JP2006178388A - Optical element fixing method and optical element fixing structure - Google Patents

Optical element fixing method and optical element fixing structure Download PDF

Info

Publication number
JP2006178388A
JP2006178388A JP2005115240A JP2005115240A JP2006178388A JP 2006178388 A JP2006178388 A JP 2006178388A JP 2005115240 A JP2005115240 A JP 2005115240A JP 2005115240 A JP2005115240 A JP 2005115240A JP 2006178388 A JP2006178388 A JP 2006178388A
Authority
JP
Japan
Prior art keywords
optical element
adhesive
adhesive surface
roughened
fixing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115240A
Other languages
Japanese (ja)
Inventor
Naoki Mitsuki
直樹 三ツ木
Yoshiki Shibuya
佳樹 渋谷
Hiroshi Miyakoshi
博史 宮越
Yasushi Horii
康司 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005115240A priority Critical patent/JP2006178388A/en
Publication of JP2006178388A publication Critical patent/JP2006178388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element fixing method which can maintain a satisfactory adhesive state even under a fluctuation in temperature/humidity environments, when an optical element, such as a lens, is fixed to a fixing member, such as a lens barrel, and can reduce the optical axis misalignment of the optical element, and to provide an optical element fixing structure. <P>SOLUTION: The optical element fixing method makes at least either of the adhesive surface of the optical element or the adhesive surface of the fixing member rough in bonding and fixing the optical element by an adhesive to the fixing member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学素子を固定部材に接着剤で接着し固定する光学素子固定方法及び光学素子固定構造に関するものである。   The present invention relates to an optical element fixing method and an optical element fixing structure in which an optical element is bonded and fixed to a fixing member with an adhesive.

従来、レンズ等の光学素子を鏡筒等に固定する場合、研削を施した鏡筒等の基材または基材表面にメッキを施したものに直接、接着剤で固定を行うことがあった。この場合、接着剤は環境温度で軟化または膨張し、接着剤による固定位置がずれ易く、固定のときに調芯されたレンズがその後、光軸ずれを起こし易かった。例えば、ピックアップレンズや光通信モジュールに使われるマイクロレンズ等のプラスチックレンズを接着し固定した場合、温度・湿度環境の変動下において、焦点位置変動が小さいことが必要とされる。 そのため、接着固定後に、温度・湿度環境の変動下にあっても接着剥がれがなく良好な接着状態を維持でき、光軸ずれが起き難いことが必要とされている。   Conventionally, when an optical element such as a lens is fixed to a lens barrel or the like, a base material such as a lens barrel that has been ground or a surface of the base material that has been plated is directly fixed with an adhesive. In this case, the adhesive softens or expands at ambient temperature, and the fixing position by the adhesive tends to shift, and the lens aligned during fixing is likely to cause an optical axis shift thereafter. For example, when a plastic lens such as a microlens used in a pickup lens or an optical communication module is bonded and fixed, the focal position variation is required to be small under variations in temperature and humidity environment. For this reason, it is necessary that, after bonding and fixing, even if the temperature / humidity environment fluctuates, the adhesive is not peeled off and a good bonding state can be maintained, and the optical axis shift is difficult to occur.

本発明は、上述のような従来技術の問題に鑑み、レンズ等の光学素子を鏡筒等の固定部材に固定した場合、温度・湿度環境の変動下にあっても良好な接着状態を維持できかつ光学素子の光軸ずれを低減できる光学素子固定方法及び光学素子固定構造を提供することを目的とする。   In the present invention, in view of the above-described problems of the prior art, when an optical element such as a lens is fixed to a fixing member such as a lens barrel, a good adhesion state can be maintained even under a change in temperature and humidity environment. And it aims at providing the optical element fixing method and optical element fixing structure which can reduce the optical axis offset of an optical element.

上記目的を達成するために、本発明による光学素子固定方法は、光学素子を固定部材に接着剤で接着し固定する際に、前記光学素子の接着面及び前記固定部材の接着面の少なくとも一方を粗くすることを特徴とする。   In order to achieve the above object, the optical element fixing method according to the present invention is configured to fix at least one of the adhesive surface of the optical element and the adhesive surface of the fixing member when the optical element is bonded to the fixing member with an adhesive. It is characterized by roughening.

この光学素子固定方法によれば、レンズや回折格子等の光学素子の接着面及び固定部材の接着面の少なくとも一方を粗くすることで、接着剤が接着面に広がり易くなり、均一に塗布でき、接着剤の厚さを均一にできる。このため、温度・湿度環境の変動下にあっても良好な接着状態を維持できるので、光学素子の光軸ずれを低減できる。また、接着せん断強度が増すので、光学素子の光軸ずれを一層低減できる。なお、粗くする前の接着面は研削表面またはめっき表面等であってよい。   According to this optical element fixing method, by roughening at least one of the adhesive surface of the optical element such as a lens or a diffraction grating and the adhesive surface of the fixing member, the adhesive can easily spread on the adhesive surface, and can be applied uniformly. The thickness of the adhesive can be made uniform. For this reason, it is possible to maintain a good adhesion state even under a change in temperature and humidity environment, so that the optical axis shift of the optical element can be reduced. Moreover, since the adhesive shear strength increases, the optical axis shift of the optical element can be further reduced. In addition, the adhesion surface before roughening may be a grinding surface or a plating surface.

上記光学素子固定方法において前記接着剤が紫外線硬化性樹脂であることが好ましい。また、前記接着剤の厚さ方向に荷重を加えながら前記接着剤に紫外線照射を行うことが好ましく、接着剤の厚さを更に均一にできる。   In the optical element fixing method, the adhesive is preferably an ultraviolet curable resin. Moreover, it is preferable to irradiate the adhesive with ultraviolet rays while applying a load in the thickness direction of the adhesive, and the thickness of the adhesive can be made more uniform.

また、前記粗くした接着面の平均表面粗さRaが前記接着剤による厚さの5乃至60%の範囲内であることが好ましい。接着面の平均表面粗さRaが接着剤による厚さの5%以上であると、充分な接着強度を得ることができ、60%以下であると、表面粗さの影響による接着剤の厚さばらつきを抑えることができ、厚さの精度がよく、光学素子の固定が安定する。   The average surface roughness Ra of the roughened adhesive surface is preferably in the range of 5 to 60% of the thickness of the adhesive. When the average surface roughness Ra of the adhesive surface is 5% or more of the thickness by the adhesive, sufficient adhesive strength can be obtained, and when it is 60% or less, the thickness of the adhesive due to the influence of the surface roughness. Variations can be suppressed, thickness accuracy is high, and optical elements are stably fixed.

また、前記接着剤の粘度は5Pa・s以下であることで、接着剤が凸状となって広がり難くなることはなく、厚さを均一化できる。   Moreover, when the viscosity of the adhesive is 5 Pa · s or less, the adhesive does not become convex and does not easily spread, and the thickness can be made uniform.

また、前記光学素子はプラスチック樹脂またはガラスからなり、前記固定部材の接着面の基材は、鉄鋼、ステンレス鋼、アルミニウム、アルミニウム合金、または鉄・ニッケル・コバルト系の合金(例えば、商品名「コバール」)等の金属材料からなることが好ましい。この場合、金属材料からなる前記固定部材の少なくとも接着面をめっき処理することが好ましい。   The optical element is made of plastic resin or glass, and the base material of the bonding surface of the fixing member is steel, stainless steel, aluminum, an aluminum alloy, or an iron / nickel / cobalt alloy (for example, the trade name “KOVAL” It is preferable that it consists of metal materials, such as "). In this case, it is preferable that at least the adhesion surface of the fixing member made of a metal material is plated.

また、上記光学素子固定方法において前記光学素子の接着面及び前記固定部材の接着面の少なくとも一方をブラスト処理、切削、レーザ光照射、プラズマ加工または化学処理により粗くすることができる。   In the optical element fixing method, at least one of the adhesive surface of the optical element and the adhesive surface of the fixing member can be roughened by blasting, cutting, laser light irradiation, plasma processing, or chemical processing.

この場合、前記固定部材の接着面を前記光学素子の接着面に対応して粗くするようにできる。また、前記固定部材の接着面を前記光学素子の中心に対し略放射状に粗くするようにしてもよい。   In this case, the adhesive surface of the fixing member can be roughened corresponding to the adhesive surface of the optical element. Further, the adhesive surface of the fixing member may be roughened radially about the center of the optical element.

また、前記接着面を部分的に粗くすることができ、例えば、光学素子の中心に対し点対称に部分的に矩形状や円弧状に粗くするようにしてもよい。または、前記接着面全体をランダムに粗くするようにしてもよい。   Further, the adhesive surface can be partially roughened. For example, the adhesive surface may be partially roughened to have a rectangular shape or a circular arc shape with point symmetry with respect to the center of the optical element. Alternatively, the entire bonding surface may be randomly roughened.

本発明による光学素子固定構造は、接着面を有する光学素子が接着面を有する固定部材に対し前記各接着面の少なくとも一方を粗くして接着されて固定されていることを特徴とする。   The optical element fixing structure according to the present invention is characterized in that an optical element having an adhesive surface is fixed to a fixing member having an adhesive surface by roughening at least one of the adhesive surfaces.

この光学素子固定構造によれば、光学素子の接着面及び固定部材の接着面の少なくとも一方を粗くすることで、接着剤が接着面に広がり易くなり、均一に塗布でき、接着剤の厚さを均一にできる。このため、温度・湿度環境の変動下にあっても良好な接着状態を維持できるので、光学素子の光軸ずれを低減できる。また、接着せん断強度が増すので、光学素子の光軸ずれを一層低減できる。なお、粗くする前の接着面は研削表面またはめっき表面等であってよい。   According to this optical element fixing structure, by roughening at least one of the adhesive surface of the optical element and the adhesive surface of the fixing member, the adhesive can easily spread on the adhesive surface and can be uniformly applied, and the thickness of the adhesive can be reduced. Can be uniform. For this reason, it is possible to maintain a good adhesion state even under a change in temperature and humidity environment, so that the optical axis shift of the optical element can be reduced. Moreover, since the adhesive shear strength increases, the optical axis shift of the optical element can be further reduced. In addition, the adhesion surface before roughening may be a grinding surface or a plating surface.

上記光学素子固定構造において前記光学素子と前記固定部材とが紫外線硬化性樹脂からなる接着剤で固定されていることが好ましい。   In the optical element fixing structure, it is preferable that the optical element and the fixing member are fixed with an adhesive made of an ultraviolet curable resin.

また、前記光学素子はプラスチック樹脂またはガラスからなり、前記固定部材の接着面の基材は、鉄鋼、ステンレス鋼、アルミニウム、アルミニウム合金、または鉄・ニッケル・コバルト系の合金(例えば、商品名「コバール」)等の金属材料からなることが好ましい。この場合、金属材料からなる前記固定部材の接着面がめっき処理されていることが好ましい。   The optical element is made of plastic resin or glass, and the base material of the bonding surface of the fixing member is steel, stainless steel, aluminum, an aluminum alloy, or an iron / nickel / cobalt alloy (for example, the trade name “KOVAL” It is preferable that it consists of metal materials, such as "). In this case, it is preferable that the bonding surface of the fixing member made of a metal material is plated.

また、前記粗くした接着面の平均表面粗さRaが前記接着剤による厚さの5乃至60%の範囲内であることが好ましい。接着面の平均表面粗さRaが接着剤による厚さの5%以上であると、充分な接着強度を得ることができ、60%以下であると、表面粗さの影響による接着剤の厚さばらつきを抑えることができ、厚さの精度がよく、光学素子の固定が安定する。   The average surface roughness Ra of the roughened adhesive surface is preferably in the range of 5 to 60% of the thickness of the adhesive. When the average surface roughness Ra of the adhesive surface is 5% or more of the thickness by the adhesive, sufficient adhesive strength can be obtained, and when it is 60% or less, the thickness of the adhesive due to the influence of the surface roughness. Variations can be suppressed, thickness accuracy is high, and optical elements are stably fixed.

また、前記光学素子の接着面及び前記固定部材の接着面の少なくとも一方がブラスト処理、切削、レーザ光照射、プラズマ加工または化学処理により粗くされていることが好ましい。この場合、前記固定部材の接着面が前記光学素子の接着面に対応して粗くされていることが好ましい。また、前記固定部材の接着面が前記光学素子の中心に対し略放射状に粗くされていることが好ましい。   Moreover, it is preferable that at least one of the adhesive surface of the optical element and the adhesive surface of the fixing member is roughened by blasting, cutting, laser light irradiation, plasma processing, or chemical treatment. In this case, it is preferable that the bonding surface of the fixing member is roughened corresponding to the bonding surface of the optical element. Moreover, it is preferable that the bonding surface of the fixing member is roughened in a substantially radial manner with respect to the center of the optical element.

また、前記接着面が部分的に粗くされていてもよく、例えば、光学素子の中心に対し点対称に部分的に矩形状や円弧状に粗くするようにしてもよい。または、前記接着面全体がランダムに粗くされていてもよい。   The adhesive surface may be partially roughened. For example, the adhesive surface may be partially roughened in a rectangular shape or an arc shape symmetrically with respect to the center of the optical element. Alternatively, the entire bonding surface may be randomly roughened.

また、前記光学素子が、光学機能を有する光学部と、前記光学部の外周側に位置する外周部と、前記外周部から光軸と略平行な方向に突き出た取付部と、を有し、前記取付部の接着面が前記固定部材の接着面に固定されている構造とすることができる。   Further, the optical element has an optical part having an optical function, an outer peripheral part located on the outer peripheral side of the optical part, and an attachment part protruding from the outer peripheral part in a direction substantially parallel to the optical axis, It can be set as the structure where the adhesive surface of the said attachment part is being fixed to the adhesive surface of the said fixing member.

また、上記光学素子固定構造により光通信モジュールにおいて光学素子を固定するように構成できる。これにより、光通信モジュールを温度変化のある環境で使用しても光通信モジュールの送信性能及び受信性能の低下を抑えることができる。   Moreover, it can comprise so that an optical element may be fixed in an optical communication module by the said optical element fixing structure. Thereby, even if the optical communication module is used in an environment with a temperature change, it is possible to suppress a decrease in transmission performance and reception performance of the optical communication module.

本発明の光学素子固定方法及び光学素子固定構造によれば、レンズ等の光学素子を鏡筒等の固定部材に固定した場合、温度・湿度環境の変動下にあっても良好な接着状態を維持でき、光学素子の光軸ずれを低減できる。   According to the optical element fixing method and the optical element fixing structure of the present invention, when an optical element such as a lens is fixed to a fixing member such as a lens barrel, a good adhesion state is maintained even under a change in temperature and humidity environment. It is possible to reduce the optical axis deviation of the optical element.

以下、本発明を実施するための最良の形態について図面を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

〈第1の実施の形態〉   <First Embodiment>

図1は第1の実施の形態によるレンズ固定構造を示す要部縦断面図である。図2は図1のレンズを取り付ける前のレンズ鏡筒の平面図である。図1に示すレンズ固定構造は、円筒状のレンズ鏡筒20の内面20aにレンズ10を接着剤で接着し固定するものである。   FIG. 1 is a longitudinal sectional view of an essential part showing a lens fixing structure according to a first embodiment. FIG. 2 is a plan view of the lens barrel before the lens of FIG. 1 is attached. The lens fixing structure shown in FIG. 1 is one in which the lens 10 is bonded and fixed to the inner surface 20a of the cylindrical lens barrel 20 with an adhesive.

レンズ10は、レンズ機能を有するレンズ部11と、レンズ部11の外周側に位置しレンズ10の最外周14まで延びる外周部13と、外周部13から光軸pと略平行な方向に突き出た取付部12と、を有し、光学素子用の樹脂から構成されたプラスチックレンズである。レンズ部11は光軸pを中心とする凸部11aを有し、凸部11aの反対側の平坦面11bはレンズ部11から外周部13の一部まで延びている。外周部13と取付部12から応力緩和部を構成できる。   The lens 10 has a lens portion 11 having a lens function, an outer peripheral portion 13 that is located on the outer peripheral side of the lens portion 11 and extends to the outermost outer periphery 14 of the lens 10, and protrudes from the outer peripheral portion 13 in a direction substantially parallel to the optical axis p. And a mounting lens 12, and a plastic lens made of a resin for optical elements. The lens part 11 has a convex part 11 a centered on the optical axis p, and a flat surface 11 b on the opposite side of the convex part 11 a extends from the lens part 11 to a part of the outer peripheral part 13. A stress relaxation part can be comprised from the outer peripheral part 13 and the attaching part 12. FIG.

取付部12は、外周部13から凸部11aの反対側に略短筒状に脚部を構成するように延びており、レンズ鏡筒20の内面20aに対向する外周がレンズ10の最外周14を構成し、最外周14の反対面(内面)側では平坦面11bの最外周から光軸pに対し傾斜して延びている。取付部12の先端部が光軸pに対し直交する方向に取付面15に形成されている。   The mounting portion 12 extends from the outer peripheral portion 13 to the opposite side of the convex portion 11 a so as to form a leg portion in a substantially short cylindrical shape, and the outer periphery facing the inner surface 20 a of the lens barrel 20 is the outermost outer periphery 14 of the lens 10. In the opposite surface (inner surface) side of the outermost periphery 14, the outermost periphery of the flat surface 11 b extends with an inclination with respect to the optical axis p. The tip of the mounting portion 12 is formed on the mounting surface 15 in a direction orthogonal to the optical axis p.

外周部13は、レンズ部11の凸部11a側において凸部11aに接する内周側が凹んだ凹部13aに形成され、凹部13aの外周側が突き出た凸部13bに形成されている。凸部13bの最外周14側は隅部が面取りされて面取部16が形成されている。面取部16は曲面状に形成されてもよい。   The outer peripheral part 13 is formed on the convex part 11a side of the lens part 11 at a concave part 13a that is recessed on the inner peripheral side in contact with the convex part 11a, and is formed on a convex part 13b that protrudes on the outer peripheral side of the concave part 13a. A corner portion is chamfered on the outermost periphery 14 side of the convex portion 13 b to form a chamfered portion 16. The chamfer 16 may be formed in a curved shape.

レンズ鏡筒20は、その内面20aから光軸pに対し直交する方向(鏡筒20の半径方向内側)にカラー状に突き出て形成された保持部21を有し、保持部21のカラー状の保持面22にレンズ10の取付部12の取付面15が対向するようになっている。   The lens barrel 20 has a holding portion 21 that is formed in a collar shape in a direction perpendicular to the optical axis p (inner radial direction of the barrel 20) from the inner surface 20a. The mounting surface 15 of the mounting portion 12 of the lens 10 faces the holding surface 22.

レンズ鏡筒20は鉄・ニッケル・コバルト系の合金(例えば、商品名「コバール」)からなり、NiまたはCrのめっき処理が施されている。レンズ鏡筒20は鉄鋼・ステンレス鋼・アルミニウム・アルミニウム合金等の他の金属材料から構成されてもよい。図1,図2のレンズ鏡筒20の保持部21のめっき処理されたカラー状の保持面22の全面がサンドブラスト処理により粗くされている。   The lens barrel 20 is made of an iron / nickel / cobalt alloy (for example, trade name “KOVAL”) and is plated with Ni or Cr. The lens barrel 20 may be made of other metal materials such as steel, stainless steel, aluminum, and aluminum alloy. 1 and 2, the entire surface of the colored holding surface 22 subjected to the plating treatment of the holding portion 21 of the lens barrel 20 shown in FIGS. 1 and 2 is roughened by sandblasting.

サンドブラスト処理で粗くされた保持面22は、平均表面粗さRaが図1に示す接着剤層29の厚さtの5乃至60%の範囲内であることが好ましい。保持面22の平均表面粗さRaが接着剤層29の厚さtの5%未満であると、充分な接着強度を得ることができず、60%を越えると、表面粗さの影響による接着剤層29の厚さtがばらつき易くなり、厚さの精度が低下し、光学素子の固定が不安定化し易くなる。   The holding surface 22 roughened by the sandblast treatment preferably has an average surface roughness Ra within a range of 5 to 60% of the thickness t of the adhesive layer 29 shown in FIG. If the average surface roughness Ra of the holding surface 22 is less than 5% of the thickness t of the adhesive layer 29, sufficient adhesive strength cannot be obtained, and if it exceeds 60%, adhesion due to the effect of the surface roughness The thickness t of the agent layer 29 is likely to vary, the thickness accuracy is lowered, and the fixing of the optical element is likely to be unstable.

レンズ鏡筒20にレンズ10を取り付けて固定する場合、図1の上方からレンズ10を取付部12を下側にしてレンズ鏡筒20内に挿入する。このとき、液状の接着剤を予め保持面22に適用しておくことで、取付面15と保持面22との間に接着剤層29を形成する。接着剤としてエポキシ系またはアクリル系の紫外線硬化型のものを使用し、レンズ10をレンズ鏡筒20内に挿入しレンズ10を図1の下側方向に押し付けて荷重を加えながら、紫外線を照射することで接着剤層29を硬化させる。   When the lens 10 is attached and fixed to the lens barrel 20, the lens 10 is inserted into the lens barrel 20 from above in FIG. At this time, by applying a liquid adhesive to the holding surface 22 in advance, an adhesive layer 29 is formed between the mounting surface 15 and the holding surface 22. An epoxy or acrylic UV curable adhesive is used as the adhesive, and the lens 10 is inserted into the lens barrel 20, and the lens 10 is pressed downward in FIG. Thus, the adhesive layer 29 is cured.

上述のように、接着剤をレンズ鏡筒20の保持面22に適用するとき、接着面である保持面22が粗くされているので、接着剤の広がりが粗くする前のめっき表面よりもよくなり、接着剤層29の厚さtを均等に制御し易くなる。また、レンズ10に対し接着剤の厚さ方向に荷重を加えながら紫外線を照射するので、接着剤層29の厚さtを一定にでき、また接着強度や接着特性も安定する。また、接着剤の粘度は5Pa・s以下であることが好ましい。   As described above, when the adhesive is applied to the holding surface 22 of the lens barrel 20, since the holding surface 22 that is the bonding surface is roughened, the adhesive spreads better than the plating surface before the roughening. It becomes easy to control the thickness t of the adhesive layer 29 evenly. Further, since ultraviolet rays are applied to the lens 10 while applying a load in the thickness direction of the adhesive, the thickness t of the adhesive layer 29 can be made constant, and the adhesive strength and adhesive characteristics are also stabilized. The viscosity of the adhesive is preferably 5 Pa · s or less.

以上のようにして、レンズ鏡筒20内の保持部21にレンズ10を取付部12で接着剤層29により固定し保持することができるが、かかる図1のレンズ固定構造によれば、レンズ鏡筒20の使用環境により温度変化が生じても、温度変化に起因する変形が主に接着剤層29や取付部12で生じ、温度変化により発生する応力を緩和でき、レンズ部11は取付部12が介在して接着剤層29から離れているため温度変化に起因する変形が殆ど生じない。このように、レンズ部11においては内部応力の発生を抑えることができ、内部屈折率変化を抑制することができる。   As described above, the lens 10 can be fixed and held by the adhesive layer 29 by the mounting portion 12 to the holding portion 21 in the lens barrel 20. According to the lens fixing structure of FIG. Even if a temperature change occurs due to the usage environment of the cylinder 20, the deformation caused by the temperature change mainly occurs in the adhesive layer 29 and the attachment portion 12, and the stress generated by the temperature change can be relieved, and the lens portion 11 can be attached to the attachment portion 12. Therefore, the deformation due to the temperature change hardly occurs. Thus, in the lens part 11, generation | occurrence | production of an internal stress can be suppressed and an internal refractive index change can be suppressed.

また、レンズ10を取付部12でレンズ鏡筒20内の保持面22に接着剤で固定する際に、保持面22をめっき表面よりも粗くしているので、接着剤が保持面22において広がり易くなり、均一に塗布でき、更に接着剤層29の厚さ方向に荷重を加えながら紫外線照射し硬化するので、接着剤層29の厚さを均一にできる。このため、温度・湿度環境の変動下にあっても良好な接着状態を維持できるので、レンズ10の光軸ずれを低減できる。また、接着剤層29の接着せん断強度(保持面22と平行方向におけるずれに対する強度)が増すので、レンズ10の光軸ずれを一層低減できる。   Further, when the lens 10 is fixed to the holding surface 22 in the lens barrel 20 with the mounting portion 12 with an adhesive, the holding surface 22 is rougher than the plating surface, so that the adhesive easily spreads on the holding surface 22. Thus, the adhesive layer 29 can be applied uniformly and further cured by being irradiated with ultraviolet rays while applying a load in the thickness direction of the adhesive layer 29, so that the thickness of the adhesive layer 29 can be made uniform. For this reason, since the favorable adhesion state can be maintained even under the fluctuation of the temperature / humidity environment, the optical axis shift of the lens 10 can be reduced. Further, since the adhesive shear strength of the adhesive layer 29 (strength against deviation in the direction parallel to the holding surface 22) is increased, the optical axis deviation of the lens 10 can be further reduced.

なお、レンズ10の最外周14とレンズ鏡筒20の内面20aとの間には接着剤は適用しない。また、レンズ10の最外周14の外径は、レンズ10を緩やかに鏡筒20内に嵌め込むことができるようにレンズ鏡筒20の内径よりも小さく構成してもよい。   Note that no adhesive is applied between the outermost periphery 14 of the lens 10 and the inner surface 20 a of the lens barrel 20. Further, the outer diameter of the outermost periphery 14 of the lens 10 may be configured to be smaller than the inner diameter of the lens barrel 20 so that the lens 10 can be gently fitted into the lens barrel 20.

〈第2の実施の形態〉   <Second Embodiment>

図3は第2の実施の形態における接着固定対象のレンズを示す側面図である。図4は図3のレンズを固定する固定部材の平面図(a)及び側面図(b)である。図5は第2の実施の形態によるレンズ固定構造を示すとともに図3のレンズを図4の固定部材に固定する工程(a)、(b)を示す側面図である。   FIG. 3 is a side view showing a lens to be bonded and fixed in the second embodiment. FIG. 4 is a plan view (a) and a side view (b) of a fixing member for fixing the lens of FIG. FIG. 5 is a side view showing a lens fixing structure according to the second embodiment and steps (a) and (b) for fixing the lens of FIG. 3 to the fixing member of FIG.

第2の実施の形態における接着対象のレンズ55は、図3のように、図1とほぼ同様の形状のプラスチックレンズである。なお、図3にはレンズ55の各寸法を例示している。レンズ55は、光軸方向に短円筒状に突き出た取付部57の先端にリング状の接着面56が形成され、中心部(φ1.5)にレンズ部が形成されている。   As shown in FIG. 3, the lens 55 to be bonded in the second embodiment is a plastic lens having substantially the same shape as that in FIG. FIG. 3 illustrates the dimensions of the lens 55. In the lens 55, a ring-shaped adhesive surface 56 is formed at the tip of a mounting portion 57 protruding in a short cylindrical shape in the optical axis direction, and a lens portion is formed at the center (φ1.5).

図3のレンズ55が接着固定される固定部材50は、図4(a)、(b)のようなほぼ正方形状の板材であり、中心に光束が通過するための円孔51が形成されており、鉄・ニッケル・コバルト系の合金(「コバール」(商品名))からなり、Niめっき処理されている。   The fixing member 50 to which the lens 55 in FIG. 3 is bonded and fixed is a substantially square plate material as shown in FIGS. 4A and 4B, and a circular hole 51 through which a light beam passes is formed at the center. It is made of an iron-nickel-cobalt alloy ("Kovar" (trade name)) and Ni-plated.

固定部材50のめっき表面は、図3のレンズ55のリング状の接着面56と対応して円孔51と同心円状にサンドブラスト処理により粗くされることで、リング状の接着面52が形成されている。固定部材50のリング状の接着面52は、レンズ55の接着面56よりもリング幅が大きくなっている。固定部材50のめっき表面は、例えば、平均表面粗さRaが0.15μm程度であり、サンドブラスト処理によりRaが更に0.5μm程度粗くされており、接着面52のRaが例えば0.6〜0.7μmとされている。   The plating surface of the fixing member 50 is roughened by sandblasting so as to be concentric with the circular hole 51 corresponding to the ring-shaped bonding surface 56 of the lens 55 in FIG. 3, thereby forming the ring-shaped bonding surface 52. . The ring-shaped adhesive surface 52 of the fixing member 50 has a larger ring width than the adhesive surface 56 of the lens 55. The plating surface of the fixing member 50 has, for example, an average surface roughness Ra of about 0.15 μm, Ra is further roughened by about 0.5 μm by sandblasting, and the Ra of the bonding surface 52 is, for example, 0.6-0. .7 μm.

図4(a)の固定部材50のリング状の接着面52及び図3のレンズ55の接着面56にエポキシ系の紫外線硬化型接着剤を塗布してから、図5(a)のようにレンズ55を接着面56で固定部材50の接着面52の接着剤上に置き、例えば1kg/cm2程度となる荷重Pを加え、接着剤の厚さを例えば5μm前後に一定にする。 An epoxy-based ultraviolet curable adhesive is applied to the ring-shaped adhesive surface 52 of the fixing member 50 in FIG. 4A and the adhesive surface 56 of the lens 55 in FIG. 3, and then the lens as shown in FIG. 55 is placed on the adhesive on the adhesive surface 52 of the fixing member 50 with the adhesive surface 56, and a load P of, for example, about 1 kg / cm 2 is applied to make the thickness of the adhesive constant, for example, around 5 μm.

次に、図5(b)のように、レンズ55に荷重Pを加えて接着剤の厚さを一定にしながら紫外線ランプ58,59から紫外線58a,59aを固定部材50の接着面52上の接着剤に向けて照射し接着剤を硬化させる。   Next, as shown in FIG. 5B, the load P is applied to the lens 55 to make the thickness of the adhesive constant, and the ultraviolet rays 58a and 59a are adhered to the adhesive surface 52 of the fixing member 50 from the ultraviolet lamps 58 and 59. Irradiate the adhesive to cure the adhesive.

本実施の形態によれば、エポキシ系の紫外線硬化型接着剤をレンズ55の接着面56及び固定部材50の接着面52に塗布し、紫外線を照射して接着剤を硬化することで、接着剤を均一に塗布でき、更に接着剤の厚さ方向に荷重を加えながら紫外線硬化するので、接着剤層29の厚さを均一にできる。このため、温度・湿度環境の変動下にあっても良好な接着状態を維持できるので、レンズ55の光軸ずれを低減できる。更に、接着強度や接着特性も安定する。   According to the present embodiment, an epoxy-based ultraviolet curable adhesive is applied to the adhesive surface 56 of the lens 55 and the adhesive surface 52 of the fixing member 50, and the adhesive is cured by irradiating ultraviolet rays. Can be applied uniformly, and further UV-cured while applying a load in the thickness direction of the adhesive, so that the thickness of the adhesive layer 29 can be made uniform. For this reason, since a favorable adhesion state can be maintained even under a change in temperature and humidity environment, the optical axis shift of the lens 55 can be reduced. Furthermore, the adhesive strength and adhesive properties are also stabilized.

なお、固定部材50のめっき表面を粗くする接着面形状は、図4(a)の接着面52のようなリング状に限定されず他の形状であってもよいことは勿論であり、例えば、図6(a)のように、固定部材50のほぼ正方形状のめっき表面全体を粗くした接着面52aとしてもよい。また、図6(b)のように、円孔51の中心から放射状に延びた略直線状の多数本を粗くした接着面52bとしてもよい。更に、レンズ55のリング状の接着面56が係るように固定部材50のめっき表面を部分的に粗くしてもよく、例えば、図6(c)のように、円孔51を中心にして点対称に粗くして設けた複数の小接着面52cとしてもよい。小接着面52cの形状は、特に限定がなく、矩形状や円弧状等であってよい。   Of course, the shape of the bonding surface for roughening the plating surface of the fixing member 50 is not limited to the ring shape like the bonding surface 52 of FIG. As shown in FIG. 6A, the bonding surface 52a may be formed by roughening the substantially square plating surface of the fixing member 50. Further, as shown in FIG. 6B, a plurality of substantially linear lines extending radially from the center of the circular hole 51 may be used as a roughened bonding surface 52b. Furthermore, the plating surface of the fixing member 50 may be partially roughened so that the ring-shaped adhesive surface 56 of the lens 55 is involved. For example, as shown in FIG. A plurality of small adhesion surfaces 52c provided to be symmetrically rough may be used. The shape of the small adhesion surface 52c is not particularly limited, and may be a rectangular shape, an arc shape, or the like.

また、図4(a)、図6(b)、(c)のように、固定部材50のほぼ正方形状のめっき表面を部分的に粗くする場合には、円孔を中心として点対称の複数領域を粗くした接着面とすることが望ましく、かかる接着面形成のために、例えば、各形状のマスクを固定部材50に貼り付けてからサンドブラスト処理を行うようにできる。   In addition, as shown in FIGS. 4A, 6B, and 6C, when the substantially square plating surface of the fixing member 50 is partially roughened, a plurality of point-symmetrical structures with the circular hole as the center are provided. It is desirable that the adhesive surface has a rough area. For forming the adhesive surface, for example, a sandblasting process can be performed after a mask of each shape is attached to the fixing member 50.

〈第3の実施の形態〉   <Third Embodiment>

次に、図1のレンズ固定構造でレンズを固定した双方向用の光通信モジュールについて図7を参照して説明する。図7は第3の実施の形態による双方向用の光通信モジュールの内部を側面からみた模式図である。   Next, a bidirectional optical communication module in which a lens is fixed with the lens fixing structure of FIG. 1 will be described with reference to FIG. FIG. 7 is a schematic view of the inside of a bidirectional optical communication module according to the third embodiment as seen from the side.

図7に示すように、双方向用の光通信モジュール70は、鉄鋼やコバール(商品名)等の金属からなる円筒状のケース71内に、プラスチック製のレンズ74が配置され、ケース71の図の左端には、中空円筒状の保持体72が取り付けられ、その内部に光ファイバ73が挿通されている。光ファイバ73は光通信システムに接続されることによって、別の端末との間で送受する光信号を伝播可能であり、その端面73aにおいて受信光b1を出射しかつ発信光b0を入射する構成となっている。   As shown in FIG. 7, the bidirectional optical communication module 70 includes a plastic lens 74 disposed in a cylindrical case 71 made of a metal such as steel or Kovar (trade name). A hollow cylindrical holding body 72 is attached to the left end of the optical fiber 73, and an optical fiber 73 is inserted therethrough. The optical fiber 73 is connected to the optical communication system so that it can propagate an optical signal transmitted to and received from another terminal, emits the received light b1 and enters the transmitted light b0 at its end face 73a. It has become.

更に、ケース71の図の右端には、基板77が取り付けられ、基板77の内側面には、フォトダイオードからなる受光素子78と、発光素子ユニット79とが取り付けられている。発光素子ユニット7は、半導体レーザである発光素子79aと、ガラス製のレンズ79bとを一体的に組み付けてなる。受光素子78と発光素子79aとは、基板77に植設されたコネクタピン77aを介して、電気信号を伝達可能に外部の端末機器(図示省略)に接続される。   Further, a substrate 77 is attached to the right end of the case 71 in the drawing, and a light receiving element 78 made of a photodiode and a light emitting element unit 79 are attached to the inner surface of the substrate 77. The light emitting element unit 7 is formed by integrally assembling a light emitting element 79a, which is a semiconductor laser, and a glass lens 79b. The light receiving element 78 and the light emitting element 79a are connected to an external terminal device (not shown) through a connector pin 77a implanted in the substrate 77 so that an electric signal can be transmitted.

レンズ74は、図1とほぼ同様に構成され、レンズ機能と回折機能を有する光学部75と、光学部75の外周側に位置しレンズ74の最外周まで延びる外周部76aと、外周部76aから図の横方向に延びて突き出た取付部76と、を有し、取付部76でケース71の内面から突き出た保持部71aに接着固定されており、図1と同様のレンズ固定構造により保持固定されている。即ち、保持部71aの接着面71bはめっき表面がサンドブラスト処理により粗くされており、接着面71bに紫外線硬化型の接着剤を塗布し、レンズ74を保持部71a側に押し付けて荷重を加えながら紫外線を照射し接着剤を硬化させている。また、光学部75の一方の面には、図7に誇張して示すように、例えば4段の階段状の回折格子75aが周期的に繰り返して形成されている。   The lens 74 is configured in substantially the same manner as in FIG. 1, and includes an optical part 75 having a lens function and a diffraction function, an outer peripheral part 76a located on the outer peripheral side of the optical part 75 and extending to the outermost outer periphery of the lens 74, and an outer peripheral part 76a. And a mounting portion 76 extending in the lateral direction of the figure, and is fixed to the holding portion 71a protruding from the inner surface of the case 71 by the mounting portion 76, and is held and fixed by a lens fixing structure similar to that of FIG. Has been. That is, the adhesive surface 71b of the holding portion 71a has a plating surface roughened by sandblasting, and an ultraviolet curable adhesive is applied to the adhesive surface 71b, and the lens 74 is pressed against the holding portion 71a side while applying a load while applying ultraviolet light. To cure the adhesive. Further, as exaggeratedly shown in FIG. 7, for example, a four-step staircase diffraction grating 75 a is periodically and repeatedly formed on one surface of the optical unit 75.

受信光b1は回折格子75aで1次回折光(図の破線で示す)となって受光素子78の受光面に結像し電気信号に変換される。また、発光素子ユニット79からの送信光b0は回折格子75aで0次回折透過光(図の実線で示す)として直進し、光ファイバ73の端面73aに入射して光ファイバ73を通して外部へと送信される。例えば、受信光b1の波長は1.49μmであり、送信光b0の波長は1.31μmである。上述のように、波長が互いに異なる1次回折光の受信光b1と0次回折透過光の送信光b0とが回折格子75aで分離される。   The received light b1 is converted into an electric signal by forming an image on the light receiving surface of the light receiving element 78 as first-order diffracted light (indicated by a broken line in the figure) by the diffraction grating 75a. Further, the transmission light b0 from the light emitting element unit 79 travels straight as 0th-order diffracted transmitted light (indicated by the solid line in the figure) through the diffraction grating 75a, enters the end face 73a of the optical fiber 73, and transmits to the outside through the optical fiber 73. Is done. For example, the wavelength of the reception light b1 is 1.49 μm, and the wavelength of the transmission light b0 is 1.31 μm. As described above, the received light b1 of the first-order diffracted light and the transmitted light b0 of the 0th-order diffracted transmitted light having different wavelengths are separated by the diffraction grating 75a.

図7の双方向用の光通信モジュール70によれば、使用温度が常温〜85℃程度の範囲内で変化したとき、プラスチックからなるレンズ74と金属からなるケース71の膨張・収縮の差により発生する応力を光学部75以外の取付部76にとどめることができ、光学部75には発生し難くなる。このため、光学部75の変形が抑制され、光学部75の光学性能の低下を抑制できる。また、レンズ74を取付部76でケース71内の保持部71aの接着面71bに接着剤で固定する際に、接着面71bをめっき表面よりも粗くしているので、接着剤が接着面71bにおいて広がり易くなり、均一に塗布でき、更に接着剤層の厚さ方向に荷重を加えながら紫外線照射し硬化するので、接着剤層の厚さを均一にできる。このため、温度・湿度環境の変動下にあっても良好な接着状態を維持できるので、レンズ74の光軸ずれを低減できる。また、接着剤層29の接着せん断強度が増すので、レンズ74の光軸ずれを一層低減できる。   According to the bidirectional optical communication module 70 of FIG. 7, when the operating temperature changes within the range of room temperature to about 85 ° C., it is generated due to the difference in expansion / contraction between the lens 74 made of plastic and the case 71 made of metal. The stress to be applied can be confined to the attachment part 76 other than the optical part 75, and is less likely to occur in the optical part 75. For this reason, deformation of the optical unit 75 is suppressed, and a decrease in optical performance of the optical unit 75 can be suppressed. Further, when the lens 74 is fixed to the adhesive surface 71b of the holding portion 71a in the case 71 with the attachment portion 76 with an adhesive, the adhesive surface 71b is made rougher than the plating surface, so that the adhesive is bonded to the adhesive surface 71b. It becomes easy to spread, can be applied uniformly, and further cured by irradiation with ultraviolet rays while applying a load in the thickness direction of the adhesive layer, so that the thickness of the adhesive layer can be made uniform. For this reason, since the favorable adhesion state can be maintained even under the fluctuation of the temperature / humidity environment, the optical axis shift of the lens 74 can be reduced. Further, since the adhesive shear strength of the adhesive layer 29 is increased, the optical axis shift of the lens 74 can be further reduced.

以上のことから、光通信モジュール70を温度変化のある環境で使用しても光通信モジュールの送信性能及び受信性能の低下を抑えることができる。   From the above, even if the optical communication module 70 is used in an environment with temperature changes, it is possible to suppress a decrease in transmission performance and reception performance of the optical communication module.

なお、図7の光通信モジュール70において図3〜図5のようなレンズ固定構造を適用してもよく、この場合、固定部材50をケース71の形状に適合させる構成とする。   7 may be applied to the optical communication module 70 of FIG. 7, and in this case, the fixing member 50 is adapted to the shape of the case 71.

〈予備実験〉   <Preliminary experiment>

予備実験として、コバール(商品名)の板材のNiめっき表面をサンドブラスト処理により平均表面粗さRa0.61μmとし、この粗さ面上に接着剤を滴下して塗布し、その塗布後経過時間による接着剤の広がり径を測定した。その結果を図8に示す。図8には、Niめっき表面(Ra0.15μm)で同様の条件で接着剤の広がりを調べた比較例1の結果を併せて示す。なお、接着剤は、エポキシ系の紫外線硬化型であり、粘性が1.4Pa・sのものである。図8から分かるように、表面が粗くなると、接着剤が広がり易くなり、その結果、接着剤厚さを薄く制御し易くなる。表面粗さは、Mitutoyo SURFTEST SV-400 触針式表面粗さ計を用いてスキャン距離5mmで測定した。   As a preliminary experiment, the Ni plating surface of the Kovar (trade name) plate material is sandblasted to an average surface roughness Ra of 0.61 μm, and an adhesive is dropped onto the rough surface to apply, and the adhesion is based on the elapsed time after the application. The spread diameter of the agent was measured. The result is shown in FIG. FIG. 8 also shows the results of Comparative Example 1 in which the spread of the adhesive was examined on the Ni plating surface (Ra 0.15 μm) under the same conditions. The adhesive is an epoxy ultraviolet curing type and has a viscosity of 1.4 Pa · s. As can be seen from FIG. 8, when the surface becomes rough, the adhesive easily spreads, and as a result, the adhesive thickness can be controlled thinly. The surface roughness was measured at a scanning distance of 5 mm using a Mitutoyo SURFTEST SV-400 stylus type surface roughness meter.

〈実施例1〉   <Example 1>

図3〜図5と同様にしてレンズをコバール(商品名)の板材である固定部材に接着し固定した。固定部材のNiめっき表面(接着面)をサンドブラスト処理により粗くした。使用した接着剤及び硬化条件は以下のとおりである。
・エポキシ系紫外線硬化型接着剤:粘性0.5Pa・s
・エポキシ系紫外線硬化型接着剤:粘性1.4Pa・s
・紫外線強度450mW/cm2、 紫外線照射時間19.6秒
・紫外線強度380mW/cm2、 紫外線照射時間9.6秒
In the same manner as in FIGS. 3 to 5, the lens was bonded and fixed to a fixing member that is a plate material of Kovar (trade name). The Ni plating surface (adhesion surface) of the fixing member was roughened by sandblasting. The used adhesive and curing conditions are as follows.
・ Epoxy UV curable adhesive: Viscosity 0.5Pa ・ s
・ Epoxy UV curable adhesive: Viscosity 1.4Pa ・ s
・ UV intensity 450 mW / cm 2 , UV irradiation time 19.6 seconds ・ UV intensity 380 mW / cm 2 , UV irradiation time 9.6 seconds

レンズに加える荷重Pを本実施例では1〜3kg/cm2程度となるようにし、接着剤厚さ2.5〜10μmを得ることができた。このときの固定部材の接着面の平均表面粗さRaは、0.61μmであり、接着剤厚さに対して6〜24%の粗さであった。 In this embodiment, the load P applied to the lens was set to about 1 to 3 kg / cm 2 , and an adhesive thickness of 2.5 to 10 μm could be obtained. The average surface roughness Ra of the bonding surface of the fixing member at this time was 0.61 μm, and the roughness was 6 to 24% with respect to the adhesive thickness.

〈実施例2〉   <Example 2>

実施例2は図5のレンズを図7のレンズとして用い、図1,図2と同様のレンズ固定構造で固定した図7と同様の光通信モジュールである。また、図7のレンズ鏡筒の保持面(接着面)を粗くせずにめっき面のままとした光通信モジュールを比較例2とした。   The second embodiment is an optical communication module similar to that shown in FIG. 7 in which the lens shown in FIG. 5 is used as the lens shown in FIG. 7 and is fixed with a lens fixing structure similar to that shown in FIGS. In addition, an optical communication module in which the holding surface (adhesion surface) of the lens barrel in FIG.

実施例2では、図7のレンズ鏡筒の保持面(接着面)の平均表面粗さRaが0.4〜0.6μmであり、接着剤の厚さが5μm程度に制御され、比較例2では、平均表面粗さRaが0.15μm程度であり、接着剤の厚さは制御なしで、10μm以上であった。   In Example 2, the average surface roughness Ra of the holding surface (adhesion surface) of the lens barrel in FIG. 7 is 0.4 to 0.6 μm, and the thickness of the adhesive is controlled to about 5 μm. Then, the average surface roughness Ra was about 0.15 μm, and the thickness of the adhesive was 10 μm or more without control.

図9は、環境温度を0〜70℃まで変化させたときに測定した実施例2及び比較例2の光通信モジュールにおけるレンズ結合効率及び計算によって求めたレンズ結合効率の温度による変化の様子を示すグラフである。   FIG. 9 shows how the lens coupling efficiency and the lens coupling efficiency obtained by calculation in the optical communication modules of Example 2 and Comparative Example 2 measured when the environmental temperature is changed from 0 to 70 ° C. vary with temperature. It is a graph.

なお、図9の計算値はレンズ材料単体が温度変化した場合の屈折率差のみを考慮して結合効率を評価したものであり、接着後の温度変化による、光軸のずれ及び熱膨張ひずみ等による屈折率変化は加味していない。   Note that the calculated values in FIG. 9 are obtained by evaluating the coupling efficiency considering only the refractive index difference when the lens material alone changes in temperature, such as optical axis deviation and thermal expansion strain due to temperature change after bonding. The refractive index change due to is not taken into account.

図9のように、各光通信モジュールにおけるレンズ結合効率を測定した結果、実施例2の光通信モジュールの場合、計算値とほぼ一致した結果を示した。これに対し、比較例2の場合、温度変化によるレンズ結合効率の低下が著しく、最低温度(0℃)及び最高温度(70℃)に近いほど、結合効率が大きく低下した。図9の計算結果には接着個所による光軸ずれや内部応力屈折率変化は含まれていないため、計算結果にほぼ一致した実施例2では、光軸のずれや内部応力屈折率変化の影響はほとんど無いと考えられる。   As shown in FIG. 9, as a result of measuring the lens coupling efficiency in each optical communication module, in the case of the optical communication module of Example 2, a result almost coincident with the calculated value was shown. On the other hand, in the case of Comparative Example 2, the lens coupling efficiency was significantly decreased due to the temperature change, and the coupling efficiency was greatly decreased as the temperature was closer to the lowest temperature (0 ° C.) and the highest temperature (70 ° C.). Since the calculation result in FIG. 9 does not include the optical axis deviation or the internal stress refractive index change due to the bonding portion, in Example 2 that almost matches the calculation result, the influence of the optical axis deviation or the internal stress refractive index change is There seems to be almost no.

〈実施例3〉   <Example 3>

実施例3は接着面の粗さによる接着せん断強度を評価したものである。実施例3として、図3〜図5のようにNiめっき処理したコバール板材をサンドブラストによりランダムに粗くし、表面粗さRaが0.53μm〜0.7μm(平均で0.61μm)の範囲内の接着面にレンズを接着し、せん断強度を測定した。比較例3として、同じくRaが0.09μm〜0.19μm(平均で0.15μm)のめっき表面の接着面に同様の条件でレンズを接着し、せん断強度を測定した。実施例3及び比較例3で測定したせん断強度の平均を図10に示す。表面粗さが粗い実施例3が比較例3に対し1.3〜1.7倍のせん断強度を得ることができた(図10参照)。   Example 3 evaluates the adhesive shear strength depending on the roughness of the adhesive surface. As Example 3, Kovar plate material subjected to Ni plating treatment was randomly roughened by sandblasting as shown in FIGS. 3 to 5, and the surface roughness Ra was in the range of 0.53 μm to 0.7 μm (0.61 μm on average). A lens was bonded to the bonding surface, and the shear strength was measured. As Comparative Example 3, a lens was adhered to the adhesion surface of the plating surface having the same Ra of 0.09 μm to 0.19 μm (average 0.15 μm) under the same conditions, and the shear strength was measured. The average shear strength measured in Example 3 and Comparative Example 3 is shown in FIG. Example 3 with a rough surface roughness was able to obtain a shear strength 1.3 to 1.7 times that of Comparative Example 3 (see FIG. 10).

以上のように本発明を実施するための最良の形態及び実施例について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、各実施の形態では接着剤としてエポキシ系の紫外線硬化型のものを用いたが、アクリル系の紫外線硬化型接着剤であってもよい。   As described above, the best modes and examples for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. is there. For example, in each embodiment, an epoxy ultraviolet curable adhesive is used as an adhesive, but an acrylic ultraviolet curable adhesive may be used.

また、粗さ処理はブラスト処理以外であってもよく、例えば、研削、レーザ光照射、プラズマ加工、薬品・溶剤による化学処理、やすり等による各種方法がある。   The roughness treatment may be other than the blast treatment, and examples thereof include various methods such as grinding, laser beam irradiation, plasma processing, chemical treatment with chemicals and solvents, and files.

また、図1,図2では、レンズ鏡筒20内の保持面22を粗くしたが、レンズ10の取付部12の接着面(保持面22と対向する)を粗くしてもよく、また保持面22と取付部12の接着面の両面を粗くしてもよい。レンズ10の取付部12の接着面を粗くするには、上記各種方法以外に、レンズ10の成形金型においてレンズ10の取付部12の接着面に対応する面を粗く仕上げる等の方法がある。   1 and 2, the holding surface 22 in the lens barrel 20 is roughened. However, the bonding surface (facing the holding surface 22) of the mounting portion 12 of the lens 10 may be roughened, and the holding surface may be roughened. You may roughen both surfaces of the adhesion surface of 22 and the attaching part 12. FIG. In order to roughen the bonding surface of the mounting portion 12 of the lens 10, there is a method of roughing the surface corresponding to the bonding surface of the mounting portion 12 of the lens 10 in the molding die of the lens 10 in addition to the above various methods.

また、本発明による光学素子固定構造は、光通信モジュールのみでなく、他の装置に適用してもよく、例えば、レンズや回折格子等の光学素子を光ピックアップモジュールにおいて固定する場合に適用してもよい。   In addition, the optical element fixing structure according to the present invention may be applied not only to the optical communication module but also to other devices, for example, when fixing an optical element such as a lens or a diffraction grating in an optical pickup module. Also good.

第1の実施の形態によるレンズ固定構造を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the lens fixing structure by 1st Embodiment. 図1のレンズ鏡筒(レンズを取り付ける前)の平面図である。It is a top view of the lens barrel (before attaching a lens) of FIG. 第2の実施の形態における接着固定対象のレンズを示す側面図である。It is a side view which shows the lens of the adhesion fixation object in 2nd Embodiment. 図3のレンズを固定する固定部材の平面図(a)及び側面図(b)である。It is the top view (a) and side view (b) of the fixing member which fixes the lens of FIG. 第2の実施の形態によるレンズ固定構造を示すとともに図3のレンズを図4の固定部材に固定する工程(a)、(b)を示す側面図である。It is a side view which shows the process (a) and (b) which show the lens fixing structure by 2nd Embodiment, and fix the lens of FIG. 3 to the fixing member of FIG. 図4の固定部材のめっき表面を粗くする接着面形状の変形例(a)〜(c)を示す平面図である。It is a top view which shows the modification (a)-(c) of the contact surface shape which roughens the plating surface of the fixing member of FIG. 第3の実施の形態による双方向用の光通信モジュールの内部を側面からみた模式図である。It is the schematic diagram which looked at the inside of the optical communication module for bidirectional | two-way by 3rd Embodiment from the side surface. 粗さ面上に滴下した接着剤の塗布後経過時間による広がり径を測定した予備実験結果を示すグラフである。It is a graph which shows the preliminary experiment result which measured the spreading diameter by the elapsed time after application | coating of the adhesive dripped on the rough surface. 環境温度を0〜70℃まで変化させたときに測定した実施例2及び比較例2の光通信モジュールにおけるレンズ結合効率及び計算によって求めたレンズ結合効率の温度による変化の様子を示すグラフである。It is a graph which shows the mode of the change by the temperature of the lens coupling efficiency and the lens coupling efficiency which were calculated | required by calculation in the optical communication module of Example 2 and Comparative Example 2 which were measured when environmental temperature was changed to 0-70 degreeC. 実施例3及び比較例3で測定したせん断強度の平均を示すグラフである。4 is a graph showing the average shear strength measured in Example 3 and Comparative Example 3.

符号の説明Explanation of symbols

10 レンズ
11 レンズ部
12 取付部
13 外周部
15 取付面
20 レンズ鏡筒
21 保持部
22 保持面(接着面)
29 接着剤層
50 固定部材
51 円孔
52 接着面
52a 接着面
52b 接着面
52c 小接着面
55 レンズ
56 レンズ55の接着面
57 取付部
58,59 紫外線ランプ
58a,59a 紫外線
70 光通信モジュール
71 ケース
71a 保持部
71b 接着面
74 レンズ
P 荷重
p 光軸
t 接着剤層29の厚さ

DESCRIPTION OF SYMBOLS 10 Lens 11 Lens part 12 Attaching part 13 Outer peripheral part 15 Attaching surface 20 Lens barrel 21 Holding part 22 Holding surface (adhesion surface)
DESCRIPTION OF SYMBOLS 29 Adhesive layer 50 Fixing member 51 Circular hole 52 Adhesive surface 52a Adhesive surface 52b Adhesive surface 52c Small adhesive surface 55 Lens 56 Adhesive surface of lens 55 57 Attachment part 58,59 Ultraviolet lamp 58a, 59a Ultraviolet light 70 Optical communication module 71 Case 71a Holding part 71b Adhesion surface 74 Lens P Load p Optical axis t Thickness of adhesive layer 29

Claims (24)

光学素子を固定部材に接着剤で接着し固定する光学素子固定方法であって、前記光学素子の接着面及び前記固定部材の接着面の少なくとも一方を粗くすることを特徴とする光学素子固定方法。   An optical element fixing method for fixing an optical element by adhering to an fixing member with an adhesive, wherein at least one of an adhesive surface of the optical element and an adhesive surface of the fixing member is roughened. 前記接着剤が紫外線硬化性樹脂である請求項1に記載の光学素子固定方法。   The optical element fixing method according to claim 1, wherein the adhesive is an ultraviolet curable resin. 前記接着剤の厚さ方向に荷重を加えながら前記接着剤に紫外線照射を行う請求項2に記載の光学素子固定方法。   The optical element fixing method according to claim 2, wherein the adhesive is irradiated with ultraviolet rays while applying a load in a thickness direction of the adhesive. 前記粗くした接着面の平均表面粗さRaが前記接着剤による厚さの5乃至60%の範囲内である請求項1,2または3に記載の光学素子固定方法。   4. The optical element fixing method according to claim 1, wherein an average surface roughness Ra of the roughened adhesive surface is within a range of 5 to 60% of a thickness of the adhesive. 前記接着剤の粘度は5Pa・s以下である請求項1乃至4のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to claim 1, wherein the adhesive has a viscosity of 5 Pa · s or less. 前記光学素子はプラスチック樹脂またはガラスからなり、前記固定部材の接着面の基材は金属材料からなる請求項1乃至5のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to any one of claims 1 to 5, wherein the optical element is made of plastic resin or glass, and a base material of an adhesive surface of the fixing member is made of a metal material. 前記固定部材の少なくとも接着面をめっき処理した請求項6に記載の光学素子固定方法。   The optical element fixing method according to claim 6, wherein at least an adhesive surface of the fixing member is plated. 前記接着面をブラスト処理、切削、レーザ光照射、プラズマ加工または化学処理により粗くする請求項1乃至7のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to claim 1, wherein the adhesive surface is roughened by blasting, cutting, laser light irradiation, plasma processing, or chemical treatment. 前記固定部材の接着面を前記光学素子の接着面に対応して粗くする請求項1乃至8のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to claim 1, wherein a bonding surface of the fixing member is roughened corresponding to the bonding surface of the optical element. 前記固定部材の接着面を前記光学素子の中心に対し略放射状に粗くする請求項1乃至9のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to any one of claims 1 to 9, wherein a bonding surface of the fixing member is roughened substantially radially with respect to a center of the optical element. 前記接着面を部分的に粗くする請求項1乃至10のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to claim 1, wherein the adhesive surface is partially roughened. 前記接着面全体をランダムに粗くする請求項1乃至10のいずれか1項に記載の光学素子固定方法。   The optical element fixing method according to claim 1, wherein the entire bonding surface is randomly roughened. 接着面を有する光学素子が接着面を有する固定部材に対し前記各接着面の少なくとも一方を粗くして接着されて固定されていることを特徴とする光学素子固定構造。   An optical element fixing structure characterized in that an optical element having an adhesive surface is fixed to a fixing member having an adhesive surface by roughening at least one of the adhesive surfaces. 前記光学素子と前記固定部材とが紫外線硬化性樹脂からなる接着剤で固定されている請求項13に記載の光学素子固定構造。   The optical element fixing structure according to claim 13, wherein the optical element and the fixing member are fixed with an adhesive made of an ultraviolet curable resin. 前記光学素子はプラスチック樹脂またはガラスからなり、前記固定部材の接着面の基材は金属材料からなる請求項13または14に記載の光学素子固定構造。   The optical element fixing structure according to claim 13 or 14, wherein the optical element is made of plastic resin or glass, and a base material of an adhesive surface of the fixing member is made of a metal material. 前記固定部材の少なくとも接着面がめっき処理されている請求項15に記載の光学素子固定構造。   The optical element fixing structure according to claim 15, wherein at least an adhesive surface of the fixing member is plated. 前記粗くした接着面の平均表面粗さRaが前記接着剤による厚さの5乃至60%の範囲内である請求項13乃至16のいずれか1項に記載の光学素子固定構造。   The optical element fixing structure according to any one of claims 13 to 16, wherein an average surface roughness Ra of the roughened adhesive surface is in a range of 5 to 60% of a thickness of the adhesive. 前記接着面がブラスト処理、切削、レーザ光照射、プラズマ加工または化学処理により粗くされている請求項13乃至17のいずれか1項に記載の光学素子固定構造。   The optical element fixing structure according to any one of claims 13 to 17, wherein the adhesive surface is roughened by blasting, cutting, laser light irradiation, plasma processing, or chemical treatment. 前記固定部材の接着面が前記光学素子の接着面に対応して粗くされている請求項13乃至18のいずれか1項に記載の光学素子固定構造。   The optical element fixing structure according to claim 13, wherein an adhesive surface of the fixing member is roughened corresponding to an adhesive surface of the optical element. 前記固定部材の接着面が前記光学素子の中心に対し略放射状に粗くされている請求項13乃至18のいずれか1項に記載の光学素子固定構造。   The optical element fixing structure according to any one of claims 13 to 18, wherein an adhesive surface of the fixing member is roughened in a substantially radial manner with respect to a center of the optical element. 前記接着面が部分的に粗くされてる請求項13乃至20のいずれか1項に記載の光学素子固定構造。   21. The optical element fixing structure according to claim 13, wherein the adhesive surface is partially roughened. 前記接着面全体がランダムに粗くされている請求項13乃至20のいずれか1項に記載の光学素子固定構造。   The optical element fixing structure according to any one of claims 13 to 20, wherein the entire bonding surface is randomly roughened. 前記光学素子が、光学機能を有する光学部と、前記光学部の外周側に位置する外周部と、前記外周部から光軸と略平行な方向に突き出た取付部と、を有し、
前記取付部の接着面が前記固定部材の接着面に固定されている請求項13乃至22のいずれか1項に記載の光学素子固定構造。
The optical element has an optical part having an optical function, an outer peripheral part located on the outer peripheral side of the optical part, and an attachment part protruding from the outer peripheral part in a direction substantially parallel to the optical axis,
The optical element fixing structure according to any one of claims 13 to 22, wherein an adhesive surface of the attachment portion is fixed to an adhesive surface of the fixing member.
光通信モジュールにおいて光学素子を固定する請求項13乃至23のいずれか1項に記載の光学素子固定構造。

The optical element fixing structure according to any one of claims 13 to 23, wherein the optical element is fixed in the optical communication module.

JP2005115240A 2004-11-29 2005-04-13 Optical element fixing method and optical element fixing structure Pending JP2006178388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115240A JP2006178388A (en) 2004-11-29 2005-04-13 Optical element fixing method and optical element fixing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004343885 2004-11-29
JP2005115240A JP2006178388A (en) 2004-11-29 2005-04-13 Optical element fixing method and optical element fixing structure

Publications (1)

Publication Number Publication Date
JP2006178388A true JP2006178388A (en) 2006-07-06

Family

ID=36732533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115240A Pending JP2006178388A (en) 2004-11-29 2005-04-13 Optical element fixing method and optical element fixing structure

Country Status (1)

Country Link
JP (1) JP2006178388A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282340A (en) * 2008-05-23 2009-12-03 Kyocera Corp Structure and optical component
JP2013057764A (en) * 2011-09-07 2013-03-28 Olympus Imaging Corp Holding frame, optical element holding unit, lens barrel unit and imaging apparatus
JP2014063028A (en) * 2012-09-21 2014-04-10 Kyocera Document Solutions Inc Lens fixing structure, optical scanner, image forming device, and lens manufacturing method
JP2014194509A (en) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp Light collection optical system
JP2015017005A (en) * 2013-07-10 2015-01-29 オリンパス株式会社 Method for manufacturing optical element and apparatus for manufacturing optical element
JP2015029942A (en) * 2013-07-31 2015-02-16 Hoya Candeo Optronics株式会社 Light irradiation device
WO2017090520A1 (en) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 Optical element and optical device
JP2017177676A (en) * 2016-03-31 2017-10-05 ブラザー工業株式会社 Liquid discharge device
WO2017199541A1 (en) * 2016-05-16 2017-11-23 三菱電機株式会社 Optical member fixing structure
WO2018100893A1 (en) * 2016-11-30 2018-06-07 株式会社ダイセル Lens module for imaging device, and method for producing lens module
JP2018180535A (en) * 2017-04-14 2018-11-15 キヤノン株式会社 Lens barrel, imaging device, and method for producing lens barrel
WO2019187899A1 (en) * 2018-03-30 2019-10-03 住友大阪セメント株式会社 Optical modulator
JPWO2021019785A1 (en) * 2019-08-01 2021-02-04

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282340A (en) * 2008-05-23 2009-12-03 Kyocera Corp Structure and optical component
JP2013057764A (en) * 2011-09-07 2013-03-28 Olympus Imaging Corp Holding frame, optical element holding unit, lens barrel unit and imaging apparatus
JP2014063028A (en) * 2012-09-21 2014-04-10 Kyocera Document Solutions Inc Lens fixing structure, optical scanner, image forming device, and lens manufacturing method
JP2014194509A (en) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp Light collection optical system
JP2015017005A (en) * 2013-07-10 2015-01-29 オリンパス株式会社 Method for manufacturing optical element and apparatus for manufacturing optical element
JP2015029942A (en) * 2013-07-31 2015-02-16 Hoya Candeo Optronics株式会社 Light irradiation device
WO2017090520A1 (en) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 Optical element and optical device
JP2017177676A (en) * 2016-03-31 2017-10-05 ブラザー工業株式会社 Liquid discharge device
US10703101B2 (en) 2016-03-31 2020-07-07 Brother Kogyo Kabushiki Kaisha Liquid jetting apparatus
WO2017199541A1 (en) * 2016-05-16 2017-11-23 三菱電機株式会社 Optical member fixing structure
JP6293381B1 (en) * 2016-05-16 2018-03-14 三菱電機株式会社 Optical member fixing structure
US10901168B2 (en) 2016-05-16 2021-01-26 Mitsubishi Electric Corporation Optical member fixing structure
JPWO2018100893A1 (en) * 2016-11-30 2018-11-29 株式会社ダイセル Lens module for imaging apparatus and method for manufacturing the same
EP3550349A4 (en) * 2016-11-30 2020-09-02 Daicel Corporation Lens module for imaging device, and method for producing lens module
WO2018100893A1 (en) * 2016-11-30 2018-06-07 株式会社ダイセル Lens module for imaging device, and method for producing lens module
US11099347B2 (en) 2016-11-30 2021-08-24 Daicel Corporation Lens module for imaging device, and method for producing lens module
JP2018180535A (en) * 2017-04-14 2018-11-15 キヤノン株式会社 Lens barrel, imaging device, and method for producing lens barrel
US11320622B2 (en) 2017-04-14 2022-05-03 Canon Kabushiki Kaisha Lens barrel, imaging apparatus, and manufacturing method for lens barrel
JP7175623B2 (en) 2017-04-14 2022-11-21 キヤノン株式会社 LENS BARREL, IMAGING DEVICE, AND LENS BARREL MANUFACTURING METHOD
WO2019187899A1 (en) * 2018-03-30 2019-10-03 住友大阪セメント株式会社 Optical modulator
JP2019179193A (en) * 2018-03-30 2019-10-17 住友大阪セメント株式会社 Optical modulator
JP7059758B2 (en) 2018-03-30 2022-04-26 住友大阪セメント株式会社 Optical modulator
US11397342B2 (en) 2018-03-30 2022-07-26 Sumitomo Osaka Cement Co., Ltd. Optical modulator
JPWO2021019785A1 (en) * 2019-08-01 2021-02-04
WO2021019785A1 (en) * 2019-08-01 2021-02-04 日本電信電話株式会社 Method for packaging optical element

Similar Documents

Publication Publication Date Title
JP2006178388A (en) Optical element fixing method and optical element fixing structure
US7358483B2 (en) Method of fixing an optical element and method of manufacturing optical module including the use of a light transmissive loading jig
JP2006178382A (en) Optical element, optical element holding structure, optical element lens-barrel and optical communication module
US9841570B2 (en) Optical fiber assembly, optical coupling device, and optical fiber coupling device
JP4900563B2 (en) Optical element fixing method and optical element fixing structure manufacturing method
US8824839B2 (en) Optical coupling device and method of implementing optical coupling device
US8967880B2 (en) Optical collimator and optical connector using same
JP2009093041A (en) Optical module
JP4663482B2 (en) Receiver module
KR101831374B1 (en) Light illuminating apparatus
US6434297B1 (en) Optical system for injecting laser radiation into an optical conductor, and a method for its production
JP4012537B2 (en) Optical module and manufacturing method thereof
JP2012028227A (en) Lighting device and mounting method for the same
JP4927763B2 (en) Optical module holder, optical module and optical connector
JP2008116553A (en) Optical assembly
JP6026147B2 (en) Optical connector
JP2008116552A (en) Optical assembly
JP2015175979A (en) optical fiber connector
JP2007041526A (en) Method for fixing optical element and method for manufacturing optical element fixing structure
US7831120B2 (en) Filter device and manufacturing method thereof
US20140233904A1 (en) Optical device
JP2013088720A (en) Light coupling device
JPS6289913A (en) Method for sticking optical fiber array
KR101883845B1 (en) apparatus for measuring beam profile
JP2004109564A (en) Optical fiber array