JP2004216553A - Manufacturing method for super-abrasive grain wire saw - Google Patents

Manufacturing method for super-abrasive grain wire saw Download PDF

Info

Publication number
JP2004216553A
JP2004216553A JP2004086418A JP2004086418A JP2004216553A JP 2004216553 A JP2004216553 A JP 2004216553A JP 2004086418 A JP2004086418 A JP 2004086418A JP 2004086418 A JP2004086418 A JP 2004086418A JP 2004216553 A JP2004216553 A JP 2004216553A
Authority
JP
Japan
Prior art keywords
superabrasive
wire saw
diamond
super
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004086418A
Other languages
Japanese (ja)
Other versions
JP4072512B2 (en
Inventor
Masaaki Yamanaka
正明 山中
Hideki Ogawa
秀樹 小川
Masanori Nakai
正徳 仲井
Nobuo Urakawa
信夫 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2004086418A priority Critical patent/JP4072512B2/en
Publication of JP2004216553A publication Critical patent/JP2004216553A/en
Application granted granted Critical
Publication of JP4072512B2 publication Critical patent/JP4072512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To supply a long-life super-abrasive grain wire saw that prevents a bonding material from stripping caused by a drop of super-abrasive grains to enable high-accuracy and high-efficiency slicing of the fixed super-abrasive grain wire saw. <P>SOLUTION: The projected area of the super-abrasive grains D occupies more than 5% and less than 55% of the surface area of a core wire W of the super-abrasive grain wire saw P where the super-abrasive grains D are fixed on the core wire W by the bonding material R. The projected area of the super-abrasive grains D is controlled to occupy more than 5% and less than 55% of the surface area of the core wire W by changing the mixture ratio of the super-abrasive grains D and the bonding material R. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

この発明は、シリコンインゴットからのシリコンウェハの切り出しや、光学ガラス、セラミックス、水晶、フェライトおよびネオジウム磁石等の切断加工に用いられる固定粒方式の超砥粒ワイヤソーとその製造方法に関するものである。   The present invention relates to a fixed-grain type superabrasive wire saw used for cutting a silicon wafer from a silicon ingot and for cutting optical glass, ceramics, quartz, ferrite, neodymium magnets, and the like, and a method of manufacturing the same.

従来、シリコンインゴットをスライシングしてシリコンウェハを得るためには、主としてダイヤモンド内周刃が使用されてきた。しかしながら、シリコンインゴットの直径が大きくなることに伴い、ダイヤモンド内周刃を用いてシリコンインゴットをスライシングすることが困難になってきた。また、シリコンインゴットのスライシング工程において、歩留まりの向上、生産性の向上、加工変質層の低減が要求されるようになってきた。このため、遊離砥粒と研削液を混合したスラリーをワイヤに供給する、マルチワイヤソー方式と呼ばれるスライシング加工が多く用いられるようになってきた。   Conventionally, in order to obtain a silicon wafer by slicing a silicon ingot, a diamond inner peripheral blade has been mainly used. However, as the diameter of the silicon ingot has increased, it has become difficult to slice the silicon ingot using the diamond inner peripheral blade. Further, in the slicing process of the silicon ingot, it has been required to improve the yield, improve the productivity, and reduce the damaged layer. For this reason, a slicing process called a multi-wire saw method for supplying a slurry in which free abrasive grains and a grinding fluid are mixed to a wire has come to be used frequently.

このマルチワイヤソー方式は、ワイヤのガイドである溝付きメインローラの間隔を調整することにより、大きな直径のシリコンインゴットのスライシングにも適用することが可能である。また、マルチワイヤソー方式は、一度に200枚以上のウェハをスライシング加工することが可能な方法である。しかしながら、マルチワイヤソー方式では、スラリーを用いるため、加工速度がダイヤモンド内周刃に比べて遅いことが問題となっている。また、マルチワイヤソー方式では、スラリーと切り粉の混合物であるスラッジが大量に発生するため、ウェハを洗浄する必要があり、製造コストが高くなるという問題があった。さらに、スラッジが機械とその周辺を汚染し、作業環境を著しく害するという問題もあった。   The multi-wire saw method can be applied to slicing of a large-diameter silicon ingot by adjusting the interval between the grooved main rollers serving as wire guides. The multi-wire saw method is a method capable of slicing 200 or more wafers at a time. However, in the multi-wire saw method, since a slurry is used, there is a problem that the processing speed is lower than that of the diamond inner peripheral blade. Further, in the multi-wire saw method, since a large amount of sludge, which is a mixture of slurry and cutting powder, is generated, there is a problem that the wafer needs to be cleaned, which increases the manufacturing cost. Further, there is a problem that the sludge contaminates the machine and its surroundings, and significantly impairs the working environment.

これらの問題点を解決するために、芯線にダイヤモンド砥粒を固着した、固定砥粒方式のダイヤモンドワイヤソーを用いてシリコンインゴットをスライシング加工することが提案されている。このダイヤモンドワイヤソーは、切れ味が極めて良好であり、スラリーが不要であり、水溶性または不水溶性の研削液を用いることができるため、機械とその周辺の汚染を低減することができ、作業環境を改善することができるという利点を有する。また、数百mまたは数十km以上の長尺のダイヤモンドワイヤソーを製作することができるので、多くの枚数のウェハを一度でスライシング加工することが可能であるので、スラリーを用いるマルチワイヤソー方式に比べて数倍以上の切断速度を得ることができる。   In order to solve these problems, it has been proposed to slicing a silicon ingot using a fixed abrasive type diamond wire saw in which diamond abrasive grains are fixed to a core wire. This diamond wire saw has extremely good sharpness, does not require a slurry, and can use a water-soluble or water-insoluble grinding fluid, so that contamination of the machine and its surroundings can be reduced, and the working environment can be reduced. It has the advantage that it can be improved. In addition, since a long diamond wire saw having a length of several hundred meters or several tens km can be manufactured, a large number of wafers can be sliced at a time. Thus, a cutting speed several times or more can be obtained.

固定砥粒方式のダイヤモンドワイヤソーは、特開平8−126953号公報で提案されている。このダイヤモンドワイヤソーは、ポリエチレン、ナイロン、ポリエステル等からなる素材、またはこれらの素材をガラス繊維、炭素繊維で補強した材料を芯線とし、この芯線の外周にダイヤモンド砥粒を合成樹脂接着剤または電着で固着したものである。   A fixed abrasive type diamond wire saw has been proposed in Japanese Patent Application Laid-Open No. 8-126953. This diamond wire saw is made of a material made of polyethylene, nylon, polyester, or the like, or a material reinforced with glass fiber or carbon fiber as a core wire, and diamond abrasive grains are applied around the core wire with a synthetic resin adhesive or electrodeposition. It is stuck.

また、別のダイヤモンドワイヤソーが、特開平9−155631号公報で提案されている。このダイヤモンドワイヤソーは、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維、シリコンカーバイド繊維、もしくはシリコン−チタン−炭素−酸素系無機繊維等のモノフィラメントまたはマルチフィラメントを芯線とし、この芯線の外周にダイヤモンド砥粒をめっきまたは合成樹脂バインダで固着したものである。
特開平8−126953号公報 特開平9−155631号公報
Further, another diamond wire saw has been proposed in Japanese Patent Application Laid-Open No. 9-155631. This diamond wire saw has a monofilament or a multifilament such as carbon fiber, aramid fiber, alumina fiber, boron fiber, silicon carbide fiber, or silicon-titanium-carbon-oxygen inorganic fiber as a core wire, and has a diamond abrasive grain around the core wire. Is fixed by plating or a synthetic resin binder.
JP-A-8-126953 JP-A-9-155563

しかしながら、上記の公報で提案された固定砥粒方式のダイヤモンドワイヤソーを用いてシリコンインゴットをスライシング加工すると、ダイヤモンド砥粒が脱落し、最終的には結合材が剥離するという問題があった。この結合材の剥離によってスライシング加工における切断速度が急激に低下し、ダイヤモンドワイヤソーの寿命が短くなるという問題があった。   However, when slicing a silicon ingot using a fixed abrasive type diamond wire saw proposed in the above-mentioned publication, there is a problem that the diamond abrasive particles fall off and finally the binder is peeled off. Due to the peeling of the binder, the cutting speed in the slicing process is sharply reduced, and the life of the diamond wire saw is shortened.

そこで、この発明の目的は、ダイヤモンド砥粒等の超砥粒が脱落することによる結合材の剥離を防止し、高い精度で高い能率でスライシング加工を可能にする長寿命の超砥粒ワイヤソーを提供することである。   Therefore, an object of the present invention is to provide a long-life super-abrasive wire saw that prevents slicing with high accuracy and high efficiency by preventing separation of a binder due to the drop of super-abrasive grains such as diamond abrasive grains. It is to be.

この発明に従った超砥粒ワイヤソーの製造方法は、芯材の表面に超砥粒が結合材で固着された超砥粒ワイヤソーを作成する工程と、超砥粒ワイヤソーにおいて、超砥粒の投影面積を測定する工程と、超砥粒の投影面積が芯材の表面積に占める割合が所定の範囲内であれば超砥粒ワイヤソーを良品と判断し、超砥粒の投影面積が芯材の表面積に占める割合が所定の範囲外であれば超砥粒ワイヤソーを不良品であると判断する工程とを備える。   The method of manufacturing a superabrasive wire saw according to the present invention includes a step of producing a superabrasive wire saw in which superabrasive grains are fixed to a surface of a core material with a bonding material; If the ratio of the projected area of the super-abrasive grains to the surface area of the core material is within a predetermined range, the super-abrasive wire saw is determined to be non-defective, and the projected area of the super-abrasive grains is the surface area of the core material. And determining that the superabrasive wire saw is defective if the proportion of the wire saw is out of a predetermined range.

この発明に従った超砥粒ワイヤソーの製造方法は、芯材の表面に超砥粒が結合材で固着された超砥粒ワイヤソーを作成する工程と、超砥粒ワイヤソーにおいて、超砥粒の投影面積を測定する工程と、超砥粒の投影面積が芯材の表面積に占める割合が5%以上55%以下であれば超砥粒ワイヤソーを良品と判断し、超砥粒の投影面積が芯材の表面積に占める割合が5%未満または55%超であれば超砥粒ワイヤソーを不良品であると判断する工程とを備える。   The method of manufacturing a superabrasive wire saw according to the present invention includes a step of producing a superabrasive wire saw in which superabrasive grains are fixed to a surface of a core material with a bonding material; The step of measuring the area, and if the ratio of the projected area of the superabrasive grains to the surface area of the core material is 5% or more and 55% or less, the superabrasive wire saw is determined to be good, and the projected area of the superabrasive grains is Determining that the superabrasive wire saw is defective if the proportion of the surface area is less than 5% or more than 55%.

この発明に従った超砥粒ワイヤソーは、芯線の表面に超砥粒が結合材で固着された超砥粒ワイヤソーにおいて、超砥粒の投影面積が芯線の表面積に占める割合は5%以上55%以下であることを特徴とする。   According to the superabrasive wire saw according to the present invention, in a superabrasive wire saw in which superabrasive grains are fixed to the surface of a core wire with a binder, the ratio of the projected area of the superabrasive grains to the surface area of the core wire is 5% or more and 55%. It is characterized by the following.

この発明の超砥粒ワイヤソーにおいて、超砥粒の投影面積が芯線の表面積に占める割合は10%以上50%以下であるのが好ましい。   In the superabrasive wire saw of the present invention, the ratio of the projected area of the superabrasive grains to the surface area of the core wire is preferably 10% or more and 50% or less.

また、この発明の超砥粒ワイヤソーにおいて、超砥粒の粒径は5μm以上200μm以下であるのが好ましい。   Further, in the superabrasive wire saw of the present invention, the particle diameter of the superabrasive grains is preferably 5 μm or more and 200 μm or less.

この発明の超砥粒ワイヤソーにおいて、結合材がレジンボンドであり、超砥粒がダイヤモンド砥粒または立方晶窒化ホウ素砥粒であるのが好ましい。   In the superabrasive wire saw of the present invention, the binder is preferably a resin bond, and the superabrasive is preferably a diamond abrasive or a cubic boron nitride abrasive.

この発明の超砥粒ワイヤソーにおいて、芯線が、鋼線、銅めっきを施した鋼線、またはブラスめっきを施した鋼線のいずれか、あるいは、炭素繊維、アラミド繊維、ボロン繊維、またはガラス繊維のいずれかの単線または撚り線からなるのが好ましい。   In the superabrasive wire saw of the present invention, the core wire is a steel wire, one of a copper-plated steel wire or a brass-plated steel wire, or a carbon fiber, an aramid fiber, a boron fiber, or a glass fiber. Preferably, it is made of any single wire or stranded wire.

この発明の超砥粒ワイヤソーにおいて、結合材は、粒径が1μm以上10μm以下のダイヤモンド、立方晶窒化ホウ素、炭化ケイ素、窒化ケイ素、または超硬合金の少なくとも1種の粒子を含むのが好ましい。   In the superabrasive wire saw of the present invention, the binder preferably contains at least one kind of particle of diamond, cubic boron nitride, silicon carbide, silicon nitride, or cemented carbide having a particle size of 1 μm or more and 10 μm or less.

この発明に従った超砥粒ワイヤソーの製造方法は、芯線の表面に超砥粒が結合材で固着された超砥粒ワイヤソーの製造方法において、超砥粒と結合材の混合比率を変えることによって、超砥粒の投影面積が芯線の表面積に占める割合を5%以上55%以下に制御することを特徴とする。   The method of manufacturing a superabrasive wire saw according to the present invention is a method of manufacturing a superabrasive wire saw in which superabrasive grains are fixed to a surface of a core wire with a binder, by changing a mixing ratio of the superabrasive grains and the binder. The ratio of the projected area of the superabrasive grains to the surface area of the core wire is controlled to 5% or more and 55% or less.

以上のように、この発明の超砥粒ワイヤソーは、超砥粒の脱落による結合材の剥離が生じないので、長期間にわたって良好な切れ味を発揮し、シリコンインゴット等のマルチスライシング加工を高能率で高精度に行なうことができる。   As described above, since the superabrasive wire saw of the present invention does not cause peeling of the binder due to the superabrasive grains falling off, it exhibits good sharpness over a long period of time, and can efficiently perform multi-slicing processing of a silicon ingot or the like. It can be performed with high precision.

この発明の超砥粒ワイヤソーの特徴は、超砥粒の投影面積が芯線の表面積に占める割合(以下、「超砥粒投影面積占有率」という)が5%以上55%以下であることである。   A feature of the superabrasive wire saw of the present invention is that the ratio of the projected area of the superabrasive grains to the surface area of the core wire (hereinafter referred to as “superabrasive grain projected area occupancy”) is 5% or more and 55% or less. .

超砥粒投影面積占有率が5%未満では、結合材の剥離が発生するため、超砥粒ワイヤソーの寿命が著しく短くなる。その原因は、作用砥粒数が少なくなり、超砥粒1個当たりの研削抵抗が大きくなるため、超砥粒が脱落し、最終的に結合材が剥離するからである。また、超砥粒投影面積占有率が5%未満になると、結合材の露出する面積が大きくなるため、スライシング加工中に結合材が被加工物と接触し、これによって結合材が早く後退することになり、最終的には結合材が剥離する現象を引き起こすからである。   If the superabrasive grain projected area occupancy is less than 5%, the binder is peeled off, and the life of the superabrasive wire saw is significantly shortened. This is because the number of working abrasive grains decreases and the grinding resistance per superabrasive grain increases, so that the superabrasive grains fall off and eventually the binder is peeled off. Also, if the super-abrasive projected area occupation ratio is less than 5%, the exposed area of the binder increases, so that the binder comes into contact with the workpiece during slicing, whereby the binder recedes quickly. And eventually causes a phenomenon that the binder is peeled off.

また、超砥粒投影面積占有率が5%未満では、超砥粒ワイヤソーの長さに対して3%以上の累計長さで結合材の剥離が発生するものと予想される。超砥粒ワイヤソーの長さに対して3%以上の累計長さで結合材の剥離が発生すると、急速に結合材の剥離が進行し、切れ味が低下し、最終的には超砥粒ワイヤソーは寿命に達する。   If the super-abrasive grain projected area occupancy is less than 5%, it is expected that peeling of the binder will occur at a cumulative length of 3% or more of the length of the super-abrasive wire saw. When the peeling of the binder occurs at a cumulative length of 3% or more with respect to the length of the superabrasive wire saw, the peeling of the binder proceeds rapidly, the sharpness decreases, and finally, the superabrasive wire saw is Reach life.

超砥粒投影面積占有率が5%以上10%未満では、超砥粒ワイヤソーの長さに対して1%程度の累計長さで結合材の剥離が発生するものと予想される。この程度の結合材の剥離は、超砥粒ワイヤソーの性能にはほとんど影響を及ぼさない。また、切れ味の低下が認められないだけでなく、結合材の剥離が進行することもない。   When the superabrasive grain projected area occupancy is 5% or more and less than 10%, it is expected that the binder will be peeled off at a cumulative length of about 1% with respect to the length of the superabrasive wire saw. This degree of binder release has little effect on the performance of the superabrasive wire saw. In addition, not only does the sharpness not decrease, but also the peeling of the binder does not proceed.

超砥粒投影面積占有率が55%を超える場合には、結合材の剥離は発生しないが、作用砥粒数が多すぎることになり、切り粉の目詰まりが発生しやすく、加工能率が著しく低下する。   If the superabrasive grain projected area occupancy exceeds 55%, the peeling of the bonding material does not occur, but the number of working abrasive grains is too large, clogging of cutting powder is likely to occur, and the processing efficiency is remarkable. descend.

超砥粒ワイヤソーの寿命と切れ味を考慮すると、超砥粒投影面積占有率は10%以上50%以下が好ましく、10%以上40%以下の範囲内であればより好ましい。   In consideration of the life and sharpness of the superabrasive wire saw, the superabrasive grain projected area occupancy is preferably 10% or more and 50% or less, more preferably 10% or more and 40% or less.

図1〜図3を参照して、この発明の超砥粒ワイヤソーの1つの実施の形態について説明する。図1は、超砥粒ワイヤソーPの長手方向の部分縦断面模式図である。図2は超砥粒ワイヤソーの横断面模式図である。図3は、図1のBにおける拡大模式図である。図1〜図3に示すように、直径dの芯線Wの外周面上に多数個の超砥粒Dが結合材Rによって固着されている。結合材RはフィラーFを含む。   One embodiment of the superabrasive wire saw of the present invention will be described with reference to FIGS. FIG. 1 is a schematic partial longitudinal sectional view of a superabrasive wire saw P in a longitudinal direction. FIG. 2 is a schematic cross-sectional view of a superabrasive wire saw. FIG. 3 is an enlarged schematic diagram of FIG. 1B. As shown in FIGS. 1 to 3, a large number of superabrasive grains D are fixed by a bonding material R on the outer peripheral surface of a core wire W having a diameter d. The binder R includes a filler F.

次に、図1を用いて超砥粒投影面積占有率の定義について説明する。図1では、直径dの芯線Wの外周面上に、超砥粒ワイヤソーPの単位長さL当たり、n個の超砥粒Dが固着されている。各々の超砥粒Dの投影面積をA1,A2,A3,…,Anとすると、超砥粒投影面積占有率Cは次の式で表わされる。   Next, the definition of the super-abrasive grain projected area occupancy will be described with reference to FIG. In FIG. 1, n superabrasive grains D are fixed on the outer peripheral surface of a core wire W having a diameter d per unit length L of the superabrasive wire saw P. Assuming that the projected area of each superabrasive grain D is A1, A2, A3,..., An, the superabrasive grain projected area occupancy C is represented by the following equation.

Figure 2004216553
Figure 2004216553

実際には、上記の式で表わされる超砥粒投影面積占有率を次のようにして測定する。   In practice, the super-abrasive grain projected area occupancy represented by the above equation is measured as follows.

まず、光学顕微鏡を用いて超砥粒ワイヤソーPの単位長さL当たりに固着されている超砥粒Dの個数nを調査する。超砥粒Dは平均粒径d0の球体とみなし、球体の投影面積が芯線Wの表面積に占める割合を超砥粒投影面積占有率とする。超砥粒Dが芯線Wの表面に投影されたものは楕円であるが、円とみなして計算する。   First, the number n of superabrasive grains D fixed per unit length L of the superabrasive wire saw P is examined using an optical microscope. The superabrasive D is regarded as a sphere having an average particle diameter d0, and the ratio of the projected area of the sphere to the surface area of the core wire W is defined as the superabrasive projected area occupancy. The super abrasive grains D projected on the surface of the core wire W are elliptical, but are calculated assuming that they are circular.

すなわち、実際の超砥粒投影面積占有率の計算においては、平均粒径d0に等しいn個の超砥粒Dが芯線Wの外周面上に固着されているとみなして、n個の超砥粒Dの投影面積の合計を次の式で計算する。   That is, in the actual calculation of the super-abrasive grain projected area occupancy, it is assumed that n super-abrasive grains D equal to the average particle diameter d0 are fixed on the outer peripheral surface of the core wire W, and the n The total projected area of the grains D is calculated by the following equation.

Figure 2004216553
Figure 2004216553

式(2)の値を式(1)に代入することにより、超砥粒投影面積占有率Cを算出する。   By substituting the value of equation (2) into equation (1), the superabrasive grain projected area occupancy C is calculated.

なお、超砥粒投影面積占有率は、基本的には、超砥粒と結合材の混合比率を変えることによって制御することができる。   In addition, the super-abrasive grain projected area occupancy can be basically controlled by changing the mixing ratio of the super-abrasive and the binder.

この発明の超砥粒ワイヤソーは、一例として図4に示される切断装置に用いることができる。超砥粒ワイヤソー切断装置は、多数本の超砥粒ワイヤソーを被加工物に押しつけて超砥粒ワイヤソーを往復走行させながら、被加工物を一度に多数枚にスライシングする装置である。大きな直径のシリコンインゴットからのシリコンウェハのスライシングや、フェライト、ネオジウム磁石等の磁性材料の切断加工、光学ガラスの切断加工等に超砥粒ワイヤソー切断装置を用いることが試行されている。   The superabrasive wire saw of the present invention can be used for a cutting device shown in FIG. 4 as an example. The superabrasive wire saw cutting device is an apparatus for slicing a workpiece into a large number of pieces at a time while pressing a number of superabrasive wire saws against the workpiece and reciprocating the superabrasive wire saw. Attempts have been made to use a superabrasive wire saw cutting device for slicing a silicon wafer from a large diameter silicon ingot, cutting magnetic materials such as ferrite and neodymium magnets, and cutting optical glass.

具体的には図4に示すように、メインローラ5と6の外周面には被加工物の切断寸法に応じて溝が設けられている。超砥粒ワイヤソー1はリール2と9の外周面に巻かれている。一方のリール2からガイドローラ3と4を経由して取り出された超砥粒ワイヤソー1は、メインローラ5と6の溝に順次巻き付けられ、ガイドローラ7と8を経由して、他方のリール9に巻き取られる。超砥粒ワイヤソー1の張力は、左右に配置されたメインローラ5と6のトルクにより所定の値に設定される。超砥粒ワイヤソー1をリール2と9との間で往復走行させながら、多数本の超砥粒ワイヤソー1を被加工物10に押しつけて被加工物10を一度に多数枚にスライシング加工する。このとき、メインローラ5と6の溝にはノズル11と12から研削液が供給される。   More specifically, as shown in FIG. 4, grooves are provided on the outer peripheral surfaces of the main rollers 5 and 6 according to the cut dimensions of the workpiece. The superabrasive wire saw 1 is wound around the outer peripheral surfaces of the reels 2 and 9. The superabrasive wire saw 1 taken out from one of the reels 2 via the guide rollers 3 and 4 is sequentially wound around the grooves of the main rollers 5 and 6, and passed through the guide rollers 7 and 8 to the other reel 9. It is wound up. The tension of the superabrasive wire saw 1 is set to a predetermined value by the torque of the main rollers 5 and 6 arranged on the left and right. While the superabrasive wire saw 1 reciprocates between the reels 2 and 9, a large number of superabrasive wire saws 1 are pressed against the workpiece 10 to perform slicing of the workpiece 10 into a large number of pieces at a time. At this time, the grinding fluid is supplied to the grooves of the main rollers 5 and 6 from the nozzles 11 and 12.

超砥粒としては、あらゆる粒径の超砥粒を適用することが可能である。特に、シリコンインゴット、光学ガラス、セラミックス、水晶、フェライト、ネオジウム磁石等の精密切断に超砥粒ワイヤソーを用いる場合には、粒径が5μm以上200μm以下の超砥粒を用いるのが好ましく、10μm以上150μm以下の超砥粒を用いるのがより好ましい。   As the superabrasive grains, it is possible to apply superabrasive grains of any particle size. In particular, when using a superabrasive wire saw for precision cutting of silicon ingots, optical glass, ceramics, quartz, ferrite, neodymium magnets, etc., it is preferable to use superabrasive grains having a particle size of 5 μm or more and 200 μm or less, preferably 10 μm or more. It is more preferable to use superabrasive grains of 150 μm or less.

結合材としてはレジンボンドを用いるのが好ましい。レジンボンドとして適用できる樹脂としては、弾性率、軟化温度、成形性、物理的特性の観点から、アルキド樹脂、フェノール樹脂、ホルマリン樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリイミド樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリエステルイミド樹脂、ポリアミドイミド樹脂、ポリエステルウレタン樹脂、ビスマレイミド樹脂、ビスマレイミドトリアジン樹脂、シアナトエステル樹脂、ポリエーテルイミド、ポリパラバン酸、芳香族ポリアミドなどが好ましい。   It is preferable to use a resin bond as the binder. Resins that can be used as a resin bond include alkyd resins, phenol resins, formalin resins, polyurethane resins, polyester resins, polyimide resins, epoxy resins, melamine resins, and urea from the viewpoints of elastic modulus, softening temperature, moldability, and physical properties. Resins, unsaturated polyester resins, acrylic resins, polyester imide resins, polyamide imide resins, polyester urethane resins, bismaleimide resins, bismaleimide triazine resins, cyanatoester resins, polyetherimides, polyparabanic acids, aromatic polyamides and the like are preferred.

芯線としては、鋼線、銅めっきを施した鋼線、ブラスめっきを施した鋼線のいずれか1つを用いることができる。   As the core wire, any one of a steel wire, a copper-plated steel wire, and a brass-plated steel wire can be used.

鋼線としては、容易に極細線に仕上げることができ、強度が高いピアノ線が最も好ましい。ピアノ線はそのままでも使用することができるが、保管を容易にし、かつレジンボンドの密着性を良好にして超砥粒の保持力を高めるためには、ピアノ線に銅めっきまたはブラスめっき等の表面処理を施すことが好ましい。   As a steel wire, a piano wire which can be easily formed into a fine wire and has high strength is most preferable. The piano wire can be used as it is, but in order to facilitate storage and improve the adhesion of the resin bond and increase the holding power of superabrasives, the surface of the piano wire must be plated with copper or brass. Preferably, a treatment is applied.

その他の材質の芯線としては、炭素繊維、アラミド繊維、ボロン繊維、ガラス繊維のいずれか1種の単線または撚り線を用いることができる。または、炭素繊維、アラミド繊維、ボロン繊維、ガラス繊維のうち2種以上の繊維を混合して撚り線としたものも用いることができる。さらに、これらの撚り線に鋼線を加えた撚り線を芯線として用いることも可能である。   As the core wire of another material, any one kind of single wire or stranded wire of carbon fiber, aramid fiber, boron fiber, and glass fiber can be used. Alternatively, a stranded wire obtained by mixing two or more fibers among carbon fibers, aramid fibers, boron fibers, and glass fibers can be used. Further, a stranded wire obtained by adding a steel wire to these stranded wires can be used as the core wire.

この発明の超砥粒ワイヤソーにおいて、結合材は、粒径が1μm以上10μm以下のダイヤモンド、立方晶窒化ホウ素、炭化ケイ素、窒化ケイ素、または超硬合金のいずれか1種類または2種類以上の粒子を含有するのが好ましい。   In the superabrasive wire saw of the present invention, the bonding material is one or two or more particles of diamond, cubic boron nitride, silicon carbide, silicon nitride, or a cemented carbide having a particle size of 1 μm or more and 10 μm or less. It is preferred to contain.

結合材層の強度と耐摩耗性を改善して、超砥粒ワイヤソーの寿命、加工能率および切断性能を向上させる目的として、これらの粒子(フィラー)を含有させることは極めて効果的である。これらの粒子の中でも、硬質なものほどその効果が大きく、結合材には、ダイヤモンド、立方晶窒化ホウ素を含有させることがより好ましく、ダイヤモンドを含有させることが最も好ましい。   It is extremely effective to include these particles (fillers) for the purpose of improving the strength and wear resistance of the binder layer and improving the life, processing efficiency and cutting performance of the superabrasive wire saw. Among these particles, the harder the particles, the greater the effect, and the binder preferably contains diamond and cubic boron nitride, and most preferably contains diamond.

(実施例1)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径40〜60μm(平均粒径42μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、5容量%、35容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、砥粒中の溶剤量を50容量%とした。
(Example 1)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 40 to 60 μm (average particle size) Nickel-coated diamond abrasive grains (42 μm in diameter, manufactured by Tomei Diamond Co., Ltd., IRM-NP) were uniformly mixed so that the respective solid content ratios became 60% by volume, 5% by volume, and 35% by volume. Further, a solvent, cresol, was added to this mixture to adjust the amount of the solvent in the abrasive grains to 50% by volume.

次に、この砥粒分散溶解液を外径0.18mmの銅めっきピアノ線に塗布し、この塗布された銅めっきピアノ線を内径0.28mmのダイスに通した後、炉内温度300℃の焼き付け炉で焼き付け硬化させてダイヤモンドワイヤソーを製造した。得られたダイヤモンドワイヤソーの外径は0.24mmであり、焼き付け硬化により形成されたレジンボンド層の厚みは約20μmであった。   Next, this abrasive grain dispersion solution was applied to a copper-plated piano wire having an outer diameter of 0.18 mm, and the coated copper-plated piano wire was passed through a die having an inner diameter of 0.28 mm. The diamond wire saw was manufactured by baking and hardening in a baking furnace. The outer diameter of the obtained diamond wire saw was 0.24 mm, and the thickness of the resin bond layer formed by baking hardening was about 20 μm.

得られたダイヤモンドワイヤソーの任意の50箇所について、倍率100倍の顕微鏡写真を撮影してダイヤモンド砥粒の平均固着個数を調査し、式(1)と(2)に従って超砥粒投影面積占有率を算出したところ、47.3%であった。   At any 50 locations of the obtained diamond wire saw, a microphotograph at a magnification of 100 was taken to investigate the average number of fixed diamond abrasive grains, and the projected area occupancy of the superabrasive grains was determined according to the equations (1) and (2). The calculated value was 47.3%.

このダイヤモンドワイヤソーを図4に示す切断装置に取付けて、シリコンインゴットをスライシング加工し、性能調査を行なった。切断装置のメインローラ5と6は、外径が200mm、幅が180mmであり、1.21mmの溝ピッチで123本の溝が外周面に設けられたものである。リール2と9には、0.6mmの巻きピッチでダイヤモンドワイヤソーが50kmの長さ分、巻かれている。スライシング条件は、ダイヤモンドワイヤソーの線速度を1200mm/分、切込み速度を4mm/分、張力を29N、不水溶性研削液の供給を30リットル/分とした。   This diamond wire saw was attached to a cutting device shown in FIG. 4, and a silicon ingot was sliced to perform a performance investigation. The main rollers 5 and 6 of the cutting device have an outer diameter of 200 mm and a width of 180 mm, and are provided with 123 grooves on the outer peripheral surface at a groove pitch of 1.21 mm. A diamond wire saw is wound on the reels 2 and 9 at a winding pitch of 0.6 mm for a length of 50 km. The slicing conditions were as follows: the linear speed of the diamond wire saw was 1200 mm / min, the cutting speed was 4 mm / min, the tension was 29 N, and the supply of the water-insoluble grinding fluid was 30 liter / min.

スライシング加工後のダイヤモンドワイヤソーの任意の140mの長さについて、レジンボンドの剥離した長さを光学顕微鏡で調査し、その長さを合計して剥離長さとした。その結果、剥離は全く確認できなかった。   With respect to an arbitrary length of 140 m of the diamond wire saw after the slicing process, the peeled length of the resin bond was examined with an optical microscope, and the total length was defined as the peeled length. As a result, no peeling could be confirmed.

(実施例2)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径40〜60μm(平均粒径42μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、20容量%、20容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 2)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 40 to 60 μm (average particle size) Nickel-coated diamond abrasive particles (diameter: 42 μm) (manufactured by Tomei Diamond Co., Ltd., IRM-NP) were uniformly mixed so that the solid content ratio was 60% by volume, 20% by volume, and 20% by volume, respectively. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例1と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、24.7%であった。また、実施例1と同様の性能調査を行なったが、レジンボンドの剥離は認められなかった。   A diamond wire saw was manufactured in the same manner as in Example 1, and the projected area occupancy of the superabrasive grains was investigated. As a result, it was 24.7%. In addition, the same performance test as in Example 1 was performed, but no peeling of the resin bond was observed.

(実施例3)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径40〜60μm(平均粒径42μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、22容量%、18容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 3)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 40 to 60 μm (average particle size) Nickel-coated diamond abrasive grains (42 μm in diameter, IRM-NP, manufactured by Tomei Diamond Co., Ltd.) were uniformly mixed so that the respective solid content ratios became 60% by volume, 22% by volume, and 18% by volume. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例1と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、14.5%であった。また、実施例1と同様の性能調査を行なったが、レジンボンドの剥離は認められなかった。   A diamond wire saw was manufactured in the same manner as in Example 1, and the projected area occupancy of the superabrasive grains was investigated. As a result, it was 14.5%. In addition, the same performance test as in Example 1 was performed, but no peeling of the resin bond was observed.

(実施例4)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径40〜60μm(平均粒径42μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、24容量%、16容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 4)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 40 to 60 μm (average particle size) Nickel-coated diamond abrasive grains (42 μm in diameter, IRM-NP, manufactured by Tomei Diamond Co., Ltd.) were uniformly mixed so that the respective solid content ratios became 60% by volume, 24% by volume, and 16% by volume. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例1と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、9.8%であった。また、実施例1と同様の性能調査を行なったところ、レジンボンドの累計剥離長さは0.5mであった。   A diamond wire saw was manufactured in the same manner as in Example 1, and the projected area occupancy of the superabrasive grains was examined. As a result, it was 9.8%. In addition, when a performance test similar to that of Example 1 was performed, the cumulative peel length of the resin bond was 0.5 m.

(実施例5)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径40〜60μm(平均粒径42μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、26容量%、14容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 5)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 40 to 60 μm (average particle size) Nickel-coated diamond abrasive particles (42 μm in diameter, manufactured by Tomei Diamond Co., Ltd., IRM-NP) were uniformly mixed such that the solid content ratio was 60% by volume, 26% by volume, and 14% by volume, respectively. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例1と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、6.2%であった。また、実施例1と同様の性能調査を行なったところ、レジンボンドの累計剥離長さは1.3mであった。   A diamond wire saw was manufactured in the same manner as in Example 1, and the projected area occupancy of the superabrasive grains was investigated. The result was 6.2%. In addition, when the same performance investigation as in Example 1 was performed, the cumulative peel length of the resin bond was 1.3 m.

(比較例1)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径40〜60μm(平均粒径42μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、30容量%、10容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Comparative Example 1)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 40 to 60 μm (average particle size) Nickel-coated diamond abrasive grains (42 μm in diameter, IRM-NP, manufactured by Tomei Diamond Co., Ltd.) were uniformly mixed so that the respective solid content ratios became 60% by volume, 30% by volume, and 10% by volume. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例1と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、4.8%であった。また、実施例1と同様の性能調査を行なったところ、レジンボンドの累計剥離長さは4.7mであった。   A diamond wire saw was manufactured in the same manner as in Example 1, and the projected area occupancy of the superabrasive grains was examined. As a result, it was 4.8%. In addition, when a performance test similar to that of Example 1 was performed, the cumulative peel length of the resin bond was 4.7 m.

以上の実施例1〜5と比較例1の結果を表1に示す。   Table 1 shows the results of Examples 1 to 5 and Comparative Example 1.

Figure 2004216553
Figure 2004216553

(実施例6)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径30〜40μm(平均粒径32μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、6容量%、34容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 6)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 30 to 40 μm (average particle size) Nickel-coated diamond abrasive particles (diameter: 32 μm) (manufactured by Tomei Diamond Co., Ltd., IRM-NP) were uniformly mixed so that the respective solid content ratios became 60% by volume, 6% by volume, and 34% by volume. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

次に、この砥粒分散溶解液を外径0.18mmの銅めっきピアノ線に塗布し、この塗布された銅めっきピアノ線を内径0.26mmのダイスに通した後、炉内温度300℃の焼き付け炉で焼き付け硬化させてダイヤモンドワイヤソーを製造した。得られたダイヤモンドワイヤソーの外径は0.22mmであり、焼き付け硬化により形成されたレジンボンド層の厚みは約15μmであった。   Next, the abrasive dispersion liquid was applied to a copper-plated piano wire having an outer diameter of 0.18 mm, and the coated copper-plated piano wire was passed through a die having an inner diameter of 0.26 mm. The diamond wire saw was manufactured by baking and hardening in a baking furnace. The outer diameter of the obtained diamond wire saw was 0.22 mm, and the thickness of the resin bond layer formed by baking hardening was about 15 μm.

実施例1と同様にして、得られたダイヤモンドワイヤソーの任意の50箇所について、倍率100倍の顕微鏡写真を撮影してダイヤモンド砥粒の平均固着個数を調査し、式(1)と(2)に従って超砥粒投影面積占有率を算出したところ、48.9%であった。   In the same manner as in Example 1, photomicrographs at a magnification of 100 were taken at arbitrary 50 locations of the obtained diamond wire saw to investigate the average number of diamond abrasive grains fixed, and according to the equations (1) and (2). The calculated super-abrasive grain projected area occupancy was 48.9%.

このダイヤモンドワイヤソーを図4に示す切断装置に取付けて、シリコンインゴットをスライシング加工し、性能調査を行なった。切断装置のメインローラ5と6は、外径が200mm、幅が180mmであり、1.21mmの溝ピッチで123本の溝が外周面に設けられたものである。リール2と9には、0.6mmの巻きピッチでダイヤモンドワイヤソーが50kmの長さ分、巻かれている。スライシング条件は、ダイヤモンドワイヤソーの線速度を1200mm/分、切込み速度を3m/分、張力を29N、不水溶性研削液の供給を30リットル/分とした。   This diamond wire saw was attached to a cutting device shown in FIG. 4, and a silicon ingot was sliced to perform a performance investigation. The main rollers 5 and 6 of the cutting device have an outer diameter of 200 mm and a width of 180 mm, and are provided with 123 grooves on the outer peripheral surface at a groove pitch of 1.21 mm. A diamond wire saw is wound on the reels 2 and 9 at a winding pitch of 0.6 mm for a length of 50 km. The slicing conditions were as follows: the linear speed of the diamond wire saw was 1200 mm / min, the cutting speed was 3 m / min, the tension was 29 N, and the supply of the water-insoluble grinding fluid was 30 liter / min.

スライシング加工後のダイヤモンドワイヤソーの任意の140mの長さについて、レジンボンドの剥離がないかどうか、光学顕微鏡で表面状態を調査したが、剥離は全く確認できなかった。   An optical microscope was used to examine the surface state of any 140 m length of the slicing diamond wire saw for resin resin peeling, but no peeling was observed.

(実施例7)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径30〜40μm(平均粒径32μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、20容量%、20容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 7)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 30 to 40 μm (average particle size) Nickel-coated diamond abrasive grains (diameter: 32 μm) (manufactured by Tomei Diamond Co., Ltd., IRM-NP) were uniformly mixed such that the solid content ratio was 60% by volume, 20% by volume, and 20% by volume, respectively. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例6と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、26.4%であった。また、実施例6と同様の性能調査を行なったが、レジンボンドの剥離は認められなかった。   When a diamond wire saw was manufactured in the same manner as in Example 6, and the super-abrasive grain projected area occupancy was investigated, it was 26.4%. In addition, a performance test similar to that in Example 6 was performed, but no peeling of the resin bond was observed.

(実施例8)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径30〜40μm(平均粒径32μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、22容量%、18容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 8)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 30 to 40 μm (average particle size) Nickel-coated diamond abrasive grains (diameter: 32 μm) (manufactured by Tomei Diamond Co., Ltd., IRM-NP) were uniformly mixed so that the respective solid content ratios became 60% by volume, 22% by volume, and 18% by volume. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例6と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、12.1%であった。また、実施例6と同様の性能調査を行なったが、レジンボンドの剥離は認められなかった。   A diamond wire saw was manufactured in the same manner as in Example 6, and the projected area occupancy of the superabrasive grains was investigated. As a result, it was 12.1%. In addition, a performance test similar to that in Example 6 was performed, but no peeling of the resin bond was observed.

(実施例9)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径30〜40μm(平均粒径32μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、24容量%、16容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 9)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 30 to 40 μm (average particle size) Nickel-coated diamond abrasive grains (diameter: 32 μm) (manufactured by Tomei Diamond Co., Ltd., IRM-NP) were uniformly mixed so that the respective solid contents became 60% by volume, 24% by volume, and 16% by volume. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例6と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、8.5%であった。また、実施例6と同様の性能調査を行なったところ、レジンボンドの累計剥離長さは0.2mであった。   A diamond wire saw was manufactured in the same manner as in Example 6, and the projected area occupancy ratio of the superabrasive grains was 8.5%. In addition, when a performance test similar to that of Example 6 was performed, the cumulative peel length of the resin bond was 0.2 m.

(実施例10)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径30〜40μm(平均粒径32μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、26容量%、14容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Example 10)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 30 to 40 μm (average particle size) Nickel-coated diamond abrasive grains having a diameter of 32 μm (IRM-NP, manufactured by Tomei Diamond Co., Ltd.) were uniformly mixed so that the respective solid content ratios became 60% by volume, 26% by volume, and 14% by volume. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例6と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、5.4%であった。また、実施例6と同様の性能調査を行なったところ、レジンボンドの累計剥離長さは1.2mであった。   A diamond wire saw was manufactured in the same manner as in Example 6, and the projected area occupancy of the superabrasive grains was examined. As a result, it was 5.4%. In addition, when the same performance investigation as in Example 6 was performed, the cumulative peel length of the resin bond was 1.2 m.

(比較例2)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した塗料)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径30〜40μm(平均粒径32μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率が60容量%、30容量%、10容量%となるように均一に混合した。さらに、この混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Comparative Example 2)
A phenolic resin paint (manufactured by Showa Kobunshi Co., Ltd. in which BRP-5417 was dissolved in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 30 to 40 μm (average particle size) Nickel-coated diamond abrasive grains (IRM-NP, manufactured by Tomei Diamond Co., Ltd.) having a diameter of 32 μm) were uniformly mixed such that the solid content ratio was 60% by volume, 30% by volume, and 10% by volume, respectively. Further, a solvent, cresol, was added to this mixture to make the amount of the solvent in the coating material 50% by volume.

実施例6と同様の方法でダイヤモンドワイヤソーを製造し、超砥粒投影面積占有率を調査したところ、3.8%であった。また、実施例6と同様の性能調査を行なったところ、レジンボンドの累計剥離長さは10.7mであった。   When a diamond wire saw was manufactured in the same manner as in Example 6, and the superabrasive grain projected area occupancy was investigated, it was 3.8%. In addition, when a performance test similar to that of Example 6 was performed, the cumulative peel length of the resin bond was 10.7 m.

以上の実施例6〜10と比較例2の結果を表2に示す。   Table 2 shows the results of Examples 6 to 10 and Comparative Example 2.

Figure 2004216553
Figure 2004216553

(実施例11〜15と比較例3)
フェノール樹脂塗料(昭和高分子製、BRP−5417をクレゾールにて溶解した砥粒)と、平均粒径2.6μmのダイヤモンドフィラー(トーメイダイヤ株式会社製、IRM)と、粒径65〜85μm(粒度#200;平均粒径76μm)のニッケル被覆ダイヤモンド砥粒(トーメイダイヤ株式会社製、IRM−NP)とを、それぞれの固形分比率を種々の割合に調整して、均一に混合した。さらに、この種々の容量%でニッケル被覆ダイヤモンド砥粒を含む混合物に溶剤のクレゾールを加えて、塗料中の溶剤量を50容量%とした。
(Examples 11 to 15 and Comparative Example 3)
A phenolic resin paint (manufactured by Showa Polymer Co., Ltd., abrasive grains obtained by dissolving BRP-5417 in cresol), a diamond filler having an average particle size of 2.6 μm (manufactured by Tomei Diamond Co., IRM), and a particle size of 65 to 85 μm (particle size # 200; nickel-coated diamond abrasive grains (average particle size: 76 μm) (IRM-NP, manufactured by Tomei Diamond Co., Ltd.) were mixed uniformly with their respective solid content ratios adjusted to various ratios. Further, the solvent containing cresol was added to the mixture containing the nickel-coated diamond abrasive grains at various volume percentages, so that the amount of the solvent in the paint was 50 volume%.

実施例1と同様にして、この砥粒分散溶解液を外径0.36mmの銅めっきピアノ線に塗布することによって、ダイヤモンドワイヤソーを製造し、得られた各ダイヤモンドワイヤソーの超砥粒投影面積占有率を算出した。また、各ダイヤモンドワイヤソーを図4に示す切断装置に取付けて、光学ガラスを切断加工して、実施例1と同様にして性能調査を行なった。これらの結果を表3に示す。   In the same manner as in Example 1, a diamond wire saw was manufactured by applying this abrasive grain dispersion and solution to a copper-plated piano wire having an outer diameter of 0.36 mm, and the obtained diamond wire saw occupied the superabrasive grain projected area. The rate was calculated. Further, each of the diamond wire saws was attached to the cutting device shown in FIG. 4, and the optical glass was cut, and the performance was investigated in the same manner as in Example 1. Table 3 shows the results.

Figure 2004216553
Figure 2004216553

以上に開示された実施の形態や実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態や実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものである。   The embodiments and examples disclosed above are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the embodiments or examples described above, and includes all modifications and variations within the scope and meaning equivalent to the terms of the claims.

この発明の1つの実施の形態に従った超砥粒ワイヤソーの長手方向の部分縦断面模式図である。1 is a schematic partial longitudinal sectional view of a superabrasive wire saw according to one embodiment of the present invention. この発明の1つの実施の形態に従った超砥粒ワイヤソーの横断面模式図である。1 is a schematic cross-sectional view of a superabrasive wire saw according to one embodiment of the present invention. 図1におけるB部の拡大模式図である。FIG. 2 is an enlarged schematic diagram of a portion B in FIG. 1. この発明の超砥粒ワイヤソーを用いて構成された切断装置の1つの実施の形態の構造を示す概略斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic perspective view which shows the structure of one Embodiment of the cutting device comprised using the superabrasive wire saw of this invention.

符号の説明Explanation of reference numerals

P:超砥粒ワイヤソー、D:超砥粒、W:芯線、R:結合材、F:フィラー、d:芯線の直径、1:超砥粒ワイヤソー、2,9:リール、3,4,7,8:ガイドローラ、5,6:メインローラ、10:被加工物、11,12:ノズル。   P: superabrasive wire saw, D: superabrasive, W: core wire, R: binder, F: filler, d: core wire diameter, 1: superabrasive wire saw, 2, 9: reel, 3, 4, 7 , 8: guide roller, 5, 6: main roller, 10: workpiece, 11, 12: nozzle.

Claims (2)

芯材の表面に超砥粒が結合材で固着された超砥粒ワイヤソーを作成する工程と、
前記超砥粒ワイヤソーにおいて、前記超砥粒の投影面積を測定する工程と、
前記超砥粒の投影面積が前記芯材の表面積に占める割合が所定の範囲内であれば前記超砥粒ワイヤソーを良品と判断し、前記超砥粒の投影面積が前記芯材の表面積に占める割合が前記所定の範囲外であれば前記超砥粒ワイヤソーを不良品であると判断する工程とを備えた、超砥粒ワイヤソーの製造方法。
A step of creating a superabrasive wire saw in which superabrasive grains are fixed to a surface of a core material with a binder,
In the superabrasive wire saw, a step of measuring a projected area of the superabrasive,
If the ratio of the projected area of the superabrasive grains to the surface area of the core material is within a predetermined range, the superabrasive wire saw is determined to be good, and the projected area of the superabrasive grains occupies the surface area of the core material. A step of determining that the superabrasive wire saw is defective if the ratio is outside the predetermined range.
芯材の表面に超砥粒が結合材で固着された超砥粒ワイヤソーを作成する工程と、
前記超砥粒ワイヤソーにおいて、前記超砥粒の投影面積を測定する工程と、
前記超砥粒の投影面積が前記芯材の表面積に占める割合が5%以上55%以下であれば前記超砥粒ワイヤソーを良品と判断し、前記超砥粒の投影面積が前記芯材の表面積に占める割合が5%未満または55%超であれば前記超砥粒ワイヤソーを不良品であると判断する工程とを備えた、超砥粒ワイヤソーの製造方法。
A step of creating a superabrasive wire saw in which superabrasive grains are fixed to a surface of a core material with a binder,
In the superabrasive wire saw, a step of measuring a projected area of the superabrasive,
If the ratio of the projected area of the superabrasive grains to the surface area of the core material is 5% or more and 55% or less, the superabrasive wire saw is determined to be good, and the projected area of the superabrasive grains is determined as the surface area of the core material. Determining that the superabrasive wire saw is defective if the proportion of the superabrasive wire saw is less than 5% or more than 55%.
JP2004086418A 2000-05-15 2004-03-24 Calculation method of superabrasive ratio of superabrasive wire saw Expired - Fee Related JP4072512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086418A JP4072512B2 (en) 2000-05-15 2004-03-24 Calculation method of superabrasive ratio of superabrasive wire saw

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000141068 2000-05-15
JP2004086418A JP4072512B2 (en) 2000-05-15 2004-03-24 Calculation method of superabrasive ratio of superabrasive wire saw

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001143636A Division JP2002036091A (en) 2000-05-15 2001-05-14 Super-abrasive grain wire saw and manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007242773A Division JP2008006584A (en) 2000-05-15 2007-09-19 Cutting method using super-abrasive grain wire saw

Publications (2)

Publication Number Publication Date
JP2004216553A true JP2004216553A (en) 2004-08-05
JP4072512B2 JP4072512B2 (en) 2008-04-09

Family

ID=32910658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086418A Expired - Fee Related JP4072512B2 (en) 2000-05-15 2004-03-24 Calculation method of superabrasive ratio of superabrasive wire saw

Country Status (1)

Country Link
JP (1) JP4072512B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180527A (en) * 2005-11-29 2007-07-12 Kyocera Corp Method of manufacturing semiconductor substrate, and device of manufacturing the semiconductor substrate
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US9067268B2 (en) 2009-08-14 2015-06-30 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
CN114606465A (en) * 2022-01-27 2022-06-10 深圳富联智能制造产业创新中心有限公司 Method for producing cutting wire and cutting wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109159311B (en) * 2017-09-11 2020-08-18 湖南七纬科技有限公司 High-performance diamond wire

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180527A (en) * 2005-11-29 2007-07-12 Kyocera Corp Method of manufacturing semiconductor substrate, and device of manufacturing the semiconductor substrate
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US9067268B2 (en) 2009-08-14 2015-06-30 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9862041B2 (en) 2009-08-14 2018-01-09 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9248583B2 (en) 2010-12-30 2016-02-02 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9687962B2 (en) 2012-06-29 2017-06-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10596681B2 (en) 2012-06-29 2020-03-24 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10137514B2 (en) 2015-06-29 2018-11-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10583506B2 (en) 2015-06-29 2020-03-10 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
CN114606465A (en) * 2022-01-27 2022-06-10 深圳富联智能制造产业创新中心有限公司 Method for producing cutting wire and cutting wire
CN114606465B (en) * 2022-01-27 2024-05-17 深圳富联智能制造产业创新中心有限公司 Method for preparing cutting line and cutting line

Also Published As

Publication number Publication date
JP4072512B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
US7926478B2 (en) Super abrasive grain wire saw winding structure, super abrasive grain wire saw cutting device, and super abrasive grain wire saw winding method
JP2002036091A (en) Super-abrasive grain wire saw and manufacturing method
JP4072512B2 (en) Calculation method of superabrasive ratio of superabrasive wire saw
US9409243B2 (en) Abrasive article and method of forming
JP5833550B2 (en) Precision wire containing surface-modified abrasive particles
US6568384B1 (en) Semiconductor material cutting and processing method
JP2006007387A (en) Super-abrasive grain wire saw
JP2006123055A (en) Method of cutting work material with super-abrasive grain wire saw, and work material cut with super-abrasive grain wire saw
KR20150126062A (en) Abrasive article and method of forming
JP2000246542A (en) Resin bond super abrasive grain wire saw
JP3927676B2 (en) Wire saw manufacturing method and wire saw
JP2008006584A (en) Cutting method using super-abrasive grain wire saw
JP3471328B2 (en) Resin bond wire saw and method of manufacturing the same
JP4024934B2 (en) Wire saw and manufacturing method thereof
JP2000246654A (en) Resin bond wire saw using metal coated super abrasive grain
JP2002273663A (en) Resin bond wire saw
JP3979578B2 (en) Method and apparatus for cutting single crystal sapphire substrate
KR101403078B1 (en) Method for designing resin-coated saw wire
JP4014439B2 (en) Wire saw pulley and wire saw using the same
JP3893349B2 (en) Cutting method with superabrasive wire saw
JPH11245154A (en) Manufacture of wire saw
TWI533960B (en) A fixed abrasive sawing wire and a method to produce such wire
JP4386814B2 (en) Resin bond wire saw
JP7075295B2 (en) Saw wire, saw wire manufacturing method, and substrate manufacturing method
JP5962614B2 (en) Work cutting method and wire saw

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees