって、切断条件によるが10〜100μmの範囲が好ましい。   The coating metal is not particularly limited, such as Cu, Ni, Ti, TiC, and W. However, Cu has good wettability and bonding properties with the resin and is excellent in electrical conductivity. Ni is good in terms of strength. In order to improve the wettability and bondability with the bond, it is sufficient if the coated metal thickness of the abrasive grains is 1 μm. However, if it is too thin, the effect of increasing the abrasive grain holding force is small, and if it is too thick, so-called biting becomes worse due to contact between the coated metal and the work material at the start of cutting. Further, even if the coated metal on the top of the abrasive grains is worn and the abrasive grains are exposed, 1 μm or more is required to generate an energizing circuit around them. From these relationships, it is preferably 1 to 10 μm. If the superabrasive grains are too fine, the cutting ability is inferior. If the superabrasive grains are too large, the diameter of the wire saw itself becomes large, which increases the margin of the work material, which is not preferable. Therefore, depending on cutting conditions, the range of 10 to 100 μm is preferable.

1は芯線で、高強度で通電性のあるものなら金属線でなくてもよいが、ピアノ線等の鋼線又は銅乃至銅合金線が強度上や樹脂との濡れ性、接合性、入手の容易性、価格上から好ましい。ピアノ線等の鋼線の場合、Cu又はCu合金メッキをすることで樹脂との接合性をより高めることができる。   1 is a core wire and may not be a metal wire as long as it has high strength and conductivity, but steel wire such as piano wire or copper or copper alloy wire is strong in strength, wettability with resin, bondability, and availability. It is preferable in terms of ease and price. In the case of a steel wire such as a piano wire, the bondability with the resin can be further improved by plating with Cu or Cu alloy.

3はレジンボンドで、ボンド層の形成は、例えば、特開平8−126953、特開平9−155631、特開平10−315029等で公知のように、樹脂を溶剤に溶かした溶液中に砥粒を混合した塗料を、上記芯線に塗布焼き付けして行う方法、又は、加熱溶融樹脂に砥粒を混合し、この混合溶融液を押出機に充填し、芯線を通過させて混合液を芯線外周に被覆する方法、或いは、砥粒を混合した溶解溶液を静電塗装法にて芯線に付着させてもよい。しかし、金属被覆砥粒をできるだけ多く芯線と接触させるには、芯線に塗布した砥粒含有溶融樹脂を所要のダイス穴径(芯線径+2倍の砥粒径+α)を通過させるのが好ましい。それによって、砥粒径にバラツキがあるため総ての砥粒を芯線に接触させることは不可能であるが、多くの砥粒を接触させて固着させることができる。   3 is a resin bond, and a bond layer is formed by, for example, applying abrasive grains in a solution obtained by dissolving a resin in a solvent as disclosed in JP-A-8-126953, JP-A-9-155631, JP-A-10-315029, and the like. A method in which the mixed paint is applied and baked onto the above core wire, or abrasive grains are mixed in a heated molten resin, this mixed melt is filled into an extruder, and the core wire is passed through to coat the mixed solution around the core wire. Alternatively, a solution obtained by mixing abrasive grains may be attached to the core wire by electrostatic coating. However, in order to bring as much metal-coated abrasive grains as possible into contact with the core wire, it is preferable that the abrasive-containing molten resin applied to the core wire is passed through a required die hole diameter (core wire diameter + double abrasive diameter + α). As a result, it is impossible to bring all the abrasive grains into contact with the core wire due to variations in the abrasive grain diameter, but many abrasive grains can be brought into contact and fixed.

ボンドとする樹脂は製造時の成形性、物性、加工時の研削性等の見地からフェノール樹脂、ボリイミド樹脂、ポリウレタン樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、アルキッド樹脂などの中から選択するのが好ましい。   The resin used as a bond is phenol resin, polyimide resin, polyurethane resin, polyamideimide resin, polyester resin, epoxy resin, melamine resin, urea resin, alkyd resin, etc. from the viewpoint of moldability, physical properties during processing, grindability during processing, etc. It is preferable to select from these.

レジンボンド中にフィラー4を混在させることで、ボンドの強度や耐摩粍性を向上させワイヤーソーの性能を更にアップすることができる。ダイヤモンド、SiC、Al23、SiO2、CrO2等の硬質粒子が好ましい。特に、微粒ダイヤモンドが耐摩粍性、熱伝導性に優れ最も相応しい。その他、CuやAgなどの金属粉を充填させても同様の効果がある。hBN、カーボンなどの潤滑材を充填すれば切断抵抗を小さくすることができる。更に、これらを混在させて相乗効果を図ることもできる。 By mixing the filler 4 in the resin bond, it is possible to improve the strength and abrasion resistance of the bond and further improve the performance of the wire saw. Hard particles such as diamond, SiC, Al 2 O 3 , SiO 2 , CrO 2 are preferable. In particular, fine diamond is most suitable because of its excellent abrasion resistance and thermal conductivity. In addition, the same effect can be obtained by filling metal powder such as Cu or Ag. If a lubricant such as hBN or carbon is filled, the cutting resistance can be reduced. Furthermore, these can be mixed and a synergistic effect can also be aimed at.

以上述べた製法から、金属被覆した砥粒2はその上部表面が僅かに樹脂により覆われていることが予測され、それによって、導電性が失われるという懸念が生じる。しかし、実際上は何らこの心配はない。もし、導電性がこの理由から失われたものが得られた時には、この覆っている樹脂は薄く又フィラーの含有もないので、例えば、遊離砥粒と軽く接触させるようなことで容易に除去される。又、切断使用初期には断線の心配はないので、この使用の極く初期に自然に除去され、実用上なんらの問題を起こさない。   From the manufacturing method described above, it is predicted that the metal-coated abrasive grains 2 are slightly covered with resin on the upper surface, thereby causing a concern that the conductivity is lost. However, there is practically no worry about this. If the conductivity is lost for this reason, the covering resin is thin and does not contain filler, so it can be easily removed by, for example, light contact with loose abrasive grains. The In addition, since there is no fear of disconnection at the beginning of cutting use, it is removed naturally at the very beginning of this use and does not cause any practical problems.

しかし、一般的には次の理由から僅かな樹脂が残っていても導電性は保たれる。超砥粒への金属被覆は、電気メッキ法、無電解メッキ法、化学的蒸着法(CVD)、物理的蒸着法(PVD)でなされる。この時、金属被覆表面の凹凸は極めて大きくなる。特に、電気メッキ法の場合、それは大きい。この凹凸は樹脂との密着性の向上にも役立つが、本発明の場合凸部は樹脂に覆われず導電性の保持にも有効である。   However, in general, the conductivity is maintained even if a small amount of resin remains for the following reason. The superabrasive is coated with metal by electroplating, electroless plating, chemical vapor deposition (CVD), or physical vapor deposition (PVD). At this time, the unevenness on the surface of the metal coating becomes extremely large. Especially in the case of electroplating, it is large. This unevenness is also useful for improving the adhesion to the resin, but in the case of the present invention, the convex portion is not covered with the resin and is effective for maintaining conductivity.

この線表面と芯線間に通電性のあることは、切断時の断線検知に必要なものであることは前に述べたが、次のような効果もある。前に述べたように、樹脂を溶剤に溶かした中に砥粒を分散させ、この中に芯線を浸漬したのちダイスを通し、その后、焼付をするのが本製品の標準的作り方である。この時、砥粒が所定密度に、又、均一に付いたかを検査する必要があるが、今迄、適当な方法が見つからなかった。本発明によって、通電性を与えることができたことにより、これを利用してこれを検知する手段を得た。即ち、本発明品を通電性と適度な弾性のある2ケの或いは2ケ1対の2対のロールと接触させ、このロール間を100mm前後とすると、この間の電気抵抗値は砥粒の数により決まる。この電気抵抗の変化を連続的に測定することで迅速に検査することが可能となった。   As described above, the fact that the electrical conductivity between the surface of the wire and the core wire is necessary for detecting the disconnection at the time of cutting has the following effects. As described above, the standard method for making this product is to disperse the abrasive grains in a resin dissolved in a solvent, immerse the core wire in the resin, pass through a die, and then bake. At this time, it is necessary to inspect whether the abrasive grains are uniformly or uniformly applied, but no suitable method has been found so far. According to the present invention, since it was possible to provide conductivity, a means for detecting this was obtained. That is, when the product of the present invention is brought into contact with two or two pairs of two rolls having electrical conductivity and moderate elasticity and the distance between the rolls is about 100 mm, the electrical resistance value between them is the number of abrasive grains. It depends on. It has become possible to inspect quickly by continuously measuring the change in electrical resistance.

(実施例1)フェノール樹脂をクレゾールに溶解させ、平均粒径25μmのNi被覆ダイヤモンド砥粒を2.2ct/cm3の割合となるよう混合した。これを外径0.18mmのブラスメッキピアノ線に塗布し、穴径0.24mmの浮きダイスを通過させた後、炉度300℃で焼付けてワイヤーソーを得た。ワイヤーソー径は0.22mmで、レジンボンド層の厚みは約15μmであった。このワイヤーソー5kmを、幅100mm外径50mmのリールに巻き取った。巻き始めの部分のレジンボンド層を剥ぎ取ったところと、このリールに巻き取ったワイヤーソーの表面の数カ所をテスターで通電検査をしたところ充分な導電性があることを確認した。 Example 1 A phenol resin was dissolved in cresol, and Ni-coated diamond abrasive grains having an average particle diameter of 25 μm were mixed so as to have a ratio of 2.2 ct / cm 3 . This was applied to a brass-plated piano wire having an outer diameter of 0.18 mm, passed through a floating die having a hole diameter of 0.24 mm, and then baked at a furnace temperature of 300 ° C. to obtain a wire saw. The wire saw diameter was 0.22 mm, and the thickness of the resin bond layer was about 15 μm. This wire saw 5 km was wound around a reel having a width of 100 mm and an outer diameter of 50 mm. When the resin bond layer at the beginning of winding was peeled off and several places on the surface of the wire saw wound around this reel were subjected to a current test using a tester, it was confirmed that there was sufficient conductivity.

(比較例1)実施例1に於ける砥粒を金属被覆をしていない同平均粒径のダイヤモンド砥粒に換え、又、芯線は同径のピアノ線として、全く同じ方法でワイヤーソーを得た。実施例と同じ通電テストをしたが、全く通電していなかった。   (Comparative Example 1) The abrasive grains in Example 1 were replaced with diamond grains having the same average particle diameter not coated with metal, and the core wire was a piano wire having the same diameter to obtain a wire saw in exactly the same manner. It was. The same energization test as in the example was performed, but no energization was performed.

(比較テスト結果1)100mm□x30mm厚さの単結晶Siを100x30mmの切断面積が得られるものを用いた。使用したワイヤーソーは30mとし、加工条件は往復運動速度500mm/min、ワイヤーテンション2、5kgfとした。実施例1のワイヤーソーでは切断幅が0.25mm、1500cm2の切断加工に渡り安定して1mm/minの切断速度での加工ができた。これに対し、比較例1のワイヤーソーでは、1000cm2のあたりから切断速度が鈍り、砥粒の脱落が激し切断を中断した。 (Comparative Test Result 1) A single crystal Si having a thickness of 100 mm □ x30 mm and having a cutting area of 100 × 30 mm was used. The wire saw used was 30 m, and the processing conditions were a reciprocating speed of 500 mm / min, a wire tension of 2 and 5 kgf. In the wire saw of Example 1, the cutting width was 0.25 mm, and the cutting at a cutting speed of 1 mm / min was stably performed over the cutting process of 1500 cm 2 . On the other hand, in the wire saw of Comparative Example 1, the cutting speed decreased from around 1000 cm 2 , and the dropping of the abrasive grains was severe and the cutting was interrupted.

(実施例2)ポリイミド樹脂にCu粉末と平均粒径30μmのCu被覆ダイヤモンド砥粒をそれぞれの固形分比が60V%、20V%、20V%となるよう混合し、更に、溶剤としてクレゾールを加え塗料中の溶剤量を50V%とした。外径0.18mmのCuメッキピアノ線に前記塗料を塗布し、内径0.28mmのダイスを通した後、炉温300℃の焼付炉で焼付硬化して、外径0.24mmのワイヤーソーを得た。尚、レジンボンド層の厚みは約20μmであった。実施例1におけると、同じ方法で通電テストをしたところ、良好な通電性があることが確認できた。   (Example 2) Cu powder and Cu-coated diamond abrasive grains having an average particle size of 30 μm are mixed with polyimide resin so that the respective solid content ratios are 60 V%, 20 V%, and 20 V%, and cresol is further added as a solvent to add paint. The amount of the solvent was 50 V%. The paint is applied to a Cu-plated piano wire with an outer diameter of 0.18 mm, passed through a die with an inner diameter of 0.28 mm, and then baked and cured in a baking furnace at a furnace temperature of 300 ° C. to obtain a wire saw with an outer diameter of 0.24 mm. Obtained. The resin bond layer had a thickness of about 20 μm. In Example 1, when conducting an energization test by the same method, it was confirmed that there was good electrical conductivity.

(比較例2)実施例1に於ける砥粒を金属被覆をしていない同平均粒径のダイヤモンド砥粒に換え、又、芯線は同径のピアノ線として、全く同じ方法でワイヤーソーを得た当ワイヤーソーの通電テストを前記と同様に行ったが、全く通電性がなかった。   (Comparative Example 2) The abrasive grains in Example 1 were replaced with diamond grains having the same average particle diameter without metal coating, and the core wire was made the same diameter piano wire to obtain a wire saw in exactly the same manner. The current test for the wire saw was conducted in the same manner as described above, but there was no electrical conductivity at all.

(比較テスト2)実施例2のワイヤーソーを使用し、長さ150mmの単結晶シリコンをワイヤー速度800m/min、押付圧2.5kgfで1時間の切断試験をしたところ、平均切断速度は1.0mm/minであった。これに対し、比較例2のワイヤーソーでは、0.3mm/minであった。   (Comparative Test 2) Using the wire saw of Example 2, a single crystal silicon having a length of 150 mm was subjected to a cutting test for 1 hour at a wire speed of 800 m / min and a pressing pressure of 2.5 kgf. It was 0 mm / min. On the other hand, in the wire saw of the comparative example 2, it was 0.3 mm / min.

以上各項で述べたように、本発明によれば従来の遊離砥粒によるシリコンウェハーのスライシング加工に換え、砥粒保持力に優れ、チップポケットを大きく形成した切れ味と寿命のよいレジンボンド超砥粒ワイヤーソーであって、ワイヤーソー自体が通電性を持つ構造であるので、従来のワイヤー切断と同様に加工中の断線検知が可能である他、製品の品質保証も可能となった。   As described in the above sections, according to the present invention, in place of conventional slicing processing of silicon wafers with loose abrasive grains, resin bond superabrasives with excellent abrasive grain holding power, large chip pockets and good sharpness and long life Since it is a grain wire saw and the wire saw itself has a conductive structure, it is possible to detect disconnection during processing in the same way as conventional wire cutting, and also to assure the quality of products.

本発明は金属被覆した砥粒を用いることを特徴とし、且つ、砥粒を金属芯線に接触させてレジンボンドに固着することで、通電性のあるワイヤーソーとする。これにより、レジンボンドワイヤーソーであっても、遊離砥粒方式のワイヤー切断で採用されている断線検知手段がそのまま使うことを可能とした。   The present invention is characterized in that metal-coated abrasive grains are used, and the abrasive grains are brought into contact with a metal core wire and fixed to a resin bond, thereby obtaining a conductive wire saw. Thereby, even if it was a resin bond wire saw, it enabled it to use the disconnection detection means employ | adopted by the wire cutting of a loose abrasive system as it is.

更に、レジンボンドは樹脂を溶剤に溶かした溶液中に砥粒を混合し、金属芯線に塗布し加熱乾燥して溶剤を蒸散させ、樹脂を固化させる過程でレジンボンドが被覆金属との濡れ性と接合性がよいため、砥粒に沿って盛り上がりができた形で固化する。このため、砥粒の保持力として働き、且つ、砥粒の突出を大きくすることができ、砥粒間のチップポケットも大きく形成される。   Furthermore, the resin bond mixes abrasive grains in a solution in which a resin is dissolved in a solvent, and is applied to a metal core wire, dried by heating to evaporate the solvent, and the resin bond becomes wettable with the coated metal in the process of solidifying the resin. Because it has good bondability, it solidifies in a form that rises along the abrasive grains. For this reason, it acts as a holding force of the abrasive grains, and the protrusion of the abrasive grains can be increased, and a chip pocket between the abrasive grains is also formed large.

本発明のワイヤーソーの断面図Sectional view of the wire saw of the present invention

符号の説明Explanation of symbols

1 芯線
2 金属被覆超砥粒
3 レジンボンド
4 フィラー
5 ボンド層の盛り上がり
t ボンド層の厚み
DESCRIPTION OF SYMBOLS 1 Core wire 2 Metal-coated superabrasive grain 3 Resin bond 4 Filler 5 Bond layer rise t Bond layer thickness

Claims (4)

通電性を有する芯線の外周表面に金属被覆した超砥粒をレジンボンドにて固着したワイヤーソーに於いて、該砥粒の一端を芯線に接触させ、且つ、一部分をレジンボンド層より突出した砥粒を存在させることで、通電性を持たせたワイヤーソーを準備し、
そのワイヤーソーを導電性のある2ケのロールと接触させ、
このロール間の電気抵抗の変化を連続的に測定することで、前記ワイヤーソーの断線を検出する、ワイヤーソーの断線検出方法。
In a wire saw in which superabrasive particles coated with metal on the outer peripheral surface of an electrically conductive core wire are fixed by a resin bond, one end of the abrasive particle is brought into contact with the core wire, and a part of the abrasive protrudes from the resin bond layer. Prepare a wire saw with electrical conductivity by making grains present,
The wire saw is brought into contact with two conductive rolls,
A wire saw breakage detection method for detecting breakage of the wire saw by continuously measuring a change in electrical resistance between the rolls.
請求項1に記載の断線検出方法を用いて断線を検出すると同時に前記ワイヤーソーでワークを切断して切断物を製造する、切断物の製造方法。   The manufacturing method of the cut article which cuts a workpiece | work with the said wire saw and manufactures a cut article simultaneously with detecting a disconnection using the disconnection detection method of Claim 1. 通電性を有する芯線の外周表面に金属被覆した超砥粒をレジンボンドにて固着したワイヤーソーに於いて、該砥粒の一端を芯線に接触させ、且つ、一部分をレジンボンド層より突出した砥粒を存在させることで、通電性を持たせたワイヤーソーを準備し、
そのワイヤーソーを導電性のある2ケのロールと接触させ、
このロール間の電気抵抗の変化を連続的に測定することで、前記ワイヤーソーの品質を検査する、ワイヤーソーの品質検査方法。
In a wire saw in which superabrasive particles coated with metal on the outer peripheral surface of a conductive core wire are fixed with a resin bond, one end of the abrasive particle is in contact with the core wire, and a part of the abrasive protrudes from the resin bond layer Prepare a wire saw with electrical conductivity by making grains present,
The wire saw is brought into contact with two conductive rolls,
A quality inspection method for a wire saw, in which the quality of the wire saw is inspected by continuously measuring a change in electrical resistance between the rolls.
請求項3に記載の品質検査方法を用いて品質を検査すると同時に前記ワイヤーソーでワークを切断して切断物を製造する、切断物の製造方法。   A method for manufacturing a cut article, wherein the quality is inspected using the quality inspection method according to claim 3 and at the same time the workpiece is cut with the wire saw to produce a cut article.
JP2006256097A 2006-09-21 2006-09-21 Wire saw breakage detection method, quality inspection method, and cut product manufacturing method Expired - Fee Related JP4427531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006256097A JP4427531B2 (en) 2006-09-21 2006-09-21 Wire saw breakage detection method, quality inspection method, and cut product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006256097A JP4427531B2 (en) 2006-09-21 2006-09-21 Wire saw breakage detection method, quality inspection method, and cut product manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11100441A Division JP2000246654A (en) 1999-03-02 1999-03-02 Resin bond wire saw using metal coated super abrasive grain

Publications (2)

Publication Number Publication Date
JP2007044870A true JP2007044870A (en) 2007-02-22
JP4427531B2 JP4427531B2 (en) 2010-03-10

Family

ID=37848136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006256097A Expired - Fee Related JP4427531B2 (en) 2006-09-21 2006-09-21 Wire saw breakage detection method, quality inspection method, and cut product manufacturing method

Country Status (1)

Country Link
JP (1) JP4427531B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002061A1 (en) * 2011-06-30 2013-01-03 シャープ株式会社 Wafer for solar cell, solar cell, and production method therefor
US8425640B2 (en) 2009-08-14 2013-04-23 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
JP2015188958A (en) * 2014-03-27 2015-11-02 古河電気工業株式会社 Wire tool and production method thereof
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425640B2 (en) 2009-08-14 2013-04-23 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US9067268B2 (en) 2009-08-14 2015-06-30 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9862041B2 (en) 2009-08-14 2018-01-09 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9248583B2 (en) 2010-12-30 2016-02-02 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
WO2013002061A1 (en) * 2011-06-30 2013-01-03 シャープ株式会社 Wafer for solar cell, solar cell, and production method therefor
JP2013012668A (en) * 2011-06-30 2013-01-17 Sharp Corp Wafer for solar cell, solar cell and method for manufacturing the same
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9687962B2 (en) 2012-06-29 2017-06-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10596681B2 (en) 2012-06-29 2020-03-24 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
JP2015188958A (en) * 2014-03-27 2015-11-02 古河電気工業株式会社 Wire tool and production method thereof
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10137514B2 (en) 2015-06-29 2018-11-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10583506B2 (en) 2015-06-29 2020-03-10 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming

Also Published As

Publication number Publication date
JP4427531B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4427531B2 (en) Wire saw breakage detection method, quality inspection method, and cut product manufacturing method
US10596681B2 (en) Abrasive article and method of forming
US20130032129A1 (en) Super-abrasive grain fixed type wire saw, and method of manufacturing super-abrasive grain fixed type wire saw
JP2000246654A (en) Resin bond wire saw using metal coated super abrasive grain
US9533397B2 (en) Abrasive article and method of forming
TWI466990B (en) Abrasive article and method of forming
TWI477356B (en) Abrasive article and method of forming
JP4703448B2 (en) Resin bond wire saw
US9902044B2 (en) Abrasive article and method of forming
US20140150766A1 (en) Abrasive article and method of forming
US20140017985A1 (en) Abrasive article and method of forming
US20120037140A1 (en) Fixed abrasive sawing wire with a rough interface between core and outer sheath
JP4175728B2 (en) Resin bond super abrasive wire saw
TW201313397A (en) Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US20140007513A1 (en) Abrasive article and method of forming
TW201343977A (en) Composite wire saw having electroplating and method for fabricating the same
JP2011230258A (en) Fixed abrasive grain wire saw, and method of manufacturing the same
JP6063076B1 (en) Resin bond saw wire and manufacturing method thereof
JP2004216553A (en) Manufacturing method for super-abrasive grain wire saw
JP2012081525A (en) Super-abrasive grain fixed type wire saw
CN210011174U (en) Dip welding diamond wire
CN109203264B (en) Dip-soldering diamond wire and manufacturing method thereof
JP2011255475A (en) Fixed abrasive wire
JP2013244552A (en) Fixed abrasive grain type saw wire and method of manufacturing the same
JP2014172115A (en) Fixed abrasive grain wire, and method for production thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees