JP2007041428A - Photoelectric conversion module and its manufacturing method - Google Patents

Photoelectric conversion module and its manufacturing method Download PDF

Info

Publication number
JP2007041428A
JP2007041428A JP2005227441A JP2005227441A JP2007041428A JP 2007041428 A JP2007041428 A JP 2007041428A JP 2005227441 A JP2005227441 A JP 2005227441A JP 2005227441 A JP2005227441 A JP 2005227441A JP 2007041428 A JP2007041428 A JP 2007041428A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
optical coupling
coupling element
substrate
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005227441A
Other languages
Japanese (ja)
Inventor
Ikuo Kato
幾雄 加藤
Hiroyoshi Funato
広義 船戸
Fumihiro Shimizu
文博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005227441A priority Critical patent/JP2007041428A/en
Publication of JP2007041428A publication Critical patent/JP2007041428A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance characteristics of light utilization efficiency by improving alignment accuracy of an optical connector as well as improving optical characteristics of a photoelectric conversion module combined with a photoelectric conversion element. <P>SOLUTION: In the manufacturing method of the photoelectric conversion module, an MID 2 comprising the photoelectric conversion module 1 is fixed in a planarization metallic die 20, a photosetting resin 21 is filled in the opening part 11 of the MID 2, and a light shielding mask 23 is attached thereon in which a light shielding opening pattern 22 is formed. Then, with irradiation of ultraviolet rays emitted from a ultraviolet light source 24, there is hardened a part corresponding to the opening part of the light shielding opening pattern 22 in the photosetting resin 21 to form a waveguide core part 12. After the formation of the waveguide core part 12, the surrounding photosetting resin 21 of the waveguide core part 12 is thermally hardened to form around it a waveguide clad part 13 having a lower refractive index than the waveguide core part 12; thus, an optical coupling element 14 of the core/clad structure is formed in the opening part 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、光伝送や光計測あるいは光メモリ等の各種分野において光の入出射を行う光電気変換モジュール及びその製造方法、特に光利用効率特性の向上に関するものである。   The present invention relates to a photoelectric conversion module for entering and exiting light in various fields such as optical transmission, optical measurement, and optical memory, and a method for manufacturing the same, and more particularly to improvement of light utilization efficiency characteristics.

光電気変換素子または光電変換素子と電子回路素子とをパッケージ化することにより、マルチチップモジュールとなる光電気変換パッケージまたは光電変換パッケージ(OE−MCMともいわれる)は、特許文献1や特許文献2等に示されているように、光電気変換素子または光電変換素子と光結合素子と光実装基板と発光光電変換素子用ドライバ電子回路素子と受光光電変換素子用増幅電子回路素子と論理電子回路素子及びこれら全体を封止するパッケージや端子やMCM基板等から構成されている。   A photoelectric conversion package or photoelectric conversion package (also referred to as OE-MCM) that becomes a multichip module by packaging a photoelectric conversion element or photoelectric conversion element and an electronic circuit element is disclosed in Patent Document 1, Patent Document 2, and the like. A photoelectric conversion element, a photoelectric conversion element, an optical coupling element, an optical mounting substrate, a driver electronic circuit element for a light emitting photoelectric conversion element, an amplification electronic circuit element for a light receiving photoelectric conversion element, a logic electronic circuit element, and The package is composed of a package, terminals, an MCM substrate, and the like for sealing the whole.

例えば特許文献2に記載された光電変換素子パッケージは、図8の断面図に示すように、光ファイバ100等のコネクタ構成を有する部品と、これに対して位置調整されたLDチップ101等の光電変換素子と、受信用PD102等の電気回路素子及びモニタ用PDチップ103や光導波路104中のWDMフィルタ105等の周辺部品とが不透明で硬化性に優れたエポキシ樹脂等のモールド部材106によりモールドされて一体に形成されている。ここでLDチップ101及びモニタ用PDチップ103の周囲は、LDチップ101からの光をモニタ用PDチップ103に導光させるためにシリコン系樹脂等の透明樹脂107により覆われている。このようにして金属のハーメチック封止による光電変換素子パッケージよりも、小型で低価格化が実現可能となる。   For example, as shown in the cross-sectional view of FIG. 8, the photoelectric conversion element package described in Patent Document 2 includes components having a connector configuration such as an optical fiber 100 and photoelectric components such as an LD chip 101 and the like adjusted in position. The conversion element and the electric circuit element such as the receiving PD 102 and the peripheral parts such as the monitoring PD chip 103 and the WDM filter 105 in the optical waveguide 104 are molded by a mold member 106 such as an epoxy resin which is opaque and has excellent curability. Are integrally formed. Here, the periphery of the LD chip 101 and the monitor PD chip 103 is covered with a transparent resin 107 such as a silicon-based resin in order to guide the light from the LD chip 101 to the monitor PD chip 103. In this way, it is possible to realize a small size and a lower price than a photoelectric conversion element package by metal hermetic sealing.

しかしながら、特許文献2に記載された光電変換素子パッケージは、外部の光ファイバ100とLDチップ101等の光電変換素子とを高効率で光結合させるためには高精度な光実装が必要なため、外部の光ファイバ100の一部をモールド部材106に直接挿入して一体化しており、外部の光ファイバ100の脱着ができない構成になっている。このため、光電変換素子パッケージのプリント基板への実装には、リフロー炉を量産で用いることは困難であり、ロボット半田付けや手半田付け等による少量生産しかできない。また、機器内光伝送におけるボード間光伝送のように、機器組み付け作業としてコネクタが必須の装置には用いることができないという問題がある。   However, the photoelectric conversion element package described in Patent Document 2 requires high-precision optical mounting in order to optically couple the external optical fiber 100 and the photoelectric conversion element such as the LD chip 101 with high efficiency. A part of the external optical fiber 100 is directly inserted into and integrated with the mold member 106 so that the external optical fiber 100 cannot be attached or detached. For this reason, it is difficult to use a reflow furnace in mass production for mounting a photoelectric conversion element package on a printed circuit board, and only small-scale production by robot soldering or manual soldering is possible. Moreover, there is a problem that it cannot be used for an apparatus in which a connector is indispensable for assembling an apparatus, as in inter-board optical transmission in intra-apparatus optical transmission.

また、光ファイバの挿入に代えて光コネクタをモールド部材に直接挿入して一体化すれば、光電変換素子パッケージと外部の光ファイバとを脱着ができるようになるが、光コネクタ自体は高価であり低コスト化できないばかりか、光コネクタという大きい部材に対する高精度の光実装が必要となり、組付けコストが増大してしまう。   If the optical connector is directly inserted into the mold member and integrated instead of inserting the optical fiber, the photoelectric conversion element package and the external optical fiber can be detached, but the optical connector itself is expensive. Not only can the cost be reduced, but high-precision optical mounting on a large member called an optical connector is required, which increases the assembly cost.

これらの問題を解決するために、特許文献3に示された光電変換素子パッケージ200は、図9の断面図に示すように、光電変換素子201と、光電変換素子201を封止する透明材料202とからなるパッケージ203と、光電変換素子201と電気的に接続された電子回路素子204とパッケージ203とを封止するパッケージ205とよりなり、パッケージ203の一部をパッケージ205の一部から外部に露出させて、通常の電気実装パッケージと同様な封止により光電変換素子パッケージ200の作製時の光学実装を不要として簡単に作製できるようにしている。
特開2002−202438公報 特開2000−228555公報 特開2004−319555広報
In order to solve these problems, a photoelectric conversion element package 200 disclosed in Patent Document 3 includes a photoelectric conversion element 201 and a transparent material 202 that seals the photoelectric conversion element 201 as shown in the cross-sectional view of FIG. And a package 205 that seals the electronic circuit element 204 and the package 203 that are electrically connected to the photoelectric conversion element 201, and a part of the package 203 is moved from a part of the package 205 to the outside. It is exposed and sealed in the same manner as a normal electric mounting package so that optical mounting at the time of manufacturing the photoelectric conversion element package 200 is unnecessary and can be easily manufactured.
JP 2002-202438 A JP 2000-228555 A JP 2004-319555 A

しかしながら、特許文献3における光電変換モジュールでは、光電変換素子を予め光学部品と光学実装しておく必要があるが、光学部品に要求される樹脂は、良好な光結合素子特性を発現するために成形精度が高く、かつ変形しにくい比較的に硬度の高い材料が好ましのに対して、光電変換素子を光実装する場合の封止材料は、ワイヤボンド実装を用いた場合には、熱衝撃および熱サイクル時のワイヤへの応力及びワイヤボンド部への応力を小さくして信頼性を確保するために、ある程度変形しやすい比較的に硬度の低い材料が好ましく、その要求内容が異なる。基本的には信頼性を確保することが優先されるので、軟らかく変形が比較的に生じる材料を用いる結果、光学特性がその分だけ劣化してしまい、通常の光学部品と比較して十分な特性を得ることがでず、光利用効率を大きくできないという問題がある。   However, in the photoelectric conversion module in Patent Document 3, it is necessary to optically mount the photoelectric conversion element in advance with an optical component, but the resin required for the optical component is molded to exhibit good optical coupling element characteristics. While a material with high accuracy and a relatively high hardness that is difficult to deform is preferred, a sealing material when optically mounting a photoelectric conversion element is a thermal shock and an impact when wire bonding is used. In order to reduce the stress on the wire and the stress on the wire bond portion during the heat cycle to ensure reliability, a material with relatively low hardness that is easily deformed to some extent is preferable, and the required contents are different. Basically, priority is given to ensuring reliability, so as a result of using soft and relatively deformable materials, the optical characteristics deteriorate accordingly, and sufficient characteristics compared to ordinary optical parts There is a problem that the light use efficiency cannot be increased.

さらに、この光電変換モジュールに光コネクタの機能を複合化させる場合に、光コネクタの位置決めに必要な位置決め穴の形状精度に関しても、光学部品と同様に軟らかく変形が比較的に生じる材料のために形状精度が低下しているので、高精度の位置決めができにくく、その分だけさら光利用効率が低下しやすいという問題がある。   Furthermore, when combining the functions of optical connectors with this photoelectric conversion module, the shape accuracy of the positioning holes required for positioning of the optical connectors is also made of a material that is soft and relatively deformable, similar to optical components. Since the accuracy is lowered, there is a problem that it is difficult to perform highly accurate positioning, and the light utilization efficiency is likely to be lowered accordingly.

この発明は、信頼性を確保しながらも、光電変換素子と組み合わされた光電気変換モジュールの光学特性を向上させるとともに、光コネクタの位置決め精度も向上させて、光利用効率特性を向上させることができる光電気変換モジュール及びその製造方法を提供することを目的とするものである。   The present invention can improve the optical characteristics of the photoelectric conversion module combined with the photoelectric conversion element and improve the positioning accuracy of the optical connector and improve the light utilization efficiency characteristics while ensuring the reliability. It is an object of the present invention to provide a photoelectric conversion module that can be produced and a method for producing the same.

より詳細に、この発明は、発光素子や受光素子のような光電変換素子又は光電気変換素子である光と電気との信号変換を行う素子とこの光電変換素子又は光電気変換素子との光結合を行う光結合素子とをモジュール化した光電変換モジュール又は光電気変換モジュールにおいて、簡単な光結合素子によって光結合効率を向上させるとともに、光電変換素子又は光電気変換素子とこの電気配線に対する信頼性を向上させ、かつ製造工程を簡略化して低コストの光電気変換モジュールを実現することを目的としている。   More specifically, the present invention relates to a photoelectric conversion element or a photoelectric conversion element such as a light emitting element or a light receiving element, and an optical coupling between the photoelectric conversion element or the photoelectric conversion element and an element that performs signal conversion between light and electricity. In the photoelectric conversion module or photoelectric conversion module in which the optical coupling element that performs the conversion is modularized, the optical coupling efficiency is improved by a simple optical coupling element, and the reliability of the photoelectric conversion element or photoelectric conversion element and the electrical wiring is improved. An object is to realize a low-cost photoelectric conversion module by improving the manufacturing process and simplifying the manufacturing process.

この発明の光電気変換モジュールは、基板と、基板上に設けた光電気変換素子と、基板上に設けた電気配線と、前記電気配線と前記光電気変換素子との電気接続を行う電気接続手段と、前記光電気変換素子と光結合を行う光結合素子とを有する光電気変換モジュールにおいて、前記基板は、光結合素子形成用の貫通した開口を有し、前記開口内に光硬化性樹脂を充填して形成されたコア・クラッド構造の光結合素子を有することを特徴とする。   The photoelectric conversion module of the present invention includes a substrate, a photoelectric conversion element provided on the substrate, an electrical wiring provided on the substrate, and an electrical connection means for performing electrical connection between the electrical wiring and the photoelectric conversion element. And an optoelectric conversion module having an optoelectric conversion element that performs optical coupling with the optoelectric conversion element, wherein the substrate has a through opening for forming an optical coupling element, and a photocurable resin is placed in the opening. It has a core-clad structure optical coupling element formed by filling.

この発明の他の光電気変換モジュールは、基板と、基板上に設けた光電気変換素子と、基板上に設けた電気配線と、前記電気配線と前記光電気変換素子との電気接続を行う電気接続手段と、前記光電気変換素子と光結合を行う光結合素子が一部に設けられた光結合素子支持部材とを有する光電気変換モジュールにおいて、前記光結合素子支持部材には、光結合素子形成用の貫通孔又は凹部が設けられ、前記開口又は凹部内に光硬化性樹脂を充填して形成されたコア・クラッド構造の光結合素子を有することを特徴とする。   Another photoelectric conversion module according to the present invention includes a substrate, a photoelectric conversion element provided on the substrate, an electrical wiring provided on the substrate, and an electrical connection for electrical connection between the electrical wiring and the photoelectric conversion element. In the photoelectric conversion module, comprising: a connecting means; and an optical coupling element support member provided in part with an optical coupling element that performs optical coupling with the photoelectric conversion element. The optical coupling element support member includes an optical coupling element. A through-hole or a recess for forming is provided, and an optical coupling element having a core / cladding structure formed by filling a photocurable resin in the opening or the recess is provided.

この発明の光電気変換モジュールの製造方法は、基板と、基板上に設けた光電気変換素子と、基板上に設けた電気配線と、前記電気配線と前記光電気変換素子との電気接続を行う電気接続手段と、前記光電気変換素子と光結合を行う光結合素子とを有する光電気変換モジュールの製造方法において、前記基板に光結合素子形成用の貫通した開口を形成し、該開口に光硬化性樹脂を充填し、前記開口の光電気変換素子を取り付ける位置とは反対側に透過率面積変調マスクを設け、該透過率面積変調マスクを透過した光で前記光硬化性樹脂にコア・クラッド構造の光結合素子を形成することを特徴とする。   According to the method of manufacturing the photoelectric conversion module of the present invention, the substrate, the photoelectric conversion element provided on the substrate, the electrical wiring provided on the substrate, and the electrical connection between the electrical wiring and the photoelectric conversion element are performed. In a method of manufacturing a photoelectric conversion module having an electrical connection means and an optical coupling element that performs optical coupling with the photoelectric conversion element, a through-hole for forming an optical coupling element is formed in the substrate, and light is emitted into the opening. A transmittance area modulation mask is provided on the side opposite to the position where the photoelectric conversion element of the opening is attached, and the core / cladding is applied to the photocurable resin with the light transmitted through the transmittance area modulation mask. An optical coupling element having a structure is formed.

前記基板の透過率面積変調マスク取付面と透過率面積変調マスクに互いに嵌合する凹凸構造を有し、該凹凸構造により透過率面積変調マスクを基板に位置合わせすることが望ましい。   It is desirable that the substrate has a concavo-convex structure that is fitted to the transmittance area modulation mask mounting surface and the transmittance area modulation mask, and the transmittance area modulation mask is aligned with the substrate by the concavo-convex structure.

この発明の他の光電気変換モジュールの製造方法は、基板と、基板上に設けた光電気変換素子と、基板上に設けた電気配線と、前記電気配線と前記光電気変換素子との電気接続を行う電気接続手段と、前記光電気変換素子と光結合を行う光結合素子が一部に設けられた光結合素子支持部材とを有する光電気変換モジュールの製造方法において、前記光結合素子支持部材に光結合素子形成用の貫通孔又は凹部を形成し、該貫通孔又は凹部に光硬化性樹脂を充填し、前記開口又は凹部の開口している側に透過率面積変調マスクを設け、該透過率面積変調マスクを透過した光で前記光硬化性樹脂にコア・クラッド構造の光結合素子を形成することを特徴とする。   According to another method of manufacturing the photoelectric conversion module of the present invention, a substrate, a photoelectric conversion element provided on the substrate, an electrical wiring provided on the substrate, and electrical connection between the electrical wiring and the photoelectric conversion element are provided. In the method of manufacturing a photoelectric conversion module, comprising: an electrical connection means for performing optical coupling; and an optical coupling element support member provided with a part of the optical coupling element for optical coupling with the photoelectric conversion element. A through-hole or a recess for forming an optical coupling element is formed, the photo-curable resin is filled in the through-hole or the recess, and a transmittance area modulation mask is provided on the opening side of the opening or the recess. An optical coupling element having a core / cladding structure is formed on the photocurable resin with light transmitted through a rate area modulation mask.

前記光結合素子支持部材の透過率面積変調マスク取付面と透過率面積変調マスクに互いに嵌合する凹凸構造を有し、該凹凸構造により透過率面積変調マスクを光結合素子支持部材に位置合わせすることが望ましい。   The light coupling element support member has a concavo-convex structure that fits into the transmittance area modulation mask mounting surface and the transmittance area modulation mask, and aligns the transmittance area modulation mask with the optical coupling element support member by the concavo-convex structure. It is desirable.

この発明は、光電気変換素子と光結合を行う光結合素子を、光電気変換素子を取り付ける基板や、光電気変換素子と光結合を行う光結合素子を保持する光結合素子支持部材の導波路を形成する開口や凹部に、光硬化性樹脂を充填し、充填した光硬化性樹脂を、透過率面積変調マスクを透過した光で熱硬化させてコア・クラッド構造の光結合素子を形成することにより、基板や光結合素子支持部材に対して光結合素子を高い位置精度で簡単に形成することができ、光利用効率を向上して光電気変換モジュールの信頼性を高めることができる。   The present invention relates to an optical coupling element that performs optical coupling with a photoelectric conversion element, a substrate to which the photoelectric conversion element is attached, and a waveguide of an optical coupling element support member that holds the optical coupling element that performs optical coupling with the photoelectric conversion element. A photo-curing resin is filled in the openings and recesses that form the core, and the photo-curing resin having a core / cladding structure is formed by thermally curing the filled photo-curing resin with light transmitted through the transmittance area modulation mask. Thus, the optical coupling element can be easily formed with high positional accuracy with respect to the substrate and the optical coupling element support member, and the light use efficiency can be improved and the reliability of the photoelectric conversion module can be increased.

また、基板や光結合素子支持部材の透過率面積変調マスク取付面と透過率面積変調マスクに互いに嵌合する凹凸構造を形成し、この凹凸構造により透過率面積変調マスクを基板や光結合素子支持部材に位置合わせすることにより、基板や光結合素子支持部材に対して光結合素子をより高い位置精度で、安定して形成することができ、光電気変換モジュールの信頼性を寄り向上させることができる。   In addition, a concavo-convex structure that fits to the transmittance area modulation mask mounting surface and the transmittance area modulation mask of the substrate or the optical coupling element support member is formed, and this concavo-convex structure supports the transmittance area modulation mask to the substrate or the optical coupling element. By aligning with the member, the optical coupling element can be stably formed with higher positional accuracy with respect to the substrate and the optical coupling element support member, and the reliability of the photoelectric conversion module can be improved. it can.

図1は、この発明の光電気変換モジュールの構成を示す断面図である。図に示すように、光電気変換モジュール(以下、光電変換モジュールという)1は、立体配線基板であるMID(Molded Interconnected Device)2の上部電気配線3に沿って光電気変換素子4と、光電気変換素子4と電気的に接続されたレーザドライバ5とトランスインピーダンスアンプ6とが、接合バンプ7で固定されている。光電気変換素子4は、実際には紙面に垂直方向に配列された面発光レーザ(VCSEL=Vertical Cavity Surface-Emitting Laser)または単にレーザ半導体(LD)および面受光型PINフォトディテクタ(PD)である。光電気変換素子4とレーザドライバ5及びとトランスインピーダンスアンプ6の上部電気配線3と反対側はアンダーフィル剤8を介して熱インタポーザ9が設けられ、MID2と熱インタポーザ9の間隙には隙間充填剤10が充填されている。光電気変換素子4の取付位置に応じて形成されたMID2の開口部11には導波路コア部12と導波路クラッド部13を有するコア・クラッド構造の光結合素子14が形成されている。MID2の下部電気配線15はボールアレイ16を介して主基板17の電気配線18に接続されている。   FIG. 1 is a cross-sectional view showing the configuration of the photoelectric conversion module of the present invention. As shown in the figure, a photoelectric conversion module (hereinafter referred to as a photoelectric conversion module) 1 includes a photoelectric conversion element 4 and a photoelectric conversion along an upper electric wiring 3 of a MID (Molded Interconnected Device) 2 that is a three-dimensional wiring board. A laser driver 5 and a transimpedance amplifier 6 electrically connected to the conversion element 4 are fixed by bonding bumps 7. The photoelectric conversion element 4 is actually a surface emitting laser (VCSEL = Vertical Cavity Surface-Emitting Laser) or simply a laser semiconductor (LD) and a surface light receiving type PIN photodetector (PD) arranged in a direction perpendicular to the paper surface. A thermal interposer 9 is provided on the opposite side of the photoelectric conversion element 4, the laser driver 5, and the upper electrical wiring 3 of the transimpedance amplifier 6 via an underfill agent 8, and a gap filler is provided in the gap between the MID 2 and the thermal interposer 9. 10 is filled. An optical coupling element 14 having a core-clad structure having a waveguide core part 12 and a waveguide cladding part 13 is formed in the opening 11 of the MID 2 formed according to the mounting position of the photoelectric conversion element 4. The lower electric wiring 15 of MID 2 is connected to the electric wiring 18 of the main board 17 through the ball array 16.

この光電変換モジュール1のMID2の開口部11にコア・クラッド構造の光結合素子14を形成するときは、図2の断面図の(a)に示すように、光電変換モジュール1を構成するMID2を平坦化金型20に固定し、MID2の開口部11に光硬化性樹脂21を充填し、その上に例えばガラスで形成された基板の上に遮光開口パターン22が形成された遮光マスク23を取り付ける。そして図2(b)に示すように、遮光マスク23を取り付けたMID2の遮光マスク23側に、紫外線光源24から出射された紫外線を照射する。遮光マスク23に照射された紫外線は遮光マスク23の遮光開口パターン22の開口部分のみを透過して光硬化性樹脂21のなかで遮光開口パターン22の開口部分に対応する部分を硬化して導波路コア部12を形成する。導波路コア部12を形成した後、MID2の開口部11の周辺に熱を加えて導波路コア部12の周囲の光硬化性樹脂21を熱硬化したり、開口部11の周辺に紫外線を照射して、導波路コア部12の周囲に導波路コア部12よりも屈折率が低い導波路クラッド部13を形成して、開口部11にコア・クラッド構造の光結合素子14を形成する。この導波路クラッド部13を形成するために紫外線を照射するときは、遮光マスク23を取り除いた後に、開口部11の周辺に紫外線を照射したり、MID2の横方向より紫外線を照射したり、あるいは平坦化金型20側から紫外線を照射すれば良い。また、平坦化金型20を透明材料であるガラス部材で形成した場合には、平坦化金型20の下部からそのまま光を照射しても良い。   When the optical coupling element 14 having a core / cladding structure is formed in the opening 11 of the MID 2 of the photoelectric conversion module 1, the MID 2 constituting the photoelectric conversion module 1 is changed as shown in FIG. It is fixed to the flattening mold 20, the opening 11 of MID2 is filled with a photocurable resin 21, and a light shielding mask 23 having a light shielding opening pattern 22 formed on a substrate made of glass, for example, is attached thereon. . Then, as shown in FIG. 2B, the ultraviolet light emitted from the ultraviolet light source 24 is irradiated on the light shielding mask 23 side of the MID 2 to which the light shielding mask 23 is attached. The ultraviolet light applied to the light shielding mask 23 passes through only the opening portion of the light shielding opening pattern 22 of the light shielding mask 23 and cures the portion corresponding to the opening portion of the light shielding opening pattern 22 in the photocurable resin 21 to guide the waveguide. The core part 12 is formed. After the waveguide core portion 12 is formed, heat is applied to the periphery of the opening 11 of the MID 2 to thermally cure the photocurable resin 21 around the waveguide core portion 12 or to irradiate the periphery of the opening 11 with ultraviolet rays. Then, a waveguide cladding portion 13 having a refractive index lower than that of the waveguide core portion 12 is formed around the waveguide core portion 12, and an optical coupling element 14 having a core / cladding structure is formed in the opening 11. When irradiating with ultraviolet rays to form the waveguide cladding portion 13, after removing the light shielding mask 23, irradiating the periphery of the opening 11 with ultraviolet rays, irradiating with ultraviolet rays from the lateral direction of MID2, or What is necessary is just to irradiate an ultraviolet-ray from the planarization metal mold | die 20 side. Further, when the flattening mold 20 is formed of a glass member made of a transparent material, light may be irradiated as it is from below the flattening mold 20.

このように遮光マスク23を使用してMID2の開口部11に導波路コア部12と導波路クラッド部13を有するコア・クラッド構造の光結合素子14を形成することにより、立体配線基板という形状が複雑なMID2の開口部11に光を通す光結合素子14を高い位置精度で形成することができ、高い光利用効率を実現した光電気変換モジュール1を構成することができる。   In this way, by forming the core-clad structure optical coupling element 14 having the waveguide core portion 12 and the waveguide cladding portion 13 in the opening 11 of the MID 2 using the light shielding mask 23, the shape of the three-dimensional wiring substrate is obtained. The optical coupling element 14 that allows light to pass through the opening 11 of the complex MID 2 can be formed with high positional accuracy, and the photoelectric conversion module 1 that realizes high light utilization efficiency can be configured.

また、MID2に例えば図3に示すようにマイクロレンズ形状を有する光結合素子50を取り付けるとき、MID2と光結合素子50の支持部材51との外周外形を画像検出により位置検出し、MID2と光結合素子50との相対位置精度を確保した組み付けを行うと、支持部材51の外周外形は接触によるキズ等で画像検出による位置検出の誤差が大きく、高い相対位置精度を確保が難しく、また画像検出に相当の時間を要してしまうが、光電変換モジュール1のようにMID2にコア・クラッド構造の光結合素子14を形成することにより、光結合素子14を精度良く形成することができる。   For example, when an optical coupling element 50 having a microlens shape as shown in FIG. 3 is attached to MID2, the position of the outer circumference of MID2 and the supporting member 51 of optical coupling element 50 is detected by image detection, and optical coupling with MID2 is performed. When assembly is performed while ensuring relative positional accuracy with respect to the element 50, the outer periphery of the support member 51 has a large error in position detection due to image detection due to scratches caused by contact, and it is difficult to ensure high relative positional accuracy. Although a considerable amount of time is required, the optical coupling element 14 can be formed with high accuracy by forming the core-clad structure optical coupling element 14 in the MID 2 as in the photoelectric conversion module 1.

前記説明ではMID2の開口部11に充填した光硬化性樹脂21により導波路クラッド部13を形成した場合について示したが、導波路コア部12を形成した後、導波路コア部12周囲の光硬化性樹脂21を除去した後に低屈折率用材料に入れ替えても良いし、添加物や照射条件を制御して低屈折率化しても良い。   In the above description, the case where the waveguide clad portion 13 is formed with the photocurable resin 21 filled in the opening 11 of the MID 2 has been described. However, after the waveguide core portion 12 is formed, photocuring around the waveguide core portion 12 is performed. After removing the functional resin 21, it may be replaced with a low refractive index material, or the refractive index may be lowered by controlling additives and irradiation conditions.

また、遮光マスク23は、ガラスの基板に限定されず、金属やプラスチックで形成して、金属や不透明プラスチックの形状をそのまま遮光部材として用いたり、透明プラスチックにパターンを有する金属薄膜や不透明材料部分を形成して用いても良い。また、遮光マスク23を光硬化後に分離しないで、光電変換モジュール1の一部としてコネクタ構造や上面保護層、封止構造、補強構造あるいは光学部材としてそのまま、または部分的に変形して用いても良い。   The light shielding mask 23 is not limited to a glass substrate, and is formed of metal or plastic, and the shape of metal or opaque plastic is used as it is as a light shielding member, or a metal thin film or opaque material portion having a pattern on transparent plastic is used. It may be formed and used. Further, the light shielding mask 23 may be used as it is or as a part of the photoelectric conversion module 1 as it is or as a part of the photoelectric conversion module 1 as a connector structure, an upper surface protective layer, a sealing structure, a reinforcing structure, or an optical member. good.

次にこの発明の第2の光電変換モジュールについて図4の構成図を参照して説明する。図4に示すように、光電変換モジュール1aは、光電気変換素子4とレーザドライバ5及びトランスインピーダンスアンプ6がインタポーザ基板25に取り付けられ、光電気変換素子4とレーザドライバ5及びトランスインピーダンスアンプ6はインタポーザ基板25の電気配線26にワイヤボンド27で接続されている。この光電気変換素子4とレーザドライバ5及びトランスインピーダンスアンプ6を取り付けたインタポーザ基板25は、光結合素子支持体28の内部に、1次封止材料29と2次封止材料30を介して取り付けられている。光結合合素子支持体28の光電気変換素子4と対応する位置の開口部11には導波路コア部12と導波路クラッド部13を有するコア・クラッド構造の光結合素子14が形成されている。   Next, a second photoelectric conversion module of the present invention will be described with reference to the block diagram of FIG. As shown in FIG. 4, in the photoelectric conversion module 1a, the photoelectric conversion element 4, the laser driver 5, and the transimpedance amplifier 6 are attached to the interposer substrate 25. The photoelectric conversion element 4, the laser driver 5, and the transimpedance amplifier 6 are It is connected to the electric wiring 26 of the interposer substrate 25 by a wire bond 27. The interposer substrate 25 to which the photoelectric conversion element 4, the laser driver 5, and the transimpedance amplifier 6 are attached is attached to the inside of the optical coupling element support 28 via the primary sealing material 29 and the secondary sealing material 30. It has been. An optical coupling element 14 having a core / clad structure having a waveguide core section 12 and a waveguide cladding section 13 is formed in the opening 11 at a position corresponding to the photoelectric conversion element 4 of the optical coupling element support 28. .

このように光電変換モジュール1aは、1次封止材料29と2次封止材料30を介してインタポーザ基板25を光結合素子支持体28の内部に取り付けるから、封止特性をより向上することができる。   As described above, since the photoelectric conversion module 1a attaches the interposer substrate 25 to the inside of the optical coupling element support 28 via the primary sealing material 29 and the secondary sealing material 30, the sealing characteristics can be further improved. it can.

この光電変換モジュール1aの光結合素子支持体28の開口部11にコア・クラッド構造の光結合素子14を形成するときは、図5の断面図の(a)に示すように、光電変換モジュール1aを構成する光結合素子支持体28の開口部11に光硬化性樹脂21を充填し、その上に例えばガラスで形成された基板に遮光開口パターン22を有する遮光マスク23を取り付ける。そして図5(b)に示すように、遮光マスク23を取り付けた光結合素子支持体28の遮光マスク23側に、紫外線光源24から出射された紫外線を照射する。遮光マスク23に照射された紫外線は遮光マスク23の開口部分のみを透過して光硬化性樹脂21のなかで遮光開口パターン22の開口部分に対応する部分を硬化して導波路コア部12を形成する。導波路コア部12を形成した後、光結合素子支持体28の開口部11の周辺に熱を加えて導波路コア部12の周囲の光硬化性樹脂21を熱硬化したり、開口部11の周辺に紫外線を照射して、導波路コア部12の周囲に導波路コア部12よりも屈折率が低い導波路クラッド部13を形成して、開口部11にコア・クラッド構造の光結合素子14を形成する。この導波路クラッド部13を形成するために紫外線を照射するときは、遮光マスク23を取り除いた後に、開口部11の周辺に紫外線を照射したり、光結合素子支持体28の横方向より紫外線を照射したり、あるいはインタポーザ基板25に紫外線を透過する材料、例えばポリイミド樹脂等を用いた場合には、下部からそのまま光を照射しても良い。   When the optical coupling element 14 having a core / cladding structure is formed in the opening 11 of the optical coupling element support 28 of the photoelectric conversion module 1a, as shown in FIG. 5A, the photoelectric conversion module 1a is formed. A photo-curing resin 21 is filled in the opening 11 of the optical coupling element support 28 constituting the above, and a light-shielding mask 23 having a light-shielding opening pattern 22 is attached to a substrate formed of, for example, glass. Then, as shown in FIG. 5B, the ultraviolet light emitted from the ultraviolet light source 24 is irradiated to the light shielding mask 23 side of the optical coupling element support 28 to which the light shielding mask 23 is attached. The ultraviolet light applied to the light shielding mask 23 passes through only the opening portion of the light shielding mask 23 and cures the portion corresponding to the opening portion of the light shielding opening pattern 22 in the photocurable resin 21 to form the waveguide core portion 12. To do. After the waveguide core portion 12 is formed, heat is applied to the periphery of the opening 11 of the optical coupling element support 28 to thermally cure the photocurable resin 21 around the waveguide core portion 12, By irradiating the periphery with ultraviolet rays, a waveguide cladding portion 13 having a refractive index lower than that of the waveguide core portion 12 is formed around the waveguide core portion 12, and an optical coupling element 14 having a core / cladding structure in the opening 11. Form. When irradiating ultraviolet rays to form the waveguide clad portion 13, after removing the light shielding mask 23, the ultraviolet rays are irradiated to the periphery of the opening 11, or the ultraviolet rays are irradiated from the lateral direction of the optical coupling element support 28. When a material that transmits ultraviolet rays, such as a polyimide resin, is used for the interposer substrate 25, light may be irradiated as it is from below.

このように遮光マスク23を使用して光結合素子支持体28の開口部11に導波路コア部12と導波路クラッド部13を有するコア・クラッド構造の光結合素子14を形成することにより、立体形状で形状が複雑な光結合素子支持体28の開口部11に光結合素子14を高い位置精度で形成することができ、高い光利用効率を実現した光電気変換モジュール1aを構成することができる。   In this way, by forming the core-clad structure optical coupling element 14 having the waveguide core section 12 and the waveguide cladding section 13 in the opening 11 of the optical coupling element support 28 using the light shielding mask 23, a three-dimensional structure is obtained. The optical coupling element 14 can be formed with high positional accuracy in the opening 11 of the optical coupling element support 28 having a complicated shape, and the photoelectric conversion module 1a realizing high light utilization efficiency can be configured. .

また、この場合も導波路コア部12を形成した後、導波路コア部12周囲の光硬化性樹脂21を除去した後に低屈折率用材料に入れ替えて導波路クラッド部13を形成しても良いし、添加物や照射条件を制御して低屈折率化しても良い。   Also in this case, after the waveguide core portion 12 is formed, the photocurable resin 21 around the waveguide core portion 12 is removed, and then the waveguide clad portion 13 is formed by replacing with a low refractive index material. Then, the refractive index may be lowered by controlling additives and irradiation conditions.

さらに、光結合素子支持体28の開口部11に、異なる材料で光結合素子となるコア・クラッド構造の光結合素子14を形成するから、光結合素子14とは異なる材料を光結合素子支持体28として用いることができ、光結合素子支持体28を複雑な構成にしたり、光コネクタの位置決め特性や光伝送モジュール全体の耐熱特性を向上させることもできる。   Furthermore, since the optical coupling element 14 having a core / cladding structure that becomes an optical coupling element is formed of a different material in the opening 11 of the optical coupling element support 28, a material different from the optical coupling element 14 is used as the optical coupling element support. The optical coupling element support 28 can have a complicated configuration, and the positioning characteristics of the optical connector and the heat resistance characteristics of the entire optical transmission module can be improved.

また、この場合も、遮光マスク23は、ガラスの基板に限定されず、金属やプラスチックで形成して、金属や不透明プラスチックの形状をそのまま遮光部材として用いたり、透明プラスチックにパターンを有する金属薄膜や不透明材料部分を形成して用いても良い。また、遮光マスク23を光硬化後に分離しないで、光電変換モジュール1aの一部としてコネクタ構造や上面保護層、封止構造、補強構造あるいは光学部材としてそのまま、または部分的に変形して用いても良い。   Also in this case, the light shielding mask 23 is not limited to a glass substrate, and is formed of metal or plastic, and the shape of metal or opaque plastic is used as it is as a light shielding member, or a metal thin film having a pattern on transparent plastic, An opaque material portion may be formed and used. Further, the light shielding mask 23 may not be separated after photocuring and may be used as a part of the photoelectric conversion module 1a as a connector structure, an upper surface protective layer, a sealing structure, a reinforcing structure, or an optical member as it is or partially modified. good.

また、図6の断面図に示すように、光電変換モジュール1のMID2の遮光マスク23を取り付ける面に、例えば四角錐形状の凹部31を設け、遮光マスク23にMID2の凹部31と嵌合する凸部32を設けて、遮光マスク23をMID2に取り付けるとき、MID2の凹部31と遮光マスク23の凸部32を画像検出して位置決めして取り付けると、遮光マスク23をMID2に高い相対位置精度で簡単に取り付けることができ、導波路コア部12と導波路クラッド部13を有するコア・クラッド構造の光結合素子14をより精度良く形成することができる。   Further, as shown in the cross-sectional view of FIG. 6, for example, a quadrangular pyramid-shaped concave portion 31 is provided on the surface to which the MID2 light shielding mask 23 of the photoelectric conversion module 1 is attached, and the light shielding mask 23 is fitted with the concave portion 31 of the MID2. When the light shielding mask 23 is attached to MID2 by providing the portion 32, if the concave portion 31 of the MID2 and the convex portion 32 of the light shielding mask 23 are detected and positioned and attached, the light shielding mask 23 is easily attached to the MID2 with high relative positional accuracy. The optical coupling element 14 having a core / cladding structure having the waveguide core portion 12 and the waveguide cladding portion 13 can be formed with higher accuracy.

同様に、図7の断面図に示すように、光電変換モジュール1aの光結合素子支持体28の遮光マスク23を取り付ける面に、例えば四角錐形状の凹部31を設け、遮光マスク23に光結合素子支持体28の凹部31と嵌合する凸部32を設けて、遮光マスク23を光結合素子支持体28に取り付けるとき、光結合素子支持体28の凹部31と遮光マスク23の凸部32を画像検出して位置決めして取り付けると、遮光マスク23を光結合素子支持体28に高い相対位置精度で簡単に取り付けることができ、導波路コア部12と導波路クラッド部13を有するコア・クラッド構造の光結合素子14をより精度良く形成することができる。   Similarly, as shown in the cross-sectional view of FIG. 7, for example, a quadrangular pyramid-shaped concave portion 31 is provided on the surface to which the light shielding mask 23 of the optical coupling element support 28 of the photoelectric conversion module 1 a is attached. When the light shielding mask 23 is attached to the optical coupling element support 28 by providing a convex part 32 that fits with the concave part 31 of the support 28, the concave part 31 of the light coupling element support 28 and the convex part 32 of the light shielding mask 23 are imaged. When detected, positioned, and attached, the light-shielding mask 23 can be easily attached to the optical coupling element support 28 with high relative positional accuracy, and the core-clad structure having the waveguide core portion 12 and the waveguide cladding portion 13 is provided. The optical coupling element 14 can be formed with higher accuracy.

このMID2や光結合素子支持体28に形成した凹部31と遮光マスク23に形成した凸部32は、四角錐形状に限定されず、直方体や円柱および直方錘や円錐等の鋸歯構造等で画像検出が可能であり、位置決めピンとして用いることができる形状であればどのような形状でも良い。さらに、MID2や光結合素子支持体28に凸部32を形成し、遮光マスク23に凹部31を形成しても良いし、MID2や光結合素子支持体28と遮光マスク23に、互いに嵌合する凹部31と凸部32を形成しても良い。   The concave portion 31 formed on the MID 2 and the optical coupling element support 28 and the convex portion 32 formed on the light shielding mask 23 are not limited to a quadrangular pyramid shape, and image detection is performed by a rectangular parallelepiped shape, a cylindrical shape, a sawtooth structure such as a rectangular weight shape and a cone shape. Any shape can be used as long as it can be used as a positioning pin. Further, the convex portion 32 may be formed on the MID2 or the optical coupling element support 28, and the concave portion 31 may be formed on the light shielding mask 23, or the MID2 or the optical coupling element support 28 and the light shielding mask 23 may be fitted to each other. The concave portion 31 and the convex portion 32 may be formed.

この発明の光電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion module of this invention. 光電変換モジュールのMIDに光結合素子を形成する処理を示す工程図である。It is process drawing which shows the process which forms an optical coupling element in MID of a photoelectric conversion module. マイクロレンズ形状を有する光結合素子を有する光電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion module which has the optical coupling element which has a microlens shape. この発明の第2の光電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the 2nd photoelectric conversion module of this invention. 第2の光電変換モジュールの光結合素子支持体に光結合素子を形成する処理を示す工程図である。It is process drawing which shows the process which forms an optical coupling element in the optical coupling element support body of a 2nd photoelectric conversion module. 第3の光電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of a 3rd photoelectric conversion module. 第4の光電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of a 4th photoelectric conversion module. 従来の光電変換素子パッケージの構成例を示す断面図である。It is sectional drawing which shows the structural example of the conventional photoelectric conversion element package. 従来の他の光電変換素子パッケージの構成を示す断面図である。It is sectional drawing which shows the structure of the other conventional photoelectric conversion element package.

符号の説明Explanation of symbols

1;光電変換モジュール、2;MID、3;上部電気配線、4;光電気変換素子、
5;レーザドライバ、6;トランスインピーダンスアンプ、7;接合バンプ、
8;アンダーフィル剤、9;熱インタポーザ、10;隙間充填剤、11;開口部、
12;導波路コア部、13;導波路クラッド部、14;光結合素子、
15;下部電気配線、16;ボールアレイ、17;主基板、18;電気配線、
20;平坦化金型、21;光硬化性樹脂、22;遮光開口パターン、
23;遮光マスク、24;紫外線光源、25;インタポーザ基板、
26;電気配線、27;ワイヤボンド、28;光結合素子支持体、
29;1次封止材料、30;2次封止材料、31;凹部、32;凸部。

1; photoelectric conversion module, 2; MID, 3; upper electrical wiring, 4; photoelectric conversion element,
5; Laser driver, 6; Transimpedance amplifier, 7; Bond bump,
8; underfill agent, 9; thermal interposer, 10; gap filler, 11; opening,
12: Waveguide core part, 13: Waveguide clad part, 14: Optical coupling element,
15; lower electrical wiring, 16; ball array, 17; main substrate, 18; electrical wiring,
20; flattening mold, 21; photocurable resin, 22; light-shielding opening pattern,
23; light shielding mask, 24; ultraviolet light source, 25; interposer substrate,
26; electrical wiring, 27; wire bond, 28; optical coupling element support,
29; primary sealing material, 30; secondary sealing material, 31; concave portion, 32; convex portion.

Claims (6)

基板と、基板上に設けた光電気変換素子と、基板上に設けた電気配線と、前記電気配線と前記光電気変換素子との電気接続を行う電気接続手段と、前記光電気変換素子と光結合を行う光結合素子とを有する光電気変換モジュールにおいて、
前記基板は、光結合素子形成用の貫通した開口を有し、前記開口内に光硬化性樹脂を充填して形成されたコア・クラッド構造の光結合素子を有することを特徴とする光電気変換モジュール。
A substrate, a photoelectric conversion element provided on the substrate, an electrical wiring provided on the substrate, electrical connection means for electrical connection between the electrical wiring and the photoelectric conversion element, the photoelectric conversion element and the light In a photoelectric conversion module having an optical coupling element that performs coupling,
The substrate has a through-hole for forming an optical coupling element, and has an optical coupling element having a core-clad structure formed by filling the opening with a photocurable resin. module.
基板と、基板上に設けた光電気変換素子と、基板上に設けた電気配線と、前記電気配線と前記光電気変換素子との電気接続を行う電気接続手段と、前記光電気変換素子と光結合を行う光結合素子が一部に設けられた光結合素子支持部材とを有する光電気変換モジュールにおいて、
前記光結合素子支持部材には、光結合素子形成用の貫通孔又は凹部が設けられ、前記開口又は凹部内に光硬化性樹脂を充填して形成されたコア・クラッド構造の光結合素子を有することを特徴とする光電気変換モジュール。
A substrate, a photoelectric conversion element provided on the substrate, an electrical wiring provided on the substrate, electrical connection means for electrical connection between the electrical wiring and the photoelectric conversion element, the photoelectric conversion element and the light In the photoelectric conversion module having an optical coupling element supporting member provided in part with an optical coupling element that performs coupling,
The optical coupling element support member is provided with a through hole or a recess for forming an optical coupling element, and has an optical coupling element having a core / cladding structure formed by filling a photocurable resin in the opening or the recess. A photoelectric conversion module characterized by that.
基板と、基板上に設けた光電気変換素子と、基板上に設けた電気配線と、前記電気配線と前記光電気変換素子との電気接続を行う電気接続手段と、前記光電気変換素子と光結合を行う光結合素子とを有する光電気変換モジュールの製造方法において、
前記基板に光結合素子形成用の貫通した開口を形成し、該開口に光硬化性樹脂を充填し、前記開口の光電気変換素子を取り付ける位置とは反対側に透過率面積変調マスクを設け、該透過率面積変調マスクを透過した光で前記光硬化性樹脂にコア・クラッド構造の光結合素子を形成することを特徴とする光電気変換モジュールの製造方法。
A substrate, a photoelectric conversion element provided on the substrate, an electrical wiring provided on the substrate, electrical connection means for electrical connection between the electrical wiring and the photoelectric conversion element, the photoelectric conversion element and the light In a method of manufacturing a photoelectric conversion module having an optical coupling element that performs coupling,
Forming a through-hole for forming an optical coupling element in the substrate, filling the opening with a photocurable resin, and providing a transmittance area modulation mask on a side opposite to the position where the photoelectric conversion element of the opening is attached; A method of manufacturing a photoelectric conversion module, comprising: forming an optical coupling element having a core / cladding structure in the photocurable resin with light transmitted through the transmittance area modulation mask.
前記基板の透過率面積変調マスク取付面と透過率面積変調マスクに互いに嵌合する凹凸構造を有し、該凹凸構造により透過率面積変調マスクを基板に位置合わせする請求項3記載の光電気変換モジュールの製造方法。   4. The photoelectric conversion according to claim 3, wherein the substrate has a concavo-convex structure fitted to the transmittance area modulation mask mounting surface and the transmittance area modulation mask of the substrate, and the transmittance area modulation mask is aligned with the substrate by the concavo-convex structure. Module manufacturing method. 基板と、基板上に設けた光電気変換素子と、基板上に設けた電気配線と、前記電気配線と前記光電気変換素子との電気接続を行う電気接続手段と、前記光電気変換素子と光結合を行う光結合素子が一部に設けられた光結合素子支持部材とを有する光電気変換モジュールの製造方法において、
前記光結合素子支持部材に光結合素子形成用の貫通孔又は凹部を形成し、該貫通孔又は凹部に光硬化性樹脂を充填し、前記開口又は凹部の開口している側に透過率面積変調マスクを設け、該透過率面積変調マスクを透過した光で前記光硬化性樹脂にコア・クラッド構造の光結合素子を形成することを特徴とする光電気変換モジュールの製造方法。
A substrate, a photoelectric conversion element provided on the substrate, an electrical wiring provided on the substrate, electrical connection means for electrical connection between the electrical wiring and the photoelectric conversion element, the photoelectric conversion element and the light In the manufacturing method of the photoelectric conversion module having the optical coupling element supporting member provided in part with the optical coupling element that performs coupling,
A through hole or a recess for forming an optical coupling element is formed in the optical coupling element support member, the photocurable resin is filled in the through hole or the recess, and a transmittance area modulation is performed on the opening side of the opening or the recess. A method for producing a photoelectric conversion module, comprising: providing a mask, and forming an optical coupling element having a core / clad structure in the photocurable resin with light transmitted through the transmittance area modulation mask.
前記光結合素子支持部材の透過率面積変調マスク取付面と透過率面積変調マスクに互いに嵌合する凹凸構造を有し、該凹凸構造により透過率面積変調マスクを光結合素子支持部材に位置合わせする請求項4記載の光電気変換モジュールの製造方法。

The light coupling element support member has a concavo-convex structure that fits into the transmittance area modulation mask mounting surface and the transmittance area modulation mask, and aligns the transmittance area modulation mask with the optical coupling element support member by the concavo-convex structure The manufacturing method of the photoelectric conversion module of Claim 4.

JP2005227441A 2005-08-05 2005-08-05 Photoelectric conversion module and its manufacturing method Pending JP2007041428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227441A JP2007041428A (en) 2005-08-05 2005-08-05 Photoelectric conversion module and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227441A JP2007041428A (en) 2005-08-05 2005-08-05 Photoelectric conversion module and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007041428A true JP2007041428A (en) 2007-02-15

Family

ID=37799452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227441A Pending JP2007041428A (en) 2005-08-05 2005-08-05 Photoelectric conversion module and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007041428A (en)

Similar Documents

Publication Publication Date Title
US9541718B2 (en) Photoelectric hybrid device and method for manufacturing same
US20060078248A1 (en) Structure and method for mounting LSI package onto photoelectric wiring board, information processing apparatus, optical interface, and photoelectric wiring board
JP6162114B2 (en) Optoelectronic module, optoelectronic module manufacturing method, and apparatus and device including the optoelectronic module
JP5493744B2 (en) Opto-electric hybrid board and method for manufacturing opto-electric hybrid board
JP5431145B2 (en) Optoelectronic device and printed circuit board device having optical waveguide
JP4503064B2 (en) Optical waveguide device manufacturing method, optical waveguide device obtained thereby, and optical waveguide connection structure used therefor
JP2004240220A (en) Optical module, its manufacturing method, hybrid integrated circuit, hybrid circuit board, electronic appliance, photoelectric hybrid device and its manufacturing method
JP2006202998A (en) Optoelectric transducer module and manufacturing method for composite molded form used therefor
JP2016206427A (en) Optical module and method of manufacturing the same
JP3822080B2 (en) Receptacle type optical module and production method thereof
JP4537758B2 (en) Optical transmission element module
JP4845333B2 (en) Photoelectric conversion element package, manufacturing method thereof, and optical connector
CN106104340B (en) The manufacture method of optical transport module and optical transport module
JP2008015036A (en) Optical subassembly, optical module, and manufacturing method of optical subassembly
JP4881329B2 (en) Optical waveguide device manufacturing method, optical waveguide device obtained thereby, and optical waveguide connection structure used therefor
JP2005292739A (en) Optical module
KR101256814B1 (en) All passive aligned optical module and manufacturing method thereof
JP2006133763A (en) Structure and method of mounting lsi package to photoelectric wiring board, information processing apparatus, optical interface and photoelectric wiring board
KR20100039892A (en) Housing-integrated optical semiconductor component and manufacturing method thereof
JP2005340770A (en) Electric-optic conversion module and optic-electric conversion module
JP2007187871A (en) Polymer optical waveguide and method for manufacturing same
JP2008191349A (en) Method of manufacturing optical communication module
JP2013057720A (en) Optical module
JP2007041428A (en) Photoelectric conversion module and its manufacturing method
JP5402786B2 (en) Manufacturing method of optical communication module