JP2007042962A - Rotating member for substrate processing apparatus - Google Patents

Rotating member for substrate processing apparatus Download PDF

Info

Publication number
JP2007042962A
JP2007042962A JP2005227388A JP2005227388A JP2007042962A JP 2007042962 A JP2007042962 A JP 2007042962A JP 2005227388 A JP2005227388 A JP 2005227388A JP 2005227388 A JP2005227388 A JP 2005227388A JP 2007042962 A JP2007042962 A JP 2007042962A
Authority
JP
Japan
Prior art keywords
substrate
rotating member
processing apparatus
substrate processing
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005227388A
Other languages
Japanese (ja)
Other versions
JP4586162B2 (en
Inventor
Sadato Shigemura
貞人 重村
Ai Tanaka
愛 田中
Takayuki Yoshizumi
隆幸 吉積
Yoshiji Date
由次 伊達
Kazuhisa Fukuo
一久 福尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Tatsumo KK
Original Assignee
Tocalo Co Ltd
Tatsumo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd, Tatsumo KK filed Critical Tocalo Co Ltd
Priority to JP2005227388A priority Critical patent/JP4586162B2/en
Publication of JP2007042962A publication Critical patent/JP2007042962A/en
Application granted granted Critical
Publication of JP4586162B2 publication Critical patent/JP4586162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating member for a substrate processing apparatus whose weight is reduced without causing the weight of the rotating member itself, whose deformation by bending is minimized by forming it of a high-elasticity material to ensure the flatness of a substrate and to improve precision of resist liquid application, for example. <P>SOLUTION: A member body for holding the substrate of the rotating member for the substrate processing apparatus is of a hollow structure and is formed of a carbon composite plastic material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体製造装置や液晶製造装置等の分野において、半導体ウエハやマスク、その他、フラットパネルディスプレイ用のガラス基板等に所定の処理、加工を施すために回転器内に設置して用いる基板処理装置用回転部材に関するものである。   The present invention provides a substrate used in a rotator for performing predetermined processing and processing on a semiconductor wafer, a mask, a glass substrate for a flat panel display, etc. in the field of a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus, etc. The present invention relates to a processing apparatus rotating member.

近年、液晶ディスプレイの大型化により、液晶ディスプレイ用ガラス基板は、2m角を越えるようなサイズのものが主流となっている。このような液晶ディスプレイの製造工程では、液晶製造装置に設けられている回転器(回転カップ)内にガラス基板等を収容し、固定し、基板ごとその回転器および該回転部材を高速で回転させることにより、基板保持用プレートである回転部材(以下、単に「回転プレート」ということもある)上に、ガラス基板等を保持し、たとえば、その基板表面にレジストを塗布することによって、ガラス基板等の表面に対してレジスト膜を均一に形成する作業がある。このような回転部材は、従来、軽量化を図るため、主としてアルミニウムおよびアルミニウム合金からなるものが用いられ、前記ガラス基板等を該回転部材の真空吸着面に真空吸着して、保持(固定)する構造のものが広く採用されている。   In recent years, due to the increase in size of liquid crystal displays, glass substrates for liquid crystal displays having a size exceeding 2 m square have become mainstream. In the manufacturing process of such a liquid crystal display, a glass substrate or the like is accommodated and fixed in a rotator (rotary cup) provided in the liquid crystal manufacturing apparatus, and the rotator and the rotating member are rotated together with the substrate at high speed. By holding a glass substrate or the like on a rotating member that is a substrate holding plate (hereinafter sometimes simply referred to as “rotating plate”), for example, by applying a resist to the substrate surface, the glass substrate or the like There is an operation of uniformly forming a resist film on the surface of the substrate. Conventionally, in order to reduce the weight, such a rotating member is mainly made of aluminum and an aluminum alloy, and the glass substrate or the like is vacuum-sucked on the vacuum suction surface of the rotating member and held (fixed). Structures are widely adopted.

しかしながら、従来の回転部材は、保持するガラス基板等の大型化に伴い、基板の重量を受けて大きな撓みが発生し、その撓みが生じた回転部材に吸着保持された基板もまた、撓むこととなり、その結果として基板上に塗布されたレジストの膜厚を、板面全体に均一に形成することが困難になるという問題があった。   However, as the conventional rotating member becomes larger in size, such as a glass substrate to be held, a large amount of bending occurs due to the weight of the substrate, and the substrate held by suction on the rotating member where the bending occurs also bends. As a result, there is a problem that it is difficult to uniformly form the film thickness of the resist applied on the substrate over the entire plate surface.

このような問題点に対し、一般的に回転プレートの真空吸着面側と裏面との中間部に補強金具を介挿させて、撓みの発生を防止する技術が採用されている。さらに、特許文献1では、回転プレートの外周付近を裏面側から支持部材により支持することにより、撓みの発生を防止する技術が提案されている。しかしながら、これらの技術はいずれも、アルミニウムおよびアルミニウム合金からなる回転体を用いているため、基板の重量を受けて大きな撓みが発生すると共に、吸着精度の点において制限があった。
特開2005−5623号公報
In order to solve such a problem, a technique is generally employed in which a reinforcing metal fitting is inserted in an intermediate portion between the vacuum suction surface side and the back surface of the rotating plate to prevent the occurrence of bending. Further, Patent Document 1 proposes a technique for preventing the occurrence of bending by supporting the vicinity of the outer periphery of the rotating plate with a support member from the back surface side. However, since all of these techniques use a rotating body made of aluminum and an aluminum alloy, a large amount of bending occurs due to the weight of the substrate, and there is a limitation in terms of adsorption accuracy.
JP 2005-5623 A

本発明の目的は、従来技術が抱えている上述した問題点を解決するためになされたものであり、回転部材自体の重量増加を招くことなく、軽量化を実現し、しかも高弾性質材料にて構成することによって、回転部材の撓み変形を最少限に抑えて、基板の平坦度を確保し、そのことによって、例えばレジスト液塗布精度を向上させるのに有効に用いられる基板処理装置用回転部材を提供することにある。   An object of the present invention is to solve the above-described problems of the prior art, and achieves weight reduction without causing an increase in weight of the rotating member itself, and further to a highly elastic material. By configuring the rotating member for a substrate processing apparatus, the bending deformation of the rotating member is minimized and the flatness of the substrate is ensured. For this reason, for example, the rotating member for a substrate processing apparatus can be effectively used to improve resist solution application accuracy. Is to provide.

本発明の他の目的は、各種基板を回転部材上に瞬時に精度よく吸着保持すると共に、基板処理後において、吸着面からの基板のリリースを容易にすることにより、基板処理効率の向上に寄与する基板処理装置用回転部材を提供することにある。   Another object of the present invention is to contribute to the improvement of substrate processing efficiency by holding various substrates on the rotating member instantly and accurately and facilitating the release of the substrate from the suction surface after the substrate processing. An object of the present invention is to provide a rotating member for a substrate processing apparatus.

上記目的を実現するために有効な手段として、本発明は、基板を保持する部材本体が、中空構造からなり、かつ炭素繊維複合プラスチック材料にて構成されていることを特徴とする基板処理装置用回転部材を提案するものである。   As an effective means for realizing the above object, the present invention provides a substrate processing apparatus characterized in that a member main body for holding a substrate has a hollow structure and is made of a carbon fiber composite plastic material. A rotating member is proposed.

なお、本発明においては、前記部材本体は、表・裏両面板の間に配したスペーサーまたはリブにより、あるいはハニカム構造によって中空構造を構成してなること、前記部材本体は、その中空内部に真空排気流路を設けると共に、この真空排気流路の真空吸着面側には、多数の真空吸引孔を開孔してなること、前記部材本体は、少なくともその真空吸着面側に、セラミックス、サーメット、金属・合金のうちから選ばれるいずれか一種以上の溶射皮膜を被覆してなること、前記溶射皮膜の表面粗さ(Ra)が、0.5〜3.0μmであること、前記炭素繊維複合プラスチック材料は、炭素繊維と熱硬化性樹脂および/または熱可塑性樹脂との複合材料からなること、および半導体製造装置または液晶製造装置の基板回転器に取付けて用いられるものであることが好ましい。   In the present invention, the member main body has a hollow structure formed by spacers or ribs disposed between the front and back double-sided plates, or a honeycomb structure, and the member main body has a vacuum exhaust flow inside the hollow. In addition to providing a passage, a number of vacuum suction holes are formed on the vacuum suction surface side of the evacuation passage, and the member main body has at least a vacuum suction surface side of ceramic, cermet, metal, It is formed by coating one or more spray coatings selected from alloys, the spray coating has a surface roughness (Ra) of 0.5 to 3.0 μm, and the carbon fiber composite plastic material is carbon fiber. Made of a composite material of a thermosetting resin and / or a thermoplastic resin, and attached to a substrate rotator of a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus Door is preferable.

本発明によれば、回転部材を中空構造とすることで軽量化を図ることができ、また素材に高剛性の炭素繊維複合プラスチックを用いることで、回転部材自体の重み等による撓みを低減できる。また、回転部材を中空体構造とし、その内部に真空排気流路を設けると共に、真空吸着面全体に真空吸引孔を均一に配設することで、基板の真空吸着精度が上がるため、基板処理精度と作業効率が向上して、品質の良好なガラス基板やウエハ等を作製するのに有効に寄与する。さらに、本発明の回転部材は、慣性モーメントにより短時間で所定の回転数まで昇速することが可能になるため、ガラス基板等の生産性に優れ、かつ高精度の製品の製造に寄与することができる。   According to the present invention, it is possible to reduce the weight by making the rotating member have a hollow structure, and it is possible to reduce the bending due to the weight of the rotating member itself by using a highly rigid carbon fiber composite plastic as the material. In addition, the rotary member has a hollow structure, and an evacuation flow path is provided inside the vacuum member, and the vacuum suction holes are uniformly disposed on the entire vacuum suction surface, thereby increasing the vacuum suction accuracy of the substrate. As a result, the working efficiency is improved, and it contributes effectively to the production of a glass substrate or a wafer having a good quality. Furthermore, since the rotating member of the present invention can be accelerated to a predetermined number of rotations in a short time by the moment of inertia, it is excellent in productivity of glass substrates and the like and contributes to the manufacture of highly accurate products. Can do.

本発明が対象としている回転部材に求められる条件として、代表的なものは、(1)部材本体が軽量で高い剛性を有すること、(2)部材本体は高い平面度を有し、ひいてはこれに取付ける基板の平坦度も保障されること、(3)被処理基板を短時間で真空吸着できること、(4)真空吸着面、即ち基板の真空吸着面が、耐摩耗性を有し長寿命であること、(5)処理後の基板のリリースが容易であること、等が挙げられる。   Typical conditions required for the rotating member targeted by the present invention are: (1) the member main body is lightweight and has high rigidity, and (2) the member main body has high flatness. The flatness of the substrate to be mounted is guaranteed, (3) the substrate to be processed can be vacuum-sucked in a short time, and (4) the vacuum suction surface, that is, the vacuum suction surface of the substrate has wear resistance and a long life. (5) It is easy to release the substrate after processing.

そこで、本発明は、上記の要求(1)〜(5)を満足させるため、基板を保持する板状の回転部材を中空構造体とし、かつその素材を炭素繊維複合プラスチック材料を用いることとした。即ち、まず軽量化するために、部材本体を中空構造とする一方で、一定の剛性を付与するために、素材として炭素繊維複合プラスチックを用いることにしたのである。このような構成にすることにより、回転部材の軽量化が実現し、このことによって回転部材の自重による撓みをも防ぐことができると共に、回転部材および回転器(カップ)を高速で、しかも安定した状態で回転させることができ、ひいては被処理基板の安定した高速回転状態をもたらして高品質の製品を製造するのに役立つのである。   Therefore, in order to satisfy the above requirements (1) to (5), the present invention uses a plate-like rotating member that holds the substrate as a hollow structure, and uses a carbon fiber composite plastic material as the material. . That is, first, in order to reduce the weight, a carbon fiber composite plastic is used as a material in order to give the member body a hollow structure while providing a certain rigidity. By adopting such a configuration, the weight of the rotating member can be reduced, which can prevent the rotating member from being bent due to its own weight, and the rotating member and the rotator (cup) can be stabilized at high speed. The substrate can be rotated in a state, and as a result, a stable high-speed rotation state of the substrate to be processed is brought about, which helps to produce a high-quality product.

上記炭素繊維複合プラスチックとしては、たとえば、パン系炭素繊維またはピッチ系炭素繊維と、エポキシ樹脂、ビニルエステル樹脂などの熱硬化性樹脂、またはナイロン、ポリカーボネートなどの熱可塑性樹脂との複合材料を用いることが好ましく、炭素繊維および樹脂の種類、および配合比率については、回転部材の大きさと撓み量を考慮して選定することができる。   As the carbon fiber composite plastic, for example, a composite material of pan-based carbon fiber or pitch-based carbon fiber and a thermosetting resin such as epoxy resin or vinyl ester resin, or a thermoplastic resin such as nylon or polycarbonate is used. The type of carbon fiber and resin, and the blending ratio can be selected in consideration of the size of the rotating member and the amount of deflection.

また、本発明では、炭素繊維複合プラスチックからなる回転部材本体を、内部に互いに連通する複数の真空排気流路を設けてなる中空構造体とすることが有効である。この中空構造は、基板吸着面側の板と、その裏面側に当たる真空排気側の板との間に、スペーサやリブを使って中空構造体とするか、セルとセル壁からなるハニカム構造体としたものであることが好ましい。回転部材本体をこのような中空構造とすることにより、軽量化を図ることができると共に、基板の大型化に対応して安定した回転を確保することができる。その他、この部材本体の中空構造化によって、真空排気流路の真空吸着面に対し、全面に均一な吸着能を与えるという効果も生ずる。   Further, in the present invention, it is effective to make the rotating member body made of carbon fiber composite plastic a hollow structure body provided with a plurality of vacuum exhaust passages communicating with each other inside. This hollow structure is a hollow structure using spacers or ribs between a substrate suction surface side plate and a vacuum exhaust side plate corresponding to the back surface side, or a honeycomb structure composed of cells and cell walls. It is preferable that By making the rotating member main body have such a hollow structure, the weight can be reduced and stable rotation can be ensured corresponding to the increase in the size of the substrate. In addition, the hollow structure of the member main body also has an effect of giving a uniform adsorption ability to the entire vacuum adsorption surface of the vacuum exhaust passage.

本発明では、前記部材本体の中空部の内部に、たとえば金属製の角パイプ等からなる真空排気流路を設ける。そして、この真空排気流路に沿って一定の間隔で、基板を該部材に吸着保持するために機能する真空吸引孔を、部材本体の真空吸着面上に均一に分散して穿孔配設し、基板の安定した吸引(固定)保持を図る。なお、前記金属製の角パイプは、ステンレス鋼あるいはアルミニウム系材料などを用いることができる他、セラミックスやサーメットの使用も可能である。なお、この真空排気流路の数、大きさおよび真空吸引孔の数等は、吸着保持する基板の大きさ等に応じて、適宜に決定される。また、回転部材の炭素繊維複合プラスチック材と金属製の角パイプは、エポキシ樹脂などの樹脂接着剤で接合されることが好ましい。   In the present invention, a vacuum exhaust passage made of, for example, a metal square pipe is provided inside the hollow portion of the member body. Then, vacuum suction holes that function to suck and hold the substrate to the member at regular intervals along the vacuum exhaust flow path are uniformly distributed on the vacuum suction surface of the member main body, and are disposed. To achieve stable suction (fixation) holding of the substrate. The metal square pipe can be made of stainless steel, aluminum-based material, etc., or ceramics or cermet can be used. The number and size of the evacuation channels, the number of vacuum suction holes, and the like are appropriately determined according to the size of the substrate to be sucked and held. The carbon fiber composite plastic material of the rotating member and the metal square pipe are preferably joined with a resin adhesive such as an epoxy resin.

また、該回転部材の基板を吸着保持する真空吸着面は、被処理材であるガラス基板等との接触等による摩耗が激しく起こる部分であり、この接触によって発生するパーティクルによるガラス基板等の汚染を防ぐため、該基板吸着保持面には、セラミックス、サーメット、金属(合金等を含む)の材料を溶射してこれらの皮膜を形成する。そのためには、耐摩耗性に優れた材料が好ましく、例えば、セラミックスとしては、アルミナやクロミアなどの酸化物、炭化珪素のような炭化物、窒化硼素のような硼化物またはこれらの複合系セラミックスが、サーメットとしては、炭化物系、硼化物系等が、金属・合金としては、Alやその合金、Cuやその合金、またはステンレス鋼等が好適に用いられるが、とくにこれらの金属に限定されない。   In addition, the vacuum suction surface that sucks and holds the substrate of the rotating member is a portion where wear due to contact with the glass substrate or the like as the material to be processed occurs, and contamination of the glass substrate or the like due to particles generated by this contact is prevented. In order to prevent this, these films are formed on the substrate adsorption holding surface by spraying ceramic, cermet, or metal (including alloy) materials. For this purpose, a material excellent in wear resistance is preferable. For example, ceramics include oxides such as alumina and chromia, carbides such as silicon carbide, borides such as boron nitride, and composite ceramics thereof. As the cermet, carbide type, boride type and the like are preferably used, and as the metal / alloy, Al, its alloy, Cu, its alloy, stainless steel, etc. are preferably used, but it is not particularly limited to these metals.

また、上記材料を溶射被覆する手段としては、とくにプラズマ溶射法が好ましく、その他溶射材料に応じて高速ガス炎溶射、ガス溶線式溶射等を選択して被覆することもできる。   Further, as a means for thermally spraying the above-mentioned material, a plasma spraying method is particularly preferable, and high-speed gas flame spraying, gas welding type spraying, or the like can be selected and coated depending on other spraying materials.

上記溶射皮膜は、その表面粗さを、平均粗さRaで0.5〜3.0μm程度とすることが望ましい。その理由は、溶射皮膜に適度な粗さを付与することによって、基板処理後において該回転部材上のガラス基板等を容易に取り外すことができるようになるためである。即ち、この表面粗さRaが0.5μm未満の場合、回転部材の表面が鏡面に近いものとなり、表面処理後の真空排気停止後において、回転部材内への大気導入に時間がかかり、基板のリリースが遅れて生産性が悪くなってしまう。一方、Raが3.0μm超の場合には、基板を真空吸着するのに長時間がかかると共に、確実で十分な吸着がなされず、高速回転での基板保持性も劣化するため好ましくない。また、溶射皮膜の表面粗さは、ブラスト処理、酸洗、グライダー研磨、エメリ研磨などによりRa:0.5〜3.0μm程度に調整するが、なかでもRa:1.0〜2.0μmが好ましい。   The thermal spray coating desirably has a surface roughness of about 0.5 to 3.0 μm in average roughness Ra. The reason is that the glass substrate on the rotating member can be easily removed after the substrate processing by imparting an appropriate roughness to the sprayed coating. That is, when the surface roughness Ra is less than 0.5 μm, the surface of the rotating member is close to a mirror surface, and it takes time to introduce the atmosphere into the rotating member after the vacuum exhaust is stopped after the surface treatment, and the substrate is released. Delays productivity. On the other hand, when Ra is more than 3.0 μm, it takes a long time to vacuum-suck the substrate, and reliable and sufficient suction is not performed, and the substrate holding property at high-speed rotation is deteriorated. The surface roughness of the sprayed coating is adjusted to Ra: about 0.5 to 3.0 μm by blasting, pickling, glider polishing, emery polishing, etc. Among them, Ra: 1.0 to 2.0 μm is preferable.

また、上記溶射皮膜の膜厚は、0.05〜0.5mmが好適である。これは、膜厚が小さすぎると(0.05mm未満)、溶射皮膜を被覆形成することの効果が不十分となり、しかも、溶射皮膜を平面研削して平面度と表面粗さを調整するのに不都合であり、一方、膜厚の上限(0.5mm超)については、技術的にも品質的にも、とくには問題はないが、厚膜とするほど経済性の面から制約される。   The film thickness of the sprayed coating is preferably 0.05 to 0.5 mm. This is because if the film thickness is too small (less than 0.05 mm), the effect of coating the sprayed coating becomes insufficient, and it is also inconvenient for adjusting the flatness and surface roughness by surface grinding of the sprayed coating. On the other hand, the upper limit of film thickness (above 0.5 mm) is not particularly problematic in terms of technology and quality, but the thicker the film, the more constrained it is from the economical aspect.

回転部材の基板吸着面側の表面に開口させる真空吸引孔の数および位置は、基板の大きさや厚さ、回転部材内部に設ける真空排気流路の位置・数等により決定され、その開口形状は、円形が好ましい。また、その形成方法は、回転部材表面に前記溶射材料を被覆する前に回転部材内部に配置した金属製流路および該流路直上の基板吸着面側プレート(炭素繊維複合プラスチック)に、キリもみ等により穿孔するか、皮膜形成後に真空排気流路、該流路直上の基板吸着面および溶射皮膜に同時に穿孔加工することによる。   The number and position of the vacuum suction holes to be opened on the surface of the rotating member on the substrate suction surface side are determined by the size and thickness of the substrate, the position and number of the vacuum exhaust passages provided in the rotating member, and the opening shape is A circular shape is preferred. In addition, the formation method is that a metal channel disposed inside the rotating member before the surface of the rotating member is coated with the thermal spray material and a substrate adsorbing surface side plate (carbon fiber composite plastic) directly above the channel are subjected to drilling. Or by drilling simultaneously on the vacuum exhaust passage, the substrate adsorption surface immediately above the passage, and the thermal spray coating after the coating is formed.

以下、本発明の構造の詳細について、図面を用いて説明する。
図1および図2は、本発明の基板処理装置用回転部材の真空排気側および基板吸着側の平面図であり、図3は、回転部材の部分断面図(図1のA−A断面)であり、図4は、真空排気側に設けられた排気用ヘッド部の部分断面図である。
Details of the structure of the present invention will be described below with reference to the drawings.
1 and 2 are plan views of the evacuation side and the substrate adsorption side of the rotating member for a substrate processing apparatus of the present invention, and FIG. 3 is a partial sectional view of the rotating member (cross section AA in FIG. 1). FIG. 4 is a partial cross-sectional view of the exhaust head portion provided on the vacuum exhaust side.

図1は、回転部材を真空排気側(裏面)から見た平面図であり、部材本体1の中央部には、並列している各真空排気流路を集約する真空排気用ヘッド2が取り付けられている。この排気用ヘッド2は、炭素繊維複合プラスチックまたは金属により構成され、図4に示すように、部材本体1に所望の手段、たとえば、ネジ6止めされる。また、この排気用ヘッド2の中央には、排気穴7が1ヶ所設けてあり、この排気穴7より、真空排気がなされる。   FIG. 1 is a plan view of a rotating member viewed from the evacuation side (back surface), and a evacuation head 2 that collects the evacuation channels arranged in parallel is attached to the central portion of the member body 1. ing. The exhaust head 2 is made of carbon fiber composite plastic or metal, and is secured to the member body 1 by a desired means, for example, a screw 6 as shown in FIG. One exhaust hole 7 is provided in the center of the exhaust head 2, and vacuum exhaust is performed from the exhaust hole 7.

部材本体1は、図3に示すように、例えばピッチ系炭素繊維とエポキシ樹脂およびポリカーボネートからなる炭素繊維複合プラスチックよりなる一対の基板吸着側プレート1aと真空排気側プレート1bとの間隔が、これらの外周縁部に配設したスペーサー3によって一定に保持され、中空構造を形成している。これらの両プレート1a、1bとスぺ−サー3(または必要に応じてリブ)はすべて、前記炭素繊維複合プラスチックで形成されている。この例示の他、両プレート1a、1bの間に形成される中空構造は、多数のセルとセル壁からなるハニカム構造体であってもよい。なお、両プレート1a、1bとスペーサー3との接合には、基本的には炭素繊維複合プラスチック成形時に使用した樹脂接着剤を使用することが好ましい。   As shown in FIG. 3, the member main body 1 has, for example, an interval between a pair of substrate adsorption side plates 1a and vacuum exhaust side plates 1b made of carbon fiber composite plastic made of pitch-based carbon fibers, epoxy resin and polycarbonate. It is held constant by the spacers 3 disposed on the outer peripheral edge portion to form a hollow structure. Both of these plates 1a and 1b and the spacer 3 (or ribs if necessary) are made of the carbon fiber composite plastic. In addition to this illustration, the hollow structure formed between the plates 1a and 1b may be a honeycomb structure including a large number of cells and cell walls. In addition, it is preferable to use the resin adhesive used at the time of carbon fiber composite plastic shaping | molding for joining of both plates 1a and 1b and the spacer 3 fundamentally.

図2は、部材本体1を基板真空吸着面側から見た図であり、たとえば図3に示すように、角形断面の金属パイプを前記中空構造内に配設することによって、破線で示す真空排気流路4を設けると共に、この真空排気流路4に沿って多数の真空吸引孔5が、被処理基板に面する基板吸着側プレート1aに開口されている。この真空吸引孔5の数および位置は、対象とする被処理基板の形状、サイズおよび吸引時間等により決定する。この場合において、真空吸着を速くし、基板の平面度をより均一にするためは、中央部に比較的多くの開口を設け、外周部に向かうにつれて開口の数を少なくするなどの工夫を施すことが有効である。   FIG. 2 is a view of the member main body 1 as viewed from the substrate vacuum suction surface side. For example, as shown in FIG. 3, a vacuum-pump indicated by a broken line is provided by disposing a metal pipe having a square cross section in the hollow structure. A flow path 4 is provided, and a number of vacuum suction holes 5 are opened in the substrate suction side plate 1 a facing the substrate to be processed along the vacuum exhaust flow path 4. The number and position of the vacuum suction holes 5 are determined by the shape, size, suction time, and the like of the target substrate. In this case, in order to speed up vacuum suction and make the flatness of the substrate more uniform, devise such as providing a relatively large number of openings in the center and decreasing the number of openings toward the outer periphery. Is effective.

真空排気流路4は、図1および図2に示すように、回転部材全面に規則的に配置され、ステンレス鋼あるいはアルミニウム系材料などの金属製の角パイプから形成される。このように、真空排気流路4を規則的に配置することにより、被処理基板を回転部材の基板吸着面プレート1aに、均一に吸着できるようになる。また、真空排気流路4は、基板吸着側プレート1aおよび真空排気側プレート1bの双方と樹脂接着剤により接着される。   As shown in FIGS. 1 and 2, the vacuum exhaust passage 4 is regularly arranged on the entire surface of the rotating member, and is formed of a square pipe made of metal such as stainless steel or aluminum-based material. In this way, by arranging the evacuation passages 4 regularly, the substrate to be processed can be uniformly sucked to the substrate suction surface plate 1a of the rotating member. The evacuation flow path 4 is bonded to both the substrate suction side plate 1a and the evacuation side plate 1b with a resin adhesive.

なお、回転部材の基板吸着側プレート1aには、真空吸引孔穴5部を除く全面に、プラズマ溶射法等によって溶射皮膜8が被覆形成される。この溶射皮膜8の表面は、ブラスト処理、酸洗、グライダー研磨、エメリ研磨などにより、その表面粗さがRa:0.5〜3.0μmになるように調整される。   The substrate adsorption side plate 1a of the rotating member is coated with a sprayed coating 8 on the entire surface excluding the vacuum suction hole 5 by a plasma spraying method or the like. The surface of the sprayed coating 8 is adjusted so that the surface roughness is Ra: 0.5 to 3.0 μm by blasting, pickling, glider polishing, emery polishing, or the like.

図4に示すように、真空排気用ヘッド2は、たとえば部材本体1にネジ6により固定されている。真空排気用ヘッド2を、部材本体1にネジ6止めする際には、部材本体1と真空排気用ヘッド2との間の隙間から真空排気漏れが発生するのを防止するため、部材本体1と真空排気用ヘッド2の接触面に接着樹脂等を塗布して接着することが好ましい。   As shown in FIG. 4, the evacuation head 2 is fixed to the member body 1 with screws 6, for example. When the vacuum exhaust head 2 is screwed to the member main body 1, the member main body 1 and the member main body 1 are connected to prevent the vacuum exhaust leakage from occurring in the gap between the member main body 1 and the vacuum exhaust head 2. It is preferable to apply an adhesive resin or the like to the contact surface of the evacuation head 2 for adhesion.

(実施例1)
まず、部材本体1の基板吸着側プレート1aおよび真空排気側プレート1bとして、ピッチ系炭素繊維とエポキシ樹脂との複合材からなる炭素繊維複合プラスチック材を、プリプレグ方式によって約2.5mm厚の積層板とし、オートクレーブ内で焼成して硬化させ、ヤング率24GPaの強度を有する複合材(FRP)を得た。そして、中空部分を形造るためのスぺ−サー3として、部材本体1と同様の製法により、厚さ約2.5mmに成形したものを用いた。さらに、部材本体1には、板厚0.5mmのSUS304製角パイプを用いて、事前に真空排気流路4を形成した。
Example 1
First, as the substrate adsorption side plate 1a and the vacuum exhaust side plate 1b of the member main body 1, a carbon fiber composite plastic material made of a composite material of pitch-based carbon fiber and epoxy resin is formed into a laminate having a thickness of about 2.5 mm by a prepreg method. Then, it was baked and cured in an autoclave to obtain a composite material (FRP) having a Young's modulus of 24 GPa. A spacer 3 having a thickness of about 2.5 mm was used as the spacer 3 for forming the hollow portion by the same manufacturing method as that for the member main body 1. Further, a vacuum exhaust channel 4 was formed in advance in the member body 1 using a SUS304 square pipe having a thickness of 0.5 mm.

このようにして作製した各プレート1a、1b、スぺ−サー3および前記真空排気流路4を、所定の位置に組み付け、エポキシ系樹脂接着剤を塗布して接着し、硬化処理して部材本体1を作製した(本発明1−1)。なお、比較例として、部材本体1の素材としてアルミニウム合金を用いた場合(比較例1−1)と、部材本体1の素材としてFRPを用いるが、基板吸着側プレート1aと真空排気側プレート1bとの間に中空構造を形成しない場合(比較例1−2)のものを準備した。   Each plate 1a, 1b, spacer 3 and vacuum exhaust flow path 4 produced in this way is assembled at a predetermined position, and an epoxy resin adhesive is applied and bonded, cured, and a member main body. 1 was produced (Invention 1-1). As a comparative example, when an aluminum alloy is used as the material of the member body 1 (Comparative Example 1-1), and FRP is used as the material of the member body 1, the substrate adsorption side plate 1a and the vacuum exhaust side plate 1b In the case where a hollow structure is not formed between the layers (Comparative Example 1-2), a sample was prepared.

その後、真空排気側プレート1b表面に、排気用ヘッド2を取り付け、一方、基板吸着側プレート1a表面には、真空吸引孔5を、キリもみにより118箇所穿孔形成した。この時、内部に配置されているSUS304製角パイプの排気流路4にも同時に開孔した。   After that, the exhaust head 2 was attached to the surface of the vacuum exhaust side plate 1b, while 118 vacuum suction holes 5 were formed in the surface of the substrate suction side plate 1a by drilling. At this time, the exhaust passage 4 of the square pipe made of SUS304 disposed inside was simultaneously opened.

このようにして成形された部材本体1の基板吸着側プレート1a面の平面度を、三次元形状測定器にて計測した結果、本発明1−1の平面度は、最大で0.08mmの撓みを発生した。しかし、比較例1−1では、平面度は、自重により最大で約3mmの撓みを発生し、比較例1−2では、最大で約1.5mmの撓みを発生した。
なお、前記平面度は、JIS B0021(1998)規定に従って測定した値である。
As a result of measuring the flatness of the surface of the substrate suction side plate 1a of the member main body 1 formed in this way with a three-dimensional shape measuring instrument, the flatness of the invention 1-1 has a maximum deflection of 0.08 mm. Occurred. However, in Comparative Example 1-1, the flatness caused a deflection of about 3 mm at the maximum due to its own weight, and in Comparative Example 1-2, the deflection of a maximum of about 1.5 mm occurred.
The flatness is a value measured according to JIS B0021 (1998).

(実施例2)
次に、上記のとおり作製した部材本体1の基板吸着側プレート1aの表面を、平面度が0.1mm以下になるように平面研削して調整した後、プラズマ溶射法により酸化クロムを、膜厚約0.5mmで溶射被覆した。その後、基板吸着側プレート1a表面の平面度を調整すると共に、表面粗さをRa:1.2〜1.5μmに調整した(本発明2−1)。
なお、試作した部材本体1の大きさは、最終的に650mm×850mm×6mm厚さとした。
(Example 2)
Next, the surface of the substrate adsorption side plate 1a of the member main body 1 produced as described above is adjusted by surface grinding so that the flatness becomes 0.1 mm or less, and then chromium oxide is formed by a plasma spraying method with a film thickness of about Thermal spray coating was performed at 0.5 mm. Thereafter, the flatness of the surface of the substrate adsorption side plate 1a was adjusted, and the surface roughness was adjusted to Ra: 1.2 to 1.5 μm (Invention 2-1).
In addition, the size of the prototype member body 1 was finally 650 mm × 850 mm × 6 mm thick.

また、比較例として、部材本体1の素材としてアルミニウム合金を用いた場合のもの(比較例2−1)、部材本体1の素材としてFRPを用いるが、基板吸着側プレート1aと真空排気側プレート1bとの間に中空構造を形成しない場合(比較例2−2)のもの、基板吸着側プレート1a表面に溶射皮膜を形成しないもの(比較例2−3)、基板吸着側プレート1aの表面粗さRaが0.4μmまたは3.1μmのもの(比較例2−4、2−5)を準備した。   In addition, as a comparative example, the case where an aluminum alloy is used as the material of the member body 1 (Comparative Example 2-1), and FRP is used as the material of the member body 1, the substrate adsorption side plate 1a and the vacuum exhaust side plate 1b are used. When a hollow structure is not formed between them (Comparative Example 2-2), when a thermal spray coating is not formed on the surface of the substrate adsorption side plate 1a (Comparative Example 2-3), and the surface roughness of the substrate adsorption side plate 1a Ras with 0.4 μm or 3.1 μm (Comparative Examples 2-4 and 2-5) were prepared.

このように作製した各部材本体1の平面度および耐久性を測定した結果を表1に示す。なお、耐久性は、基板処理後の基板吸着側プレート1a表面の、基板との接触による摩耗を、表面粗さ(Ra)の増大により表わしたものである。
その結果、本発明2−1では、最大で0.05mm以内の精度を確保し、基板との接触による摩耗は認められなかった。
Table 1 shows the results of measuring the flatness and durability of each member body 1 produced in this way. The durability represents the wear of the surface of the substrate adsorption side plate 1a after the substrate processing due to contact with the substrate by increasing the surface roughness (Ra).
As a result, in the present invention 2-1, accuracy within 0.05 mm at the maximum was ensured, and no wear due to contact with the substrate was observed.

一方、比較例2−1では、最大平面度が3.0mmと大きい撓みを示した。また、比較例2−2では、最終平面度が0.15mmと大きいため、真空吸着能力が低下し、立ち上がりに長時間を有して生産性が低下した。さらに、比較例2−3では、基板吸着側プレート1a表面に溶射皮膜を形成していないため、該プレート表面が基板との接触により摩耗してしまった。   On the other hand, in Comparative Example 2-1, the maximum flatness was as large as 3.0 mm. Further, in Comparative Example 2-2, the final flatness was as large as 0.15 mm, so that the vacuum suction capability was reduced, and the productivity was lowered with a long time to rise. Furthermore, in Comparative Example 2-3, since the thermal spray coating was not formed on the surface of the substrate adsorption side plate 1a, the plate surface was worn by contact with the substrate.

また、溶射皮膜の表面粗さが0.4μmの場合(比較例2−4)では、基板との接触による摩耗は認められなかったが、基板が真空吸着面側プレートの表面に緊密に密着してしまい、真空吸引停止後に該プレートから基板をリリースするのに時間がかかってしまった。一方、表面粗さが3.1μmの場合(比較例2−5)では、部材本体1への基板の吸着に長時間を要すると共に、十分な吸着ができず、高速回転によって基板が部材本体1から外れてしまった。

Figure 2007042962
In addition, when the surface roughness of the thermal spray coating was 0.4 μm (Comparative Example 2-4), no abrasion due to contact with the substrate was observed, but the substrate was in close contact with the surface of the vacuum suction surface side plate. Therefore, it took time to release the substrate from the plate after the vacuum suction was stopped. On the other hand, when the surface roughness is 3.1 μm (Comparative Example 2-5), it takes a long time for the substrate to be adsorbed to the member body 1 and sufficient adsorption cannot be performed. I missed it.
Figure 2007042962

本発明にかかる基板処理装置用回転部材は、軽量でかつ高剛性を有し、また、耐久性に優れるものであり、半導体製造装置、フラットパネルディスプレイ製造装置等の分野での適用が可能である。   The rotating member for a substrate processing apparatus according to the present invention is lightweight and highly rigid, and has excellent durability, and can be applied in the fields of semiconductor manufacturing apparatuses, flat panel display manufacturing apparatuses, and the like. .

本発明にかかる回転部材(真空排気側)を示す平面図である。It is a top view which shows the rotating member (vacuum exhaust side) concerning this invention. 本発明にかかる回転部材(基板吸着側)を示す平面図である。It is a top view which shows the rotating member (board | substrate adsorption | suction side) concerning this invention. 回転部材の部分断面図である。It is a fragmentary sectional view of a rotation member. 真空排気側に設けられた排気用ヘッド部の部分断面図である。It is a fragmentary sectional view of the head part for exhaust provided in the vacuum exhaust side.

符号の説明Explanation of symbols

1 部材本体
1a 基板吸着側プレート
1b 真空排気側プレート
2 真空排気用ヘッド
3 スぺ−サー
4 真空排気流路
5 真空吸引孔
6 ネジ
7 排気穴
8 溶射皮膜
9 回転器
10 基板
DESCRIPTION OF SYMBOLS 1 Member main body 1a Substrate adsorption | suction side plate 1b Vacuum exhaust side plate 2 Vacuum exhaust head 3 Spacer 4 Vacuum exhaust flow path 5 Vacuum suction hole 6 Screw 7 Exhaust hole 8 Thermal spray coating 9 Rotator 10 Substrate

Claims (7)

基板を保持する部材本体が、中空構造からなり、かつ炭素繊維複合プラスチック材料にて構成されていることを特徴とする基板処理装置用回転部材。   A rotating member for a substrate processing apparatus, wherein a member main body for holding a substrate has a hollow structure and is made of a carbon fiber composite plastic material. 前記部材本体は、表・裏両面板の間に配したスペーサーまたはリブにより、あるいはハニカム構造によって中空構造を構成してなることを特徴とする請求項1に記載の基板処理装置用回転部材。   2. The rotating member for a substrate processing apparatus according to claim 1, wherein the member main body has a hollow structure formed by spacers or ribs disposed between the front and back double-sided plates, or by a honeycomb structure. 前記部材本体は、その中空内部に真空排気流路を設けると共に、この真空排気流路の真空吸着面側には、多数の真空吸引孔を開孔してなることを特徴とする請求項1または2に記載の基板処理装置用回転部材。   2. The member body according to claim 1, wherein a vacuum exhaust passage is provided in the hollow interior, and a number of vacuum suction holes are formed on the vacuum suction surface side of the vacuum exhaust passage. 3. A rotating member for a substrate processing apparatus according to 2. 前記部材本体は、少なくともその真空吸着面側に、セラミックス、サーメット、金属・合金のうちから選ばれるいずれか一種以上の溶射皮膜を被覆してなることを特徴とする請求項1〜3のいずれか1項に記載の基板処理装置用回転部材。   The said member main body coat | covers at least the 1 type or more sprayed coating chosen from ceramics, a cermet, and a metal and an alloy on the vacuum suction surface side at least. 2. A rotating member for a substrate processing apparatus according to item 1. 前記溶射皮膜の表面粗さ(Ra)が、0.5〜3.0μmであることを特徴とする請求項1〜4のいずれか1項に記載の基板処理装置用回転部材。   5. The rotating member for a substrate processing apparatus according to claim 1, wherein the thermal spray coating has a surface roughness (Ra) of 0.5 to 3.0 μm. 前記炭素繊維複合プラスチック材料は、炭素繊維と熱硬化性樹脂および/または熱可塑性樹脂との複合材料からなることを特徴とする請求項1〜5のいずれか1項に記載の基板処理装置用回転部材。   The substrate processing apparatus rotation according to claim 1, wherein the carbon fiber composite plastic material is made of a composite material of carbon fiber and a thermosetting resin and / or a thermoplastic resin. Element. 半導体製造装置または液晶製造装置の基板回転器に取付けて用いられるものであることを特徴とする請求項1〜6のいずれか1項に記載の基板処理装置用回転部材。
The rotating member for a substrate processing apparatus according to claim 1, wherein the rotating member is used by being attached to a substrate rotator of a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus.
JP2005227388A 2005-08-05 2005-08-05 Rotating member for substrate processing equipment Expired - Fee Related JP4586162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227388A JP4586162B2 (en) 2005-08-05 2005-08-05 Rotating member for substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227388A JP4586162B2 (en) 2005-08-05 2005-08-05 Rotating member for substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2007042962A true JP2007042962A (en) 2007-02-15
JP4586162B2 JP4586162B2 (en) 2010-11-24

Family

ID=37800650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227388A Expired - Fee Related JP4586162B2 (en) 2005-08-05 2005-08-05 Rotating member for substrate processing equipment

Country Status (1)

Country Link
JP (1) JP4586162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295823A (en) * 2008-06-05 2009-12-17 Sumitomo Heavy Ind Ltd Adsorption disk

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151135A (en) * 1993-11-26 1995-06-13 Yoshikawa Kogyo Co Ltd Carbon fiber reinforced resin roll and manufacture thereof
JP3073229U (en) * 2000-05-12 2000-11-14 株式会社三協製作所 Robot hand for transfer device
JP2000343476A (en) * 1999-06-09 2000-12-12 Nippon Mitsubishi Oil Corp Carrying member
JP2001203258A (en) * 2000-01-21 2001-07-27 Tocalo Co Ltd Electrostatic chuck member and its manufacturing method
JP2002246420A (en) * 2001-02-15 2002-08-30 Nippon Avionics Co Ltd Semiconductor mounting apparatus for ultrasonically connecting flip-chip
JP2003173524A (en) * 2001-06-15 2003-06-20 Fuji Photo Film Co Ltd Magnetic transfer device
JP2003249542A (en) * 2001-12-20 2003-09-05 Nikon Corp Substrate holder, aligner, and method of manufacturing device
JP2004173356A (en) * 2002-11-18 2004-06-17 Yaskawa Electric Corp Apparatus for vacuum and its manufacturing method
JP2005005623A (en) * 2003-06-13 2005-01-06 Tokyo Electron Ltd Substrate processing equipment and substrate processing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151135A (en) * 1993-11-26 1995-06-13 Yoshikawa Kogyo Co Ltd Carbon fiber reinforced resin roll and manufacture thereof
JP2000343476A (en) * 1999-06-09 2000-12-12 Nippon Mitsubishi Oil Corp Carrying member
JP2001203258A (en) * 2000-01-21 2001-07-27 Tocalo Co Ltd Electrostatic chuck member and its manufacturing method
JP3073229U (en) * 2000-05-12 2000-11-14 株式会社三協製作所 Robot hand for transfer device
JP2002246420A (en) * 2001-02-15 2002-08-30 Nippon Avionics Co Ltd Semiconductor mounting apparatus for ultrasonically connecting flip-chip
JP2003173524A (en) * 2001-06-15 2003-06-20 Fuji Photo Film Co Ltd Magnetic transfer device
JP2003249542A (en) * 2001-12-20 2003-09-05 Nikon Corp Substrate holder, aligner, and method of manufacturing device
JP2004173356A (en) * 2002-11-18 2004-06-17 Yaskawa Electric Corp Apparatus for vacuum and its manufacturing method
JP2005005623A (en) * 2003-06-13 2005-01-06 Tokyo Electron Ltd Substrate processing equipment and substrate processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295823A (en) * 2008-06-05 2009-12-17 Sumitomo Heavy Ind Ltd Adsorption disk

Also Published As

Publication number Publication date
JP4586162B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP7160155B2 (en) Glass plate with antifouling layer
JP5468607B2 (en) Magnetic pad for end effector
JP5025576B2 (en) Electrostatic chuck and substrate temperature control fixing device
JP5651693B2 (en) Substrate holder and film forming apparatus
TWI500784B (en) Mask plate component
WO1995029039A1 (en) Separation type grinding surface plate and grinding apparatus using same
JP2006041496A (en) Multi-selection end effector assembly
TWI567824B (en) Workpiece heating device and workpiece handling device
TWI604952B (en) Lamination equipment manufacturing equipment
US20180072613A1 (en) Method for manufacturing a glass article and a glass article
KR20150092020A (en) Forming method of peeling start part and forming apparatus of peeling start part of laminate, and manufacturing method of electronic device
KR20140006981A (en) Structure including thin primer film, and process for producing said structure
JP4586162B2 (en) Rotating member for substrate processing equipment
EP2056648B1 (en) Heating resistor element, manufacturing method for the same, thermal head, and printer
TWI352056B (en)
JP5143607B2 (en) Vacuum adsorption device
JP2010161238A (en) Fluororesin coating plate and suction stage
JP6547403B2 (en) Peeling device and peeling method of laminate, and method of manufacturing electronic device
JP6459145B2 (en) Laminate peeling apparatus, peeling method, and electronic device manufacturing method
JP3565211B2 (en) Rib forming equipment
KR101082891B1 (en) Mother Glass Manufacturing Table
JP5047883B2 (en) Suction board
JP2018125374A (en) Transport arm, substrate transfer device, and substrate processing device
JP2010030016A (en) Method for manufacturing non-metallic carrier for holding polishing material
JP2017039320A (en) Stencil for printing provided with organic polymer layer and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4586162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees