JP2007041526A - Method for fixing optical element and method for manufacturing optical element fixing structure - Google Patents

Method for fixing optical element and method for manufacturing optical element fixing structure Download PDF

Info

Publication number
JP2007041526A
JP2007041526A JP2006115505A JP2006115505A JP2007041526A JP 2007041526 A JP2007041526 A JP 2007041526A JP 2006115505 A JP2006115505 A JP 2006115505A JP 2006115505 A JP2006115505 A JP 2006115505A JP 2007041526 A JP2007041526 A JP 2007041526A
Authority
JP
Japan
Prior art keywords
optical element
adhesive
light
lens
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115505A
Other languages
Japanese (ja)
Inventor
Naoki Mitsuki
直樹 三ツ木
Hiroshi Miyakoshi
博史 宮越
Yoshiki Shibuya
佳樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006115505A priority Critical patent/JP2007041526A/en
Publication of JP2007041526A publication Critical patent/JP2007041526A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for fixing an optical element and a method for manufacturing optical element fixing structure by which the thickness of a photosetting adhesive which has been photoset is made uniform with simple constitution, and adverse influence such as temperature rise in the optical element is restrained even when the optical element is irradiated with light such as ultraviolet rays so that it may be stuck and fixed with the photosetting adhesive. <P>SOLUTION: In the method for fixing the optical element, a photosetting adhesive is applied to at least either the sticking and fixing part of an optical element 10 or the sticking and fixing part of a fixed member 20 when the optical element 10 is stuck and fixed on the fixed member 20 with the photosetting adhesive, and then a light is made to pass through a load tool 31 constituted of a light transmissive material from a light source so as to irradiate the photosetting adhesive while applying load to the sticking and fixing part through the load tool 31. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学素子を固定部材に光硬化性接着剤で接着し固定する光学素子固定方法及び光学素子固定構造の製造方法に関する。   The present invention relates to an optical element fixing method in which an optical element is bonded and fixed to a fixing member with a photocurable adhesive, and a method for manufacturing an optical element fixing structure.

従来、ピックアップレンズや光通信モジュールに使われるマイクロレンズ等の光学素子を鏡筒等の固定部材に接着し固定する場合、紫外線硬化性接着剤を塗布してから紫外線光源から紫外線を紫外線硬化性接着剤に照射することで光学素子を固定部材に固定している。例えば、図14のように、金属製のレンズ鏡筒200内のカラー状の保持面220に紫外線硬化性接着剤を塗布し、レンズ100をその取付面150が保持面220に対向するように配置した状態で、紫外線光源30のノズル30aからレンズ100に紫外線aを照射することで接着剤層290を形成することで、レンズ100をレンズ鏡筒200に固定している。また、レンズ100等の光学素子は、その軽量性やコスト面などの理由から樹脂材料から構成することが有利である。   Conventionally, when an optical element such as a microlens used in a pickup lens or an optical communication module is bonded and fixed to a fixing member such as a lens barrel, an ultraviolet curable adhesive is applied, and then an ultraviolet ray is applied from an ultraviolet light source. The optical element is fixed to the fixing member by irradiating the agent. For example, as shown in FIG. 14, an ultraviolet curable adhesive is applied to the collar-shaped holding surface 220 in the metal lens barrel 200, and the lens 100 is disposed so that the mounting surface 150 faces the holding surface 220. In this state, the lens 100 is fixed to the lens barrel 200 by forming the adhesive layer 290 by irradiating the lens 100 with ultraviolet rays a from the nozzle 30a of the ultraviolet light source 30. In addition, the optical element such as the lens 100 is advantageously made of a resin material because of its light weight and cost.

また、下記特許文献1は、紫外線硬化性接着剤を用いて光ディスク部材を接着する際に290nm以下の波長をカットするフィルタを通して紫外線を照射することで、紫外線により光ディスクの各部材を劣化させずに各部材の接着力の耐久性を向上させるようにした光ディスク部材の接着方法を開示する。特許文献1では、その第4図、第7図のように、接着剤を間に塗布したディスク状の基板上に290nm以下の波長をカットするガラス板を載せ、ガラス板の上にステンレス製の中空の円筒状重りを載せた状態で、複数の光ファイバを重りの外周や中心孔に配置して紫外線照射装置から各光ファイバを通してガラス板に紫外線を照射している。
特開平03−198235号公報
In addition, Patent Document 1 below irradiates ultraviolet light through a filter that cuts a wavelength of 290 nm or less when an optical disk member is bonded using an ultraviolet curable adhesive, so that each member of the optical disk is not deteriorated by ultraviolet light. Disclosed is an optical disk member bonding method that improves the durability of the bonding strength of each member. In Patent Document 1, as shown in FIGS. 4 and 7, a glass plate that cuts a wavelength of 290 nm or less is placed on a disk-like substrate coated with an adhesive, and a stainless steel plate is placed on the glass plate. In a state where a hollow cylindrical weight is placed, a plurality of optical fibers are arranged on the outer periphery and the center hole of the weight, and ultraviolet rays are irradiated to the glass plate from the ultraviolet irradiation device through each optical fiber.
Japanese Patent Laid-Open No. 03-198235

レンズ等の光学素子が樹脂材料からなる場合、本発明者等の実験によれば、紫外線硬化性接着剤を硬化させるためにはある程度の時間で紫外線を照射する必要がある一方、紫外線を10秒以上、光学素子に照射すると、光学素子の温度がかなり上昇し、光学素子のレンズ面等が変形してしまう等の悪影響が生じることが判明した。また、紫外線硬化性接着剤を適用した接着面に圧力を加えながら紫外線を照射して接着剤を硬化させることで、接着剤の厚さが均一になることが判明した。   When an optical element such as a lens is made of a resin material, according to experiments by the present inventors, it is necessary to irradiate ultraviolet rays for a certain period of time in order to cure the ultraviolet curable adhesive. As described above, it has been found that when the optical element is irradiated, the temperature of the optical element rises considerably and adverse effects such as deformation of the lens surface of the optical element occur. Further, it has been found that the thickness of the adhesive becomes uniform by irradiating ultraviolet rays while applying pressure to the adhesive surface to which the ultraviolet curable adhesive is applied to cure the adhesive.

しかし、図14のようなレンズ鏡筒に外径4〜5mm程度のマイクロレンズを接着剤により取り付けて固定する場合、レンズ鏡筒が金属製であり非透光性のためレンズを通してしか接着剤に紫外線を照射できず、特許文献1の第4図や第7図のように重しをレンズ鏡筒内に配置し、重しの中心孔や外周に光ファイバを配置して紫外線を照射することはかなり困難であり、また、重しと光ファイバを配置する構成は複雑であり、接着剤硬化のための工程に手間がかかって生産性が低下してしまう。   However, when a microlens having an outer diameter of about 4 to 5 mm is attached and fixed to a lens barrel as shown in FIG. 14 with an adhesive, the lens barrel is made of metal and is not translucent so that it can only be attached through the lens. UV light cannot be irradiated, and a weight is placed in the lens barrel as shown in FIGS. 4 and 7 of Patent Document 1, and an optical fiber is placed in the center hole and outer periphery of the weight to irradiate the UV light. Is difficult, and the arrangement of the weight and the optical fiber is complicated, and the process for curing the adhesive takes time and productivity is lowered.

本発明は、上述のような従来技術の問題に鑑み、簡単な構成で硬化後の光硬化性接着剤の厚さを均一にでき、また、光硬化性接着剤による接着固定のために光学素子に紫外線等の光を照射しても光学素子における温度上昇等の悪影響を抑えることができる光学素子固定方法及び光学素子固定構造の製造方法を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention can make the thickness of the photocurable adhesive after curing uniform with a simple configuration, and can be used to fix the optical element with the photocurable adhesive. An object of the present invention is to provide an optical element fixing method and a manufacturing method of an optical element fixing structure that can suppress adverse effects such as temperature rise in the optical element even when irradiated with light such as ultraviolet rays.

上記目的を達成するために、本発明による光学素子固定方法は、光学素子を固定部材に光硬化性接着剤で接着し固定する光学素子固定方法であって、前記光学素子の接着固定部及び前記固定部材の接着固定部の少なくとも一方に前記光硬化性接着剤を適用してから、透光性材料から構成した荷重冶具を介して前記接着固定部に荷重を加えながら、光源から前記荷重冶具を通して前記光硬化性接着剤に光照射を行うことを特徴とする。   In order to achieve the above object, an optical element fixing method according to the present invention is an optical element fixing method in which an optical element is bonded and fixed to a fixing member with a photocurable adhesive, the adhesive fixing portion of the optical element and the optical element fixing method. The light-curing adhesive is applied to at least one of the adhesive fixing portions of the fixing member, and then a load is applied to the adhesive fixing portion via a load jig made of a light-transmitting material, while passing through the load jig from a light source. The photocurable adhesive is irradiated with light.

この光学素子固定方法によれば、接着固定部に適用された光硬化性接着剤に対し接着剤硬化のために光源から光を照射するとき、ガラス等の透光性材料から構成した荷重冶具を通して光照射を行いながら荷重冶具を介して接着固定部に荷重を加えるので、硬化後の接着剤の厚さを均一にできる。また、荷重冶具を通して光照射を行うことができるので、光源からの光照射の際に特別な光ファイバ等を配置する必要がなく、簡単な構成で光硬化性接着剤の厚さを均一にできる。   According to this optical element fixing method, when light is irradiated from a light source for curing the adhesive to the photocurable adhesive applied to the adhesive fixing portion, the load is made of a light transmissive material such as glass. Since a load is applied to the adhesive fixing portion via the load jig while performing light irradiation, the thickness of the cured adhesive can be made uniform. Moreover, since light irradiation can be performed through a load jig, it is not necessary to arrange a special optical fiber or the like at the time of light irradiation from the light source, and the thickness of the photocurable adhesive can be made uniform with a simple configuration. .

この場合、前記透光性材料は前記光硬化性接着剤の硬化に関与しない領域の波長の光を吸収する特性を有することで、荷重冶具を通して光照射を行う際に光硬化性接着剤の硬化に関与しない領域の波長の光を吸収するので、光学素子における温度上昇等の悪影響を効果的に抑えることができる。   In this case, the translucent material has a property of absorbing light having a wavelength in a region not involved in the curing of the photocurable adhesive, so that when the light irradiation is performed through the load jig, the photocurable adhesive is cured. Since the light of the wavelength of the area | region which is not concerned with is absorbed, bad influences, such as a temperature rise in an optical element, can be suppressed effectively.

また、前記透光性材料は、前記光硬化性接着剤の硬化に関与する領域の波長の光を透過する特性を有することで、接着剤の硬化効率が向上し、光照射時間を短縮できる。即ち、荷重冶具を光硬化性接着剤硬化に必要な光(例えば、波長300〜450nm)を通すフィルタ機能をもつ材料で作成する。また、例えば、もともとの光源が波長450nm以上をカットしていれば、フィルタ機能としては300〜450nmだけを通すものではなく、300nm以上の波長を通すものでよい。   Moreover, the said translucent material has the characteristic which permeate | transmits the light of the wavelength of the area | region which is concerned with hardening of the said photocurable adhesive agent, The hardening efficiency of an adhesive agent improves and it can shorten light irradiation time. That is, the load jig is made of a material having a filter function that transmits light (for example, a wavelength of 300 to 450 nm) necessary for curing the photocurable adhesive. Further, for example, if the original light source cuts a wavelength of 450 nm or more, the filter function does not pass only 300 to 450 nm, but may pass a wavelength of 300 nm or more.

具体的には、光硬化性接着剤が紫外線硬化性である場合、前記透光性材料は、波長300nm以下の光を吸収するとともに、波長300〜450nmの範囲内の光を透過する特性を有することが好ましい。波長300nm以下の光を吸収することで温度上昇等の悪影響を効果的に抑えることができるとともに、波長300〜450nmの範囲内の光を透過させて接着剤を硬化させるとき、光学素子に悪影響を及ぼす温度以下では、荷重冶具を通さない照射の場合に比べて短時間で接着剤の硬化が可能である。   Specifically, when the photocurable adhesive is ultraviolet curable, the translucent material absorbs light having a wavelength of 300 nm or less and transmits light within a wavelength range of 300 to 450 nm. It is preferable. Absorption of light with a wavelength of 300 nm or less can effectively suppress adverse effects such as temperature rise, and when the adhesive is cured by transmitting light within a wavelength range of 300 to 450 nm, the optical element is adversely affected. Below the applied temperature, the adhesive can be cured in a shorter time than in the case of irradiation without passing through a load jig.

また、前記荷重冶具は、前記光照射の際に前記光学素子の光学機能部に光が照射されないように光を制限する光制限部を有することで、レンズ機能等の光学機能部の光照射による劣化を防止できる。   In addition, the load jig has a light limiting unit that limits light so that the optical function unit of the optical element is not irradiated with light during the light irradiation. Deterioration can be prevented.

また、前記荷重冶具は、前記光照射の際に前記接着固定部に光を導くような光導波部を有することで、効率的な光照射を行うことができ、接着剤硬化を促進できる。   Moreover, the said load jig can perform efficient light irradiation by having an optical waveguide part which guides light to the said adhesive fixing | fixed part in the case of the said light irradiation, and can accelerate | stimulate adhesive hardening.

また、前記固定部材と前記光学素子と前記荷重冶具と前記光源とを位置決め部材で位置決めてから前記光照射を行うことで、光源の位置が安定し、再現性のよい光照射を実現できるので、光学素子と固定部材とを一定の高品質で接着固定することができる。   In addition, by performing the light irradiation after positioning the fixing member, the optical element, the load jig, and the light source with a positioning member, the position of the light source is stabilized, and light irradiation with good reproducibility can be realized. The optical element and the fixing member can be bonded and fixed with a certain high quality.

なお、光学素子の接着固定部及び固定部材の接着固定部の少なくとも一方の面をブラスト処理、切削、レーザ光照射、プラズマ加工または化学処理などの表面粗さ処理方法により粗くすることで、接着剤を均一に塗布でき、接着剤の厚さを均一にできるとともに、接着せん断強度を大きくできる。   In addition, the adhesive agent is obtained by roughening at least one surface of the adhesive fixing portion of the optical element and the adhesive fixing portion of the fixing member by a surface roughness processing method such as blasting, cutting, laser light irradiation, plasma processing, or chemical processing. Can be applied uniformly, the thickness of the adhesive can be made uniform, and the adhesive shear strength can be increased.

また、荷重冶具による接着固定部への圧力は0.5〜2kgf/cm2の範囲内が好ましく、圧力が0.5kgf/cm2以上であれば、接着剤の厚さを実用上充分に均一にでき、2kgf/cm2以下であれば、接着剤の厚さが薄くなりすぎなく、また光学素子の変形やひずみが生じない。荷重冶具による圧力が自重による場合は、荷重冶具の大きさ(寸法)を調整することで、適当な圧力を得ることができる。 Moreover, pressure is preferably in the range of 0.5~2kgf / cm 2 to bond the fixed portion by the load jig, if the pressure 0.5 kgf / cm 2 or more, practically sufficiently uniform thickness of the adhesive If it is 2 kgf / cm 2 or less, the thickness of the adhesive does not become too thin, and the optical element is not deformed or distorted. When the pressure due to the load jig is due to its own weight, an appropriate pressure can be obtained by adjusting the size (dimension) of the load jig.

本発明による光学素子固定構造の製造方法は、光学素子が接着固定部で固定部材の接着固定部に接着されて固定される光学素子固定構造を、上述の光学素子固定方法により、前記光学素子を前記固定部材に固定することで製造することを特徴とする。   An optical element fixing structure manufacturing method according to the present invention includes an optical element fixing structure in which an optical element is bonded and fixed to an adhesive fixing portion of a fixing member by an adhesive fixing portion. It manufactures by fixing to the said fixing member.

この光学素子固定構造の製造方法によれば、透光性材料から構成された荷重冶具を通して光照射を行うとともに荷重冶具により接着固定部へ荷重を加えるので、簡単な構成で接着剤の厚さを均一にできるとともに、透光性材料が光硬化性接着剤の硬化に関与しない所定領域の波長の光を吸収することで、光学素子における温度上昇等の悪影響を抑えることができる。このため、光学素子を固定部材に安定かつ確実に接着し固定できるとともに品質のよい光学素子固定構造を得ることができる。   According to this method for manufacturing an optical element fixing structure, light irradiation is performed through a load jig made of a translucent material, and a load is applied to the adhesive fixing portion by the load jig. Therefore, the thickness of the adhesive can be reduced with a simple configuration. In addition to being uniform, the light-transmitting material absorbs light having a wavelength in a predetermined region that is not involved in the curing of the photocurable adhesive, thereby suppressing adverse effects such as a temperature rise in the optical element. For this reason, it is possible to stably and surely adhere and fix the optical element to the fixing member, and to obtain a high-quality optical element fixing structure.

上記光学素子固定構造の製造方法は、前記光学素子固定構造が前記接着固定部に対し前記光学素子を通して前記光照射を行う構造である場合に適用して好ましい。例えば、光透過性ではない鏡筒等の固定部材の内部に光学素子が固定され、接着固定部に光学素子を通してしか光照射を行うことができないような光学素子固定構造の場合に適用して好ましい。   The manufacturing method of the optical element fixing structure is preferably applied when the optical element fixing structure is a structure for performing the light irradiation through the optical element with respect to the adhesive fixing portion. For example, the present invention is preferably applied to an optical element fixing structure in which an optical element is fixed inside a fixing member such as a lens barrel that is not light transmissive, and light can be irradiated only through the optical element to the adhesive fixing portion. .

本発明の光学素子固定方法及び光学素子固定構造の製造方法によれば、簡単な構成で硬化後の光硬化性接着剤の厚さを均一にでき、接着強度・接着特性が安定する。また、光硬化性接着剤による接着固定のために光学素子に紫外線等の光を照射しても光学素子における温度上昇等の悪影響を抑えることができる。   According to the optical element fixing method and the optical element fixing structure manufacturing method of the present invention, the thickness of the photo-curing adhesive after curing can be made uniform with a simple configuration, and the adhesive strength and adhesive characteristics are stabilized. In addition, adverse effects such as a temperature rise in the optical element can be suppressed even if the optical element is irradiated with light such as ultraviolet rays for adhesion and fixing with a photocurable adhesive.

以下、本発明を実施するための最良の形態について図面を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

〈第1の実施の形態〉   <First Embodiment>

図1は第1の実施の形態による光学素子固定方法を説明するためのレンズ固定構造及び紫外線(UV)光源・荷重冶具を示す要部縦断面図である。   FIG. 1 is a longitudinal sectional view of an essential part showing a lens fixing structure, an ultraviolet (UV) light source and a load jig for explaining an optical element fixing method according to a first embodiment.

図1に示すレンズ固定構造は、円筒状のレンズ鏡筒20の内面20aにレンズ10を接着剤で接着し固定するものである。   The lens fixing structure shown in FIG. 1 is one in which the lens 10 is bonded and fixed to the inner surface 20a of the cylindrical lens barrel 20 with an adhesive.

レンズ10は、レンズ機能を有するレンズ部11と、レンズ部11の外周側に位置しレンズ10の最外周14まで延びる外周部13と、外周部13から光軸pと略平行な方向に突き出た取付部12と、を有し、光学素子用の樹脂から構成されたプラスチックレンズである。レンズ部11は光軸pを中心とする凸部11aを有し、凸部11aの反対側の平坦面11bはレンズ部11から外周部13の一部まで延びている。外周部13と取付部12から応力緩和部を構成できる。   The lens 10 has a lens portion 11 having a lens function, an outer peripheral portion 13 that is located on the outer peripheral side of the lens portion 11 and extends to the outermost outer periphery 14 of the lens 10, and protrudes from the outer peripheral portion 13 in a direction substantially parallel to the optical axis p. And a mounting lens 12, and a plastic lens made of a resin for optical elements. The lens part 11 has a convex part 11 a centered on the optical axis p, and a flat surface 11 b on the opposite side of the convex part 11 a extends from the lens part 11 to a part of the outer peripheral part 13. A stress relaxation part can be comprised from the outer peripheral part 13 and the attaching part 12. FIG.

取付部12は、外周部13から凸部11aの反対側に略短筒状に脚部を構成するように延びており、レンズ鏡筒20の内面20aに対向する外周がレンズ10の最外周14を構成する。取付部12の先端部が光軸pに対し直交する方向に取付面15に形成されている。また、最外周14の図の上部は隅部が面取りされて面取部16が形成されている。   The mounting portion 12 extends from the outer peripheral portion 13 to the opposite side of the convex portion 11 a so as to form a leg portion in a substantially short cylindrical shape, and the outer periphery facing the inner surface 20 a of the lens barrel 20 is the outermost outer periphery 14 of the lens 10. Configure. The tip of the mounting portion 12 is formed on the mounting surface 15 in a direction orthogonal to the optical axis p. In addition, a chamfered portion 16 is formed by chamfering a corner portion at the upper portion of the outermost outer periphery 14 in the figure.

レンズ鏡筒20は、その内面20aから光軸pに対し直交する方向(レンズ鏡筒20の半径方向内側)にカラー状に突き出て形成された保持部21を有し、保持部21のカラー状の保持面22にレンズ10の取付部12の取付面15が対向するようになっている。   The lens barrel 20 has a holding portion 21 that protrudes in a collar shape in a direction orthogonal to the optical axis p from the inner surface 20a thereof (inward in the radial direction of the lens barrel 20). The mounting surface 15 of the mounting portion 12 of the lens 10 faces the holding surface 22 of the lens 10.

レンズ鏡筒20は鉄・ニッケル・コバルト系の合金(例えば、商品名「コバール」)からなり、NiまたはCrのめっき処理が施されている。レンズ鏡筒20は鉄鋼・ステンレス鋼・アルミニウム・アルミニウム合金等の他の金属材料から構成されてもよい。図1のレンズ鏡筒20の保持部21のめっき処理されたカラー状の保持面22の全面がサンドブラスト処理により粗くされている。   The lens barrel 20 is made of an iron / nickel / cobalt alloy (for example, trade name “KOVAL”) and is plated with Ni or Cr. The lens barrel 20 may be made of other metal materials such as steel, stainless steel, aluminum, and aluminum alloy. The entire surface of the colored holding surface 22 plated in the holding portion 21 of the lens barrel 20 of FIG. 1 is roughened by sandblasting.

上述のレンズ10をレンズ鏡筒20に接着固定する工程を説明する。まず、液状の紫外線硬化性接着剤をレンズ鏡筒20の保持面22に塗布する。この紫外線硬化性接着剤としてはエポキシ系またはアクリル系のものが好ましい。   A process of bonding and fixing the lens 10 to the lens barrel 20 will be described. First, a liquid ultraviolet curable adhesive is applied to the holding surface 22 of the lens barrel 20. The ultraviolet curable adhesive is preferably an epoxy or acrylic one.

次に、図1の上方からレンズ10を取付部12を下側にしてレンズ鏡筒20内に挿入し、保持面22に載せる。これにより、取付面15と保持面22との間に接着剤層29が形成される。なお、レンズ10の取付部12にも液状の接着剤を予め塗布しておいてもよい。   Next, the lens 10 is inserted into the lens barrel 20 from above in FIG. 1 with the mounting portion 12 facing down, and placed on the holding surface 22. Thereby, an adhesive layer 29 is formed between the mounting surface 15 and the holding surface 22. Note that a liquid adhesive may be applied in advance to the attachment portion 12 of the lens 10.

次に、図1のように、レンズ鏡筒20の端部から内面20aに透光性材料からなる円柱状の荷重冶具31をレンズ10の上方に向けて差し込み、荷重冶具31の先端面31aをレンズ10の外周部13に当てることで、荷重冶具31の自重により接着剤層29に荷重を加えながら、紫外線(UV)光源30のノズル30aから荷重冶具31を通してレンズ10に紫外線aを照射する。なお、荷重冶具31の先端面31a側には、レンズ10の凸部11aに対応して凹部31bが形成されている。   Next, as shown in FIG. 1, a cylindrical load jig 31 made of a translucent material is inserted from the end of the lens barrel 20 into the inner surface 20 a toward the upper side of the lens 10, and the tip end surface 31 a of the load jig 31 is inserted. The lens 10 is irradiated with ultraviolet rays a from the nozzle 30 a of the ultraviolet (UV) light source 30 through the load jig 31 while applying a load to the adhesive layer 29 by the weight of the load jig 31 by being applied to the outer peripheral portion 13 of the lens 10. A concave portion 31 b is formed on the tip surface 31 a side of the load jig 31 corresponding to the convex portion 11 a of the lens 10.

上述の荷重冶具31はガラス材(BK7)からなり、例えば厚さ(高さ)を2.6mmとすることで、UV光源30から紫外線aを荷重冶具31を通して照射したとき、接着剤層29の紫外線硬化に不要な波長(250nm付近)の光を吸収し98%以上カットすることができるとともに、接着剤層29の紫外線硬化に必要な350〜450nmの波長の光を70〜80%透過させることができる。   The load jig 31 is made of a glass material (BK7). For example, when the thickness (height) is 2.6 mm, when the ultraviolet light a is irradiated from the UV light source 30 through the load jig 31, the adhesive layer 29 Absorbs light with a wavelength unnecessary for UV curing (around 250 nm) and cuts 98% or more, and transmits light with a wavelength of 350 to 450 nm necessary for UV curing of the adhesive layer 29 by 70 to 80%. Can do.

また、荷重冶具31の自重によるレンズ10の取付面15に対する圧力が0.5〜2kgf/cm2の範囲内となるように、荷重冶具31の大きさ(特に高さ寸法)を調整することが好ましい。 In addition, the size (particularly the height dimension) of the load jig 31 may be adjusted so that the pressure on the mounting surface 15 of the lens 10 due to the weight of the load jig 31 falls within the range of 0.5 to 2 kgf / cm 2. preferable.

上述のレンズ10への紫外線aの照射により、紫外線aが荷重冶具31及びレンズ10の主に外周部13及び取付部12を通して取付面15と保持面22との間の接着剤層29に照射されることで、接着剤層29が硬化する。なお、硬化後の接着剤層29の厚さは5〜10μm程度が好ましい。   By irradiating the lens 10 with the ultraviolet ray a, the ultraviolet ray a is irradiated to the adhesive layer 29 between the mounting surface 15 and the holding surface 22 through the load jig 31 and the lens 10 mainly through the outer peripheral portion 13 and the mounting portion 12. As a result, the adhesive layer 29 is cured. In addition, as for the thickness of the adhesive bond layer 29 after hardening, about 5-10 micrometers is preferable.

以上のようにして、レンズ10をレンズ鏡筒20に接着固定することができるが、UV光源30から紫外線を照射する際に、上述のようなガラス材からなる荷重冶具31が被照射体であるレンズ10に前置されているので、接着剤層29の紫外線硬化に不要な波長の光を98%以上カットすることができ、レンズ10における紫外線照射による温度上昇を抑えることができるとともに、接着剤層29の紫外線硬化に必要な350〜450nmの波長の光を70〜80%透過させることができ、レンズ10に悪影響を及ぼす温度以下(例えば、70度)では、荷重冶具31なしの場合に比べて短時間で接着剤を硬化できる。   As described above, the lens 10 can be bonded and fixed to the lens barrel 20, but when irradiating ultraviolet rays from the UV light source 30, the load jig 31 made of the glass material as described above is an object to be irradiated. Since it is placed in front of the lens 10, 98% or more of light having a wavelength unnecessary for UV curing of the adhesive layer 29 can be cut off, and the temperature rise due to UV irradiation in the lens 10 can be suppressed, and the adhesive can be used. Light having a wavelength of 350 to 450 nm necessary for ultraviolet curing of the layer 29 can be transmitted by 70 to 80%, and at a temperature lower than the temperature that adversely affects the lens 10 (for example, 70 degrees), compared to the case without the load jig 31. The adhesive can be cured in a short time.

また、図1に示すレンズ固定構造は、固定部材であるレンズ鏡筒20が金属材料製であり光透過性でなく、レンズ鏡筒20の内面にレンズ10が固定され、レンズ10の最外周14の側面側やレンズ鏡筒20の保持部21側から紫外線を照射できずに、接着固定部である取付面15と保持面22にレンズ10を通してしか紫外線照射を行うことができない構造であるが、本実施の形態による光学素子固定方法は、かかるレンズ固定構造の場合に適用して好ましい。   Further, in the lens fixing structure shown in FIG. 1, the lens barrel 20 as a fixing member is made of a metal material and is not light-transmitting, and the lens 10 is fixed to the inner surface of the lens barrel 20, and the outermost periphery 14 of the lens 10 is fixed. In this structure, ultraviolet rays cannot be irradiated from the side surface side or the holding portion 21 side of the lens barrel 20 and ultraviolet rays can be irradiated only through the lens 10 to the mounting surface 15 and the holding surface 22 that are adhesive fixing portions. The optical element fixing method according to the present embodiment is preferably applied to such a lens fixing structure.

以上のように、本実施の形態の光学素子固定方法によれば、光源からの光照射の際に特別な光ファイバ等を配置する必要がなく、簡単な構成で硬化後の接着剤層29の厚さを均一にでき、接着強度や接着特性が安定するとともに、レンズ10に紫外線を照射しても温度上昇等の悪影響を抑えることができ、光学素子用樹脂から構成されるレンズ10が熱により変形してしまうことはない。   As described above, according to the optical element fixing method of the present embodiment, it is not necessary to arrange a special optical fiber or the like when irradiating light from a light source, and the adhesive layer 29 after curing can be formed with a simple configuration. The thickness can be made uniform, the adhesive strength and adhesive properties can be stabilized, and adverse effects such as temperature rise can be suppressed even when the lens 10 is irradiated with ultraviolet rays. There is no deformation.

また、上述の紫外線照射の際に、図1の破線で示すようにレンズ10のレンズ部11の凸部11aを覆うようにシート状の遮光部材32を配置することで、取付面15以外の部分、特にレンズ部11における光照射による劣化等の悪影響を防止できる。   Further, when the above-described ultraviolet irradiation is performed, the sheet-shaped light shielding member 32 is disposed so as to cover the convex portion 11a of the lens portion 11 of the lens 10 as shown by a broken line in FIG. In particular, adverse effects such as deterioration due to light irradiation in the lens unit 11 can be prevented.

なお、上述のように、接着剤をレンズ鏡筒20の保持面22に塗布するとき、接着面である保持面22が粗くされているので、接着剤の広がりが粗くする前のめっき表面よりもよくなり、接着剤層29の厚さを均等に制御し易くなる。また、レンズ10に対し接着剤の厚さ方向に荷重を加えながら紫外線を照射することが好ましく、これにより、接着剤層29の厚さを一定にでき、また、接着強度や接着特性も安定する。   As described above, when the adhesive is applied to the holding surface 22 of the lens barrel 20, the holding surface 22 that is the bonding surface is roughened, so that the adhesive spreads more than the plating surface before the spread of the adhesive is roughened. As a result, the thickness of the adhesive layer 29 can be controlled uniformly. Further, it is preferable to irradiate the lens 10 with ultraviolet rays while applying a load in the thickness direction of the adhesive, whereby the thickness of the adhesive layer 29 can be made constant, and the adhesive strength and adhesive characteristics are also stabilized. .

〈第2の実施の形態〉   <Second Embodiment>

図2乃至図5は、第2の実施の形態による各光学素子固定方法を説明するためのレンズ固定構造及び荷重冶具を概略的に示す要部縦断面図である。   FIG. 2 to FIG. 5 are main part longitudinal sectional views schematically showing a lens fixing structure and a load jig for explaining each optical element fixing method according to the second embodiment.

第2の実施の形態による光学素子固定方法は、荷重冶具を透光性材料から構成し、荷重冶具でレンズを介して接着剤の厚さ方向に荷重を加えながら紫外線を照射するようにしたものである。なお、図2乃至図4における接着固定対象のレンズは、図1のレンズ10とほぼ同一であるので、同一部分には同じ符号を付けてその説明は省略する。   In the optical element fixing method according to the second embodiment, the load jig is made of a translucent material, and the load jig irradiates ultraviolet rays while applying a load in the thickness direction of the adhesive through the lens. It is. 2 to 4 are substantially the same as the lens 10 shown in FIG. 1, and therefore, the same portions are denoted by the same reference numerals and description thereof is omitted.

図2に示す例は、円筒状のレンズ鏡筒40が下部に光軸pに対し直交する方向にカラー状に突き出て形成された保持部41を有し、この保持部41のカラー状の保持面42にレンズ10の取付部12の取付面15が対向して接着固定されるレンズ固定構造である。なお、レンズ鏡筒40は図1のレンズ鏡筒20と同じ金属材料から構成される。   In the example shown in FIG. 2, a cylindrical lens barrel 40 has a holding portion 41 formed at the lower portion so as to protrude in a color shape in a direction perpendicular to the optical axis p. This is a lens fixing structure in which the mounting surface 15 of the mounting portion 12 of the lens 10 is oppositely bonded and fixed to the surface 42. The lens barrel 40 is made of the same metal material as the lens barrel 20 of FIG.

図2では、レンズ10の取付面15とレンズ鏡筒40の保持面42との間の接着剤層49の厚さ方向に荷重冶具45を介して荷重を加えるようにしている。荷重冶具45は、図1の荷重冶具と同様にガラス材(BK7)から円柱状に構成され、レンズ10の外周部13上に載置されて上面45a側から荷重が加えられるようになっている。荷重冶具45は、下面45b側にレンズ10の凸部11aに対応して凹部46が形成されており、下面45bがレンズ10の外周部13に密着することができる。   In FIG. 2, a load is applied via a load jig 45 in the thickness direction of the adhesive layer 49 between the mounting surface 15 of the lens 10 and the holding surface 42 of the lens barrel 40. The load jig 45 is formed of a glass material (BK7) in a columnar shape like the load jig of FIG. 1 and is placed on the outer peripheral portion 13 of the lens 10 so that a load is applied from the upper surface 45a side. . The load jig 45 has a concave portion 46 formed on the lower surface 45 b side corresponding to the convex portion 11 a of the lens 10, and the lower surface 45 b can be in close contact with the outer peripheral portion 13 of the lens 10.

上述の荷重冶具45を用いてレンズ10をレンズ鏡筒40に接着固定する工程を説明する。まず、液状のエポキシ系またはアクリル系の紫外線硬化性接着剤をレンズ鏡筒40の保持面42に塗布する。   A process of bonding and fixing the lens 10 to the lens barrel 40 using the load jig 45 will be described. First, a liquid epoxy or acrylic ultraviolet curable adhesive is applied to the holding surface 42 of the lens barrel 40.

次に、図2の上方からレンズ10を取付部12を下側にしてレンズ鏡筒40内に挿入し、保持面42に載せる。これにより、取付面15と保持面42との間に接着剤層49が形成される。なお、レンズ10の取付部12にも液状の接着剤を予め塗布しておいてもよい。   Next, the lens 10 is inserted into the lens barrel 40 from the upper side of FIG. Thereby, an adhesive layer 49 is formed between the mounting surface 15 and the holding surface 42. Note that a liquid adhesive may be applied in advance to the attachment portion 12 of the lens 10.

次に、図2のように、荷重冶具45をレンズ10の上面の外周部13上に載せ、紫外線(UV)光源(図示省略)から紫外線を紫外線照射方向bに照射し、荷重冶具45の上面45aから紫外線を入射させるとともに、荷重冶具45に荷重を加えてレンズ10をレンズ鏡筒40の保持面42に押し付けることで、接着剤層49の厚さ方向に荷重を加える。なお、荷重冶具45の自重のみでレンズ10の取付面15に対する必要な圧力(0.5〜2kgf/cm2)を得ることができる場合には、外力を加える必要はない。 Next, as shown in FIG. 2, the load jig 45 is placed on the outer peripheral portion 13 of the upper surface of the lens 10, and ultraviolet rays are irradiated from an ultraviolet (UV) light source (not shown) in the ultraviolet irradiation direction b. While making ultraviolet rays enter from 45 a and applying a load to the load jig 45 and pressing the lens 10 against the holding surface 42 of the lens barrel 40, a load is applied in the thickness direction of the adhesive layer 49. In addition, when the required pressure (0.5-2 kgf / cm < 2 >) with respect to the attachment surface 15 of the lens 10 can be obtained only with the own weight of the load jig 45, it is not necessary to apply external force.

上述のガラス材からなる荷重冶具45は、例えば厚さを2.6mmとすることで、UV光源から紫外線を荷重冶具45を通して照射したとき、接着剤層49の紫外線硬化に不要な波長(250nm付近)の光を98%以上カットすることができるとともに、接着剤層49の紫外線硬化に必要な350〜450nmの波長の光を70〜80%透過させることができる。   The load jig 45 made of the above-described glass material has a thickness of 2.6 mm, for example, so that when the ultraviolet ray is irradiated from the UV light source through the load jig 45, a wavelength unnecessary for ultraviolet curing of the adhesive layer 49 (around 250 nm) ) Can be cut by 98% or more, and light having a wavelength of 350 to 450 nm necessary for ultraviolet curing of the adhesive layer 49 can be transmitted by 70 to 80%.

上述の荷重冶具45への紫外線照射により、荷重冶具45の上面45aから入射した紫外線が下面45bからレンズ10の外周部13及び取付部12を通して取付面15と保持面42との間の接着剤層49に照射されることで、接着剤層49が硬化する。   The ultraviolet light incident from the upper surface 45a of the load jig 45 by the ultraviolet irradiation to the load jig 45 described above passes through the outer peripheral portion 13 and the attachment portion 12 of the lens 10 from the lower surface 45b, and the adhesive layer between the attachment surface 15 and the holding surface 42. By irradiating 49, the adhesive layer 49 is cured.

以上のようにして、UV光源から紫外線を荷重冶具45を通して接着剤層49に照射することでレンズ10をレンズ鏡筒40に接着固定することができるが、このとき、荷重冶具45において、接着剤層49の紫外線硬化に不要な波長の光を98%以上カットすることで、レンズ10における紫外線照射による温度上昇を抑えることができるとともに、接着剤層49の紫外線硬化に必要な350〜450nmの波長の光を70〜80%透過させることで、レンズ10に悪影響を及ぼす温度以下(例えば、70度)では、荷重冶具45を通さない照射の場合に比べて短時間で硬化できる。   As described above, the lens 10 can be bonded and fixed to the lens barrel 40 by irradiating the adhesive layer 49 with ultraviolet rays from the UV light source through the load jig 45. By cutting 98% or more of light having a wavelength unnecessary for ultraviolet curing of the layer 49, it is possible to suppress a temperature rise due to ultraviolet irradiation in the lens 10 and a wavelength of 350 to 450 nm necessary for ultraviolet curing of the adhesive layer 49. By transmitting 70 to 80% of the light, it can be cured in a shorter time than the temperature that adversely affects the lens 10 (for example, 70 degrees) as compared with the case of irradiation without passing through the load jig 45.

また、上記紫外線照射の際に荷重冶具45及びレンズ10を介して接着剤層49の厚さ方向に荷重を加えることで、接着剤層49の厚さを均一にでき、また、接着強度や接着特性も安定する。   Further, by applying a load in the thickness direction of the adhesive layer 49 through the load jig 45 and the lens 10 during the ultraviolet irradiation, the thickness of the adhesive layer 49 can be made uniform, and the adhesive strength and adhesion can be increased. The characteristics are also stable.

また、図2に示すレンズ固定構造は、固定部材であるレンズ鏡筒40が金属材料製であり光透過性でなく、レンズ鏡筒40の内面にレンズ10が固定され、レンズ10の最外周14の側面側やレンズ鏡筒20の保持部41側から紫外線を照射できずに、接着固定部である取付面15と保持面42にレンズ10を通してしか紫外線照射を行うことができない構造であるが、本実施の形態による光学素子固定方法は、かかるレンズ固定構造の場合に適用して好ましく、接着剤層49の厚さを一定にできるとともに、レンズ10に紫外線を照射しても温度上昇等の悪影響を抑えることができる。   In the lens fixing structure shown in FIG. 2, the lens barrel 40 as a fixing member is made of a metal material and is not light transmissive. The lens 10 is fixed to the inner surface of the lens barrel 40, and the outermost periphery 14 of the lens 10. In this structure, ultraviolet rays cannot be irradiated from the side surface side or the holding portion 41 side of the lens barrel 20, and the ultraviolet rays can be irradiated only through the lens 10 to the attachment surface 15 and the holding surface 42 which are adhesive fixing portions. The optical element fixing method according to the present embodiment is preferably applied in the case of such a lens fixing structure. The thickness of the adhesive layer 49 can be made constant, and even if the lens 10 is irradiated with ultraviolet rays, an adverse effect such as an increase in temperature. Can be suppressed.

なお、図1と同様に、レンズ鏡筒40の保持面42を粗くすることが好ましく、接着剤を保持面42に塗布するとき、接着剤の広がりがよくなり、接着剤層29の厚さを均等に制御し易くなる。   As in FIG. 1, it is preferable to roughen the holding surface 42 of the lens barrel 40. When the adhesive is applied to the holding surface 42, the spread of the adhesive is improved and the thickness of the adhesive layer 29 is increased. It becomes easy to control equally.

次に、図3の例を説明する。図3は、図2の荷重冶具45の凹部46の凹面に反射面46aを形成している点が図2と異なり、それ以外は、図2と同様である。反射面46aは、例えば、ニッケルやアルミニウムやクロム等の金属材料から蒸着等で形成することができる。   Next, the example of FIG. 3 will be described. FIG. 3 is the same as FIG. 2 except that the reflecting surface 46a is formed on the concave surface of the concave portion 46 of the load jig 45 of FIG. The reflective surface 46a can be formed by vapor deposition or the like from a metal material such as nickel, aluminum, or chromium.

図2と同様に、UV光源から紫外線を紫外線照射方向bに荷重冶具45を通して接着剤層49に照射するとき、荷重冶具45内に入射した紫外線が凹部46の反射面46aで反射するので、紫外線は凹部46からレンズ10のレンズ部11に向かうことが制限され、図3の矢印方向cに下面45bに向かい、レンズ10に入射する。このため、レンズ部11に紫外線が照射されないので、レンズ部11の劣化を防止できるとともに、紫外線は反射面46aで反射する分だけより多くなり、接着剤層49に効率よく照射されるので、接着剤硬化を促進でき、光照射時間を短縮できる。   As in FIG. 2, when ultraviolet light is irradiated from the UV light source to the adhesive layer 49 through the load jig 45 in the ultraviolet irradiation direction b, the ultraviolet light that has entered the load jig 45 is reflected by the reflecting surface 46 a of the recess 46. Is limited from the concave portion 46 toward the lens portion 11 of the lens 10, and enters the lower surface 45 b in the arrow direction c of FIG. 3 and enters the lens 10. For this reason, since the lens unit 11 is not irradiated with ultraviolet rays, the lens unit 11 can be prevented from being deteriorated, and the ultraviolet rays are increased by the amount reflected by the reflecting surface 46a, and the adhesive layer 49 is efficiently irradiated. The curing of the agent can be promoted, and the light irradiation time can be shortened.

次に、図4の例を説明する。図4は、図3の荷重冶具45の反射面46aに加えて荷重冶具45の外周面にも反射面47を形成している点が図3と異なり、それ以外は、図3と同様である。反射面47は、例えば、ニッケルやアルミニウムやクロム等の金属材料から蒸着等で形成することができる。   Next, the example of FIG. 4 will be described. 4 is different from FIG. 3 in that a reflection surface 47 is formed on the outer peripheral surface of the load jig 45 in addition to the reflection surface 46a of the load jig 45 of FIG. . The reflecting surface 47 can be formed by vapor deposition or the like from a metal material such as nickel, aluminum, or chromium.

図2と同様に、UV光源から紫外線を紫外線照射方向bに荷重冶具45を通して接着剤層49に照射するとき、荷重冶具45内に入射した紫外線が凹部46の反射面46aで反射するとともに、外周面の反射面47で反射することで、紫外線は図の矢印方向dに下面45bへと導かれ、レンズ10に入射する。このため、レンズ部11に紫外線が照射されないので、レンズ部11の劣化を防止できるとともに、紫外線は反射面46a及び反射面47で反射し下面45bへと導かれる分だけより多くなり、接着剤層49に効率よく照射されるので、接着剤硬化を促進でき、光照射時間を短縮できる。   Similarly to FIG. 2, when the adhesive layer 49 is irradiated with ultraviolet rays from the UV light source in the ultraviolet irradiation direction b through the load jig 45, the ultraviolet light incident on the load jig 45 is reflected by the reflecting surface 46a of the recess 46 and the outer periphery. By being reflected by the reflecting surface 47 of the surface, the ultraviolet light is guided to the lower surface 45 b in the arrow direction d in the figure and enters the lens 10. For this reason, since the lens portion 11 is not irradiated with ultraviolet rays, the lens portion 11 can be prevented from being deteriorated, and the ultraviolet rays are increased by the amount reflected by the reflecting surface 46a and the reflecting surface 47 and guided to the lower surface 45b. 49 is efficiently irradiated, so that the curing of the adhesive can be promoted and the light irradiation time can be shortened.

次に、図5の例を説明する。図5は、接着固定対象のレンズ50が、上述のレンズ10のように取付部12が脚状に延びるようになっておらず、一般的な略円柱状の形状を有する点が図3と異なり、それ以外は、図3と同様である。レンズ50は、平坦な上面52から突き出た凸部51でレンズ部を構成し、平坦な下面53の外周面側がレンズ鏡筒40の保持面42と対向しており、保持面42と下面53の外周面との間に接着剤層59が形成される。   Next, the example of FIG. 5 will be described. FIG. 5 is different from FIG. 3 in that the lens 50 to be bonded and fixed does not have the attachment portion 12 extending in a leg shape like the lens 10 described above and has a general substantially cylindrical shape. Other than that, it is the same as FIG. The lens 50 includes a convex portion 51 protruding from the flat upper surface 52, and the outer peripheral surface side of the flat lower surface 53 faces the holding surface 42 of the lens barrel 40. An adhesive layer 59 is formed between the outer peripheral surface.

図5の荷重冶具45は、図3と同様に構成され、UV光源から紫外線を紫外線照射方向bに荷重冶具45を通して接着剤層59に照射するとき、荷重冶具45内に入射した紫外線が凹部46の反射面46aで反射するので、紫外線は凹部46からレンズ50の凸部51に向かうことが制限され、図5の矢印方向cに下面45bに向かい、レンズ50に入射する。このため、凸部51に紫外線が照射されないので、凸部51の劣化を防止できるとともに、紫外線は反射面46aで反射する分だけより多くなり、接着剤層59に効率よく照射されるので、接着剤硬化を促進でき、光照射時間を短縮できる。   The load jig 45 in FIG. 5 is configured in the same manner as in FIG. 3, and when the UV light source irradiates the adhesive layer 59 through the load jig 45 in the ultraviolet irradiation direction b, the ultraviolet light incident into the load jig 45 is recessed 46. Therefore, the ultraviolet ray is restricted from traveling from the concave portion 46 to the convex portion 51 of the lens 50, and enters the lens 50 toward the lower surface 45 b in the arrow direction c of FIG. 5. For this reason, since the convex portion 51 is not irradiated with ultraviolet rays, the convex portion 51 can be prevented from being deteriorated, and the ultraviolet rays are increased by the amount reflected by the reflecting surface 46a, and the adhesive layer 59 is efficiently irradiated. The curing of the agent can be promoted, and the light irradiation time can be shortened.

上述のように、略円柱状のレンズ50をレンズ鏡筒40の保持面42に接着剤層59で接着固定できるが、図5の場合も、接着固定部である下面53と保持面42にレンズ50を通してしか紫外線照射を行うことができない構造であるが、図5の光学素子固定方法は、かかるレンズ固定構造の場合に適用して好ましく、レンズ50に紫外線を照射しても温度上昇等の悪影響を抑えることができる。   As described above, the substantially cylindrical lens 50 can be bonded and fixed to the holding surface 42 of the lens barrel 40 with the adhesive layer 59, but in the case of FIG. 5 as well, the lens is attached to the lower surface 53 and the holding surface 42 which are adhesive fixing portions. The optical element fixing method in FIG. 5 is preferably applied to such a lens fixing structure, and adverse effects such as a temperature rise even if the lens 50 is irradiated with ultraviolet rays. Can be suppressed.

〈第3の実施の形態〉   <Third Embodiment>

図6は第3の実施の形態による光学素子固定方法を説明するためのレンズ固定構造及び荷重冶具・UV光源のノズル・位置決め部材を概略的に示す要部縦断面図である。   FIG. 6 is a longitudinal sectional view of an essential part schematically showing a lens fixing structure, a load jig, a nozzle of a UV light source, and a positioning member for explaining an optical element fixing method according to a third embodiment.

図6の例は、図3のレンズ固定構造を図3の荷重冶具で得る際に、UV光源の先端ノズル61を固定し、レンズ鏡筒40とレンズ10と荷重冶具45に対し位置決めるようにしたものである。   In the example of FIG. 6, when the lens fixing structure of FIG. 3 is obtained with the load jig of FIG. 3, the tip nozzle 61 of the UV light source is fixed and positioned with respect to the lens barrel 40, the lens 10, and the load jig 45. It is what.

図6のように、位置決め部材62は円筒状に構成されるとともに底部でカラー状に突き出た載置部62aを有し、また、UV光源は内孔61aのあるノズル61を有し、内孔61aを通して図6の紫外線照射方向bに紫外線を照射し、ノズル61の先端が図の上方から位置決め部材62の内周面62bに差し込まれるようになっている。   As shown in FIG. 6, the positioning member 62 is configured in a cylindrical shape and has a mounting portion 62a protruding in a collar shape at the bottom, and the UV light source has a nozzle 61 having an inner hole 61a. Ultraviolet light is irradiated in the ultraviolet irradiation direction b of FIG. 6 through 61a, and the tip of the nozzle 61 is inserted into the inner peripheral surface 62b of the positioning member 62 from above in the figure.

図6のように、位置決め部材62が載置部62aで作業台65の上に安定して載置された状態で、内周面62bにレンズ鏡筒40が配置され、レンズ鏡筒40の保持面42上に液状の接着剤が塗布されてから、レンズ10が載せられ、レンズ10の上に荷重冶具45が配置される。そして、内周面62b内で荷重冶具45の周りに円筒補助部材63が配置されてから、UV光源のノズル61が位置決め部材62の内周面62bに差し込まれる。これにより、UV光源のノズル61が円筒補助部材63とレンズ鏡筒40に対し位置決められる結果、荷重冶具45とレンズ10に対し位置決められる。   As shown in FIG. 6, the lens barrel 40 is disposed on the inner peripheral surface 62b in a state where the positioning member 62 is stably placed on the work table 65 by the placement portion 62a, and the lens barrel 40 is held. After the liquid adhesive is applied on the surface 42, the lens 10 is placed, and the load jig 45 is disposed on the lens 10. Then, after the cylindrical auxiliary member 63 is arranged around the load jig 45 in the inner peripheral surface 62 b, the nozzle 61 of the UV light source is inserted into the inner peripheral surface 62 b of the positioning member 62. As a result, the nozzle 61 of the UV light source is positioned relative to the cylindrical auxiliary member 63 and the lens barrel 40, and as a result, is positioned relative to the load jig 45 and the lens 10.

図6のような配置でUV光源からノズル61の内孔61aを通して紫外線が紫外線照射方向bに照射されることにより、図3と同様に荷重冶具45及びレンズ10を通して接着剤層29に照射されて接着剤層29が硬化する。   In the arrangement as shown in FIG. 6, ultraviolet rays are irradiated from the UV light source through the inner hole 61 a of the nozzle 61 in the ultraviolet irradiation direction b, so that the adhesive layer 29 is irradiated through the load jig 45 and the lens 10 as in FIG. 3. The adhesive layer 29 is cured.

図6のような位置決め部材62を用いた光学素子固定方法によれば、位置決め部材62により、UV光源のノズル61を位置決めて固定するとともに、レンズ鏡筒40とレンズ10と荷重冶具45とをノズル61に対し位置決めて一体に固定するので、UV光源の位置が安定し、再現性のよい紫外線照射を実現でき、レンズ10をレンズ鏡筒40に接着剤層49で一定の高品質で接着固定することができる。   According to the optical element fixing method using the positioning member 62 as shown in FIG. 6, the positioning member 62 positions and fixes the nozzle 61 of the UV light source, and the lens barrel 40, the lens 10 and the load jig 45 are connected to the nozzle. Positioning with respect to 61 and fixing integrally, the position of the UV light source is stable, and reproducible ultraviolet irradiation can be realized, and the lens 10 is bonded and fixed to the lens barrel 40 with an adhesive layer 49 with a certain high quality. be able to.

上記第1乃至第3の実施の形態においてレンズ10,50は各種の樹脂材料からなるプラスチックレンズであってよいが、図7に3種類の樹脂材料(PC、APL、PMMA)の光透過特性を示すように、各樹脂材料は、波長300nm以下で光透過率がかなり低下し、特に、PC、APLでは殆ど零になることが分かる。光透過率が殆ど零であるということは、その波長の光は殆ど吸収されることを意味し、樹脂材料はその吸収された光のエネルギーにより発熱してしまう。一方、紫外線硬化性接着剤は、300〜450nmの範囲内の波長の光で硬化する。以上のことから、第1乃至第3の実施の形態において、紫外線照射の際に、荷重冶具31,45でレンズ照射前の段階で波長300nm以下の光を吸収することでレンズ10,50の発熱を効果的に抑えることができるとともに、波長300〜450nm範囲内の光を透過させることで接着剤層29,49,59を効率的に硬化させることができる。   In the first to third embodiments, the lenses 10 and 50 may be plastic lenses made of various resin materials. FIG. 7 shows the light transmission characteristics of three types of resin materials (PC, APL, and PMMA). As shown, the light transmittance of each resin material is considerably reduced at a wavelength of 300 nm or less, and in particular, it is found that it becomes almost zero in PC and APL. The fact that the light transmittance is almost zero means that light of that wavelength is almost absorbed, and the resin material generates heat due to the energy of the absorbed light. On the other hand, the ultraviolet curable adhesive is cured with light having a wavelength in the range of 300 to 450 nm. From the above, in the first to third embodiments, when the ultraviolet rays are irradiated, the load jigs 31 and 45 absorb light having a wavelength of 300 nm or less before the lens irradiation to generate heat of the lenses 10 and 50. Can be effectively suppressed, and the adhesive layers 29, 49, and 59 can be efficiently cured by transmitting light in the wavelength range of 300 to 450 nm.

次に、本発明を実施例により更に具体的に説明する。   Next, the present invention will be described more specifically with reference to examples.

〈予備実験例1〉   <Preliminary Experiment Example 1>

予備実験例1として、ガラス板(BK7)を通して紫外線(UV)を照射したときの表面温度を測定した。また、比較実験例1として、ガラス板(BK7)を用いずに、紫外線(UV)を直接照射したときの表面温度を測定した。   As preliminary experimental example 1, the surface temperature when ultraviolet rays (UV) were irradiated through a glass plate (BK7) was measured. Further, as Comparative Experimental Example 1, the surface temperature when directly irradiating ultraviolet rays (UV) was measured without using a glass plate (BK7).

予備実験例1、比較実験例1では、紫外線照射装置(UV光源)として、NAiS(松下電工)Aicure SPOT TYPE ANUP5204を使用し、光が照射されるノズル先端から距離2.5cmの位置で熱電対により表面温度を測定した。予備実験例1では表面から距離10mmの位置に厚さ2.6mmのガラス板を配置した。その測定結果を図8に示す。   In Preliminary Experimental Example 1 and Comparative Experimental Example 1, NAiS (Matsushita Electric Works) Aicure SPOT TYPE ANUP5204 is used as the ultraviolet irradiation device (UV light source), and the thermocouple is located at a distance of 2.5 cm from the tip of the nozzle irradiated with light. Was used to measure the surface temperature. In Preliminary Experimental Example 1, a glass plate having a thickness of 2.6 mm was arranged at a distance of 10 mm from the surface. The measurement results are shown in FIG.

図8から分かるように、ガラス板(BK7)を用いずに紫外線を直接照射した比較実験例1では、照射時間の経過とともにかなり温度が上昇し、標準的な最高照射時間30秒で130度を超えてしまうのに対し、ガラス板(BK7)を配置して紫外線を照射した予備実験例1では、照射時間30秒で60度を超えず、温度上昇による変形等の悪影響が発生し易い70度ライン以下であった。   As can be seen from FIG. 8, in Comparative Experimental Example 1 in which ultraviolet rays were directly irradiated without using a glass plate (BK7), the temperature rose considerably with the lapse of irradiation time, and 130 degrees was reached with a standard maximum irradiation time of 30 seconds. On the other hand, in Preliminary Experimental Example 1 in which the glass plate (BK7) is placed and irradiated with ultraviolet rays, the temperature does not exceed 60 degrees in an irradiation time of 30 seconds, and adverse effects such as deformation due to temperature rise are likely to occur. It was below the line.

〈予備実験例2〉   <Preliminary Experiment Example 2>

予備実験例2として、予備実験例1と同様にしてガラス板(BK7)を通して紫外線(UV)を照射したときの表面の光強度を測定した。また、比較実験例2として、ガラス板(BK7)を用いずに、紫外線(UV)を直接照射したときの表面の光強度を測定した。予備実験例2,比較実験例2では、予備実験例1と同じUV光源のノズル先端から光強度を測定するセンサ表面までの距離を1.5〜5cmの範囲で変えて光強度を測定した。その測定結果を図9(波長が350nmのとき)、図10(波長が250nmのとき)、図11(波長が420nmのとき)、及び図12(全波長範囲)に示す。なお、光強度センサとして、オーク製作所のもの(ORGUV-M10)を使用した。   As preliminary experiment example 2, the light intensity of the surface when ultraviolet rays (UV) were irradiated through a glass plate (BK7) in the same manner as preliminary experiment example 1 was measured. Further, as Comparative Experimental Example 2, the light intensity of the surface when directly irradiated with ultraviolet rays (UV) was measured without using a glass plate (BK7). In Preliminary Experimental Example 2 and Comparative Experimental Example 2, the light intensity was measured by changing the distance from the nozzle tip of the same UV light source as in Preliminary Experimental Example 1 to the sensor surface for measuring the light intensity in the range of 1.5 to 5 cm. The measurement results are shown in FIG. 9 (when the wavelength is 350 nm), FIG. 10 (when the wavelength is 250 nm), FIG. 11 (when the wavelength is 420 nm), and FIG. 12 (full wavelength range). As the light intensity sensor, an Oak Seisakusho (ORGUV-M10) was used.

図9,図11,図12から波長350nm、420nm及び全波長範囲のときに、予備実験例2では、比較実験例2と比べて、光強度が10〜30%程度低下するのに対し、図10から波長250nmのときには98〜99%程度低下することが分かる。予備実験例2で配置したガラス板により、波長が300nm以下の光を殆どカットできることが分かる。   9, 11, and 12, when the wavelength is 350 nm, 420 nm, and the entire wavelength range, in the preliminary experimental example 2, the light intensity is reduced by about 10 to 30% as compared with the comparative experimental example 2, whereas FIG. It can be seen that when the wavelength is 10 to 250 nm, it decreases by about 98 to 99%. It can be seen that the glass plate arranged in Preliminary Experimental Example 2 can almost cut light with a wavelength of 300 nm or less.

〈実施例〉   <Example>

次に、実施例として、図1と類似の図13(a)のようなレンズ固定構造を有するレンズ鏡筒を次のようにして組み立てた。即ち、金属製の鏡筒内の保持面に接着剤を塗布してから保持面にレンズの取付面を当てて上記予備実験例1,2と同様のガラス材(BK7)から作製した円柱状の荷重冶具(45g)をレンズの上面に載せた状態で、予備実験例1,2と同じUV光源から紫外線を上方からガラス製の荷重冶具を通して鏡筒の保持面上の接着剤に照射した。このとき、鏡筒の保持面上の接着剤には荷重冶具の自重(45g)により1kgf/cm2程度の圧力が加わった。レンズは、環状オレフィン系の樹脂材料からなる外径4mmのプラスチックレンズであり、接着剤は紫外線硬化性エポキシ系接着剤(商品名:エレクトロライト社製2500Clear)を用いた。接着剤の粘度は、500cP(=0.5Pa・s)である。 Next, as an example, a lens barrel having a lens fixing structure as shown in FIG. 13A similar to FIG. 1 was assembled as follows. That is, a cylindrical shape made of the same glass material (BK7) as in the preliminary experimental examples 1 and 2 by applying an adhesive to the holding surface in the metal lens barrel and then applying the lens mounting surface to the holding surface. With the load jig (45 g) placed on the upper surface of the lens, the adhesive on the holding surface of the lens barrel was irradiated from above with UV light from the same UV light source as in Preliminary Experimental Examples 1 and 2, through a glass load jig. At this time, a pressure of about 1 kgf / cm 2 was applied to the adhesive on the holding surface of the lens barrel by its own weight (45 g). The lens was a plastic lens having an outer diameter of 4 mm made of a cyclic olefin resin material, and an ultraviolet curable epoxy adhesive (trade name: 2500 Clear manufactured by Electrolite) was used as the adhesive. The viscosity of the adhesive is 500 cP (= 0.5 Pa · s).

また、比較例として、上記実施例と同様の工程で同様のレンズ鏡筒を組み立てたが、実施例の荷重冶具を用いずレンズに荷重を加えずに接着剤を硬化させた。   As a comparative example, a similar lens barrel was assembled in the same process as in the above example, but the adhesive was cured without applying a load to the lens without using the load jig of the example.

上記実施例及び比較例のレンズ鏡筒を接着剤硬化後にレンズの中心を通る断面で切断し、その切断断面で接着剤の厚さを測定した。測定個所は任意の8点とし、その厚さ測定結果を図13(b)に示す。   The lens barrels of the above examples and comparative examples were cut at a cross section passing through the center of the lens after curing the adhesive, and the thickness of the adhesive was measured at the cut cross section. The measurement points are arbitrary 8 points, and the thickness measurement results are shown in FIG.

図13(b)から分かるように、荷重冶具(45g)を用いた実施例では硬化後の接着剤の厚さが荷重冶具を用いない荷重なしの比較例と比べて、薄くなっており、その厚さのばらつきが小さくなっている。厚さのばらつきを標準偏差σで比較すると、比較例ではσ=1.35であるのに対し、実施例ではσ=0.71であり、実施例は接着剤厚さが比較例よりも均一性に優れていることが分かる。   As can be seen from FIG. 13 (b), in the example using the load jig (45g), the thickness of the adhesive after curing is thinner than the comparative example without a load jig without using the load jig. The variation in thickness is small. When the thickness variation is compared with the standard deviation σ, in the comparative example, σ = 1.35, whereas in the example, σ = 0.71, and in the example, the adhesive thickness is more uniform than in the comparative example. It turns out that it is excellent in property.

以上のように本発明を実施するための最良の形態及び実施例について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、本実施の形態では、荷重冶具31,45は、ガラス材(BK7)から構成したが、本発明はこれに限定されず、パイレックスガラス、青板ガラス、白板ガラス等であってもよく、また、特に、300nm以下の波長の光を吸収し、300〜450nmの波長を透過させる透光性材料(光吸収材料)であれば、ガラス材以外のものであってもよい。   As described above, the best modes and examples for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. is there. For example, in the present embodiment, the load jigs 31 and 45 are made of a glass material (BK7), but the present invention is not limited to this, and may be pyrex glass, blue plate glass, white plate glass, or the like. In particular, a material other than a glass material may be used as long as it is a translucent material (light absorbing material) that absorbs light having a wavelength of 300 nm or less and transmits light having a wavelength of 300 to 450 nm.

また、固定対象の光学素子は、レンズ以外のものであってもよいことは勿論であり、例えば、波長板や回折格子やミラー等であってもよい。   Of course, the optical element to be fixed may be other than a lens, and may be a wave plate, a diffraction grating, a mirror, or the like.

第1の実施の形態による光学素子固定方法を説明するためのレンズ固定構造及び紫外線(UV)光源・荷重冶具を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the lens fixing structure for demonstrating the optical element fixing method by 1st Embodiment, and an ultraviolet-ray (UV) light source and a load jig. 第2の実施の形態による光学素子固定方法を説明するためのレンズ固定構造及び荷重冶具を概略的に示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows roughly the lens fixing structure and load jig | tool for demonstrating the optical element fixing method by 2nd Embodiment. 第2の実施の形態による別の光学素子固定方法を説明するためのレンズ固定構造及び荷重冶具を概略的に示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows schematically the lens fixing structure and load jig | tool for demonstrating another optical element fixing method by 2nd Embodiment. 第2の実施の形態による別の光学素子固定方法を説明するためのレンズ固定構造及び荷重冶具を概略的に示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows schematically the lens fixing structure and load jig | tool for demonstrating another optical element fixing method by 2nd Embodiment. 第2の実施の形態による更に別の光学素子固定方法を説明するためのレンズ固定構造及び荷重冶具を概略的に示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows schematically the lens fixing structure and load jig | tool for demonstrating another optical element fixing method by 2nd Embodiment. 第3の実施の形態による光学素子固定方法を説明するためのレンズ固定構造及び荷重冶具・UV光源のノズル・位置決め部材を概略的に示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows roughly the lens fixing structure for demonstrating the optical element fixing method by 3rd Embodiment, the load jig, the nozzle of UV light source, and the positioning member. 3種類の樹脂材料(PC、APL、PMMA)の波長と光透過率との関係を示す光透過特性のグラフである。を示すIt is a graph of the light transmission characteristic which shows the relationship between the wavelength of three types of resin materials (PC, APL, PMMA) and light transmittance. Indicate 予備実験例1における紫外線照射時間と表面温度との関係を示すグラフである。6 is a graph showing a relationship between an ultraviolet irradiation time and a surface temperature in Preliminary Experimental Example 1. 予備実験例2におけるUV光源と光強度センサ表面との距離と、波長350nmのときの光強度との関係を示すグラフである。It is a graph which shows the relationship between the distance of UV light source and the light intensity sensor surface in the preliminary experiment example 2, and the light intensity at the wavelength of 350 nm. 予備実験例2におけるUV光源と光強度センサ表面との距離と、波長250nmのときの光強度との関係を示すグラフである。It is a graph which shows the relationship between the distance of the UV light source and light intensity sensor surface in the preliminary experiment example 2, and the light intensity at the wavelength of 250 nm. 予備実験例2におけるUV光源と光強度センサ表面との距離と、波長420nmのときの光強度との関係を示すグラフである。It is a graph which shows the relationship between the distance of UV light source and the light intensity sensor surface in the preliminary experiment example 2, and the light intensity at the wavelength of 420 nm. 予備実験例2におけるUV光源と光強度センサ表面との距離と、光強度(全波長範囲)との関係を示すグラフである。It is a graph which shows the relationship between the distance of UV light source and the light intensity sensor surface in preliminary experiment example 2, and light intensity (all wavelength range). 実施例におけるレンズ固定構造を示す図(a)及び硬化後の接着剤の厚さ測定結果を示す図(b)である。It is the figure (a) which shows the lens fixing structure in an Example, and the figure (b) which shows the thickness measurement result of the adhesive agent after hardening. 従来の光学素子固定方法を説明するためのレンズ固定構造及び紫外線(UV)光源を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the lens fixing structure and ultraviolet-ray (UV) light source for demonstrating the conventional optical element fixing method.

符号の説明Explanation of symbols

10 レンズ(光学素子)
11 レンズ部(光学機能部)
11a 凸部
12 取付部
13 外周部
15 取付面(接着固定部)
20 レンズ鏡筒(固定部材)
22 保持面(接着固定部)
29 接着剤層(光硬化性接着剤)
30 紫外線(UV)光源
31 荷重冶具
32 遮光部材(光制限部)
40 レンズ鏡筒(固定部材)
42 保持面(接着固定部)
45 荷重冶具
46 凹部
46a 反射面(光制限部)
47 反射面(光導波部)
49 接着剤層(光硬化性接着剤)
50 レンズ(光学素子)
51 凸部(光学機能部)
59 接着剤層(光硬化性接着剤)
61 先端ノズル
62 位置決め部材
a 紫外線
b 紫外線照射方向

10 Lens (optical element)
11 Lens part (optical function part)
11a Convex part 12 Mounting part 13 Outer peripheral part 15 Mounting surface (adhesion fixing part)
20 Lens barrel (fixing member)
22 Holding surface (adhesive fixing part)
29 Adhesive layer (photo-curable adhesive)
30 Ultraviolet (UV) light source 31 Load jig 32 Light shielding member (light limiting part)
40 Lens barrel (fixing member)
42 Holding surface (adhesive fixing part)
45 Load jig 46 Recess 46a Reflecting surface (light limiting part)
47 Reflecting surface (optical waveguide)
49 Adhesive layer (photo-curable adhesive)
50 lenses (optical elements)
51 Convex part (optical function part)
59 Adhesive layer (photo-curing adhesive)
61 Tip nozzle 62 Positioning member a UV b UV irradiation direction

Claims (9)

光学素子を固定部材に光硬化性接着剤で接着し固定する光学素子固定方法であって、
前記光学素子の接着固定部及び前記固定部材の接着固定部の少なくとも一方に前記光硬化性接着剤を適用してから、透光性材料から構成した荷重冶具を介して前記接着固定部に荷重を加えながら、光源から前記荷重冶具を通して前記光硬化性接着剤に光照射を行うことを特徴とする光学素子固定方法。
An optical element fixing method in which an optical element is bonded and fixed to a fixing member with a photocurable adhesive,
After applying the photocurable adhesive to at least one of the adhesive fixing portion of the optical element and the adhesive fixing portion of the fixing member, a load is applied to the adhesive fixing portion via a load jig made of a translucent material. An optical element fixing method comprising: irradiating light to the photocurable adhesive from a light source through the load jig while adding.
前記透光性材料は、前記光硬化性接着剤の硬化に関与しない領域の波長の光を吸収する特性を有する請求項1に記載の光学素子固定方法。   The optical element fixing method according to claim 1, wherein the translucent material has a characteristic of absorbing light having a wavelength in a region not involved in the curing of the photocurable adhesive. 前記透光性材料は、前記光硬化性接着剤の硬化に関与する領域の波長の光を透過する特性を有する請求項1または2に記載の光学素子固定方法。   The optical element fixing method according to claim 1, wherein the translucent material has a characteristic of transmitting light having a wavelength in a region involved in the curing of the photocurable adhesive. 前記透光性材料は、波長300nm以下の光を吸収するとともに、波長300〜450nmの範囲内の光を透過する特性を有する請求項1,2または3に記載の光学素子固定方法。   4. The optical element fixing method according to claim 1, wherein the translucent material absorbs light having a wavelength of 300 nm or less and transmits light having a wavelength in a range of 300 to 450 nm. 前記荷重冶具は、前記光照射の際に前記光学素子の光学機能部に光が照射されないように光を制限する光制限部を有する請求項1乃至4のいずれか1項に記載の光学素子固定方法。   5. The optical element fixing according to claim 1, wherein the load jig includes a light limiting unit that limits light so that the optical function unit of the optical element is not irradiated with light during the light irradiation. Method. 前記荷重冶具は、前記光照射の際に前記接着固定部に光を導くような光導波部を有する請求項1乃至5のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to any one of claims 1 to 5, wherein the load jig has an optical waveguide portion that guides light to the adhesive fixing portion during the light irradiation. 前記固定部材と前記光学素子と前記荷重冶具と前記光源とを位置決め部材で位置決めてから前記光照射を行う請求項1乃至6のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to any one of claims 1 to 6, wherein the light irradiation is performed after positioning the fixing member, the optical element, the load jig, and the light source with a positioning member. 光学素子が接着固定部で固定部材の接着固定部に接着されて固定される光学素子固定構造を、請求項1乃至7のいずれか1項に記載の光学素子固定方法により、前記光学素子を前記固定部材に固定することで製造することを特徴とする光学素子固定構造の製造方法。   An optical element fixing structure in which an optical element is bonded and fixed to an adhesive fixing portion of a fixing member by an adhesive fixing portion, and the optical element is fixed by the optical element fixing method according to any one of claims 1 to 7. A method of manufacturing an optical element fixing structure, wherein the optical element fixing structure is manufactured by fixing to a fixing member. 前記光学素子固定構造が前記接着固定部に対し前記光学素子を通して前記光照射を行う構造である請求項8に記載の光学素子固定構造の製造方法。

The method of manufacturing an optical element fixing structure according to claim 8, wherein the optical element fixing structure is a structure for performing the light irradiation through the optical element to the adhesive fixing portion.

JP2006115505A 2005-06-30 2006-04-19 Method for fixing optical element and method for manufacturing optical element fixing structure Pending JP2007041526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115505A JP2007041526A (en) 2005-06-30 2006-04-19 Method for fixing optical element and method for manufacturing optical element fixing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005191609 2005-06-30
JP2006115505A JP2007041526A (en) 2005-06-30 2006-04-19 Method for fixing optical element and method for manufacturing optical element fixing structure

Publications (1)

Publication Number Publication Date
JP2007041526A true JP2007041526A (en) 2007-02-15

Family

ID=37799525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115505A Pending JP2007041526A (en) 2005-06-30 2006-04-19 Method for fixing optical element and method for manufacturing optical element fixing structure

Country Status (1)

Country Link
JP (1) JP2007041526A (en)

Similar Documents

Publication Publication Date Title
US7358483B2 (en) Method of fixing an optical element and method of manufacturing optical module including the use of a light transmissive loading jig
JP2006178388A (en) Optical element fixing method and optical element fixing structure
KR100750242B1 (en) Method of fixing optical member and optical unit
JP4900563B2 (en) Optical element fixing method and optical element fixing structure manufacturing method
US20010033360A1 (en) Hybrid lens and method for forming the same
JP2012510079A (en) Welding method and device having welded components
US8472769B2 (en) Optical fiber, end part processing method of optical fiber, and end part processing apparatus of optical fiber
US20110293220A1 (en) Optical coupling device and method of implementing optical coupling device
WO2007145115A1 (en) Composite optical element and method for manufacturing same
JP2010139566A (en) Lens unit
JP2007219337A (en) Method of adhesion and fixing of optical component and laser light source apparatus
US20140038308A1 (en) Process for producing composite device, and process for bonding device formed of transparent material to adherend
JP2007041526A (en) Method for fixing optical element and method for manufacturing optical element fixing structure
JP2008170905A (en) Lens-fixing method and lens unit
JP2007193270A (en) Lens with cap and manufacturing method therefor
JP6739506B2 (en) Camera module manufacturing method
JP2009093041A (en) Optical module
JP6226813B2 (en) Manufacturing method of optical fiber side input / output device
JP4307897B2 (en) Joining method, joining apparatus, and component joining apparatus using the joining apparatus
KR20120081856A (en) Method for manufacturing lens and lens
JP4612837B2 (en) Lens fixing method and optical apparatus
JP3852747B2 (en) Optical device
JP5607936B2 (en) Manufacturing method of optical components
JP2006221062A (en) Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element
JP5179680B1 (en) Hybrid lens manufacturing method