WO2013002061A1 - Wafer for solar cell, solar cell, and production method therefor - Google Patents

Wafer for solar cell, solar cell, and production method therefor Download PDF

Info

Publication number
WO2013002061A1
WO2013002061A1 PCT/JP2012/065575 JP2012065575W WO2013002061A1 WO 2013002061 A1 WO2013002061 A1 WO 2013002061A1 JP 2012065575 W JP2012065575 W JP 2012065575W WO 2013002061 A1 WO2013002061 A1 WO 2013002061A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
solar cell
solar cells
less
crystalline silicon
Prior art date
Application number
PCT/JP2012/065575
Other languages
French (fr)
Japanese (ja)
Inventor
明英 高木
昌次 中村
北條 義之
熊田 浩
涌田 順三
林 哲也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013002061A1 publication Critical patent/WO2013002061A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a silicon wafer for solar cells, a silicon wafer for solar cells, a method for manufacturing a semiconductor device, and a semiconductor device.
  • a solar cell has formed a pn junction by diffusing an impurity having a conductivity type opposite to that of a silicon wafer into a light receiving surface of a monocrystalline or polycrystalline silicon wafer, for example, Double-sided electrode type solar cells manufactured by forming electrodes on the back surface opposite to the light receiving surface are mainly used.
  • Double-sided electrode type solar cells manufactured by forming electrodes on the back surface opposite to the light receiving surface are mainly used.
  • the masking paste 102 is screen-printed on the entire light-receiving surface side of the silicon wafer 101 having n-type or p-type conductivity and dried, and then the back surface of the silicon wafer 101 is formed.
  • An opening 114 is partially provided on the side, and the masking paste 102 is screen-printed.
  • the n-type dopant diffusion region 103 is formed by diffusing the n-type dopant 104 from the opening 114 on the back surface of the silicon wafer 101.
  • the masking paste 102 on the light receiving surface side and the back surface side of the silicon wafer 101 is removed, and the masking paste 102 is screen printed again on the entire surface of the silicon wafer 101 on the light receiving surface side, as shown in FIG. After being dried, the opening 115 is partially provided on the back side of the silicon wafer 101 and the masking paste 102 is screen-printed.
  • the p-type dopant diffusion region 105 is formed by diffusing the p-type dopant 106 from the opening 115 on the back surface of the silicon wafer 101.
  • an antireflection film 109 is formed on the texture structure 108, and A passivation film 107 is formed on the back side of the silicon wafer 101.
  • FIG. 26 (f) After providing openings for exposing the respective surfaces of the n-type dopant diffusion region 103 and the p-type dopant diffusion region 105 in the passivation film 107 on the back surface of the silicon wafer 101, Through the opening, an n-type electrode 112 in contact with the n-type dopant diffusion region 103 is formed, and a p-type electrode 113 in contact with the p-type dopant diffusion region 105 is formed.
  • a conventional back electrode type solar battery cell is manufactured.
  • Non-Patent Document 1 describes that 2 inches of silicon after an alkali solution of 51.9%, 48.0%, 35.0%, 10.0% is placed in a cylindrical container and set at 65 ° C. It describes that the wafer is immersed and etched for 20 minutes and 30 minutes.
  • Non-Patent Document 1 As a result of etching the silicon wafer at 65 ° C. for 20 minutes with 48.0% NaOH and for 30 minutes with 51.9% NaOH, the surface roughness was measured.
  • the 48.0% etched product is 0.354 ⁇ m
  • the 51.9% etched product is 0.216 ⁇ m
  • the 51.9% etched product is in a better etching state
  • the higher concentration alkali is etched. It also states that the condition is good.
  • Non-Patent Document 1 In the field of electronic devices using crystalline silicon (particularly LSI), a technique for improving the smoothness of the surface of a silicon wafer by mechanical polishing is common, but in the technical field of solar cells, high throughput and low cost are achieved. For this reason, it has become the mainstream to use chemical etching as described in Non-Patent Document 1.
  • the contact resistance with the electrode can be reduced as much as possible, and the carrier at the interface between the surface of the silicon wafer and the electrode can be reduced. It is effective to smooth the surface of the silicon wafer so that recombination can be prevented. It is also effective to improve the printing accuracy of the masking paste.
  • Such a problem is not only a problem of the back electrode type solar battery cell but also a problem of the entire solar battery including a solar battery cell such as a double-sided electrode type solar battery cell.
  • an object of the present invention is to stably manufacture a solar cell silicon wafer that can stably manufacture a solar cell having good characteristics, and a solar cell having good characteristics.
  • Another object of the present invention is to provide a silicon wafer for solar cells used for manufacturing.
  • the objective of this invention is providing the manufacturing method of the semiconductor device using such a manufacturing method of the silicon wafer for solar cells, and the semiconductor device using the silicon wafer for solar cells.
  • the present invention provides a step of slicing a silicon crystal ingot with a resin bond wire having abrasive grains having an average grain size of 10 ⁇ m or more and 20 ⁇ m or less, and a crystalline silicon wafer obtained by slicing the silicon crystal ingot. And a step of etching so as to have a facet with a width of 10 ⁇ m or more and 150 ⁇ m or less on the surface of the wafer.
  • the crystalline silicon wafer in the etching step, is formed so that the surface of the crystalline silicon wafer has a facet with a depth of 0.1 ⁇ m or more and 10 ⁇ m or less. Etching is preferred.
  • the etching amount of the crystalline silicon wafer is preferably 5 ⁇ m or more and 25 ⁇ m or less per one surface of the crystalline silicon wafer.
  • aqueous sodium hydroxide solution having a concentration of 20% by mass to 35% by mass in the etching step.
  • the silicon crystal ingot is preferably single crystal silicon.
  • the silicon crystal ingot is preferably sliced so that the ⁇ 100 ⁇ plane is exposed.
  • the area ratio of scratches occupying the surface of the crystalline silicon wafer is 0.1% or less.
  • the present invention is obtained by a manufacturing method including a step of slicing a silicon crystal ingot with a resin bond wire having abrasive grains having an average particle size of 10 ⁇ m or more and 20 ⁇ m or less, and obtained by the slicing of the silicon crystal ingot.
  • the present invention also relates to a silicon wafer for solar cells in which the area ratio of scratches occupying the surface of the crystalline silicon wafer is 0.1% or less.
  • the present invention also includes a step of slicing a single crystal silicon crystal ingot with the resin bond wire so that the ⁇ 100 ⁇ plane is exposed, and a single crystal silicon wafer obtained by slicing the single crystal silicon crystal ingot with water.
  • the present invention also relates to a silicon wafer for solar cells obtained by a manufacturing method including a step of etching using sodium oxide and having a thickness of 200 ⁇ m or less.
  • the single crystal silicon wafer in the etching step, is etched so as to have a facet having a width of 10 ⁇ m or more and 150 ⁇ m or less on the surface of the single crystal silicon wafer. preferable.
  • the single crystal silicon wafer in the etching step, is etched so that the surface of the single crystal silicon wafer has a facet with a depth of 0.1 ⁇ m or more and 10 ⁇ m or less. It is preferable.
  • the present invention also includes a step of slicing a silicon crystal ingot with a resin bond wire provided with abrasive grains having an average grain size of 10 ⁇ m or more and 20 ⁇ m or less, and a crystalline silicon wafer obtained by slicing the silicon crystal ingot.
  • An etching process comprising: etching the surface of the crystalline silicon wafer to have a facet having a width of 10 ⁇ m or more and 150 ⁇ m or less; and forming an electrode on the surface of the crystalline silicon wafer having the facet.
  • the etching amount of the crystalline silicon wafer is 5 ⁇ m or more and 25 ⁇ m or less per one surface of the crystalline silicon wafer.
  • the concentration of the aqueous solution of sodium hydroxide is 20% by mass or more and 35% by mass or less.
  • the present invention also relates to a semiconductor device including the above-described solar cell silicon wafer and the electrode provided on the surface having the facet of the crystalline silicon wafer.
  • ADVANTAGE OF THE INVENTION it is used in order to stably manufacture the solar cell which has a favorable characteristic, and the manufacturing method of the silicon wafer for solar cells which can stably manufacture the solar cell which has a favorable characteristic.
  • a silicon wafer for solar cells can be provided.
  • the manufacturing method of the semiconductor device using such a manufacturing method of the silicon wafer for solar cells, and the semiconductor device using the silicon wafer for solar cells can be provided.
  • the silicon wafer for solar cells of an embodiment it is a typical perspective view illustrating an example of a process of slicing a silicon crystal ingot with a resin bond wire. It is a typical perspective view illustrating an example of the process in which a crystalline silicon wafer is formed in the manufacturing method of the silicon wafer for solar cells of an embodiment. It is a typical expanded sectional view of an example of the resin bond wire shown in FIG. It is typical sectional drawing of an example of the crystalline silicon wafer obtained by slicing a silicon crystal ingot with a resin bond wire. It is a typical expanded sectional view of an example of a part of surface of the crystalline silicon wafer shown in FIG.
  • (A) is a schematic enlarged plan view of an example of the surface of the crystalline silicon wafer shown in FIG. 4, and (b) is a schematic enlarged sectional view along VIb-VIb of (a).
  • (A) is typical sectional drawing illustrating an example of the process of forming an n-type dopant diffusion area
  • (b) is (a) silicon for solar cells It is a typical top view when it sees from the back surface side of a wafer.
  • (A) is typical sectional drawing which illustrates an example of the process of installing a masking paste on the surface of the silicon wafer for solar cells of embodiment, (b) is the back surface of the silicon wafer for solar cells. It is a typical top view when it sees from the side.
  • (A) is typical sectional drawing illustrating an example of the process of forming a p-type dopant diffusion area
  • (b) is silicon for solar cells. It is a typical top view when it sees from the back surface side of a wafer.
  • (A) is typical sectional drawing illustrating an example of the process of exposing the n-type dopant diffusion area
  • (A) is typical sectional drawing illustrating an example of the process of forming a passivation film in the back surface of the silicon wafer for solar cells of embodiment
  • (b) is the back surface of the silicon wafer for solar cells. It is a typical top view when it sees from the side.
  • (A) is typical sectional drawing illustrating an example of the process of forming a texture structure in the light-receiving surface of the silicon wafer for solar cells of embodiment
  • (b) is (a) of the silicon wafer for solar cells. It is a typical top view when it sees from the back side.
  • (A) is typical sectional drawing illustrating an example of the process of forming an anti-reflective film on the texture structure of the silicon wafer for solar cells of embodiment
  • (b) is silicon for solar cells. It is a typical top view when it sees from the back surface side of a wafer.
  • (A) is typical sectional drawing illustrating an example of the process of forming a contact hole in the passivation film of the back surface of the silicon wafer for solar cells of embodiment
  • (b) is (a) silicon for solar cells It is a typical top view when it sees from the back surface side of a wafer.
  • (A) is typical sectional drawing illustrating an example of the process of forming the electrode for n-types, and the electrode for p-types in the back surface of the silicon wafer for solar cells of embodiment
  • (b) is (a). It is a typical top view when it sees from the back surface side of the silicon wafer for solar cells.
  • (A) is the microscope picture of the surface of the n-type single crystal silicon wafer of an Example
  • (b) is the measurement result of the unevenness
  • (A) is the microscope picture of the surface of the n-type single crystal silicon wafer of an Example
  • (b) is the measurement result of the unevenness
  • (A) is the microscope picture of the surface of the n-type single crystal silicon wafer of an Example
  • (b) is the measurement result of the unevenness
  • (A) is the microscope picture of the surface of the n-type single crystal silicon wafer of a comparative example
  • (b) is the measurement result of the unevenness
  • (A)-(f) is typical sectional drawing illustrated about an example of the manufacturing method of the conventional back electrode type photovoltaic cell.
  • FIG. 1 is a schematic perspective view illustrating an example of a step of slicing a silicon crystal ingot with a resin bond wire in the method for manufacturing a silicon wafer for solar cells of the present embodiment.
  • the silicon crystal ingot 50 is sliced by the resin bond wire 53.
  • the resin bond wire 53 is wound between guide rollers 51 and 52 arranged at a predetermined interval. As a result, the resin bond wire 53 is stretched at a plurality of locations at predetermined intervals along the longitudinal direction of the guide rollers 51 and 52 in the respective guide rollers 51 and 52. In this state, when the guide rollers 51 and 52 repeat normal rotation and reverse rotation, the resin bond wire 53 reciprocates in the direction of the arrow 55.
  • the silicon crystal ingot 50 In the state where the resin bond wire 53 is reciprocating in the direction of the arrow 55, the silicon crystal ingot 50 is moved in the direction of the arrow 54. Then, by pressing the silicon crystal ingot 50 against the resin bond wire 53 that is traveling reciprocally, the silicon crystal ingot 50 is sliced at a plurality of locations, for example, as shown in a schematic perspective view of FIG. A plate-like crystalline silicon wafer 11 is formed. Note that when the silicon crystal ingot 50 is sliced, a coolant such as cooling water is applied to the surface of the silicon crystal ingot 50 and sliced, so that generation of heat to the resin bond wire 53 can be suppressed during slicing.
  • a coolant such as cooling water
  • the silicon crystal ingot 50 is preferably sliced so that the ⁇ 100 ⁇ plane is exposed.
  • the light-receiving surface of the solar cell silicon wafer obtained by the present invention can be a ⁇ 100 ⁇ surface, and it becomes easy to form a texture structure by alkali etching. It tends to be able to be manufactured stably.
  • FIG. 3 shows a schematic cross-sectional view of an example of the resin bond wire 53 shown in FIG.
  • the resin bond wire 53 includes the core wire 20 and the abrasive grains 22 fixed to the outer peripheral surface of the core wire 20 with the resin bond material 21.
  • a piano wire can be used as the core wire 20.
  • the diameter of the core wire 20 can be about 115 micrometers, for example.
  • diamond abrasive grains can be used as the abrasive grains 22.
  • the resin bond material 21 for example, a resin on the outer surface of the core wire 20 can be used.
  • the thickness of the resin bond material 21 can be about 3 to 5 ⁇ m, for example.
  • abrasive grains 22 of the resin bond wire 53 As the abrasive grains 22 of the resin bond wire 53, abrasive grains 22 having an average particle diameter of 10 ⁇ m or more and 20 ⁇ m or less are used. Conventionally, a lot of scratches are formed on the surface of the crystalline silicon wafer 11, and the patterning property of the masking paste printed on the surface of the crystalline silicon wafer 11 during the production of the solar cell is lowered, and the carrier just below the electrode of the solar cell. The characteristics of the solar cell may deteriorate due to the occurrence of recombination.
  • the silicon crystal ingot 50 is sliced using a resin bond wire 53 having an abrasive grain 22 having an average particle diameter of 10 ⁇ m or more and 20 ⁇ m or less, whereby the surface of the crystalline silicon wafer 11 is It has been found that the formation of scratches can be suppressed, and a solar cell having good characteristics can be stably produced.
  • the average grain size of the abrasive grains 22 is 10 ⁇ m or more and 20 ⁇ m or less.
  • the grain diameter of the abrasive grains 22 calculated from the major axis “a” and the minor axis “b” of the abrasive grains 22 by the following formula (i). It means that 90% or more is included in the range of 10 ⁇ m or more and 20 ⁇ m or less.
  • Particle size of abrasive grains 22 (major axis a + minor axis b) / 2 (i)
  • the silicon crystal ingot 50 for example, a single crystal silicon ingot or a polycrystalline silicon ingot produced by the Czochralski method or a casting method is used, and a single crystal silicon ingot is preferable.
  • the silicon crystal ingot 50 is a single crystal silicon ingot, the characteristics of a solar cell manufactured using the silicon wafer for solar cell obtained by the present invention tend to be good.
  • the silicon crystal ingot 50 may have an n-type or p-type conductivity type by being doped with an n-type or p-type dopant.
  • FIG. 4 shows a schematic cross-sectional view of an example of the crystalline silicon wafer 11 obtained by slicing the silicon crystal ingot 50 with the resin bond wire 53.
  • slice damage 1 a is generated on the surface of the crystalline silicon wafer 11 due to the slicing of the silicon crystal ingot 50 using the resin bond wire 53.
  • FIG. 5 shows a schematic enlarged cross-sectional view of an example of a part of the surface of the crystalline silicon wafer 11 shown in FIG.
  • large undulations hereinafter referred to as “saw marks” 61 are formed on the surface of the crystalline silicon wafer 11.
  • a scratch 71 is formed on the surface of the crystalline silicon wafer 11.
  • the saw mark 61 is formed due to the cutting of the silicon crystal ingot 50 using the resin bond wire 53. That is, as shown in FIG. 1, the crystalline silicon wafer 11 is obtained by pressing and cutting the silicon crystal ingot 50 against the reciprocating resin bond wire 53, but every time the travel direction 55 of the resin bond wire 53 is switched. The resin bond wire 53 stops temporarily and the linear velocity falls. As a result, the depth of cut into the silicon crystal ingot 50 by the resin bond wire 53 varies along the moving direction of the silicon crystal ingot 50 relative to the resin bond wire 53 (the direction of the arrow 54). Appears on the surface of the crystalline silicon wafer 11.
  • FIG. 6A shows a schematic enlarged plan view of an example of the surface of the crystalline silicon wafer 11 shown in FIG. 4, and FIG. 6B shows an enlarged cross section along VIb-VIb of FIG. 6A. The figure is shown.
  • the abrasive grain marks 72 are formed linearly by the abrasive grains 22 of the resin bond wire 53, and the scratches 71 that are concave scratches larger than the abrasive grain marks 72 are formed. Yes.
  • the scratch 71 means a scratch having a width W of 1 ⁇ m or more, a length L of 1 ⁇ m or more, and a depth H of 1 ⁇ m or more.
  • the width W is the length of the scratch in the direction perpendicular to the extending direction of the abrasive grain trace 72
  • the length L is the length of the scratch in a direction parallel to the extending direction of the abrasive grain trace 72
  • the depth H is the deepest length in the direction perpendicular to the surface of the crystalline silicon wafer 11.
  • the width W, the length L, and the depth H of the scratch 71 can be measured using, for example, a laser microscope.
  • a laser microscope for example, OLS3000 manufactured by Olympus Corporation can be used.
  • the area ratio of the scratch occupying the surface of the crystalline silicon wafer 11 is preferably 0.1% or less.
  • the patterning property of the masking paste printed on the surface of the crystalline silicon wafer 11 during the production of the solar cell is degraded, and the recombination of carriers occurs directly under the electrode of the solar cell. The tendency to be able to suppress the decrease is increased.
  • the area ratio (%) of the scratch can be calculated by the following equation (ii).
  • Scratch area ratio (%) 100 ⁇ (total of scratch areas existing on the surface of the crystalline silicon wafer 11) / (area of the surface of the crystalline silicon wafer 11) (ii) ⁇ Process for etching a crystalline silicon wafer>
  • a step of etching the surface of the crystalline silicon wafer 11 is performed. Thereby, the slice damage 1a on the surface of the crystalline silicon wafer 11 shown in FIG. 4 can be removed, and a crater-like depression (facet) can be formed on the surface of the crystalline silicon wafer 11.
  • the step of etching the surface of the crystalline silicon wafer 11 is not particularly limited as long as the surface of the crystalline silicon wafer 11 can be etched, but the sodium hydroxide concentration is 20% by mass or more and 35% by mass or less, preferably Preferably, the etching is performed by etching the surface of one side of the crystalline silicon wafer 11 with a thickness of 5 ⁇ m or more and 25 ⁇ m or less with a sodium hydroxide aqueous solution of 24% by mass or more and 32% by mass or less.
  • the surface of the crystalline silicon wafer 11 is etched with an aqueous sodium hydroxide solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass.
  • an aqueous sodium hydroxide solution having a sodium hydroxide concentration of 20% by mass to 35% by mass preferably 24% by mass to 32% by mass.
  • the etching is performed by the same thickness with an aqueous sodium hydroxide solution having a sodium hydroxide concentration higher than 35 mass%. This is because it has been found that the smoothness of the surface of the crystalline silicon wafer 11 can be improved.
  • etching is performed to a thickness of 13 ⁇ m on one surface of the crystalline silicon wafer 11 with an aqueous solution of sodium hydroxide having a sodium hydroxide concentration of 30% by mass
  • sodium hydroxide having a sodium hydroxide concentration of 48% by mass is obtained.
  • the smoothness of the surface of the crystalline silicon wafer 11 equal to or higher than that of the conventional etching in which the etching amount is about 30 ⁇ m per one surface of the crystalline silicon wafer 11 with the aqueous solution can be achieved.
  • the contact area between the surface of the crystalline silicon wafer 11 and the electrode with improved smoothness and the electrode is increased, so that the contact resistance between the surface of the crystalline silicon wafer 11 and the electrode and the interface between the surface of the crystalline silicon wafer 11 and the electrode are increased.
  • Carrier recombination can be reduced, and by improving the printing accuracy of the masking paste printed on the surface of the crystalline silicon wafer 11 with improved smoothness, the shunt resistance is improved and the reverse saturation current is reduced. can do.
  • the etching amount it is possible to suppress the mechanical strength of the crystalline silicon wafer 11 and the decrease in conversion efficiency of the solar battery cell manufactured using the crystalline silicon wafer 11. Thereby, it becomes possible to manufacture the silicon wafer for solar cells which can manufacture stably the solar cell which has a favorable characteristic.
  • the etching amount (etching depth) on one surface of the crystalline silicon wafer 11 is preferably 5 ⁇ m or more and 20 ⁇ m or less, and more preferably 5 ⁇ m or more and 15 ⁇ m or less.
  • the etching amount on one surface of the crystalline silicon wafer 11 is 5 ⁇ m or more and 20 ⁇ m or less, particularly when the etching amount is 5 ⁇ m or more and 15 ⁇ m or less, the etching amount on one surface of the crystalline silicon wafer 11 is further suppressed while suppressing the etching amount on one side. There is a greater tendency to improve the surface smoothness.
  • the etching amount of the surface of the crystalline silicon wafer 11 means a reduction amount ( ⁇ m) in the thickness direction of the crystalline silicon wafer 11 on one surface of the crystalline silicon wafer 11 by the etching.
  • FIG. 7 shows a schematic cross-sectional view of an example of a silicon wafer for a solar cell formed by etching the surface of the crystalline silicon wafer shown in FIG. 4 as described above, and FIG. 8 shows the solar cell shown in FIG. The typical expanded sectional view of an example of the surface of the silicon wafer for manufacture is shown.
  • the slice damage no longer exists on the surface of the silicon wafer 1 for solar cells, but the facet formed due to the etching of the sodium hydroxide aqueous solution having the above concentration as shown in FIG. 62 is formed.
  • FIG. 9 shows a schematic enlarged sectional view of an example of the facet 62 shown in FIG.
  • An aqueous sodium hydroxide solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass, with a surface of one side of the crystalline silicon wafer 11 of 5 ⁇ m to 25 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m.
  • the width of the facet 62 formed on the surface of the solar cell silicon wafer 1 by etching to a thickness of 5 ⁇ m to 15 ⁇ m is 10 ⁇ m to 150 ⁇ m, preferably 20 ⁇ m to 60 ⁇ m.
  • the depth is not less than 0.1 ⁇ m and not more than 10 ⁇ m.
  • the width of the facet 62 on the surface of the silicon wafer 1 for solar cells obtained by etching the surface of one side of the crystalline silicon wafer 11 by 13 ⁇ m with a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 30% by mass is shown in FIG. As shown in FIG. 9, the thickness is 20 to 60 ⁇ m.
  • the width of the facet 63 on the surface of the silicon wafer for solar cells obtained by etching the surface of one side of the crystalline silicon wafer by 13 ⁇ m with a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 48% by mass is shown in FIG. As shown, it is 3 ⁇ m or more and 15 ⁇ m or less.
  • silicon for solar cells etched by 5 ⁇ m or more and 25 ⁇ m or less per one side surface of a crystalline silicon wafer with a sodium hydroxide aqueous solution having a sodium hydroxide concentration of less than 20% by mass.
  • a pyramidal projection 65 is formed inside the facet 64 formed on the surface of the wafer.
  • sodium hydroxide aqueous solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass, 5 ⁇ m to 25 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m, more preferably 5 ⁇ m.
  • the protrusion 65 is formed on the surface where the width of the facet 63 is not narrow as shown in FIG. 10 and inside the facet 64 as shown in FIG. Compared with the case where an electrode is formed on a non-smooth surface, the contact resistance between the silicon wafer for solar cell 1 and the electrode and the recombination of carriers at the interface between the surface of the silicon wafer for solar cell 1 and the electrode can be reduced. It is clear.
  • a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass is 5 ⁇ m to 25 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m, more preferably 5 ⁇ m to 15 ⁇ m.
  • the facets 62 formed on the surface of the silicon wafer 1 for solar cells are facets 62 having a width of 10 ⁇ m to 150 ⁇ m, preferably 20 ⁇ m to 150 ⁇ m and a depth of 0.1 ⁇ m to 10 ⁇ m. Is preferred. In this case, the surface of the solar cell silicon wafer 1 becomes smoother, and the tendency to stably manufacture solar cells having good characteristics increases.
  • FIG. 12A is a schematic plan view when FIG. 12A is viewed from the back surface side of the solar cell silicon wafer 1.
  • the above etching is performed using an aqueous sodium hydroxide solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass, preferably 5 ⁇ m to 25 ⁇ m per surface on one side, preferably
  • the etching is performed by etching to a thickness of 5 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 15 ⁇ m or less.
  • the etching is performed on each of the light receiving surface and the back surface of the silicon wafer 1 for solar cells.
  • the masking paste 2 for example, a solvent, a thickener, and a material containing a silicon oxide precursor and / or a titanium oxide precursor can be used. Moreover, as the masking paste 2, a paste containing no thickener can be used.
  • the solvent examples include ethylene glycol, methyl cellosolve, methyl cellosolve acetate, ethyl cellosolve, diethyl cellosolve, cellosolve acetate, ethylene glycol monophenyl ether, methoxyethanol, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol, diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, diethylene glycol acetate, triethyl glycol, triethylene glycol Cole monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol, liquid polyethylene glycol, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether,
  • ethyl cellulose As a thickener, it is desirable to use ethyl cellulose, polyvinyl pyrrolidone or a mixture of both, but various quality and properties of bentonite, generally inorganic rheological additives for various polar solvent mixtures, nitrocellulose and other cellulose compounds , Starch, gelatin, alginic acid, highly dispersible amorphous silicic acid (Aerosil®), polyvinyl butyral (Mowital®), sodium carboxymethylcellulose (vivistar), thermoplastic polyamide resin (Eurelon®) ), Organic castor oil derivative (Thixin R (registered trademark)), diamide wax (Thixatrol plus (registered trademark)), swollen polyacrylate (Rheolate (registered trademark)), polyether Urea - polyurethane, polyether - polyol like can also be used.
  • alginic acid highly dispersible amorphous silicic acid (Aerosil®), poly
  • silicon oxide precursor examples include a general formula R 1 ' n Si (OR 1 ) 4-n such as TEOS (tetraethyl orthosilicate) (R 1 ' represents methyl, ethyl or phenyl, R 1 represents methyl, A substance represented by ethyl, n-propyl or i-propyl, wherein n represents 0, 1 or 2) can be used.
  • TEOS tetraethyl orthosilicate
  • titanium oxide precursor examples include, in addition to Ti (OH) 4 , a substance represented by R 2 ' n Ti (OR 2 ) 4-n such as TPT (tetraisopropoxy titanium) (R 2 ' is methyl, Represents ethyl or phenyl, R 2 represents methyl, ethyl, n-propyl or i-propyl, n represents 0, 1 or 2), and also includes TiCl 4 , TiF 4 and TiOSO 4 It is.
  • TPT tetraisopropoxy titanium
  • examples of the thickener include castor oil, bentonite, nitrocellulose, ethylcellulose, polyvinylpyrrolidone, starch, gelatin, alginic acid, amorphous silicic acid, polyvinyl butyral, sodium carboxymethylcellulose, polyamide Resin, organic castor oil derivative, diamide / wax, swollen polyacrylate, polyether urea-polyurethane, polyether-polyol and the like can be used alone or in combination of two or more.
  • the installation method of the masking paste 2 is not particularly limited, and for example, a conventionally known coating method can be used.
  • the masking paste 2 installed on the light receiving surface and the back surface of the silicon wafer 1 for solar cells is dried.
  • the solar cell silicon wafer 1 after the masking paste 2 is installed is placed in an oven, and the masking paste 2 is heated at a temperature of about 300 ° C. for a period of several tens of minutes, for example. Can be done.
  • the masking paste 2 after being dried as described above is baked to solidify the masking paste 2.
  • the baking of the masking paste 2 can be performed, for example, by heating the masking paste 2 at a temperature of 800 ° C. or higher and 1000 ° C. or lower for a time of 10 minutes or longer and 60 minutes or shorter.
  • the n-type dopant-containing gas 4 is allowed to flow so that the back surface side of the silicon wafer 1 for solar cells is flown.
  • the n-type dopant is diffused on the back surface of the solar cell silicon wafer 1 exposed from the opening 14 to form the n-type dopant diffusion region 3 in a strip shape.
  • n-type dopant-containing gas 4 for example, POCl 3 containing phosphorus which is an n-type dopant can be used.
  • the n-type dopant diffusion region 3 is a region having a higher n-type dopant concentration than the solar cell silicon wafer 1.
  • FIG.13 (b) is a typical top view when Fig.13 (a) is seen from the back surface side of the silicon wafer 1 for solar cells.
  • all the masking pastes 2 on the light receiving surface and the back surface of the solar cell silicon wafer 1 are once removed.
  • the removal of the masking paste 2 can be performed, for example, by immersing the solar cell silicon wafer 1 on which the masking paste 2 is installed in an aqueous hydrofluoric acid solution.
  • FIG. 14B is a schematic plan view when FIG. 14A is viewed from the back surface side of the solar cell silicon wafer 1.
  • the masking paste 2 is baked to solidify the masking paste 2.
  • the p-type dopant-containing gas 6 is allowed to flow so that the back surface side of the silicon wafer 1 for solar cells is flown.
  • a p-type dopant is diffused on the back surface of the solar cell silicon wafer 1 exposed from the opening 15 to form a p-type dopant diffusion region 5 in a strip shape.
  • the p-type dopant-containing gas 6 for example, BBr 3 containing boron as a p-type dopant can be used.
  • the p-type dopant diffusion region 5 is a region having a higher p-type dopant concentration than the solar cell silicon wafer 1.
  • FIG. 15B is a schematic plan view when FIG. 15A is viewed from the back surface side of the solar cell silicon wafer 1.
  • FIG. 16 (b) is a typical top view when Fig.16 (a) is seen from the back surface side of the silicon wafer 1 for solar cells.
  • a passivation film 7 is formed on the back surface of the silicon wafer 1 for solar cells.
  • the passivation film 7 for example, a silicon oxide film, a silicon nitride film, or a stacked body of a silicon oxide film and a silicon nitride film can be used.
  • the passivation film 7 can be formed by, for example, a plasma CVD method.
  • FIG. 17B is a schematic plan view when FIG. 17A is viewed from the back surface side of the solar cell silicon wafer 1.
  • the solar cell silicon wafer 1 is on the side opposite to the side on which the passivation film 7 is formed.
  • the texture structure 8 is formed by texture-etching the light receiving surface. Texture etching for forming the texture structure 8 can be performed by using the passivation film 7 formed on the back surface of the solar cell silicon wafer 1 as an etching mask.
  • a light-receiving surface of the silicon wafer 1 for solar cells using an etching solution obtained by heating a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or more and 80 ° C. or less. Can be performed by etching.
  • an antireflection film 9 is formed on the texture structure 8 of the silicon wafer 1 for solar cells.
  • the antireflection film 9 for example, a silicon oxide film, a silicon nitride film, or a laminate of a silicon oxide film and a silicon nitride film can be used.
  • the antireflection film 9 can be formed by, for example, a plasma CVD method or the like.
  • FIG. 19B is a schematic plan view when FIG. 19A is viewed from the back surface side of the solar cell silicon wafer 1.
  • FIG. 20B is a schematic plan view when FIG. 20A is viewed from the back surface side of the solar cell silicon wafer 1.
  • the contact holes 10a and 10b are formed by, for example, forming a resist pattern having openings at portions corresponding to the formation positions of the contact holes 10a and 10b on the passivation film 7 using a photolithography technique.
  • the passivation film 7 can be formed by etching or the like from the portion.
  • the n-type electrode 12 and the p-type electrode 13 for example, an electrode made of a metal such as silver can be used.
  • a back electrode type solar cell can be produced.
  • the n-type electrode 12 and the p-type electrode 13 are respectively formed on the gentle back surface of the solar cell silicon wafer 1 having a wide facet 62. Since the contact area between the back surface of the silicon wafer 1 for solar cells and each of the n-type electrode 12 and the p-type electrode 13 can be increased, the solar cell silicon wafer 1 and the electrode (n-type electrode 12) , Contact resistance with the p-type electrode 13) and recombination of carriers at the interface between the surface of the silicon wafer 1 for solar cells and the electrode can be reduced.
  • the printing pattern of the masking paste 2 is less likely to be disturbed due to the unevenness of the back surface of the silicon wafer 1 for solar cells, the printing accuracy of the masking paste 2 can be improved. Furthermore, since the silicon wafer 1 for solar cells is formed with a smaller etching amount than before, the reduction in mechanical strength of the silicon wafer 1 for solar cells and the conversion efficiency of the back electrode type solar cells are suppressed. Can do. Therefore, in the back electrode type solar cell produced as described above, a back electrode type solar cell having good characteristics can be stably manufactured.
  • a back surface electrode type solar cell was manufactured using the silicon wafer 1 for solar cells of this Embodiment was not limited to this, a double-sided electrode type solar cell A solar battery cell other than the back electrode type solar battery cell may be manufactured.
  • n-type single crystal silicon ingot formed by the Czochralski method was pressed against a resin bond wire that was reciprocating and sliced so that the ⁇ 100 ⁇ plane was exposed.
  • a plurality of plate-shaped n-type single crystal silicon wafers (n-type single crystal silicon wafers of the example) having a pseudo square-shaped light receiving surface and back surface with an area of 239.7 cm 2 and a thickness of 200 ⁇ m are manufactured. It was done.
  • the resin bond wire a diamond wire having an average particle diameter of 8 ⁇ m or more and 11 ⁇ m or less fixed to the outer peripheral surface of a piano wire having a cross-sectional diameter of 110 ⁇ m with a resin bond having a thickness of 3 to 5 ⁇ m was used.
  • FIGS. 22 (a) to 24 (a) show micrographs of the surface of the n-type single crystal silicon wafer of the example after the slicing, respectively, and FIGS. 22 (b) to 24 (b) respectively show the micrographs. 22 shows the measurement results of unevenness of the surface of the n-type single crystal silicon wafer of the examples of FIGS. 22 (a) to 24 (a) using a laser microscope.
  • the area ratio of the scratch occupying the surface of the n-type single crystal silicon wafer of the example shown in FIGS. 22 to 24 was measured.
  • the area ratio of the scratch is such that the surface of the n-type single crystal silicon wafer of the example is irradiated with laser light having a spot diameter of 0.4 ⁇ m using a laser microscope (“OLS3000” manufactured by Olympus Corporation).
  • OLS3000 laser microscope
  • the following (I) to (III) were performed.
  • the surface of the n-type single crystal silicon wafer of the example is irradiated with laser light having the spot diameter from the above laser microscope, and the presence or absence of scratches is confirmed at 100 locations per n-type single crystal silicon wafer.
  • the respective areas of the scratches discovered by (I) are calculated, and the sum of the areas is obtained.
  • the scratch area ratio (%) is calculated by dividing the sum of the areas of scratches obtained in (II) by the sum of the inspection areas.
  • Scratch area ratio (%) 100 ⁇ (sum of scratch areas) / (sum of inspection areas) As a result, it was confirmed that the scratch area ratio (%) of the n-type single crystal silicon wafer of the example was 0.1% or less. It was also confirmed that the maximum scratch depth of the n-type single crystal silicon wafer of the example was 5 ⁇ m.
  • the diamond wire having an average particle diameter of 10 ⁇ m or more and 20 ⁇ m or less (90% or more of the particle diameter of the diamond abrasive grains is included in the range of 10 ⁇ m or more and 20 ⁇ m or less on the outer peripheral surface of the piano wire.
  • An n-type single crystal silicon wafer (an n-type single crystal silicon wafer of a comparative example) was prepared in the same manner as described above except that an electrodeposited wire fixed with nickel plating was used.
  • FIG. 25A shows a micrograph of the surface of the n-type single crystal silicon wafer of the comparative example
  • FIG. 25B shows a surface of the n-type single crystal silicon wafer of the comparative example of FIG. The measurement result of unevenness is shown.
  • the area ratio of scratches occupying the surface of the n-type single crystal silicon wafer of the comparative example was measured. As a result, it was confirmed that the scratch area ratio (%) of the n-type single crystal silicon wafer of the comparative example was 0.5% or more. It was also confirmed that the maximum scratch depth of the n-type single crystal silicon wafer of the comparative example was 10 ⁇ m.
  • a plurality of silicon wafers for solar cells of the example were produced from the n-type single crystal silicon wafer of the example, and a silicon wafer for solar cell of the comparative example was produced from the n-type single crystal silicon wafer of the comparative example.
  • facets formed on the surface of the silicon wafer for solar cell of the example It was confirmed that 90% of the facets had a width of 20 ⁇ m or more and 60 ⁇ m or less and a depth of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • a masking paste is printed on the entire surface of one surface of each of the silicon wafer for solar cell of the example and the silicon wafer for solar cell of the comparative example, and a plurality of openings are provided on the opposite surface.
  • a strip-shaped masking paste was printed as follows.
  • the masking paste was dried by placing each solar cell silicon wafer after printing the masking paste in an oven and heating.
  • the masking paste was solidified by heating and baking the masking paste after drying as described above.
  • a masking paste was printed so as to have a plurality of openings exposed in a strip shape parallel to the n-type dopant diffusion region on the surface on the n-type dopant diffusion region formation side of each silicon wafer for solar cells.
  • the masking paste was printed such that a region different from the n-type dopant diffusion region was exposed from the opening.
  • a masking paste was placed on the entire surface of the silicon wafer for each solar cell opposite to the n-type dopant diffusion region forming side.
  • the masking paste was dried by placing and heating each silicon wafer for solar cell in an oven, and then the masking paste was solidified by heating and baking the masking paste.
  • a passivation film made of a silicon nitride film was formed by plasma CVD on the entire surface on the formation side of the n-type dopant diffusion region and the p-type dopant diffusion region of each silicon wafer for solar cells.
  • a texture structure was formed by texture-etching the surface opposite to the passivation film forming side of each silicon wafer for solar cells.
  • the texture etching was performed using an etching solution at 70 ° C. to 80 ° C. obtained by adding isopropyl alcohol to a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 3% by volume.
  • an antireflection film made of a silicon nitride film was formed on the texture structure of each solar cell silicon wafer by plasma CVD.
  • a commercially available silver paste is applied so as to fill the contact holes of the silicon wafers for solar cells, dried, and heated to baked the silver paste to form an n-type dopant diffusion region and a p-type dopant diffusion region. Silver electrodes in contact with each other were formed.
  • the back electrode type solar cell of the comparative example was produced from the silicon wafer for solar cell of the comparative example.
  • the back electrode type solar battery cell of the example and the back electrode type solar battery cell of the comparative example were irradiated with pseudo-sunlight using a solar simulator, current-voltage (IV) characteristics were measured, and the short-circuit current density was measured. (MA / cm 2 ), open circuit voltage (V), F.R. F. (Fill Factor) and photoelectric conversion efficiency (%) were measured.
  • the short-circuit current density, open-circuit voltage, F.V. F The relative value of the short circuit current density of the back electrode type solar cell of the comparative example is 100, the relative value of the open circuit voltage is 99, and the photoelectric conversion efficiency is 100, respectively. F. The relative value was 97, and the relative value of photoelectric conversion efficiency was 96.
  • the back electrode type solar battery cell of the example can stably obtain good characteristics as compared with the back electrode type solar battery cell of the comparative example.
  • the surface of the silicon wafer for solar cell of the example was formed by forming the silver electrode on the gentle surface of the silicon wafer for solar cell of the example with few scratches.
  • the contact area between the silver electrode and the surface of the silicon wafer for the solar cell of the example and the contact resistance between the silver electrode and the surface of the silicon wafer for the solar cell of the example and silver was increased. This is probably because the recombination of carriers at the interface with the electrode could be reduced.
  • the present invention can be used in a method for slicing a silicon crystal ingot and a method for producing a silicon wafer for solar cells.

Abstract

A production method for a silicon wafer (1) for a solar cell, including: a step in which a silicon crystal ingot (50) is sliced by a resin bond wire (53) comprising abrasive grains (22) having an average particle diameter of 10-20 µm; and a step in which a crystal silicon wafer (11) obtained by said slicing of the silicon crystal ingot (50) is etched so as to have a facet (62) having a width of 10-150 µm in the surface of said crystal silicon wafer (11).

Description

太陽電池用ウエハ、太陽電池およびその製造方法Wafer for solar cell, solar cell and method for manufacturing the same
 本発明は、太陽電池用シリコンウエハの製造方法、太陽電池用シリコンウエハ、半導体装置の製造方法、および、半導体装置に関する。 The present invention relates to a method for manufacturing a silicon wafer for solar cells, a silicon wafer for solar cells, a method for manufacturing a semiconductor device, and a semiconductor device.
 近年、エネルギ資源の枯渇の問題や大気中のCO2の増加のような地球環境問題などからクリーンなエネルギの開発が望まれており、特に太陽電池セルを用いた太陽光発電が新しいエネルギ源として開発、実用化され、発展の道を歩んでいる。 In recent years, development of clean energy has been demanded due to problems of depletion of energy resources and global environmental problems such as an increase in CO 2 in the atmosphere. In particular, solar power generation using solar cells is a new energy source. It has been developed, put into practical use, and is on the path of development.
 太陽電池セルは、従来から、たとえば単結晶または多結晶のシリコンウエハの受光面にシリコンウエハの導電型と反対の導電型となる不純物を拡散することによってpn接合を形成し、シリコンウエハの受光面と受光面の反対側の裏面にそれぞれ電極を形成して製造された両面電極型太陽電池セルが主流となっている。また、両面電極型太陽電池セルにおいては、シリコンウエハの裏面にシリコンウエハと同じ導電型の不純物を高濃度で拡散することによって、裏面電界効果による高出力化を図ることも一般的となっている。 Conventionally, a solar cell has formed a pn junction by diffusing an impurity having a conductivity type opposite to that of a silicon wafer into a light receiving surface of a monocrystalline or polycrystalline silicon wafer, for example, Double-sided electrode type solar cells manufactured by forming electrodes on the back surface opposite to the light receiving surface are mainly used. In a double-sided electrode type solar cell, it is also common to increase the output by the back surface field effect by diffusing impurities of the same conductivity type as the silicon wafer at a high concentration on the back surface of the silicon wafer. .
 また、シリコンウエハの受光面に電極を形成せず、裏面のみに電極を形成した裏面電極型太陽電池セルについても研究開発が進められている(たとえば、特許文献1参照)。 Further, research and development is also underway for a back electrode type solar cell in which an electrode is not formed on the light receiving surface of a silicon wafer but an electrode is formed only on the back surface (see, for example, Patent Document 1).
 以下、図26(a)~図26(f)の模式的断面図を参照して、従来の裏面電極型太陽電池セルの製造方法の一例について説明する。 Hereinafter, an example of a conventional method for manufacturing a back electrode type solar cell will be described with reference to schematic cross-sectional views of FIGS. 26 (a) to 26 (f).
 まず、図26(a)に示すように、マスキングペースト102をn型またはp型の導電型を有するシリコンウエハ101の受光面側の全面にスクリーン印刷して乾燥させた後に、シリコンウエハ101の裏面側には部分的に開口部114を設けてマスキングペースト102をスクリーン印刷する。 First, as shown in FIG. 26A, the masking paste 102 is screen-printed on the entire light-receiving surface side of the silicon wafer 101 having n-type or p-type conductivity and dried, and then the back surface of the silicon wafer 101 is formed. An opening 114 is partially provided on the side, and the masking paste 102 is screen-printed.
 次に、図26(b)に示すように、シリコンウエハ101の裏面の開口部114からn型ドーパント104を拡散させることにより、n型ドーパント拡散領域103が形成される。 Next, as shown in FIG. 26B, the n-type dopant diffusion region 103 is formed by diffusing the n-type dopant 104 from the opening 114 on the back surface of the silicon wafer 101.
 その後、シリコンウエハ101の受光面側および裏面側のマスキングペースト102をすべて除去し、再度、図26(c)に示すように、マスキングペースト102をシリコンウエハ101の受光面側の全面にスクリーン印刷して乾燥させた後に、シリコンウエハ101の裏面側に部分的に開口部115を設けてマスキングペースト102をスクリーン印刷する。 Thereafter, all of the masking paste 102 on the light receiving surface side and the back surface side of the silicon wafer 101 is removed, and the masking paste 102 is screen printed again on the entire surface of the silicon wafer 101 on the light receiving surface side, as shown in FIG. After being dried, the opening 115 is partially provided on the back side of the silicon wafer 101 and the masking paste 102 is screen-printed.
 次に、図26(d)に示すように、シリコンウエハ101の裏面の開口部115からp型ドーパント106を拡散させることにより、p型ドーパント拡散領域105が形成される。 Next, as shown in FIG. 26D, the p-type dopant diffusion region 105 is formed by diffusing the p-type dopant 106 from the opening 115 on the back surface of the silicon wafer 101.
 次に、図26(e)に示すように、シリコンウエハ101の受光面側の表面をテクスチャエッチングすることによってテクスチャ構造108を形成した後に、テクスチャ構造108上に反射防止膜109を形成するとともに、シリコンウエハ101の裏面側にパッシベーション膜107を形成する。 Next, as shown in FIG. 26 (e), after the texture structure 108 is formed by texture etching the surface on the light receiving surface side of the silicon wafer 101, an antireflection film 109 is formed on the texture structure 108, and A passivation film 107 is formed on the back side of the silicon wafer 101.
 その後、図26(f)に示すように、シリコンウエハ101の裏面のパッシベーション膜107にn型ドーパント拡散領域103およびp型ドーパント拡散領域105のそれぞれの表面を露出させる開口部を設けた後に、当該開口部を通して、n型ドーパント拡散領域103に接触するn型用電極112を形成するとともに、p型ドーパント拡散領域105に接触するp型用電極113を形成する。以上により、従来の裏面電極型太陽電池セルが作製される。 Thereafter, as shown in FIG. 26 (f), after providing openings for exposing the respective surfaces of the n-type dopant diffusion region 103 and the p-type dopant diffusion region 105 in the passivation film 107 on the back surface of the silicon wafer 101, Through the opening, an n-type electrode 112 in contact with the n-type dopant diffusion region 103 is formed, and a p-type electrode 113 in contact with the p-type dopant diffusion region 105 is formed. Thus, a conventional back electrode type solar battery cell is manufactured.
 また、非特許文献1には、アルカリ濃度が51.9%、48.0%、35.0%、10.0%のNaOH水溶液を円筒容器に入れて65℃に設定した後に2インチのシリコンウエハを浸漬させて20分及び30分のエッチングを行なうことが記載されている。 Non-Patent Document 1 describes that 2 inches of silicon after an alkali solution of 51.9%, 48.0%, 35.0%, 10.0% is placed in a cylindrical container and set at 65 ° C. It describes that the wafer is immersed and etched for 20 minutes and 30 minutes.
 また、非特許文献1には、48.0%NaOHで20分間、51.9%NaOHで30分間、共に65℃でシリコンウエハをエッチングし、表面粗度を測定した結果、表面粗度は、48.0%エッチング品で0.354μm、51.9%エッチング品で0.216μmであって、51.9%エッチング品の方が良好なエッチング状態であり、より高濃度のアルカリの方がエッチング状態が良いことも記載されている。 Further, in Non-Patent Document 1, as a result of etching the silicon wafer at 65 ° C. for 20 minutes with 48.0% NaOH and for 30 minutes with 51.9% NaOH, the surface roughness was measured. The 48.0% etched product is 0.354 μm, the 51.9% etched product is 0.216 μm, the 51.9% etched product is in a better etching state, and the higher concentration alkali is etched. It also states that the condition is good.
 なお、結晶シリコンを用いる電子デバイスの分野(特にLSI)では機械的研磨にてシリコンウエハの表面の平滑性を向上させる手法が一般的であるが、太陽電池の技術分野では、高スループットおよび低コスト化のため、非特許文献1に記載されているようなケミカルエッチングを用いることが主流となっている。 In the field of electronic devices using crystalline silicon (particularly LSI), a technique for improving the smoothness of the surface of a silicon wafer by mechanical polishing is common, but in the technical field of solar cells, high throughput and low cost are achieved. For this reason, it has become the mainstream to use chemical etching as described in Non-Patent Document 1.
特開2007-49079号公報JP 2007-49079 A
 シリコンウエハを用いて良好な特性の裏面電極型太陽電池セルを安定して作製するためには、電極との接触抵抗をなるべく低減することができ、シリコンウエハの表面と電極との界面でのキャリアの再結合を防止できるようなシリコンウエハの表面の平滑化を行なうことが有効である。さらに、マスキングペーストの印刷精度を向上させることも有効である。 In order to stably produce a back electrode type solar cell having good characteristics using a silicon wafer, the contact resistance with the electrode can be reduced as much as possible, and the carrier at the interface between the surface of the silicon wafer and the electrode can be reduced. It is effective to smooth the surface of the silicon wafer so that recombination can be prevented. It is also effective to improve the printing accuracy of the masking paste.
 背景技術でも述べたようなケミカルエッチングによるシリコンウエハの表面の平滑化は、エッチング量を増やすことでシリコンウエハの表面の平滑性を向上させることが容易であることはよく知られている。 It is well known that the smoothing of the surface of a silicon wafer by chemical etching as described in the background art can easily improve the smoothness of the surface of the silicon wafer by increasing the etching amount.
 その一方で、高スループットおよび低コスト化のため、裏面電極型太陽電池セルのシリコンウエハの薄型化が求められており、スライス直後のシリコンウエハの厚みは年々薄くなりつつある。このような状況下において、エッチング量を増やすことは裏面電極型太陽電池セルの機械的強度および変換効率の低下を招くという問題がある。 On the other hand, in order to achieve high throughput and low cost, thinning of the silicon wafer of the back electrode type solar cell is required, and the thickness of the silicon wafer immediately after slicing is becoming thinner year by year. Under such circumstances, increasing the etching amount has a problem in that the mechanical strength and the conversion efficiency of the back electrode type solar cell are reduced.
 このような問題は、裏面電極型太陽電池セルだけの問題ではなく、両面電極型太陽電池セルなどの太陽電池セルを含む太陽電池全体の問題でもある。 Such a problem is not only a problem of the back electrode type solar battery cell but also a problem of the entire solar battery including a solar battery cell such as a double-sided electrode type solar battery cell.
 上記の事情に鑑みて、本発明の目的は、良好な特性を有する太陽電池を安定して製造することができる太陽電池用シリコンウエハの製造方法、および、良好な特性を有する太陽電池を安定して製造するために用いられる太陽電池用シリコンウエハを提供することにある。また、本発明の目的は、このような太陽電池用シリコンウエハの製造方法を用いた半導体装置の製造方法、および、太陽電池用シリコンウエハを用いた半導体装置を提供することにある。 In view of the above circumstances, an object of the present invention is to stably manufacture a solar cell silicon wafer that can stably manufacture a solar cell having good characteristics, and a solar cell having good characteristics. Another object of the present invention is to provide a silicon wafer for solar cells used for manufacturing. Moreover, the objective of this invention is providing the manufacturing method of the semiconductor device using such a manufacturing method of the silicon wafer for solar cells, and the semiconductor device using the silicon wafer for solar cells.
 本発明は、平均粒径が10μm以上20μm以下の砥粒を備えたレジンボンドワイヤによりシリコン結晶インゴットをスライスする工程と、上記シリコン結晶インゴットの上記スライスにより得られた結晶シリコンウエハを、上記結晶シリコンウエハの表面に10μm以上150μm以下の幅のファセットを有するように、エッチングする工程と、を含む、太陽電池用シリコンウエハの製造方法である。 The present invention provides a step of slicing a silicon crystal ingot with a resin bond wire having abrasive grains having an average grain size of 10 μm or more and 20 μm or less, and a crystalline silicon wafer obtained by slicing the silicon crystal ingot. And a step of etching so as to have a facet with a width of 10 μm or more and 150 μm or less on the surface of the wafer.
 ここで、本発明の太陽電池用シリコンウエハの製造方法において、上記エッチングする工程においては、上記結晶シリコンウエハの表面に0.1μm以上10μm以下の深さのファセットを有するように上記結晶シリコンウエハをエッチングすることが好ましい。 Here, in the method for producing a silicon wafer for solar cells of the present invention, in the etching step, the crystalline silicon wafer is formed so that the surface of the crystalline silicon wafer has a facet with a depth of 0.1 μm or more and 10 μm or less. Etching is preferred.
 また、本発明の太陽電池用シリコンウエハの製造方法において、上記エッチングする工程においては、上記結晶シリコンウエハのエッチング量は、上記結晶シリコンウエハの片側の表面につき5μm以上25μm以下であることが好ましい。 In the method for producing a silicon wafer for solar cells of the present invention, in the etching step, the etching amount of the crystalline silicon wafer is preferably 5 μm or more and 25 μm or less per one surface of the crystalline silicon wafer.
 また、本発明の太陽電池用シリコンウエハの製造方法において、上記エッチングする工程においては、濃度が20質量%以上35質量%以下の水酸化ナトリウム水溶液を用いることが好ましい。 Moreover, in the method for producing a silicon wafer for solar cells of the present invention, it is preferable to use an aqueous sodium hydroxide solution having a concentration of 20% by mass to 35% by mass in the etching step.
 また、本発明の太陽電池用シリコンウエハの製造方法においては、上記シリコン結晶インゴットは、単結晶シリコンであることが好ましい。 In the method for producing a silicon wafer for solar cells of the present invention, the silicon crystal ingot is preferably single crystal silicon.
 また、本発明の太陽電池用シリコンウエハの製造方法においては、上記スライスする工程において、上記シリコン結晶インゴットは、{100}面が露出するようにスライスされることが好ましい。 Moreover, in the method for producing a silicon wafer for solar cells of the present invention, in the slicing step, the silicon crystal ingot is preferably sliced so that the {100} plane is exposed.
 また、本発明の太陽電池用シリコンウエハの製造方法においては、上記スライスする工程において、上記結晶シリコンウエハの表面を占めるスクラッチの面積比が0.1%以下であることが好ましい。 In the method for producing a silicon wafer for solar cells of the present invention, it is preferable that in the slicing step, the area ratio of scratches occupying the surface of the crystalline silicon wafer is 0.1% or less.
 また、本発明は、平均粒径が10μm以上20μm以下の砥粒を備えたレジンボンドワイヤによりシリコン結晶インゴットをスライスする工程を含む製造方法により得られ、上記シリコン結晶インゴットの上記スライスにより得られた結晶シリコンウエハの表面を占めるスクラッチの面積比が0.1%以下である、太陽電池用シリコンウエハにも関する。 Further, the present invention is obtained by a manufacturing method including a step of slicing a silicon crystal ingot with a resin bond wire having abrasive grains having an average particle size of 10 μm or more and 20 μm or less, and obtained by the slicing of the silicon crystal ingot. The present invention also relates to a silicon wafer for solar cells in which the area ratio of scratches occupying the surface of the crystalline silicon wafer is 0.1% or less.
 また、本発明は、上記レジンボンドワイヤにより単結晶シリコン結晶インゴットを{100}面が露出するようにスライスする工程と、上記単結晶シリコン結晶インゴットの上記スライスにより得られた単結晶シリコンウエハを水酸化ナトリウムを用いてエッチングする工程と、を含む製造方法により得られ、厚さが200μm以下の太陽電池用シリコンウエハにも関する。 The present invention also includes a step of slicing a single crystal silicon crystal ingot with the resin bond wire so that the {100} plane is exposed, and a single crystal silicon wafer obtained by slicing the single crystal silicon crystal ingot with water. The present invention also relates to a silicon wafer for solar cells obtained by a manufacturing method including a step of etching using sodium oxide and having a thickness of 200 μm or less.
 ここで、本発明の太陽電池用シリコンウエハにおいて、上記エッチングする工程においては、上記単結晶シリコンウエハの表面に10μm以上150μm以下の幅のファセットを有するように上記単結晶シリコンウエハをエッチングすることが好ましい。 Here, in the silicon wafer for solar cell of the present invention, in the etching step, the single crystal silicon wafer is etched so as to have a facet having a width of 10 μm or more and 150 μm or less on the surface of the single crystal silicon wafer. preferable.
 また、本発明の太陽電池用シリコンウエハにおいて、上記エッチングする工程においては、上記単結晶シリコンウエハの表面に0.1μm以上10μm以下の深さのファセットを有するように上記単結晶シリコンウエハをエッチングすることが好ましい。 In the silicon wafer for solar cell of the present invention, in the etching step, the single crystal silicon wafer is etched so that the surface of the single crystal silicon wafer has a facet with a depth of 0.1 μm or more and 10 μm or less. It is preferable.
 また、本発明は、平均粒径が10μm以上20μm以下の砥粒を備えたレジンボンドワイヤによりシリコン結晶インゴットをスライスする工程と、上記シリコン結晶インゴットの上記スライスにより得られた結晶シリコンウエハを、上記結晶シリコンウエハの表面に10μm以上150μm以下の幅のファセットを有するように、エッチングする工程と、上記結晶シリコンウエハの上記ファセットを有する上記表面に電極を形成する工程と、を含み、上記エッチングする工程においては、上記結晶シリコンウエハのエッチング量は、上記結晶シリコンウエハの片側の表面につき5μm以上25μm以下であり、上記エッチングする工程においては、濃度が20質量%以上35質量%以下の水酸化ナトリウム水溶液を用いる、半導体装置の製造方法にも関する。 The present invention also includes a step of slicing a silicon crystal ingot with a resin bond wire provided with abrasive grains having an average grain size of 10 μm or more and 20 μm or less, and a crystalline silicon wafer obtained by slicing the silicon crystal ingot. An etching process comprising: etching the surface of the crystalline silicon wafer to have a facet having a width of 10 μm or more and 150 μm or less; and forming an electrode on the surface of the crystalline silicon wafer having the facet. The etching amount of the crystalline silicon wafer is 5 μm or more and 25 μm or less per one surface of the crystalline silicon wafer. In the etching step, the concentration of the aqueous solution of sodium hydroxide is 20% by mass or more and 35% by mass or less. Of semiconductor device using Also it relates to.
 また、本発明は、上記の太陽電池用シリコンウエハと、上記結晶シリコンウエハの上記ファセットを有する上記表面に設けられた電極と、を備えた、半導体装置にも関する。 The present invention also relates to a semiconductor device including the above-described solar cell silicon wafer and the electrode provided on the surface having the facet of the crystalline silicon wafer.
 本発明によれば、良好な特性を有する太陽電池を安定して製造することができる太陽電池用シリコンウエハの製造方法、および、良好な特性を有する太陽電池を安定して製造するために用いられる太陽電池用シリコンウエハを提供することができる。また、このような太陽電池用シリコンウエハの製造方法を用いた半導体装置の製造方法、および、太陽電池用シリコンウエハを用いた半導体装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is used in order to stably manufacture the solar cell which has a favorable characteristic, and the manufacturing method of the silicon wafer for solar cells which can stably manufacture the solar cell which has a favorable characteristic. A silicon wafer for solar cells can be provided. Moreover, the manufacturing method of the semiconductor device using such a manufacturing method of the silicon wafer for solar cells, and the semiconductor device using the silicon wafer for solar cells can be provided.
実施の形態の太陽電池用シリコンウエハの製造方法において、レジンボンドワイヤでシリコン結晶インゴットをスライスする工程の一例を図解する模式的な斜視図である。In the manufacturing method of the silicon wafer for solar cells of an embodiment, it is a typical perspective view illustrating an example of a process of slicing a silicon crystal ingot with a resin bond wire. 実施の形態の太陽電池用シリコンウエハの製造方法において、結晶シリコンウエハが形成される工程の一例を図解する模式的な斜視図である。It is a typical perspective view illustrating an example of the process in which a crystalline silicon wafer is formed in the manufacturing method of the silicon wafer for solar cells of an embodiment. 図1に示すレジンボンドワイヤの一例の模式的な拡大断面図である。It is a typical expanded sectional view of an example of the resin bond wire shown in FIG. レジンボンドワイヤでシリコン結晶インゴットがスライスされることによって得られた結晶シリコンウエハの一例の模式的な断面図である。It is typical sectional drawing of an example of the crystalline silicon wafer obtained by slicing a silicon crystal ingot with a resin bond wire. 図4に示す結晶シリコンウエハの表面の一部の一例の模式的な拡大断面図である。It is a typical expanded sectional view of an example of a part of surface of the crystalline silicon wafer shown in FIG. (a)は図4に示す結晶シリコンウエハの表面の一例の模式的な拡大平面図であり、(b)は(a)のVIb-VIbに沿った模式的な拡大断面図である。(A) is a schematic enlarged plan view of an example of the surface of the crystalline silicon wafer shown in FIG. 4, and (b) is a schematic enlarged sectional view along VIb-VIb of (a). 図4に示す結晶シリコンウエハの表面が上記のようにエッチングされることにより形成された太陽電池用シリコンウエハの一例の模式的な断面図である。It is typical sectional drawing of an example of the silicon wafer for solar cells formed by etching the surface of the crystalline silicon wafer shown in FIG. 4 as mentioned above. 図7に示す太陽電池用シリコンウエハの表面の一例の模式的な拡大断面図である。It is a typical expanded sectional view of an example of the surface of the silicon wafer for solar cells shown in FIG. 実施の形態の太陽電池用シリコンウエハのファセットの一例の模式的な拡大断面図である。It is a typical expanded sectional view of an example of the facet of the silicon wafer for solar cells of an embodiment. 水酸化ナトリウム濃度が35質量%よりも大きい水酸化ナトリウム水溶液で結晶シリコンウエハの表面をエッチングして得られた太陽電池用シリコンウエハのファセットの一例の模式的な拡大断面図である。It is a typical expanded sectional view of an example of the facet of the silicon wafer for solar cells obtained by etching the surface of a crystalline silicon wafer with the sodium hydroxide aqueous solution whose sodium hydroxide concentration is larger than 35 mass%. 水酸化ナトリウム濃度が20質量%未満の水酸化ナトリウム水溶液で結晶シリコンウエハの表面をエッチングして得られた太陽電池用シリコンウエハのファセットの一例の模式的な拡大断面図である。It is a typical expanded sectional view of an example of the facet of the silicon wafer for solar cells obtained by etching the surface of a crystalline silicon wafer with the sodium hydroxide aqueous solution whose sodium hydroxide concentration is less than 20 mass%. (a)は実施の形態の太陽電池用シリコンウエハの表面にマスキングペーストを設置する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing which illustrates an example of the process of installing a masking paste on the surface of the silicon wafer for solar cells of embodiment, (b) is the back surface of the silicon wafer for solar cells. It is a typical top view when it sees from the side. (a)は実施の形態の太陽電池用シリコンウエハの裏面にn型ドーパント拡散領域を形成する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing illustrating an example of the process of forming an n-type dopant diffusion area | region in the back surface of the silicon wafer for solar cells of embodiment, (b) is (a) silicon for solar cells It is a typical top view when it sees from the back surface side of a wafer. (a)は実施の形態の太陽電池用シリコンウエハの表面にマスキングペーストを設置する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing which illustrates an example of the process of installing a masking paste on the surface of the silicon wafer for solar cells of embodiment, (b) is the back surface of the silicon wafer for solar cells. It is a typical top view when it sees from the side. (a)は実施の形態の太陽電池用シリコンウエハの裏面にp型ドーパント拡散領域を形成する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing illustrating an example of the process of forming a p-type dopant diffusion area | region in the back surface of the silicon wafer for solar cells of embodiment, (b) is silicon for solar cells. It is a typical top view when it sees from the back surface side of a wafer. (a)は実施の形態の太陽電池用シリコンウエハの裏面のn型ドーパント拡散領域およびp型ドーパント拡散領域を露出させる工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing illustrating an example of the process of exposing the n-type dopant diffusion area | region and p-type dopant diffusion area | region of the back surface of the silicon wafer for solar cells of embodiment, (b) is (a). It is a typical top view when seeing from the back surface side of the silicon wafer for solar cells. (a)は実施の形態の太陽電池用シリコンウエハの裏面にパッシベーション膜を形成する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing illustrating an example of the process of forming a passivation film in the back surface of the silicon wafer for solar cells of embodiment, (b) is the back surface of the silicon wafer for solar cells. It is a typical top view when it sees from the side. (a)は実施の形態の太陽電池用シリコンウエハの受光面にテクスチャ構造を形成する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing illustrating an example of the process of forming a texture structure in the light-receiving surface of the silicon wafer for solar cells of embodiment, (b) is (a) of the silicon wafer for solar cells. It is a typical top view when it sees from the back side. (a)は実施の形態の太陽電池用シリコンウエハのテクスチャ構造上に反射防止膜を形成する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing illustrating an example of the process of forming an anti-reflective film on the texture structure of the silicon wafer for solar cells of embodiment, (b) is silicon for solar cells. It is a typical top view when it sees from the back surface side of a wafer. (a)は実施の形態の太陽電池用シリコンウエハの裏面のパッシベーション膜にコンタクトホールを形成する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing illustrating an example of the process of forming a contact hole in the passivation film of the back surface of the silicon wafer for solar cells of embodiment, (b) is (a) silicon for solar cells It is a typical top view when it sees from the back surface side of a wafer. (a)は実施の形態の太陽電池用シリコンウエハの裏面にn型用電極およびp型用電極を形成する工程の一例を図解する模式的な断面図であり、(b)は(a)を太陽電池用シリコンウエハの裏面側から見たときの模式的な平面図である。(A) is typical sectional drawing illustrating an example of the process of forming the electrode for n-types, and the electrode for p-types in the back surface of the silicon wafer for solar cells of embodiment, (b) is (a). It is a typical top view when it sees from the back surface side of the silicon wafer for solar cells. (a)は実施例のn型単結晶シリコンウエハの表面の顕微鏡写真であり、(b)は実施例のn型単結晶シリコンウエハの表面のレーザ顕微鏡による凹凸の測定結果である。(A) is the microscope picture of the surface of the n-type single crystal silicon wafer of an Example, (b) is the measurement result of the unevenness | corrugation by the laser microscope of the surface of the n-type single crystal silicon wafer of an Example. (a)は実施例のn型単結晶シリコンウエハの表面の顕微鏡写真であり、(b)は実施例のn型単結晶シリコンウエハの表面のレーザ顕微鏡による凹凸の測定結果である。(A) is the microscope picture of the surface of the n-type single crystal silicon wafer of an Example, (b) is the measurement result of the unevenness | corrugation by the laser microscope of the surface of the n-type single crystal silicon wafer of an Example. (a)は実施例のn型単結晶シリコンウエハの表面の顕微鏡写真であり、(b)は実施例のn型単結晶シリコンウエハの表面のレーザ顕微鏡による凹凸の測定結果である。(A) is the microscope picture of the surface of the n-type single crystal silicon wafer of an Example, (b) is the measurement result of the unevenness | corrugation by the laser microscope of the surface of the n-type single crystal silicon wafer of an Example. (a)は比較例のn型単結晶シリコンウエハの表面の顕微鏡写真であり、(b)は比較例のn型単結晶シリコンウエハの表面のレーザ顕微鏡による凹凸の測定結果である。(A) is the microscope picture of the surface of the n-type single crystal silicon wafer of a comparative example, (b) is the measurement result of the unevenness | corrugation by the laser microscope of the surface of the n-type single crystal silicon wafer of a comparative example. (a)~(f)は、従来の裏面電極型太陽電池セルの製造方法の一例について図解する模式的な断面図である。(A)-(f) is typical sectional drawing illustrated about an example of the manufacturing method of the conventional back electrode type photovoltaic cell.
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。 Hereinafter, embodiments of the present invention will be described. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.
 <電着ワイヤによるスライス工程>
 図1に、本実施の形態の太陽電池用シリコンウエハの製造方法において、レジンボンドワイヤでシリコン結晶インゴットをスライスする工程の一例を図解する模式的な斜視図を示す。ここで、シリコン結晶インゴット50は、レジンボンドワイヤ53によってスライスされる。
<Slicing process with electrodeposited wire>
FIG. 1 is a schematic perspective view illustrating an example of a step of slicing a silicon crystal ingot with a resin bond wire in the method for manufacturing a silicon wafer for solar cells of the present embodiment. Here, the silicon crystal ingot 50 is sliced by the resin bond wire 53.
 図1に示すように、レジンボンドワイヤ53は、所定の間隔をあけて配置されたガイドローラ51,52の間に巻き掛けられている。その結果、レジンボンドワイヤ53は、それぞれのガイドローラ51,52において、ガイドローラ51,52の長手方向に沿って、所定の間隔をあけて複数箇所で張られた状態となる。この状態で、ガイドローラ51,52が正転・逆転を繰り返すことによって、レジンボンドワイヤ53が矢印55の方向に往復走行を行なうことになる。 As shown in FIG. 1, the resin bond wire 53 is wound between guide rollers 51 and 52 arranged at a predetermined interval. As a result, the resin bond wire 53 is stretched at a plurality of locations at predetermined intervals along the longitudinal direction of the guide rollers 51 and 52 in the respective guide rollers 51 and 52. In this state, when the guide rollers 51 and 52 repeat normal rotation and reverse rotation, the resin bond wire 53 reciprocates in the direction of the arrow 55.
 レジンボンドワイヤ53が矢印55の方向に往復走行をしている状態で、シリコン結晶インゴット50を矢印54の方向に移動させる。そして、シリコン結晶インゴット50を往復走行をしているレジンボンドワイヤ53に押し付けることによって、たとえば図2の模式的斜視図に示すように、シリコン結晶インゴット50が複数箇所でスライスされて、複数枚の板状の結晶シリコンウエハ11が形成される。なお、シリコン結晶インゴット50のスライス時にはシリコン結晶インゴット50の表面にたとえば冷却水などのクーラントを塗布してスライスして、スライス時にレジンボンドワイヤ53への熱の発生を抑えることができる。 In the state where the resin bond wire 53 is reciprocating in the direction of the arrow 55, the silicon crystal ingot 50 is moved in the direction of the arrow 54. Then, by pressing the silicon crystal ingot 50 against the resin bond wire 53 that is traveling reciprocally, the silicon crystal ingot 50 is sliced at a plurality of locations, for example, as shown in a schematic perspective view of FIG. A plate-like crystalline silicon wafer 11 is formed. Note that when the silicon crystal ingot 50 is sliced, a coolant such as cooling water is applied to the surface of the silicon crystal ingot 50 and sliced, so that generation of heat to the resin bond wire 53 can be suppressed during slicing.
 シリコン結晶インゴット50は、{100}面が露出するようにスライスされることが好ましい。この場合には、本発明によって得られる太陽電池用シリコンウエハの受光面を{100}面とすることができ、アルカリエッチングによるテクスチャ構造の形成が容易になるため、良好な特性を有する太陽電池を安定して製造することができる傾向にある。 The silicon crystal ingot 50 is preferably sliced so that the {100} plane is exposed. In this case, the light-receiving surface of the solar cell silicon wafer obtained by the present invention can be a {100} surface, and it becomes easy to form a texture structure by alkali etching. It tends to be able to be manufactured stably.
 図3に、図1に示すレジンボンドワイヤ53の一例の模式的な断面図を示す。ここで、レジンボンドワイヤ53は、芯線20と、芯線20の外周面にレジンボンド材21で固着された砥粒22と、を含んでいる。 FIG. 3 shows a schematic cross-sectional view of an example of the resin bond wire 53 shown in FIG. Here, the resin bond wire 53 includes the core wire 20 and the abrasive grains 22 fixed to the outer peripheral surface of the core wire 20 with the resin bond material 21.
 芯線20としては、たとえばピアノ線などを用いることができる。芯線20の直径は、たとえば115μm程度とすることができる。砥粒22としてはたとえばダイヤモンド砥粒などを用いることができる。レジンボンド材21としてはたとえば芯線20の外表面の樹脂などを用いることができる。レジンボンド材21の厚さは、たとえば3~5μm程度とすることができる。 For example, a piano wire can be used as the core wire 20. The diameter of the core wire 20 can be about 115 micrometers, for example. For example, diamond abrasive grains can be used as the abrasive grains 22. As the resin bond material 21, for example, a resin on the outer surface of the core wire 20 can be used. The thickness of the resin bond material 21 can be about 3 to 5 μm, for example.
 本実施の形態の太陽電池用シリコンウエハの製造方法において、レジンボンドワイヤ53の砥粒22としては、平均粒径が10μm以上20μm以下の砥粒22が用いられる。従来においては、結晶シリコンウエハ11の表面にスクラッチが多く形成されて、太陽電池の製造時に結晶シリコンウエハ11の表面に印刷されるマスキングペーストのパターンニング性が低下し、太陽電池の電極直下においてキャリアの再結合が生じること等によって太陽電池の特性が低下することがあった。そこで、本発明者が鋭意検討した結果、平均粒径が10μm以上20μm以下の砥粒22を備えたレジンボンドワイヤ53を用いてシリコン結晶インゴット50をスライスすることによって、結晶シリコンウエハ11の表面のスクラッチの形成を抑えることができ、良好な特性を有する太陽電池を安定して製造することができることが見い出された。 In the method for producing a silicon wafer for solar cell of the present embodiment, as the abrasive grains 22 of the resin bond wire 53, abrasive grains 22 having an average particle diameter of 10 μm or more and 20 μm or less are used. Conventionally, a lot of scratches are formed on the surface of the crystalline silicon wafer 11, and the patterning property of the masking paste printed on the surface of the crystalline silicon wafer 11 during the production of the solar cell is lowered, and the carrier just below the electrode of the solar cell. The characteristics of the solar cell may deteriorate due to the occurrence of recombination. Accordingly, as a result of intensive studies by the present inventors, the silicon crystal ingot 50 is sliced using a resin bond wire 53 having an abrasive grain 22 having an average particle diameter of 10 μm or more and 20 μm or less, whereby the surface of the crystalline silicon wafer 11 is It has been found that the formation of scratches can be suppressed, and a solar cell having good characteristics can be stably produced.
 なお、本明細書において、砥粒22の平均粒径が10μm以上20μm以下とは、砥粒22の長径aと短径bとから以下の式(i)により算出される砥粒22の粒径の90%以上が10μm以上20μm以下の範囲内に含まれていることを意味する。 In this specification, the average grain size of the abrasive grains 22 is 10 μm or more and 20 μm or less. The grain diameter of the abrasive grains 22 calculated from the major axis “a” and the minor axis “b” of the abrasive grains 22 by the following formula (i). It means that 90% or more is included in the range of 10 μm or more and 20 μm or less.
 砥粒22の粒径=(長径a+短径b)/2 …(i)
 シリコン結晶インゴット50としては、たとえば、チョクラルスキー法または鋳造法によって作製された単結晶シリコンインゴットまたは多結晶シリコンインゴットなどが用いられるが、単結晶シリコンインゴットであることが好ましい。シリコン結晶インゴット50が単結晶シリコンインゴットである場合には、本発明によって得られた太陽電池用シリコンウエハを用いて製造された太陽電池の特性が良好なものとなる傾向にある。なお、シリコン結晶インゴット50は、n型またはp型のドーパントがドープされることによって、n型またはp型の導電型を有していてもよい。
Particle size of abrasive grains 22 = (major axis a + minor axis b) / 2 (i)
As the silicon crystal ingot 50, for example, a single crystal silicon ingot or a polycrystalline silicon ingot produced by the Czochralski method or a casting method is used, and a single crystal silicon ingot is preferable. When the silicon crystal ingot 50 is a single crystal silicon ingot, the characteristics of a solar cell manufactured using the silicon wafer for solar cell obtained by the present invention tend to be good. The silicon crystal ingot 50 may have an n-type or p-type conductivity type by being doped with an n-type or p-type dopant.
 図4に、レジンボンドワイヤ53でシリコン結晶インゴット50がスライスされることによって得られた結晶シリコンウエハ11の一例の模式的な断面図を示す。ここで、結晶シリコンウエハ11の表面には、レジンボンドワイヤ53を用いたシリコン結晶インゴット50のスライスによってスライスダメージ1aが生じている。 FIG. 4 shows a schematic cross-sectional view of an example of the crystalline silicon wafer 11 obtained by slicing the silicon crystal ingot 50 with the resin bond wire 53. Here, slice damage 1 a is generated on the surface of the crystalline silicon wafer 11 due to the slicing of the silicon crystal ingot 50 using the resin bond wire 53.
 図5に、図4に示す結晶シリコンウエハ11の表面の一部の一例の模式的な拡大断面図を示す。図5に示すように、結晶シリコンウエハ11の表面には大きなうねり(以下「ソーマーク」という)61が形成されている。また、結晶シリコンウエハ11の表面にはスクラッチ71が形成されている。 FIG. 5 shows a schematic enlarged cross-sectional view of an example of a part of the surface of the crystalline silicon wafer 11 shown in FIG. As shown in FIG. 5, large undulations (hereinafter referred to as “saw marks”) 61 are formed on the surface of the crystalline silicon wafer 11. A scratch 71 is formed on the surface of the crystalline silicon wafer 11.
 ソーマーク61は、レジンボンドワイヤ53を用いたシリコン結晶インゴット50の切断に起因して形成される。すなわち、図1に示すように、結晶シリコンウエハ11は、往復走行するレジンボンドワイヤ53にシリコン結晶インゴット50を押し付けて切断することにより得られるが、レジンボンドワイヤ53の走行方向55が切り替わるたびにレジンボンドワイヤ53が一時停止して線速が落ちる。これにより、レジンボンドワイヤ53に対するシリコン結晶インゴット50の移動方向(矢印54の方向)に沿ってレジンボンドワイヤ53によるシリコン結晶インゴット50への切り込み深さが異なるため、それが大きなうねりであるソーマーク61として結晶シリコンウエハ11の表面に現れる。 The saw mark 61 is formed due to the cutting of the silicon crystal ingot 50 using the resin bond wire 53. That is, as shown in FIG. 1, the crystalline silicon wafer 11 is obtained by pressing and cutting the silicon crystal ingot 50 against the reciprocating resin bond wire 53, but every time the travel direction 55 of the resin bond wire 53 is switched. The resin bond wire 53 stops temporarily and the linear velocity falls. As a result, the depth of cut into the silicon crystal ingot 50 by the resin bond wire 53 varies along the moving direction of the silicon crystal ingot 50 relative to the resin bond wire 53 (the direction of the arrow 54). Appears on the surface of the crystalline silicon wafer 11.
 図6(a)に、図4に示す結晶シリコンウエハ11の表面の一例の模式的な拡大平面図を示し、図6(b)に、図6(a)のVIb-VIbに沿った拡大断面図を示す。結晶シリコンウエハ11の表面には上記のレジンボンドワイヤ53の砥粒22によって砥粒痕72が直線状に形成されるとともに、砥粒痕72よりも大きな凹状の傷であるスクラッチ71が形成されている。 FIG. 6A shows a schematic enlarged plan view of an example of the surface of the crystalline silicon wafer 11 shown in FIG. 4, and FIG. 6B shows an enlarged cross section along VIb-VIb of FIG. 6A. The figure is shown. On the surface of the crystalline silicon wafer 11, the abrasive grain marks 72 are formed linearly by the abrasive grains 22 of the resin bond wire 53, and the scratches 71 that are concave scratches larger than the abrasive grain marks 72 are formed. Yes.
 本明細書において、スクラッチ71は、幅Wが1μm以上であって、長さLが1μm以上であって、かつ深さHが1μm以上である傷のことを意味する。ここで、幅Wは、砥粒痕72の伸長方向と直交する方向の傷の長さであり、長さLは、砥粒痕72の伸長方向に平行な方向の傷の長さであり、深さHは結晶シリコンウエハ11の表面に対して垂直な方向の最深の長さである。 In the present specification, the scratch 71 means a scratch having a width W of 1 μm or more, a length L of 1 μm or more, and a depth H of 1 μm or more. Here, the width W is the length of the scratch in the direction perpendicular to the extending direction of the abrasive grain trace 72, and the length L is the length of the scratch in a direction parallel to the extending direction of the abrasive grain trace 72, The depth H is the deepest length in the direction perpendicular to the surface of the crystalline silicon wafer 11.
 このようなスクラッチ71の幅W、長さLおよび深さHは、それぞれ、たとえばレーザ顕微鏡を用いて測定することができる。レーザ顕微鏡としては、たとえば、オリンパス(株)製のOLS3000などを用いることができる。 The width W, the length L, and the depth H of the scratch 71 can be measured using, for example, a laser microscope. As the laser microscope, for example, OLS3000 manufactured by Olympus Corporation can be used.
 ここで、結晶シリコンウエハ11の表面を占めるスクラッチの面積比は0.1%以下であることが好ましい。この場合には、太陽電池の製造時に結晶シリコンウエハ11の表面に印刷されるマスキングペーストのパターンニング性が低下し、太陽電池の電極直下においてキャリアの再結合が生じること等による太陽電池の特性の低下を抑制することができる傾向が大きくなる。 Here, the area ratio of the scratch occupying the surface of the crystalline silicon wafer 11 is preferably 0.1% or less. In this case, the patterning property of the masking paste printed on the surface of the crystalline silicon wafer 11 during the production of the solar cell is degraded, and the recombination of carriers occurs directly under the electrode of the solar cell. The tendency to be able to suppress the decrease is increased.
 なお、上記のスクラッチの面積比(%)は、以下の式(ii)により算出することができる。 In addition, the area ratio (%) of the scratch can be calculated by the following equation (ii).
 スクラッチの面積比(%)=100×(結晶シリコンウエハ11の表面に存在するスクラッチの面積の総和)/(結晶シリコンウエハ11の表面の面積) …(ii)
 <結晶シリコンウエハをエッチングする工程>
 次に、結晶シリコンウエハ11の表面をエッチングする工程を行なう。これにより、図4に示す結晶シリコンウエハ11の表面のスライスダメージ1aを除去することができるとともに、結晶シリコンウエハ11の表面にクレーター状の窪み(ファセット)を形成することができる。
Scratch area ratio (%) = 100 × (total of scratch areas existing on the surface of the crystalline silicon wafer 11) / (area of the surface of the crystalline silicon wafer 11) (ii)
<Process for etching a crystalline silicon wafer>
Next, a step of etching the surface of the crystalline silicon wafer 11 is performed. Thereby, the slice damage 1a on the surface of the crystalline silicon wafer 11 shown in FIG. 4 can be removed, and a crater-like depression (facet) can be formed on the surface of the crystalline silicon wafer 11.
 結晶シリコンウエハ11の表面をエッチングする工程は、結晶シリコンウエハ11の表面をエッチングすることができるものであれば特には限定されないが、水酸化ナトリウム濃度が20質量%以上35質量%以下、好ましくは24質量%以上32質量%以下の水酸化ナトリウム水溶液で結晶シリコンウエハ11の片側の表面につき5μm以上25μm以下の厚さのエッチング量だけエッチングすることにより行なうことが好ましい。 The step of etching the surface of the crystalline silicon wafer 11 is not particularly limited as long as the surface of the crystalline silicon wafer 11 can be etched, but the sodium hydroxide concentration is 20% by mass or more and 35% by mass or less, preferably Preferably, the etching is performed by etching the surface of one side of the crystalline silicon wafer 11 with a thickness of 5 μm or more and 25 μm or less with a sodium hydroxide aqueous solution of 24% by mass or more and 32% by mass or less.
 これは、本発明者が鋭意検討した結果、水酸化ナトリウム濃度が20質量%以上35質量%以下、好ましくは24質量%以上32質量%以下の水酸化ナトリウム水溶液で結晶シリコンウエハ11の表面をエッチングした場合には、結晶シリコンウエハ11の片側の表面につき5μm以上25μm以下の厚さだけエッチングすると、水酸化ナトリウム濃度が35質量%よりも高い水酸化ナトリウム水溶液で同じ厚さだけエッチングした場合よりもはるかに結晶シリコンウエハ11の表面の平滑性を向上させることができることを見出したことによるものである。 As a result of intensive studies by the present inventors, the surface of the crystalline silicon wafer 11 is etched with an aqueous sodium hydroxide solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass. In such a case, if the surface of one side of the crystalline silicon wafer 11 is etched by a thickness of 5 μm or more and 25 μm or less, the etching is performed by the same thickness with an aqueous sodium hydroxide solution having a sodium hydroxide concentration higher than 35 mass%. This is because it has been found that the smoothness of the surface of the crystalline silicon wafer 11 can be improved.
 たとえば、水酸化ナトリウム濃度が30質量%の水酸化ナトリウム水溶液で結晶シリコンウエハ11の片側の表面につき13μmの厚さのエッチングを行なった場合には、水酸化ナトリウム濃度が48質量%の水酸化ナトリウム水溶液で結晶シリコンウエハ11の片側の表面につき30μm程度の厚さのエッチング量である従来のエッチングと同等以上の結晶シリコンウエハ11の表面の平滑性を達成することができる。 For example, when etching is performed to a thickness of 13 μm on one surface of the crystalline silicon wafer 11 with an aqueous solution of sodium hydroxide having a sodium hydroxide concentration of 30% by mass, sodium hydroxide having a sodium hydroxide concentration of 48% by mass is obtained. The smoothness of the surface of the crystalline silicon wafer 11 equal to or higher than that of the conventional etching in which the etching amount is about 30 μm per one surface of the crystalline silicon wafer 11 with the aqueous solution can be achieved.
 これにより、平滑性が向上した結晶シリコンウエハ11の表面と電極との接触面積を増加させることにより結晶シリコンウエハ11の表面と電極との接触抵抗および結晶シリコンウエハ11の表面と電極との界面でのキャリアの再結合を低減することができるとともに、平滑性が向上した結晶シリコンウエハ11の表面に印刷したマスキングペーストの印刷精度を向上させることによって、シャント抵抗を向上させ、逆方向飽和電流を低減することができる。 Thus, the contact area between the surface of the crystalline silicon wafer 11 and the electrode with improved smoothness and the electrode is increased, so that the contact resistance between the surface of the crystalline silicon wafer 11 and the electrode and the interface between the surface of the crystalline silicon wafer 11 and the electrode are increased. Carrier recombination can be reduced, and by improving the printing accuracy of the masking paste printed on the surface of the crystalline silicon wafer 11 with improved smoothness, the shunt resistance is improved and the reverse saturation current is reduced. can do.
 さらに、エッチング量を抑えることにより結晶シリコンウエハ11の機械的強度およびその結晶シリコンウエハ11を用いて製造された太陽電池セルの変換効率の低下を抑えることができる。これにより、良好な特性を有する太陽電池を安定して製造することができる太陽電池用シリコンウエハを製造することが可能となる。 Further, by suppressing the etching amount, it is possible to suppress the mechanical strength of the crystalline silicon wafer 11 and the decrease in conversion efficiency of the solar battery cell manufactured using the crystalline silicon wafer 11. Thereby, it becomes possible to manufacture the silicon wafer for solar cells which can manufacture stably the solar cell which has a favorable characteristic.
 ここで、結晶シリコンウエハ11の片側の表面のエッチング量(エッチング深さ)は、5μm以上20μm以下であることが好ましく、5μm以上15μm以下であることがより好ましい。結晶シリコンウエハ11の片側の表面のエッチング量が5μm以上20μm以下である場合、特に5μm以上15μm以下である場合には、結晶シリコンウエハ11の片側の表面のエッチング量をさらに抑えながら結晶シリコンウエハ11の表面の平滑性を向上させることができる傾向が大きくなる。 Here, the etching amount (etching depth) on one surface of the crystalline silicon wafer 11 is preferably 5 μm or more and 20 μm or less, and more preferably 5 μm or more and 15 μm or less. When the etching amount on one surface of the crystalline silicon wafer 11 is 5 μm or more and 20 μm or less, particularly when the etching amount is 5 μm or more and 15 μm or less, the etching amount on one surface of the crystalline silicon wafer 11 is further suppressed while suppressing the etching amount on one side. There is a greater tendency to improve the surface smoothness.
 なお、結晶シリコンウエハ11の表面のエッチング量は、当該エッチングによる結晶シリコンウエハ11の片側の表面の結晶シリコンウエハ11の厚さ方向における厚みの減少量(μm)を意味する。 It should be noted that the etching amount of the surface of the crystalline silicon wafer 11 means a reduction amount (μm) in the thickness direction of the crystalline silicon wafer 11 on one surface of the crystalline silicon wafer 11 by the etching.
 <太陽電池用シリコンウエハ>
 図7に図4に示す結晶シリコンウエハの表面が上記のようにエッチングされることにより形成された太陽電池用シリコンウエハの一例の模式的な断面図を示し、図8に図7に示す太陽電池用シリコンウエハの表面の一例の模式的な拡大断面図を示す。
<Silicon wafer silicon wafer>
FIG. 7 shows a schematic cross-sectional view of an example of a silicon wafer for a solar cell formed by etching the surface of the crystalline silicon wafer shown in FIG. 4 as described above, and FIG. 8 shows the solar cell shown in FIG. The typical expanded sectional view of an example of the surface of the silicon wafer for manufacture is shown.
 図7に示すように、太陽電池用シリコンウエハ1の表面にはスライスダメージは最早存在していないが、図8に示すように上記濃度の水酸化ナトリウム水溶液のエッチングに起因して形成されたファセット62が形成されている。 As shown in FIG. 7, the slice damage no longer exists on the surface of the silicon wafer 1 for solar cells, but the facet formed due to the etching of the sodium hydroxide aqueous solution having the above concentration as shown in FIG. 62 is formed.
 図9に、図8に示すファセット62の一例の模式的な拡大断面図を示す。水酸化ナトリウム濃度が20質量%以上35質量%以下、好ましくは24質量%以上32質量%以下の水酸化ナトリウム水溶液で結晶シリコンウエハ11の片側の表面につき5μm以上25μm以下、好ましくは5μm以上20μm以下、より好ましくは5μm以上15μm以下の厚さだけエッチングされて太陽電池用シリコンウエハ1の表面に形成されたファセット62の幅は10μm以上150μm以下、好ましくは20μm以上60μm以下であって、ファセット62の深さは0.1μm以上10μm以下となる。 FIG. 9 shows a schematic enlarged sectional view of an example of the facet 62 shown in FIG. An aqueous sodium hydroxide solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass, with a surface of one side of the crystalline silicon wafer 11 of 5 μm to 25 μm, preferably 5 μm to 20 μm. More preferably, the width of the facet 62 formed on the surface of the solar cell silicon wafer 1 by etching to a thickness of 5 μm to 15 μm is 10 μm to 150 μm, preferably 20 μm to 60 μm. The depth is not less than 0.1 μm and not more than 10 μm.
 たとえば、水酸化ナトリウム濃度が30質量%である水酸化ナトリウム水溶液で結晶シリコンウエハ11の片側の表面を13μmだけエッチングすることによって得られる太陽電池用シリコンウエハ1の表面のファセット62の幅はたとえば図9に示すように20μm以上60μm以下となる。 For example, the width of the facet 62 on the surface of the silicon wafer 1 for solar cells obtained by etching the surface of one side of the crystalline silicon wafer 11 by 13 μm with a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 30% by mass is shown in FIG. As shown in FIG. 9, the thickness is 20 to 60 μm.
 一方、図10の模式的拡大断面図に示すように、水酸化ナトリウム濃度が35質量%よりも大きい水酸化ナトリウム水溶液で結晶シリコンウエハの片側の表面につき5μm以上25μm以下だけエッチングされた太陽電池用シリコンウエハの表面に形成されたファセット63の幅は、水酸化ナトリウム濃度が20質量%以上35質量%以下の水酸化ナトリウム水溶液で同じエッチング量だけエッチングした場合よりも非常に狭小となり、ファセット63の深さは0.1μm以上10μm以下となる。 On the other hand, as shown in the schematic enlarged cross-sectional view of FIG. 10, for a solar cell etched by 5 μm or more and 25 μm or less per one surface of a crystalline silicon wafer with a sodium hydroxide aqueous solution having a sodium hydroxide concentration higher than 35 mass%. The width of the facet 63 formed on the surface of the silicon wafer is much narrower than the case where the same amount of etching is performed with a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 20% by mass to 35% by mass. The depth is not less than 0.1 μm and not more than 10 μm.
 たとえば、水酸化ナトリウム濃度が48質量%である水酸化ナトリウム水溶液で結晶シリコンウエハの片側の表面を13μmだけエッチングすることによって得られる太陽電池用シリコンウエハの表面のファセット63の幅はたとえば図10に示すように3μm以上15μm以下となる。 For example, the width of the facet 63 on the surface of the silicon wafer for solar cells obtained by etching the surface of one side of the crystalline silicon wafer by 13 μm with a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 48% by mass is shown in FIG. As shown, it is 3 μm or more and 15 μm or less.
 さらに、図11の模式的拡大断面図に示すように、水酸化ナトリウム濃度が20質量%未満の水酸化ナトリウム水溶液で結晶シリコンウエハの片側の表面につき5μm以上25μm以下だけエッチングされた太陽電池用シリコンウエハの表面に形成されたファセット64の内部にはピラミッド状の突起物65が形成される。 Furthermore, as shown in the schematic enlarged sectional view of FIG. 11, silicon for solar cells etched by 5 μm or more and 25 μm or less per one side surface of a crystalline silicon wafer with a sodium hydroxide aqueous solution having a sodium hydroxide concentration of less than 20% by mass. A pyramidal projection 65 is formed inside the facet 64 formed on the surface of the wafer.
 このように、水酸化ナトリウム濃度が20質量%以上35質量%以下、好ましくは24質量%以上32質量%以下の水酸化ナトリウム水溶液で5μm以上25μm以下、好ましくは5μm以上20μm以下、より好ましくは5μm以上15μm以下の厚さだけエッチングして形成された10μm以上150μm以下、好ましくは20μm以上150μm以下の幅と0.1μm以上10μm以下の深さとを有するファセット62を有する太陽電池用シリコンウエハ1の表面はその他の場合と比べてなだらかな表面となる。 Thus, sodium hydroxide aqueous solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass, 5 μm to 25 μm, preferably 5 μm to 20 μm, more preferably 5 μm. The surface of the silicon wafer for solar cells 1 having a facet 62 having a width of 10 μm or more and 150 μm or less and a depth of 0.1 μm or more and 10 μm or less formed by etching to a thickness of 15 μm or less. Has a smooth surface compared to the other cases.
 このようななだらかな表面に電極を形成した場合には、図10に示すようなファセット63の幅が狭くなだらかではない表面、および図11に示すようなファセット64の内部に突起物65が形成されてなだらかではない表面に電極を形成した場合と比べて、太陽電池用シリコンウエハ1と電極との接触抵抗および太陽電池用シリコンウエハ1の表面と電極との界面でのキャリアの再結合を低減できるのは明らかである。 When the electrode is formed on such a gentle surface, the protrusion 65 is formed on the surface where the width of the facet 63 is not narrow as shown in FIG. 10 and inside the facet 64 as shown in FIG. Compared with the case where an electrode is formed on a non-smooth surface, the contact resistance between the silicon wafer for solar cell 1 and the electrode and the recombination of carriers at the interface between the surface of the silicon wafer for solar cell 1 and the electrode can be reduced. It is clear.
 また、このようななだらかな表面にマスキングペーストを印刷した場合には、図10に示すようなファセット63の幅が狭くなだらかではない表面および図11に示すようなファセット64の内部に突起物65が形成されてなだらかではない表面にマスキングペーストを印刷した場合と比べてマスキングペーストの印刷精度が向上することは明らかである。そのため、水酸化ナトリウム濃度が20質量%以上35質量%以下、好ましくは24質量%以上32質量%以下の水酸化ナトリウム水溶液で5μm以上25μm以下、好ましくは5μm以上20μm以下、より好ましくは5μm以上15μm以下の厚さだけエッチングして形成された太陽電池用シリコンウエハ1を用いた場合には、良好な特性を有する太陽電池を安定して製造することができる。 Further, when the masking paste is printed on such a gentle surface, the protrusion 65 is formed on the surface where the width of the facet 63 is narrow as shown in FIG. 10 and on the inside of the facet 64 as shown in FIG. It is clear that the printing accuracy of the masking paste is improved as compared with the case where the masking paste is printed on the surface which is formed and is not gentle. Therefore, a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass, is 5 μm to 25 μm, preferably 5 μm to 20 μm, more preferably 5 μm to 15 μm. When the solar cell silicon wafer 1 formed by etching the following thickness is used, a solar cell having good characteristics can be stably manufactured.
 太陽電池用シリコンウエハ1の表面に形成されたファセット62の90%以上が、幅10μm以上150μm以下、好ましくは20μm以上150μm以下であって、深さ0.1μm以上10μm以下のファセット62であることが好ましい。この場合には、太陽電池用シリコンウエハ1の表面がさらになだらかになって良好な特性を有する太陽電池を安定して製造することができる傾向が大きくなる。 90% or more of the facets 62 formed on the surface of the silicon wafer 1 for solar cells are facets 62 having a width of 10 μm to 150 μm, preferably 20 μm to 150 μm and a depth of 0.1 μm to 10 μm. Is preferred. In this case, the surface of the solar cell silicon wafer 1 becomes smoother, and the tendency to stably manufacture solar cells having good characteristics increases.
 <裏面電極型太陽電池セルの製造方法>
 以下、図12~図21を参照して、実施の形態の裏面電極型太陽電池セルの製造方法について説明する。
<Method for Manufacturing Back Electrode Solar Cell>
Hereinafter, with reference to FIG. 12 to FIG. 21, a method of manufacturing the back electrode type solar cell according to the embodiment will be described.
 まず、図12(a)の模式的断面図および図12(b)の模式的平面図に示すように、上記のエッチングにより幅広のファセット62を有するように作製されたn型またはp型の太陽電池用シリコンウエハ1の受光面側の表面(受光面)の全面にマスキングペースト2を設置するとともに太陽電池用シリコンウエハ1の裏面側の表面(裏面)に開口部14を設けるようにしてマスキングペースト2を帯状に設置する。図12(b)は、図12(a)を太陽電池用シリコンウエハ1の裏面側から見たときの模式的な平面図である。 First, as shown in the schematic cross-sectional view of FIG. 12A and the schematic plan view of FIG. 12B, an n-type or p-type solar device manufactured to have a wide facet 62 by the etching described above. The masking paste 2 is provided on the entire surface of the light-receiving surface side (light-receiving surface) of the battery silicon wafer 1 and the opening 14 is provided on the surface (back surface) on the back surface side of the silicon wafer 1 for solar cells. 2 is installed in a strip shape. FIG. 12B is a schematic plan view when FIG. 12A is viewed from the back surface side of the solar cell silicon wafer 1.
 なお、上記のエッチングは、水酸化ナトリウム濃度が20質量%以上35質量%以下、好ましくは24質量%以上32質量%以下の水酸化ナトリウム水溶液を用いて片側の表面につき5μm以上25μm以下、好ましくは5μm以上20μm以下、より好ましくは5μm以上15μm以下の厚さだけエッチングすることにより行なわれており、当該エッチングは太陽電池用シリコンウエハ1の受光面および裏面のそれぞれに対して行なわれている。 The above etching is performed using an aqueous sodium hydroxide solution having a sodium hydroxide concentration of 20% by mass to 35% by mass, preferably 24% by mass to 32% by mass, preferably 5 μm to 25 μm per surface on one side, preferably The etching is performed by etching to a thickness of 5 μm or more and 20 μm or less, more preferably 5 μm or more and 15 μm or less. The etching is performed on each of the light receiving surface and the back surface of the silicon wafer 1 for solar cells.
 マスキングペースト2としては、たとえば、溶剤、増粘剤、ならびに酸化シリコン前駆体および/または酸化チタン前駆体を含むものなどを用いることができる。また、マスキングペースト2としては、増粘剤を含まないものも用いることができる。 As the masking paste 2, for example, a solvent, a thickener, and a material containing a silicon oxide precursor and / or a titanium oxide precursor can be used. Moreover, as the masking paste 2, a paste containing no thickener can be used.
 溶剤としては、たとえば、エチレングリコール、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブ、ジエチルセロソルブ、セロソルブアセテート、エチレングリコールモノフェニルエーテル、メトキシエタノール、エチレングリコールモノアセテート、エチレングリコールジアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールアセテート、トリエチルグリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコール、液体ポリエチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、1-ブトキシエトキシプロパノール、ジプロピルグリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、ポリプロピレングリコール、トリメチレングリコール、ブタンジアール、1,5-ペンタンジアール、ヘキシレングリコール、グリセリン、グリセリルアセテート、グリセリンジアセテート、グリセリルトリアセテート、トリメチロールプロピン、1,2,6-ヘキサントリオール、1,2-プロパンジオール、1,5-ペンタンジオール、オクタンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,3-ブタンジオール、ジオキサン、トリオキサン、テトラヒドロフラン、テトラヒドロピラン、メチラール、ジエチルアセタール、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、アセトニルアセトン、ジアセトンアルコール、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチルを単独でまたは2種以上併用して用いることができる。 Examples of the solvent include ethylene glycol, methyl cellosolve, methyl cellosolve acetate, ethyl cellosolve, diethyl cellosolve, cellosolve acetate, ethylene glycol monophenyl ether, methoxyethanol, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol, diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, diethylene glycol acetate, triethyl glycol, triethylene glycol Cole monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol, liquid polyethylene glycol, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, 1-butoxyethoxypropanol, dipropyl glycol, dipropylene Glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, polypropylene glycol, trimethylene glycol, butane dial, 1,5-pentane dial, hexylene glycol, glycerin, glyceryl acetate, glyceryl diacetate, glyceryl triacetate, Trimethylol Pro 1,2,6-hexanetriol, 1,2-propanediol, 1,5-pentanediol, octanediol, 1,2-butanediol, 1,4-butanediol, 1,3-butanediol, dioxane , Trioxane, tetrahydrofuran, tetrahydropyran, methylal, diethyl acetal, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, acetonyl acetone, diacetone alcohol, methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate alone or two These can be used in combination.
 増粘剤としては、エチルセルロース、ポリビニルピロリドンまたは双方の混合物を用いることが望ましいが、様々な品質および特性のベントナイト、様々な極性溶剤混合物用の一般に無機のレオロジー添加剤、ニトロセルロースおよびその他のセルロース化合物、デンプン、ゼラチン、アルギン酸、高分散性非晶質ケイ酸(Aerosil(登録商標))、ポリビニルブチラール(Mowital(登録商標))、ナトリウムカルボキシメチルセルロース(vivistar)、熱可塑性ポリアミド樹脂(Eurelon(登録商標))、有機ヒマシ油誘導体(Thixin R(登録商標))、ジアミド・ワックス(Thixatrol plus(登録商標))、膨潤ポリアクリル酸塩(Rheolate(登録商標))、ポリエーテル尿素-ポリウレタン、ポリエーテル-ポリオールなどを用いることもできる。 As a thickener, it is desirable to use ethyl cellulose, polyvinyl pyrrolidone or a mixture of both, but various quality and properties of bentonite, generally inorganic rheological additives for various polar solvent mixtures, nitrocellulose and other cellulose compounds , Starch, gelatin, alginic acid, highly dispersible amorphous silicic acid (Aerosil®), polyvinyl butyral (Mowital®), sodium carboxymethylcellulose (vivistar), thermoplastic polyamide resin (Eurelon®) ), Organic castor oil derivative (Thixin R (registered trademark)), diamide wax (Thixatrol plus (registered trademark)), swollen polyacrylate (Rheolate (registered trademark)), polyether Urea - polyurethane, polyether - polyol like can also be used.
 酸化シリコン前駆体としては、たとえば、TEOS(テトラエチルオルソシリケート)のような一般式R1nSi(OR14-n(R1’はメチル、エチルまたはフェニルを示し、R1はメチル、エチル、n-プロピルまたはi-プロピルを示し、nは0、1または2を示す。)で示される物質を用いることができる。 Examples of the silicon oxide precursor include a general formula R 1 ' n Si (OR 1 ) 4-n such as TEOS (tetraethyl orthosilicate) (R 1 ' represents methyl, ethyl or phenyl, R 1 represents methyl, A substance represented by ethyl, n-propyl or i-propyl, wherein n represents 0, 1 or 2) can be used.
 酸化チタン前駆体には、たとえば、Ti(OH)4のほか、TPT(テトライソプロポキシチタン)のようなR2nTi(OR24-nで示される物質(R2’はメチル、エチルまたはフェニルを示し、R2はメチル、エチル、n-プロピルまたはi-プロピルを示し、nは0、1または2を示す。)であり、その他、TiCl4、TiF4およびTiOSO4なども含まれる。 Examples of the titanium oxide precursor include, in addition to Ti (OH) 4 , a substance represented by R 2 ' n Ti (OR 2 ) 4-n such as TPT (tetraisopropoxy titanium) (R 2 ' is methyl, Represents ethyl or phenyl, R 2 represents methyl, ethyl, n-propyl or i-propyl, n represents 0, 1 or 2), and also includes TiCl 4 , TiF 4 and TiOSO 4 It is.
 増粘剤を用いる場合には、増粘剤としては、たとえば、ヒマシ油、ベントナイト、ニトロセルロース、エチルセルロース、ポリビニルピロリドン、デンプン、ゼラチン、アルギン酸、非晶質ケイ酸、ポリビニルブチラール、ナトリウムカルボキシメチルセルロース、ポリアミド樹脂、有機ヒマシ油誘導体、ジアミド・ワックス、膨潤ポリアクリル酸塩、ポリエーテル尿素-ポリウレタン、ポリエーテル-ポリオールなどを単独でまたは2種以上を併用して用いることができる。 When a thickener is used, examples of the thickener include castor oil, bentonite, nitrocellulose, ethylcellulose, polyvinylpyrrolidone, starch, gelatin, alginic acid, amorphous silicic acid, polyvinyl butyral, sodium carboxymethylcellulose, polyamide Resin, organic castor oil derivative, diamide / wax, swollen polyacrylate, polyether urea-polyurethane, polyether-polyol and the like can be used alone or in combination of two or more.
 マスキングペースト2の設置方法は、特に限定されず、たとえば従来から公知の塗布方法などを用いることができる。 The installation method of the masking paste 2 is not particularly limited, and for example, a conventionally known coating method can be used.
 その後、太陽電池用シリコンウエハ1の受光面および裏面にそれぞれ設置されたマスキングペースト2を乾燥させる。 Thereafter, the masking paste 2 installed on the light receiving surface and the back surface of the silicon wafer 1 for solar cells is dried.
 マスキングペースト2の乾燥方法としては、たとえばマスキングペースト2の設置後の太陽電池用シリコンウエハ1をオーブン内に設置し、たとえば300℃程度の温度でたとえば数十分間の時間マスキングペースト2を加熱することにより行なうことができる。 As a drying method of the masking paste 2, for example, the solar cell silicon wafer 1 after the masking paste 2 is installed is placed in an oven, and the masking paste 2 is heated at a temperature of about 300 ° C. for a period of several tens of minutes, for example. Can be done.
 そして、上記のようにして乾燥させた後のマスキングペースト2を焼成することによって、マスキングペースト2を固化させる。マスキングペースト2の焼成は、たとえば800℃以上1000℃以下の温度でたとえば10分間以上60分間以下の時間マスキングペースト2を加熱することにより行なうことができる。 Then, the masking paste 2 after being dried as described above is baked to solidify the masking paste 2. The baking of the masking paste 2 can be performed, for example, by heating the masking paste 2 at a temperature of 800 ° C. or higher and 1000 ° C. or lower for a time of 10 minutes or longer and 60 minutes or shorter.
 次に、図13(a)の模式的断面図および図13(b)の模式的平面図に示すように、n型ドーパント含有ガス4を流すことによって、太陽電池用シリコンウエハ1の裏面側の開口部14から露出している太陽電池用シリコンウエハ1の裏面にn型ドーパントを拡散させてn型ドーパント拡散領域3を帯状に形成する。 Next, as shown in the schematic cross-sectional view of FIG. 13A and the schematic plan view of FIG. 13B, the n-type dopant-containing gas 4 is allowed to flow so that the back surface side of the silicon wafer 1 for solar cells is flown. The n-type dopant is diffused on the back surface of the solar cell silicon wafer 1 exposed from the opening 14 to form the n-type dopant diffusion region 3 in a strip shape.
 n型ドーパント含有ガス4としては、たとえばn型ドーパントであるリンを含むPOCl3などを用いることができる。また、n型ドーパント拡散領域3は、太陽電池用シリコンウエハ1よりもn型ドーパント濃度が高い領域である。また、図13(b)は、図13(a)を太陽電池用シリコンウエハ1の裏面側から見たときの模式的な平面図である。 As the n-type dopant-containing gas 4, for example, POCl 3 containing phosphorus which is an n-type dopant can be used. The n-type dopant diffusion region 3 is a region having a higher n-type dopant concentration than the solar cell silicon wafer 1. Moreover, FIG.13 (b) is a typical top view when Fig.13 (a) is seen from the back surface side of the silicon wafer 1 for solar cells.
 その後、太陽電池用シリコンウエハ1の受光面および裏面のそれぞれのマスキングペースト2を一旦すべて除去する。マスキングペースト2の除去は、たとえば、マスキングペースト2が設置された太陽電池用シリコンウエハ1をフッ酸水溶液中に浸漬させることなどにより行なうことができる。 Thereafter, all the masking pastes 2 on the light receiving surface and the back surface of the solar cell silicon wafer 1 are once removed. The removal of the masking paste 2 can be performed, for example, by immersing the solar cell silicon wafer 1 on which the masking paste 2 is installed in an aqueous hydrofluoric acid solution.
 次に、図14(a)の模式的断面図および図14(b)の模式的平面図に示すように、太陽電池用シリコンウエハ1の受光面側の表面(受光面)の全面にマスキングペースト2を設置するとともに、太陽電池用シリコンウエハ1の裏面側の表面(裏面)に開口部15を設けるようにしてマスキングペースト2を設置する。開口部15は開口部14とは異なる箇所に形成される。なお、図14(b)は、図14(a)を太陽電池用シリコンウエハ1の裏面側から見たときの模式的な平面図である。 Next, as shown in the schematic cross-sectional view of FIG. 14A and the schematic plan view of FIG. 14B, a masking paste is applied to the entire surface (light-receiving surface) on the light-receiving surface side of the silicon wafer 1 for solar cells. 2 and the masking paste 2 is installed so that the opening 15 is provided on the front surface (back surface) of the solar cell silicon wafer 1. The opening 15 is formed at a location different from the opening 14. FIG. 14B is a schematic plan view when FIG. 14A is viewed from the back surface side of the solar cell silicon wafer 1.
 そして、太陽電池用シリコンウエハ1の受光面および裏面にそれぞれ塗布されたマスキングペースト2を乾燥させた後に、マスキングペースト2を焼成することによって、マスキングペースト2を固化させる。 Then, after the masking paste 2 applied to the light receiving surface and the back surface of the silicon wafer 1 for solar cells is dried, the masking paste 2 is baked to solidify the masking paste 2.
 次に、図15(a)の模式的断面図および図15(b)の模式的平面図に示すように、p型ドーパント含有ガス6を流すことによって、太陽電池用シリコンウエハ1の裏面側の開口部15から露出している太陽電池用シリコンウエハ1の裏面にp型ドーパントを拡散させてp型ドーパント拡散領域5を帯状に形成する。なお、p型ドーパント含有ガス6としては、たとえばp型ドーパントであるボロンを含むBBr3などを用いることができる。また、p型ドーパント拡散領域5は、太陽電池用シリコンウエハ1よりもp型ドーパント濃度が高い領域である。また、図15(b)は、図15(a)を太陽電池用シリコンウエハ1の裏面側から見たときの模式的な平面図である。 Next, as shown in the schematic cross-sectional view of FIG. 15A and the schematic plan view of FIG. 15B, the p-type dopant-containing gas 6 is allowed to flow so that the back surface side of the silicon wafer 1 for solar cells is flown. A p-type dopant is diffused on the back surface of the solar cell silicon wafer 1 exposed from the opening 15 to form a p-type dopant diffusion region 5 in a strip shape. As the p-type dopant-containing gas 6, for example, BBr 3 containing boron as a p-type dopant can be used. The p-type dopant diffusion region 5 is a region having a higher p-type dopant concentration than the solar cell silicon wafer 1. FIG. 15B is a schematic plan view when FIG. 15A is viewed from the back surface side of the solar cell silicon wafer 1.
 次に、図16(a)の模式的断面図および図16(b)の模式的平面図に示すように、太陽電池用シリコンウエハ1の受光面および裏面のそれぞれのマスキングペースト2をすべて除去する。これにより、太陽電池用シリコンウエハ1の受光面全面および裏面全面が露出して、帯状のn型ドーパント拡散領域3および帯状のp型ドーパント拡散領域5をそれぞれ露出させることができる。なお、図16(b)は、図16(a)を太陽電池用シリコンウエハ1の裏面側から見たときの模式的な平面図である。 Next, as shown in the schematic cross-sectional view of FIG. 16A and the schematic plan view of FIG. 16B, all the masking pastes 2 on the light-receiving surface and the back surface of the solar cell silicon wafer 1 are removed. . As a result, the entire light-receiving surface and the entire back surface of the solar cell silicon wafer 1 are exposed, and the strip-shaped n-type dopant diffusion region 3 and the strip-shaped p-type dopant diffusion region 5 can be exposed. In addition, FIG.16 (b) is a typical top view when Fig.16 (a) is seen from the back surface side of the silicon wafer 1 for solar cells.
 次に、図17(a)の模式的断面図および図17(b)の模式的平面図に示すように、太陽電池用シリコンウエハ1の裏面上にパッシベーション膜7を形成する。パッシベーション膜7としては、たとえば、酸化シリコン膜、窒化シリコン膜または酸化シリコン膜と窒化シリコン膜との積層体などを用いることができる。パッシベーション膜7は、たとえば、プラズマCVD法などにより形成することができる。なお、図17(b)は、図17(a)を太陽電池用シリコンウエハ1の裏面側から見たときの模式的な平面図である。 Next, as shown in the schematic cross-sectional view of FIG. 17A and the schematic plan view of FIG. 17B, a passivation film 7 is formed on the back surface of the silicon wafer 1 for solar cells. As the passivation film 7, for example, a silicon oxide film, a silicon nitride film, or a stacked body of a silicon oxide film and a silicon nitride film can be used. The passivation film 7 can be formed by, for example, a plasma CVD method. FIG. 17B is a schematic plan view when FIG. 17A is viewed from the back surface side of the solar cell silicon wafer 1.
 次に、図18(a)の模式的断面図および図18(b)の模式的平面図に示すように、太陽電池用シリコンウエハ1のパッシベーション膜7が形成されている側と反対側となる受光面をテクスチャエッチングすることによってテクスチャ構造8を形成する。テクスチャ構造8を形成するためのテクスチャエッチングは、太陽電池用シリコンウエハ1の裏面に形成されたパッシベーション膜7をエッチングマスクとして用いることによって行なうことができる。なお、テクスチャエッチングは、たとえば水酸化ナトリウムまたは水酸化カリウムなどのアルカリ水溶液にイソプロピルアルコールを添加した液をたとえば70℃以上80℃以下に加熱したエッチング液を用いて太陽電池用シリコンウエハ1の受光面をエッチングすることによって行なうことができる。 Next, as shown in the schematic cross-sectional view of FIG. 18A and the schematic plan view of FIG. 18B, the solar cell silicon wafer 1 is on the side opposite to the side on which the passivation film 7 is formed. The texture structure 8 is formed by texture-etching the light receiving surface. Texture etching for forming the texture structure 8 can be performed by using the passivation film 7 formed on the back surface of the solar cell silicon wafer 1 as an etching mask. In the texture etching, for example, a light-receiving surface of the silicon wafer 1 for solar cells using an etching solution obtained by heating a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or more and 80 ° C. or less. Can be performed by etching.
 次に、図19(a)の模式的断面図および図19(b)の模式的平面図に示すように、太陽電池用シリコンウエハ1のテクスチャ構造8上に反射防止膜9を形成する。反射防止膜9としては、たとえば、酸化シリコン膜、窒化シリコン膜または酸化シリコン膜と窒化シリコン膜との積層体などを用いることができる。反射防止膜9は、たとえば、プラズマCVD法などにより形成することができる。なお、図19(b)は、図19(a)を太陽電池用シリコンウエハ1の裏面側から見たときの模式的な平面図である。 Next, as shown in the schematic cross-sectional view of FIG. 19A and the schematic plan view of FIG. 19B, an antireflection film 9 is formed on the texture structure 8 of the silicon wafer 1 for solar cells. As the antireflection film 9, for example, a silicon oxide film, a silicon nitride film, or a laminate of a silicon oxide film and a silicon nitride film can be used. The antireflection film 9 can be formed by, for example, a plasma CVD method or the like. FIG. 19B is a schematic plan view when FIG. 19A is viewed from the back surface side of the solar cell silicon wafer 1.
 次に、図20(a)の模式的断面図および図20(b)の模式的平面図に示すように、パッシベーション膜7の一部を除去することによってコンタクトホール10a,10bを形成して、コンタクトホール10aからn型ドーパント拡散領域3の一部を露出させるとともに、コンタクトホール10bからp型ドーパント拡散領域5の一部を露出させる。なお、図20(b)は、図20(a)を太陽電池用シリコンウエハ1の裏面側から見たときの模式的な平面図である。 Next, as shown in the schematic cross-sectional view of FIG. 20A and the schematic plan view of FIG. 20B, contact holes 10a and 10b are formed by removing part of the passivation film 7, A part of the n-type dopant diffusion region 3 is exposed from the contact hole 10a, and a part of the p-type dopant diffusion region 5 is exposed from the contact hole 10b. FIG. 20B is a schematic plan view when FIG. 20A is viewed from the back surface side of the solar cell silicon wafer 1.
 コンタクトホール10a,10bは、たとえば、パッシベーション膜7上にフォトリソグラフィ技術を用いてコンタクトホール10a,10bのそれぞれの形成箇所に対応する部分に開口部を有するレジストパターンを形成した後に、レジストパターンの開口部からパッシベーション膜7をエッチングにより除去する方法などにより形成することができる。 The contact holes 10a and 10b are formed by, for example, forming a resist pattern having openings at portions corresponding to the formation positions of the contact holes 10a and 10b on the passivation film 7 using a photolithography technique. The passivation film 7 can be formed by etching or the like from the portion.
 次に、図21(a)の模式的断面図および図21(b)の模式的平面図に示すように、コンタクトホール10aを通してn型ドーパント拡散領域3に電気的に接続されるn型用電極12を形成するとともに、コンタクトホール10bを通してp型ドーパント拡散領域5に電気的に接続されるp型用電極13を形成する。ここで、n型用電極12およびp型用電極13としては、たとえば、銀などの金属からなる電極を用いることができる。以上により、裏面電極型太陽電池セルを作製することができる。 Next, as shown in the schematic cross-sectional view of FIG. 21A and the schematic plan view of FIG. 21B, an n-type electrode electrically connected to the n-type dopant diffusion region 3 through the contact hole 10a. 12 and the p-type electrode 13 electrically connected to the p-type dopant diffusion region 5 through the contact hole 10b. Here, as the n-type electrode 12 and the p-type electrode 13, for example, an electrode made of a metal such as silver can be used. By the above, a back electrode type solar cell can be produced.
 以上のように作製された裏面電極型太陽電池セルにおいては、幅広のファセット62を有する太陽電池用シリコンウエハ1のなだらかな裏面にn型用電極12およびp型用電極13がそれぞれ形成されており、太陽電池用シリコンウエハ1の裏面と、n型用電極12およびp型用電極13のそれぞれとの接触面積を増加させることができるため、太陽電池用シリコンウエハ1と電極(n型用電極12,p型用電極13)との接触抵抗および太陽電池用シリコンウエハ1の表面と電極との界面でのキャリアの再結合を低減することができる。 In the back electrode type solar cell produced as described above, the n-type electrode 12 and the p-type electrode 13 are respectively formed on the gentle back surface of the solar cell silicon wafer 1 having a wide facet 62. Since the contact area between the back surface of the silicon wafer 1 for solar cells and each of the n-type electrode 12 and the p-type electrode 13 can be increased, the solar cell silicon wafer 1 and the electrode (n-type electrode 12) , Contact resistance with the p-type electrode 13) and recombination of carriers at the interface between the surface of the silicon wafer 1 for solar cells and the electrode can be reduced.
 また、太陽電池用シリコンウエハ1の裏面の凹凸に起因してマスキングペースト2の印刷パターンが乱れることが少ないため、マスキングペースト2の印刷精度を向上させることができる。さらには、従来よりもエッチング量が抑えられて太陽電池用シリコンウエハ1が形成されているため、太陽電池用シリコンウエハ1の機械的強度および裏面電極型太陽電池セルの変換効率の低下を抑えることができる。そのため、上記のようにして作製された裏面電極型太陽電池セルにおいては、良好な特性を有する裏面電極型太陽電池セルを安定して製造することができる。 Further, since the printing pattern of the masking paste 2 is less likely to be disturbed due to the unevenness of the back surface of the silicon wafer 1 for solar cells, the printing accuracy of the masking paste 2 can be improved. Furthermore, since the silicon wafer 1 for solar cells is formed with a smaller etching amount than before, the reduction in mechanical strength of the silicon wafer 1 for solar cells and the conversion efficiency of the back electrode type solar cells are suppressed. Can do. Therefore, in the back electrode type solar cell produced as described above, a back electrode type solar cell having good characteristics can be stably manufactured.
 なお、上記においては、本実施の形態の太陽電池用シリコンウエハ1を用いて裏面電極型太陽電池セルを製造する場合について説明したが、これに限定されるものではなく、両面電極型太陽電池セルなどの裏面電極型太陽電池セル以外の太陽電池セルを製造してもよい。 In addition, in the above, although the case where a back surface electrode type solar cell was manufactured using the silicon wafer 1 for solar cells of this Embodiment was not limited to this, a double-sided electrode type solar cell A solar battery cell other than the back electrode type solar battery cell may be manufactured.
 <結晶シリコンウエハの作製と評価>
 まず、チョクラルスキー法によって形成したn型単結晶シリコンインゴットを、往復走行を行なっているレジンボンドワイヤに押し付けて{100}面が露出するようにスライスした。これにより、面積が239.7cm2の擬似正方形状の受光面および裏面を有するとともに厚さが200μmの板状のn型単結晶シリコンウエハ(実施例のn型単結晶シリコンウエハ)が複数枚作製された。
<Production and evaluation of crystalline silicon wafer>
First, an n-type single crystal silicon ingot formed by the Czochralski method was pressed against a resin bond wire that was reciprocating and sliced so that the {100} plane was exposed. As a result, a plurality of plate-shaped n-type single crystal silicon wafers (n-type single crystal silicon wafers of the example) having a pseudo square-shaped light receiving surface and back surface with an area of 239.7 cm 2 and a thickness of 200 μm are manufactured. It was done.
 ここで、レジンボンドワイヤとしては、断面直径110μmのピアノ線の外周面に、平均粒径8μm以上11μm以下のダイヤモンド砥粒を、厚さ3~5μmのレジンボンドで固着したものを用いた。 Here, as the resin bond wire, a diamond wire having an average particle diameter of 8 μm or more and 11 μm or less fixed to the outer peripheral surface of a piano wire having a cross-sectional diameter of 110 μm with a resin bond having a thickness of 3 to 5 μm was used.
 図22(a)~図24(a)に、それぞれ、上記スライス後の実施例のn型単結晶シリコンウエハの表面の顕微鏡写真を示し、図22(b)~図24(b)に、それぞれ、図22(a)~図24(a)の実施例のn型単結晶シリコンウエハの表面のレーザ顕微鏡による凹凸の測定結果を示す。 FIGS. 22 (a) to 24 (a) show micrographs of the surface of the n-type single crystal silicon wafer of the example after the slicing, respectively, and FIGS. 22 (b) to 24 (b) respectively show the micrographs. 22 shows the measurement results of unevenness of the surface of the n-type single crystal silicon wafer of the examples of FIGS. 22 (a) to 24 (a) using a laser microscope.
 図22~図24に示すように、実施例のn型単結晶シリコンウエハの表面はなだらかであることが確認された。 As shown in FIGS. 22 to 24, it was confirmed that the surface of the n-type single crystal silicon wafer of the example was gentle.
 また、図22~図24に示される実施例のn型単結晶シリコンウエハの表面を占めるスクラッチの面積比を測定した。ここで、スクラッチの面積比は、レーザ顕微鏡(オリンパス(株)製の「OLS3000」)を用いて、実施例のn型単結晶シリコンウエハの表面にスポット径が0.4μmのレーザ光を照射することにより行なった。具体的には、以下の(I)~(III)により行なった。
(I)実施例のn型単結晶シリコンウエハの表面に上記のレーザ顕微鏡から上記スポット径を有するレーザ光を照射して、n型単結晶シリコンウエハ1枚当たり100箇所についてスクラッチの有無を確認する(検査面積の総和は、100μm×100μm×100=1mm2)。
(II)(I)によって発見されたスクラッチのそれぞれの面積を算出し、その面積の総和を求める。
(III)以下の式で示されるように、(II)で求めたスクラッチの面積の総和を検査面積の総和で割ることによってスクラッチの面積比(%)を算出する。
Further, the area ratio of the scratch occupying the surface of the n-type single crystal silicon wafer of the example shown in FIGS. 22 to 24 was measured. Here, the area ratio of the scratch is such that the surface of the n-type single crystal silicon wafer of the example is irradiated with laser light having a spot diameter of 0.4 μm using a laser microscope (“OLS3000” manufactured by Olympus Corporation). Was done. Specifically, the following (I) to (III) were performed.
(I) The surface of the n-type single crystal silicon wafer of the example is irradiated with laser light having the spot diameter from the above laser microscope, and the presence or absence of scratches is confirmed at 100 locations per n-type single crystal silicon wafer. (The total inspection area is 100 μm × 100 μm × 100 = 1 mm 2 ).
(II) The respective areas of the scratches discovered by (I) are calculated, and the sum of the areas is obtained.
(III) As shown by the following equation, the scratch area ratio (%) is calculated by dividing the sum of the areas of scratches obtained in (II) by the sum of the inspection areas.
 スクラッチの面積比(%)=100×(スクラッチの面積の総和)/(検査面積の総和)
 その結果、実施例のn型単結晶シリコンウエハのスクラッチの面積比(%)は、それぞれ0.1%以下であることが確認された。また、実施例のn型単結晶シリコンウエハのスクラッチの最大の深さは5μmであることも確認された。
Scratch area ratio (%) = 100 × (sum of scratch areas) / (sum of inspection areas)
As a result, it was confirmed that the scratch area ratio (%) of the n-type single crystal silicon wafer of the example was 0.1% or less. It was also confirmed that the maximum scratch depth of the n-type single crystal silicon wafer of the example was 5 μm.
 また、比較として、レジンボンドワイヤに代えて、ピアノ線の外周面に平均粒径10μm以上20μm以下のダイヤモンド砥粒(ダイヤモンド砥粒の粒径の90%以上が10μm以上20μm以下の範囲内に含まれている)をニッケルめっきで固着した電着ワイヤを用いたこと以外は上記と同様にしてn型単結晶シリコンウエハ(比較例のn型単結晶シリコンウエハ)を作製した。 For comparison, instead of the resin bond wire, the diamond wire having an average particle diameter of 10 μm or more and 20 μm or less (90% or more of the particle diameter of the diamond abrasive grains is included in the range of 10 μm or more and 20 μm or less on the outer peripheral surface of the piano wire. An n-type single crystal silicon wafer (an n-type single crystal silicon wafer of a comparative example) was prepared in the same manner as described above except that an electrodeposited wire fixed with nickel plating was used.
 図25(a)に比較例のn型単結晶シリコンウエハの表面の顕微鏡写真を示し、図25(b)に図25(a)の比較例のn型単結晶シリコンウエハの表面のレーザ顕微鏡による凹凸の測定結果を示す。 FIG. 25A shows a micrograph of the surface of the n-type single crystal silicon wafer of the comparative example, and FIG. 25B shows a surface of the n-type single crystal silicon wafer of the comparative example of FIG. The measurement result of unevenness is shown.
 図25に示すように、比較例のn型単結晶シリコンウエハの表面は、実施例のn型単結晶シリコンウエハの表面と比べてなだらかではないことが確認された。 As shown in FIG. 25, it was confirmed that the surface of the n-type single crystal silicon wafer of the comparative example was not gentle compared to the surface of the n-type single crystal silicon wafer of the example.
 また、上記と同様にして、比較例のn型単結晶シリコンウエハの表面を占めるスクラッチの面積比を測定した。その結果、比較例のn型単結晶シリコンウエハのスクラッチの面積比(%)は、0.5%以上であることが確認された。また、比較例のn型単結晶シリコンウエハのスクラッチの最大の深さは10μmであることも確認された。 In the same manner as described above, the area ratio of scratches occupying the surface of the n-type single crystal silicon wafer of the comparative example was measured. As a result, it was confirmed that the scratch area ratio (%) of the n-type single crystal silicon wafer of the comparative example was 0.5% or more. It was also confirmed that the maximum scratch depth of the n-type single crystal silicon wafer of the comparative example was 10 μm.
 <太陽電池用シリコンウエハの作製>
 次に、上記のようにして形成した実施例および比較例のそれぞれのn型単結晶シリコンウエハの表面を水酸化ナトリウム濃度が30質量%の水酸化ナトリウム水溶液で片側の表面のエッチング量が13μm(両方の表面のエッチング量を合わせて26μm、エッチング後のn型単結晶シリコンウエハの厚みが174μm)となるようにエッチングした。これにより、実施例のn型単結晶シリコンウエハから実施例の太陽電池用シリコンウエハを複数枚作製し、比較例のn型単結晶シリコンウエハから比較例の太陽電池用シリコンウエハを作製した。
<Production of silicon wafer for solar cell>
Next, the surface of each of the n-type single crystal silicon wafers of Examples and Comparative Examples formed as described above was etched with a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 30 mass% and the etching amount on one surface was 13 μm ( Etching was performed so that the total etching amount of both surfaces was 26 μm, and the thickness of the n-type single crystal silicon wafer after etching was 174 μm. Thus, a plurality of silicon wafers for solar cells of the example were produced from the n-type single crystal silicon wafer of the example, and a silicon wafer for solar cell of the comparative example was produced from the n-type single crystal silicon wafer of the comparative example.
 上記のレーザ顕微鏡を用いて、実施例の太陽電池用シリコンウエハの表面および比較例の太陽電池用シリコンウエハの表面をそれぞれ観察したところ、実施例の太陽電池用シリコンウエハの表面に形成されたファセットの90%が、幅20μm以上60μm以下であって、深さ0.1μm以上10μm以下のファセットであることが確認された。 When the surface of the silicon wafer for solar cell of the example and the surface of the silicon wafer for solar cell of the comparative example were respectively observed using the laser microscope, facets formed on the surface of the silicon wafer for solar cell of the example It was confirmed that 90% of the facets had a width of 20 μm or more and 60 μm or less and a depth of 0.1 μm or more and 10 μm or less.
 <裏面電極型太陽電池セルの作製と評価>
 実施例の太陽電池用シリコンウエハおよび比較例の太陽電池用シリコンウエハを用いて、それぞれ、実施例の裏面電極型太陽電池セルおよび比較例の裏面電極型太陽電池セルを作製した。
<Production and Evaluation of Back Electrode Solar Cell>
Using the silicon wafer for solar cell of the example and the silicon wafer for solar cell of the comparative example, a back electrode type solar cell of the example and a back electrode type solar cell of the comparative example were produced, respectively.
 具体的には、まず、実施例の太陽電池用シリコンウエハおよび比較例の太陽電池用シリコンウエハのそれぞれの一方の表面全面にマスキングペーストを印刷するとともに、その反対側の表面に開口部を複数有するように帯状のマスキングペーストを印刷した。 Specifically, first, a masking paste is printed on the entire surface of one surface of each of the silicon wafer for solar cell of the example and the silicon wafer for solar cell of the comparative example, and a plurality of openings are provided on the opposite surface. A strip-shaped masking paste was printed as follows.
 次に、マスキングペーストの印刷後のそれぞれの太陽電池用シリコンウエハをオーブン内に設置して加熱することによりマスキングペーストを乾燥させた。 Next, the masking paste was dried by placing each solar cell silicon wafer after printing the masking paste in an oven and heating.
 次に、上記のようにして乾燥させた後のマスキングペーストを加熱して焼成することによってマスキングペーストを固化させた。 Next, the masking paste was solidified by heating and baking the masking paste after drying as described above.
 次に、マスキングペーストを固化させた後のそれぞれの太陽電池用シリコンウエハにPOCl3を流すことによって、それぞれの太陽電池用シリコンウエハの上記開口部にリンを拡散させてn型ドーパント拡散領域を形成した。 Next, by pouring POCl 3 to each solar cell silicon wafer after the masking paste is solidified, phosphorus is diffused into the opening of each solar cell silicon wafer to form an n-type dopant diffusion region. did.
 次に、それぞれの太陽電池用シリコンウエハをフッ酸水溶液中に浸漬させることによりそれぞれの太陽電池用シリコンウエハのマスキングペーストをすべて除去した。 Next, all the masking paste of each silicon wafer for solar cells was removed by immersing each silicon wafer for solar cells in a hydrofluoric acid aqueous solution.
 次に、それぞれの太陽電池用シリコンウエハのn型ドーパント拡散領域形成側の表面にn型ドーパント拡散領域と平行な帯状に露出してなる開口部を複数有するようにマスキングペーストを印刷した。ここで、マスキングペーストは、n型ドーパント拡散領域とは異なる領域が開口部から露出するように印刷された。 Next, a masking paste was printed so as to have a plurality of openings exposed in a strip shape parallel to the n-type dopant diffusion region on the surface on the n-type dopant diffusion region formation side of each silicon wafer for solar cells. Here, the masking paste was printed such that a region different from the n-type dopant diffusion region was exposed from the opening.
 また、それぞれの太陽電池用シリコンウエハのn型ドーパント拡散領域形成側とは反対側の表面全面にもマスキングペーストを設置した。 Also, a masking paste was placed on the entire surface of the silicon wafer for each solar cell opposite to the n-type dopant diffusion region forming side.
 そして、それぞれの太陽電池用シリコンウエハをオーブン内に設置して加熱することによりマスキングペーストを乾燥させ、その後、マスキングペーストを加熱して焼成することによってマスキングペーストを固化させた。 Then, the masking paste was dried by placing and heating each silicon wafer for solar cell in an oven, and then the masking paste was solidified by heating and baking the masking paste.
 次に、それぞれの太陽電池用シリコンウエハにBBr3を流すことによって、それぞれの太陽電池用シリコンウエハの上記開口部にボロンを拡散させてp型ドーパント拡散領域を形成した。 Next, by flowing BBr 3 through each solar cell silicon wafer, boron was diffused into the opening of each solar cell silicon wafer to form a p-type dopant diffusion region.
 次に、それぞれの太陽電池用シリコンウエハをフッ酸水溶液中に浸漬させることによりそれぞれの太陽電池用シリコンウエハのマスキングペーストをすべて除去した。 Next, all the masking paste of each silicon wafer for solar cells was removed by immersing each silicon wafer for solar cells in a hydrofluoric acid aqueous solution.
 次に、それぞれの太陽電池用シリコンウエハのn型ドーパント拡散領域およびp型ドーパント拡散領域の形成側の表面全面にプラズマCVD法により窒化シリコン膜からなるパッシベーション膜を形成した。 Next, a passivation film made of a silicon nitride film was formed by plasma CVD on the entire surface on the formation side of the n-type dopant diffusion region and the p-type dopant diffusion region of each silicon wafer for solar cells.
 次に、それぞれの太陽電池用シリコンウエハのパッシベーション膜形成側とは反対側の表面をテクスチャエッチングすることによってテクスチャ構造を形成した。ここで、テクスチャエッチングは、水酸化ナトリウム濃度が3体積%の水酸化ナトリウム水溶液にイソプロピルアルコールを添加した70℃~80℃のエッチング液を用いて行なった。 Next, a texture structure was formed by texture-etching the surface opposite to the passivation film forming side of each silicon wafer for solar cells. Here, the texture etching was performed using an etching solution at 70 ° C. to 80 ° C. obtained by adding isopropyl alcohol to a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 3% by volume.
 次に、それぞれの太陽電池用シリコンウエハのテクスチャ構造上にプラズマCVD法により窒化シリコン膜からなる反射防止膜を形成した。 Next, an antireflection film made of a silicon nitride film was formed on the texture structure of each solar cell silicon wafer by plasma CVD.
 次に、それぞれの太陽電池用シリコンウエハのパッシベーション膜の一部を帯状に除去することによって、コンタクトホールを形成し、n型ドーパント拡散領域およびp型ドーパント拡散領域のそれぞれの一部を露出させた。 Next, by removing a part of the passivation film of each solar cell silicon wafer in a strip shape, a contact hole was formed, and a part of each of the n-type dopant diffusion region and the p-type dopant diffusion region was exposed. .
 その後、それぞれの太陽電池用シリコンウエハのコンタクトホールを埋めるようにして市販の銀ペーストを塗布し、乾燥させ、加熱することによって銀ペーストを焼成し、n型ドーパント拡散領域およびp型ドーパント拡散領域にそれぞれ接する銀電極を形成した。 Thereafter, a commercially available silver paste is applied so as to fill the contact holes of the silicon wafers for solar cells, dried, and heated to baked the silver paste to form an n-type dopant diffusion region and a p-type dopant diffusion region. Silver electrodes in contact with each other were formed.
 以上により、実施例の太陽電池用シリコンウエハから実施例の裏面電極型太陽電池セルを作製するとともに、比較例の太陽電池用シリコンウエハから比較例の裏面電極型太陽電池セルを作製した。 By the above, while producing the back electrode type solar cell of the example from the silicon wafer for solar cell of the example, the back electrode type solar cell of the comparative example was produced from the silicon wafer for solar cell of the comparative example.
 そして、実施例の裏面電極型太陽電池セルおよび比較例の裏面電極型太陽電池セルに、ソーラシミュレータを用いて擬似太陽光を照射し、電流-電圧(IV)特性を測定して、短絡電流密度(mA/cm2)、開放電圧(V)、F.F.(Fill Factor)および光電変換効率(%)を測定した。 Then, the back electrode type solar battery cell of the example and the back electrode type solar battery cell of the comparative example were irradiated with pseudo-sunlight using a solar simulator, current-voltage (IV) characteristics were measured, and the short-circuit current density was measured. (MA / cm 2 ), open circuit voltage (V), F.R. F. (Fill Factor) and photoelectric conversion efficiency (%) were measured.
 その結果、実施例の裏面電極型太陽電池セルの短絡電流密度、開放電圧、F.F.および光電変換効率をそれぞれ100としたときの、比較例の裏面電極型太陽電池セルの短絡電流密度の相対値は100であり、開放電圧の相対値は99であり、F.F.相対値は97であり、および光電変換効率の相対値は96であった。 As a result, the short-circuit current density, open-circuit voltage, F.V. F. The relative value of the short circuit current density of the back electrode type solar cell of the comparative example is 100, the relative value of the open circuit voltage is 99, and the photoelectric conversion efficiency is 100, respectively. F. The relative value was 97, and the relative value of photoelectric conversion efficiency was 96.
 以上により、実施例の裏面電極型太陽電池セルは、比較例の裏面電極型太陽電池セルと比べて、良好な特性を安定して得ることができることが確認された。 From the above, it was confirmed that the back electrode type solar battery cell of the example can stably obtain good characteristics as compared with the back electrode type solar battery cell of the comparative example.
 これは、実施例の裏面電極型太陽電池セルにおいては、スクラッチの少ない実施例の太陽電池用シリコンウエハのなだらかな表面に銀電極が形成されたことにより、実施例の太陽電池用シリコンウエハの表面と銀電極との接触面積が増加して、実施例の太陽電池用シリコンウエハの表面と銀電極との接触抵抗を低減することができたとともに、実施例の太陽電池用シリコンウエハの表面と銀電極との界面でのキャリアの再結合を低減できたためと考えられる。 This is because, in the back electrode type solar battery cell of the example, the surface of the silicon wafer for solar cell of the example was formed by forming the silver electrode on the gentle surface of the silicon wafer for solar cell of the example with few scratches. The contact area between the silver electrode and the surface of the silicon wafer for the solar cell of the example and the contact resistance between the silver electrode and the surface of the silicon wafer for the solar cell of the example and silver was increased. This is probably because the recombination of carriers at the interface with the electrode could be reduced.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、シリコン結晶インゴットのスライス方法および太陽電池用シリコンウエハの製造方法に利用することができる。 The present invention can be used in a method for slicing a silicon crystal ingot and a method for producing a silicon wafer for solar cells.
 1 太陽電池用シリコンウエハ、1a スライスダメージ、2 マスキングペースト、3 n型ドーパント拡散領域、4 n型ドーパント含有ガス、5 p型ドーパント拡散領域、6 p型ドーパント含有ガス、7 パッシベーション膜、8 テクスチャ構造、9 反射防止膜、10a,10b コンタクトホール、11 結晶シリコンウエハ、12 n型用電極、13 p型用電極、14,15 開口部、20 芯線、21 レジンボンド材、22 砥粒、50 シリコン結晶インゴット、51,52 ガイドローラ、53 レジンボンドワイヤ、54,55 矢印、61 ソーマーク、62,63,64 ファセット、65 突起物、71 スクラッチ、72 砥粒痕、101 シリコンウエハ、102 マスキングペースト、103 n型ドーパント拡散領域、104 n型ドーパント、105 p型ドーパント拡散領域、106 p型ドーパント、107 パッシベーション膜、108 テクスチャ構造、109 反射防止膜、112 n型用電極、113 p型用電極、114,115 開口部。 1 solar cell silicon wafer, 1a slice damage, 2 masking paste, 3 n-type dopant diffusion region, 4 n-type dopant-containing gas, 5 p-type dopant diffusion region, 6 p-type dopant-containing gas, 7 passivation film, 8 texture structure , 9 Antireflection film, 10a, 10b contact hole, 11 crystalline silicon wafer, 12 n-type electrode, 13 p-type electrode, 14, 15 opening, 20 core wire, 21 resin bond material, 22 abrasive grains, 50 silicon crystal Ingot, 51, 52 guide roller, 53 resin bond wire, 54, 55 arrow, 61 saw mark, 62, 63, 64 facet, 65 protrusion, 71 scratch, 72 abrasive grain trace, 101 silicon wafer, 102 masking paste, 103 n-type dopant diffusion region, 104 n-type dopant, 105 p-type dopant diffusion region, 106 p-type dopant, 107 passivation film, 108 texture structure, 109 antireflection film, 112 n-type electrode, 113 p-type electrode, 114, 115 opening.

Claims (13)

  1.  平均粒径が10μm以上20μm以下の砥粒(22)を備えたレジンボンドワイヤ(53)によりシリコン結晶インゴット(50)をスライスする工程と、
     前記シリコン結晶インゴット(50)の前記スライスにより得られた結晶シリコンウエハ(11)を、前記結晶シリコンウエハ(11)の表面に10μm以上150μm以下の幅のファセット(62)を有するように、エッチングする工程と、を含む、太陽電池用シリコンウエハ(1)の製造方法。
    Slicing the silicon crystal ingot (50) with a resin bond wire (53) provided with abrasive grains (22) having an average particle size of 10 μm or more and 20 μm or less;
    The crystalline silicon wafer (11) obtained by the slicing of the silicon crystal ingot (50) is etched so as to have a facet (62) having a width of 10 μm or more and 150 μm or less on the surface of the crystalline silicon wafer (11). A process for producing a silicon wafer for solar cells (1).
  2.  前記エッチングする工程においては、前記結晶シリコンウエハ(11)の表面に0.1μm以上10μm以下の深さのファセット(62)を有するように前記結晶シリコンウエハ(11)をエッチングする、請求項1に記載の太陽電池用シリコンウエハ(1)の製造方法。 In the etching step, the crystalline silicon wafer (11) is etched so that a facet (62) having a depth of 0.1 μm or more and 10 μm or less is formed on the surface of the crystalline silicon wafer (11). The manufacturing method of the silicon wafer (1) for solar cells of description.
  3.  前記エッチングする工程においては、前記結晶シリコンウエハ(11)のエッチング量は、前記結晶シリコンウエハ(11)の片側の表面につき5μm以上25μm以下である、請求項1または2に記載の太陽電池用シリコンウエハ(1)の製造方法。 3. The solar cell silicon according to claim 1, wherein in the etching step, the etching amount of the crystalline silicon wafer (11) is 5 μm or more and 25 μm or less per one surface of the crystalline silicon wafer (11). Manufacturing method of wafer (1).
  4.  前記エッチングする工程においては、濃度が20質量%以上35質量%以下の水酸化ナトリウム水溶液を用いる、請求項1から3のいずれかに記載の太陽電池用シリコンウエハ(1)の製造方法。 The method for producing a silicon wafer for solar cells (1) according to any one of claims 1 to 3, wherein an aqueous sodium hydroxide solution having a concentration of 20% by mass to 35% by mass is used in the etching step.
  5.  前記シリコン結晶インゴット(50)は、単結晶シリコンである、請求項1から4のいずれかに記載の太陽電池用シリコンウエハ(1)の製造方法。 The method for producing a silicon wafer for solar cells (1) according to any one of claims 1 to 4, wherein the silicon crystal ingot (50) is single crystal silicon.
  6.  前記スライスする工程において、前記シリコン結晶インゴット(50)は、{100}面が露出するようにスライスされる、請求項5に記載の太陽電池用シリコンウエハ(1)の製造方法。 The method for producing a silicon wafer for solar cells (1) according to claim 5, wherein, in the slicing step, the silicon crystal ingot (50) is sliced so that a {100} plane is exposed.
  7.  前記スライスする工程において、前記結晶シリコンウエハ(11)の表面を占めるスクラッチの面積比が0.1%以下である、請求項1から6のいずれかに記載の太陽電池用シリコンウエハ(1)の製造方法。 The silicon wafer for solar cells (1) according to any one of claims 1 to 6, wherein in the slicing step, the area ratio of scratches occupying the surface of the crystalline silicon wafer (11) is 0.1% or less. Production method.
  8.  平均粒径が10μm以上20μm以下の砥粒(22)を備えたレジンボンドワイヤ(53)によりシリコン結晶インゴット(50)をスライスする工程を含む製造方法により得られ、
     前記シリコン結晶インゴット(50)の前記スライスにより得られた結晶シリコンウエハ(11)の表面を占めるスクラッチの面積比が0.1%以下である、太陽電池用シリコンウエハ(1)。
    Obtained by a production method comprising a step of slicing a silicon crystal ingot (50) with a resin bond wire (53) provided with abrasive grains (22) having an average particle size of 10 μm or more and 20 μm or less,
    The silicon wafer for solar cells (1), wherein the area ratio of scratches occupying the surface of the crystalline silicon wafer (11) obtained by the slicing of the silicon crystal ingot (50) is 0.1% or less.
  9.  レジンボンドワイヤ(53)により単結晶シリコン結晶インゴット(50)を{100}面が露出するようにスライスする工程と、
     前記単結晶シリコン結晶インゴット(50)の前記スライスにより得られた単結晶シリコンウエハ(11)を水酸化ナトリウムを用いてエッチングする工程と、を含む製造方法により得られ、
     厚さが200μm以下の太陽電池用シリコンウエハ(1)。
    Slicing the single crystal silicon crystal ingot (50) with the resin bond wire (53) so that the {100} plane is exposed;
    Etching the single crystal silicon wafer (11) obtained by the slicing of the single crystal silicon crystal ingot (50) using sodium hydroxide, and
    A silicon wafer for solar cells (1) having a thickness of 200 μm or less.
  10.  前記エッチングする工程においては、前記単結晶シリコンウエハ(11)の表面に10μm以上150μm以下の幅のファセット(62)を有するように前記単結晶シリコンウエハ(11)をエッチングする、請求項9に記載の太陽電池用シリコンウエハ(1)。 The said single crystal silicon wafer (11) is etched so that it may have a facet (62) of the width of 10 micrometers or more and 150 micrometers or less on the surface of the said single crystal silicon wafer (11) in the said process to etch. Silicon wafer for solar cell (1).
  11.  前記エッチングする工程においては、前記単結晶シリコンウエハ(11)の表面に0.1μm以上10μm以下の深さのファセット(62)を有するように前記単結晶シリコンウエハ(11)をエッチングする、請求項9または10に記載の太陽電池用シリコンウエハ(1)。 In the etching step, the single crystal silicon wafer (11) is etched so that a facet (62) having a depth of 0.1 μm or more and 10 μm or less is formed on a surface of the single crystal silicon wafer (11). The silicon wafer (1) for solar cells according to 9 or 10.
  12.  平均粒径が10μm以上20μm以下の砥粒(22)を備えたレジンボンドワイヤ(53)によりシリコン結晶インゴット(50)をスライスする工程と、
     前記シリコン結晶インゴット(50)の前記スライスにより得られた結晶シリコンウエハ(11)を、前記結晶シリコンウエハ(11)の表面に10μm以上150μm以下の幅のファセット(62)を有するように、エッチングする工程と、
     前記結晶シリコンウエハ(11)の前記ファセット(62)を有する前記表面に電極(12,13)を形成する工程と、を含み、
     前記エッチングする工程においては、前記結晶シリコンウエハ(11)のエッチング量は、前記結晶シリコンウエハ(11)の片側の表面につき5μm以上25μm以下であり、
     前記エッチングする工程においては、濃度が20質量%以上35質量%以下の水酸化ナトリウム水溶液を用いる、半導体装置の製造方法。
    Slicing the silicon crystal ingot (50) with a resin bond wire (53) provided with abrasive grains (22) having an average particle size of 10 μm or more and 20 μm or less;
    The crystalline silicon wafer (11) obtained by the slicing of the silicon crystal ingot (50) is etched so as to have a facet (62) having a width of 10 μm or more and 150 μm or less on the surface of the crystalline silicon wafer (11). Process,
    Forming electrodes (12, 13) on the surface having the facets (62) of the crystalline silicon wafer (11),
    In the etching step, the etching amount of the crystalline silicon wafer (11) is 5 μm or more and 25 μm or less per one surface of the crystalline silicon wafer (11),
    A method of manufacturing a semiconductor device, wherein in the etching step, a sodium hydroxide aqueous solution having a concentration of 20% by mass to 35% by mass is used.
  13.  請求項10または11に記載の太陽電池用シリコンウエハ(11)と、前記結晶シリコンウエハ(11)の前記ファセット(62)を有する前記表面に設けられた電極(12,13)と、を備えた、半導体装置。 A solar cell silicon wafer (11) according to claim 10 or 11, and an electrode (12, 13) provided on the surface having the facet (62) of the crystalline silicon wafer (11). , Semiconductor devices.
PCT/JP2012/065575 2011-06-30 2012-06-19 Wafer for solar cell, solar cell, and production method therefor WO2013002061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145693 2011-06-30
JP2011145693A JP2013012668A (en) 2011-06-30 2011-06-30 Wafer for solar cell, solar cell and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013002061A1 true WO2013002061A1 (en) 2013-01-03

Family

ID=47423959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065575 WO2013002061A1 (en) 2011-06-30 2012-06-19 Wafer for solar cell, solar cell, and production method therefor

Country Status (3)

Country Link
JP (1) JP2013012668A (en)
TW (1) TW201306112A (en)
WO (1) WO2013002061A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069672A1 (en) * 2011-11-11 2013-05-16 シャープ株式会社 Semiconductor device and method for producing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159456A1 (en) * 2014-04-16 2015-10-22 三菱電機株式会社 Solar cell and solar cell manufacturing method
US10084098B2 (en) * 2016-09-30 2018-09-25 Sunpower Corporation Metallization of conductive wires for solar cells
EP3343639A4 (en) 2016-11-07 2018-09-26 Shin-Etsu Chemical Co., Ltd Solar cell with high photoelectric conversion efficiency and method for producing solar cell with high photoelectric conversion efficiency
CN106696104B (en) * 2016-12-16 2019-08-30 苏州阿特斯阳光电力科技有限公司 The method of sticky stick method and cutting casting polycrystalline silicon rod

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044870A (en) * 2006-09-21 2007-02-22 Allied Material Corp Method of detecting disconnection of wire saw, method of inspection quality, and method of manufacturing cut product
JP2007180527A (en) * 2005-11-29 2007-07-12 Kyocera Corp Method of manufacturing semiconductor substrate, and device of manufacturing the semiconductor substrate
WO2009041266A1 (en) * 2007-09-28 2009-04-02 Sharp Kabushiki Kaisha Solar cell wafer manufacturing method
JP2010167509A (en) * 2009-01-20 2010-08-05 Kanai Hiroaki Fixed-abrasive grain saw wire and cutting method
WO2011024910A1 (en) * 2009-08-28 2011-03-03 株式会社Sumco Silicon wafer for solar cells and production method therefor
JP2011079106A (en) * 2009-10-08 2011-04-21 Sumco Corp Method of cutting workpiece by fixed abrasive grain wire saw

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180527A (en) * 2005-11-29 2007-07-12 Kyocera Corp Method of manufacturing semiconductor substrate, and device of manufacturing the semiconductor substrate
JP2007044870A (en) * 2006-09-21 2007-02-22 Allied Material Corp Method of detecting disconnection of wire saw, method of inspection quality, and method of manufacturing cut product
WO2009041266A1 (en) * 2007-09-28 2009-04-02 Sharp Kabushiki Kaisha Solar cell wafer manufacturing method
JP2010167509A (en) * 2009-01-20 2010-08-05 Kanai Hiroaki Fixed-abrasive grain saw wire and cutting method
WO2011024910A1 (en) * 2009-08-28 2011-03-03 株式会社Sumco Silicon wafer for solar cells and production method therefor
JP2011079106A (en) * 2009-10-08 2011-04-21 Sumco Corp Method of cutting workpiece by fixed abrasive grain wire saw

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069672A1 (en) * 2011-11-11 2013-05-16 シャープ株式会社 Semiconductor device and method for producing semiconductor device
JP2013105818A (en) * 2011-11-11 2013-05-30 Sharp Corp Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP2013012668A (en) 2013-01-17
TW201306112A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
WO2013002060A1 (en) Wafer for solar cell, solar cell, and production method therefor
WO2010101054A1 (en) Process for producing semiconductor device
Kulakci et al. Application of Si nanowires fabricated by metal-assisted etching to crystalline Si solar cells
WO2013002061A1 (en) Wafer for solar cell, solar cell, and production method therefor
KR20160090287A (en) Nanostructured silicon based solar cells and methods to produce nanostructured silicon based solar cells
TWI538244B (en) Method for manufacturing solar cells
JP5636760B2 (en) Silicon wafer, semiconductor device, method for manufacturing silicon wafer, and method for manufacturing semiconductor device
JP4831709B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2008244282A (en) Photoelectric conversion element and manufacturing method therefor
JP5221738B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5957835B2 (en) Method for producing solar cell wafer, method for producing solar cell, and method for producing solar cell module
JP2015122347A (en) Solar cell, method of manufacturing the same, and solar cell module
US8835210B2 (en) Manufacturing method for solar cell
JP2017509153A (en) Passivation of the light-receiving surface of solar cells
Tang et al. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process
JP2013004721A (en) Method of manufacturing wafer for solar battery, method of manufacturing solar battery cell, and method of manufacturing solar battery module
JP2011018748A (en) Method of manufacturing solar battery cell
KR101429198B1 (en) Etchant for Texturing Silicon Substrate and Manufacturing Method of High Efficiency Solar Cell Using the Same
JP5170701B2 (en) Manufacturing method of semiconductor device
Wang et al. High Efficiency Silicon Heterojunction Solar Cell with Omnidirectional Light Harvesting By Hierarchical Structures
JP2016009803A (en) Method for manufacturing solar cell and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805190

Country of ref document: EP

Kind code of ref document: A1