JP2007039254A - Combustion synthesis method and continuous reaction equipment - Google Patents

Combustion synthesis method and continuous reaction equipment Download PDF

Info

Publication number
JP2007039254A
JP2007039254A JP2005221920A JP2005221920A JP2007039254A JP 2007039254 A JP2007039254 A JP 2007039254A JP 2005221920 A JP2005221920 A JP 2005221920A JP 2005221920 A JP2005221920 A JP 2005221920A JP 2007039254 A JP2007039254 A JP 2007039254A
Authority
JP
Japan
Prior art keywords
reaction
raw material
combustion synthesis
mixing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005221920A
Other languages
Japanese (ja)
Inventor
Akinari Ohira
晃也 大平
Tatsuo Nakajima
達雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005221920A priority Critical patent/JP2007039254A/en
Publication of JP2007039254A publication Critical patent/JP2007039254A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion synthesis method enabling continuous combustion synthesis reaction, and continuous reaction equipment used for the method. <P>SOLUTION: According to this continuous combustion synthesis method, the chain synthesis reaction of a substance is performed without needing external heating. The method comprises: a mixing process for mixing a plurality of raw materials; a charging process for charging the mixed raw material in a continuously moving conveyer type reactor; a reaction process for reacting the mixed raw material while conveying by igniting at a prescribed timing; and a takeoff process for taking off the obtained reaction product from the conveyer type reactor after cooling. The conveyer type reactor is composed of a material which does not cause oxidation reaction itself in the combustion chemical reaction in the above reaction process and also has low thermal expansivity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は燃焼合成方法およびその燃焼合成方法に用いる連続式反応装置に関する。   The present invention relates to a combustion synthesis method and a continuous reaction apparatus used for the combustion synthesis method.

従来のセラミックスの合成には、1000℃から 2000℃前後の炉を用いて外部加熱を行なわなくてはならない。このため、セラミックスの合成には、膨大なエネルギーと大型の加熱機構を必要とし、これが製造コストを高くする原因となっている。
外部加熱を行なわない製造方法として、燃焼合成によるセラミックス粉末の合成が知られている(特許文献1、特許文献2)。燃焼合成法は、外部加熱を必要とすることなく、化合時に放出される大量の化学熱反応を利用して連鎖的に物質を合成する方法である。
To synthesize conventional ceramics, external heating must be performed using a furnace at around 1000 ° C to 2000 ° C. For this reason, the synthesis of ceramics requires enormous energy and a large heating mechanism, which increases the manufacturing cost.
As a manufacturing method that does not perform external heating, synthesis of ceramic powder by combustion synthesis is known (Patent Document 1, Patent Document 2). The combustion synthesis method is a method of synthesizing substances in a chain manner by utilizing a large amount of chemical heat reaction released at the time of compounding without requiring external heating.

上記特許文献1による製造方法では、1種類の金属酸化物と2種類の異なる金属元素の計3種類の原料を出発原料とし、金属間化合物あるいは非酸化物セラミックスと酸化物セラミックスの2種類を合成している。例えば、酸化ニッケル粉末とアルミニウム粉末とアルミナ粉末とを混合し金型プレスを用いて円形状の成形体とした後、カーボンプレートに乗せ、高圧反応容器内に収納し、アルゴン雰囲気下で該成形体の上端面を着火することによりアルミニウム粉末の酸化燃焼反応を誘導し、還元されたニッケルが過剰に添加したアルミニウムと反応してNiAlを合成しながら、燃焼反応が連鎖的に進行する。その結果、外部加熱なしに金属間化合物の1つであるNiTiのインゴットを製造することができる。
上記特許文献2による製造方法では、チタン粉末とカーボン粉末をモル比で1:1に混合し、得られた混合粉末を円柱状成形体とし、次いで、空気中、黒鉛板上に置いた上記成形体の上部一端を放電により着火させて燃焼合成反応させる方法が開示されている。この方法により、表面層が主として酸化チタンセラミックスからなり、内部が主として炭化チタンセラミックスからなる多孔質体が得られている。
In the manufacturing method according to Patent Document 1, three kinds of raw materials, ie, one kind of metal oxide and two kinds of different metal elements, are used as starting materials, and two kinds of intermetallic compounds or non-oxide ceramics and oxide ceramics are synthesized. is doing. For example, after mixing nickel oxide powder, aluminum powder, and alumina powder into a circular shaped product using a die press, the product is placed on a carbon plate, stored in a high-pressure reaction vessel, and the molded product in an argon atmosphere. The oxidation reaction of aluminum powder is induced by igniting the upper end surface of the metal, and the combustion reaction proceeds in a chain while reacting with the excessively added aluminum of the reduced nickel to synthesize NiAl. As a result, an ingot of NiTi that is one of intermetallic compounds can be manufactured without external heating.
In the production method according to Patent Document 2, titanium powder and carbon powder are mixed at a molar ratio of 1: 1, and the obtained mixed powder is formed into a cylindrical molded body, and then placed in the air on a graphite plate. A method is disclosed in which an upper end of a body is ignited by discharge to cause a combustion synthesis reaction. By this method, a porous body having a surface layer mainly made of titanium oxide ceramics and an inside mainly made of titanium carbide ceramics has been obtained.

しかしながら、従来の製造方法は、酸化物系原料と酸素供給源となる原料とを所定割合で混合する工程と、所定の配合比で混合された無機材料を予め円形または円柱状に成形する工程と成形体を反応装置に収容する工程と、成形体に着火させて反応させる工程とを備えた燃焼合成方法であり、少なくとも上記原料を成形する工程と、成形体を反応させる工程とは分離する必要がある。また、空気中で燃焼合成を行なうと、燃焼時の酸化反応により黒鉛材が損傷するおそれがある。したがって、反応系をガス置換または脱気することが必須となり、装置の密閉化が必要である。さらに着火後の成形体の燃焼合成は発火・爆発の危険性もあることから、バッチ方式の反応装置を用いる製造方法を採用せざるを得なかった。このため、バッチ方式の反応装置を用いる製造方法では、バッチ毎の品質管理が必要で、製造工程数の増加や工程の安全管理を含めた設備コストの増大に加え、生産効率の向上にも制限を受ける等の問題があった。
特開平5−9009号公報 特開2003−55063号公報
However, the conventional manufacturing method includes a step of mixing an oxide-based raw material and a raw material serving as an oxygen supply source at a predetermined ratio, and a step of previously forming an inorganic material mixed at a predetermined mixing ratio into a circular shape or a cylindrical shape. A combustion synthesis method comprising a step of accommodating a molded body in a reactor and a step of igniting and reacting the molded body. At least the step of molding the raw material and the step of reacting the molded body must be separated. There is. In addition, if combustion synthesis is performed in air, the graphite material may be damaged by an oxidation reaction during combustion. Therefore, it is essential to replace or degas the reaction system, and it is necessary to seal the apparatus. Further, since the combustion synthesis of the molded body after ignition has a risk of ignition and explosion, a production method using a batch type reaction apparatus has to be adopted. For this reason, production methods using batch-type reactors require quality control for each batch, and in addition to an increase in equipment costs, including an increase in the number of manufacturing processes and process safety management, there are also restrictions on improving production efficiency. There was a problem such as receiving.
Japanese Patent Laid-Open No. 5-9009 JP 2003-55063 A

本発明はこのような問題に対処するためになされたもので、連続して燃焼合成反応を可能とする燃焼合成方法および該燃焼合成方法に用いる連続式反応設備の提供を目的とする。   The present invention has been made to address such problems, and an object of the present invention is to provide a combustion synthesis method capable of continuously performing a combustion synthesis reaction and a continuous reaction facility used in the combustion synthesis method.

本発明の燃焼合成方法は、原料が化合するときの燃焼化学反応により、外部加熱を必要とすることなく連鎖的に物質が合成される燃焼合成を連続的に行なう燃焼合成方法であって、該燃焼合成方法は、複数の原料を混合する混合工程と、得られた混合原料を連続で移動する搬送式反応器内に投入する投入工程と、上記搬送中の混合原料に所定のタイミングで着火して反応させる反応工程と、得られた反応生成物を冷却後に搬送式反応器から取り出す取出工程とを備えてなり、上記搬送式反応器を構成する材料は、上記反応工程の燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質であることを特徴とする。
本発明において、低熱膨張物質とは、熱膨張率が 3.0×10-6/℃以下の物質をいう。
The combustion synthesis method of the present invention is a combustion synthesis method for continuously performing combustion synthesis in which substances are synthesized in a chain manner without the need for external heating by a combustion chemical reaction when raw materials are combined, The combustion synthesis method includes a mixing step of mixing a plurality of raw materials, an input step of feeding the obtained mixed raw materials into a transport reactor that continuously moves, and igniting the mixed raw materials being transported at a predetermined timing. A reaction step for reacting with each other, and an extraction step for removing the obtained reaction product from the transport reactor after cooling, and the material constituting the transport reactor is itself in the combustion chemical reaction of the reaction step. It is characterized by being a low thermal expansion material.
In the present invention, the low thermal expansion substance means a substance having a thermal expansion coefficient of 3.0 × 10 −6 / ° C. or less.

上記混合原料は、酸素供給源である過酸化物粉末と、発熱源である金属粉末とを少なくとも含み、上記投入工程は、予め上記過酸化物粉末および金属粉末のいずれか一方と、安定な原料粉末とを所定の比率で予備混合して中間原料を得た後、この予備混合に使用しなかった粉末を上記中間原料に、所定の比率で混合して混合原料とした後に投入する工程であることを特徴とする。   The mixed raw material includes at least a peroxide powder that is an oxygen supply source and a metal powder that is a heat generation source, and the charging step includes either one of the peroxide powder or the metal powder in advance and a stable raw material. This is a step of pre-mixing powder with a predetermined ratio to obtain an intermediate raw material, and then mixing the powder not used for this pre-mixing with the intermediate raw material at a predetermined ratio to obtain a mixed raw material. It is characterized by that.

上記搬送式反応器の搬送速度は、上記反応工程において燃焼合成が伝播する速度と同調した速度であり、その搬送方向は、上記反応工程における燃焼合成反応の主伝播方向と略反対方向であることを特徴とする。   The transport speed of the transport reactor is synchronized with the speed at which combustion synthesis is propagated in the reaction process, and the transport direction is substantially opposite to the main propagation direction of the combustion synthesis reaction in the reaction process. It is characterized by.

上記反応工程における着火は、上記混合原料の燃焼合成反応を途切れさせない時間間隔で行なうことを特徴とする。   The ignition in the reaction step is performed at time intervals that do not interrupt the combustion synthesis reaction of the mixed raw material.

本発明の連続式反応設備は、上記の燃焼合成方法により燃焼合成を行なうための連続式反応設備であって、複数の原料を混合する混合装置と、上記混合原料を所定速度で連続で搬送する搬送式反応器と、上記混合装置により得られた混合原料を上記搬送式反応器内に投入する投入装置と、搬送中の上記混合原料に所定のタイミングで着火して反応させる反応装置と、得られた反応生成物を冷却後に搬送設備から取り出す取出装置とを備えてなり、上記搬送式反応器を構成する材料は、上記反応装置内での燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質であることを特徴とする。   A continuous reaction facility according to the present invention is a continuous reaction facility for performing combustion synthesis by the above-described combustion synthesis method, and a mixing device that mixes a plurality of raw materials, and the mixed raw materials are continuously conveyed at a predetermined speed. A transport reactor, an input device for charging the mixed raw material obtained by the mixing device into the transport reactor, a reaction device for igniting and reacting the mixed raw material being transported at a predetermined timing, and And a take-out device for taking out the reaction product obtained from the transport facility after cooling, and the material constituting the transport reactor does not undergo its own oxidation reaction in the combustion chemical reaction in the reaction device, and It is a low thermal expansion material.

本発明の燃焼合成方法は、酸化物系原料と酸素供給源とが直接接触しない原料混合方法を採用し、燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質である材料で構成された搬送式反応器を用いるので、燃焼合成反応を空気中で行なうことができ、原料粉末の混合工程から反応生成物の取出工程までを連続して処理することが可能となる。その結果、品質管理の軽減、製造工程数の減少や工程の安全管理を含めた設備コストの低減に加え、生産効率の向上が可能となった。   The combustion synthesis method of the present invention employs a raw material mixing method in which the oxide-based raw material and the oxygen supply source are not in direct contact, and is composed of a material that does not generate its own oxidation reaction in the combustion chemical reaction and is a low thermal expansion substance. In addition, the combustion synthesis reaction can be performed in the air, and the process from the raw material powder mixing step to the reaction product extraction step can be continuously performed. As a result, it has become possible to improve production efficiency, in addition to reducing equipment costs, including reducing quality control, reducing the number of manufacturing processes and managing process safety.

本発明の連続式反応設備は、セラミックスの燃焼合成反応において原料粉末の混合工程で酸化物系原料と酸素供給源とが直接接触しない方法によって安定化した混合原料を用い、装置材料に燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質である材料を用いるので、燃焼合成反応において原料の発火や爆発を防ぐとともに、燃焼時の酸化反応による反応器の損傷を防止することができる。その結果、この連続式反応設備を用いることによって、投入される混合原料毎に連続して空気中で燃焼合成反応を行なうことが可能になった。   The continuous reaction facility of the present invention uses a mixed raw material stabilized by a method in which the oxide-based raw material and the oxygen supply source do not come into direct contact in the raw material powder mixing step in the ceramic combustion synthesis reaction, and the combustion chemical reaction is performed on the equipment material. In this case, since a material that does not undergo its own oxidation reaction and is a low thermal expansion substance is used, it is possible to prevent ignition and explosion of the raw material in the combustion synthesis reaction and to prevent damage to the reactor due to the oxidation reaction during combustion. As a result, by using this continuous reaction equipment, it has become possible to carry out a combustion synthesis reaction in air continuously for each mixed raw material to be charged.

本発明の燃焼合成方法を図1に基づいて説明する。図1は燃焼合成方法を示す工程図である。図1に示すように燃焼合成方法は、主生成物を構成する元素源となる複数の原料を混合する混合工程1と、混合原料Eを搬送式反応器内に投入する投入工程2と、上記搬送式反応器内の混合原料Eを所定速度で搬送する搬送工程3と、上記搬送中の混合原料Eに所定のタイミングで着火して反応させる反応工程4と、得られた反応生成物Fを冷却後に搬送式反応器から取り出す取出工程5とを備えてなる。
また、特に混合工程1において、過酸化物粉末および金属粉末のいずれか一方Aと、安定な原料粉末Bとを所定の割合で予備混合して中間原料Cとし、この中間原料Cと、予備混合に使用しなかった粉末Dとを所定の割合で混合して混合原料Eを得る。
The combustion synthesis method of the present invention will be described with reference to FIG. FIG. 1 is a process diagram showing a combustion synthesis method. As shown in FIG. 1, the combustion synthesis method includes a mixing step 1 for mixing a plurality of raw materials serving as an element source constituting the main product, a charging step 2 for charging the mixed raw material E into the transport reactor, A transport process 3 for transporting the mixed raw material E in the transport reactor at a predetermined speed, a reaction process 4 for igniting and reacting the mixed raw material E being transported at a predetermined timing, and the obtained reaction product F. And an extraction step 5 that is taken out from the transport reactor after cooling.
In particular, in the mixing step 1, either one of the peroxide powder and the metal powder and the stable raw material powder B are premixed at a predetermined ratio to obtain an intermediate raw material C. The raw material E is obtained by mixing the powder D, which was not used for the above, at a predetermined ratio.

本発明における搬送式反応器は、コンベア等の移動式部材そのもの、または、これらの移動式部材上に載置した坩堝等の反応容器である。コンベア自体を反応器として用いる場合は、該コンベア上に混合原料を載せ、反応容器を用いる場合には、該反応容器内に混合原料を投入する。これらの搬送式反応器を構成する材料は、上記反応工程の燃焼化学反応において、該混合原料と接触する部分で自身の酸化反応が生ぜず、かつ低熱膨張物質である。
該材料は、熱膨張率が黒鉛(熱膨張率 5×10-6/℃)よりも小さいことが好ましく、特にチタン酸−アルミニウム系セラミックス(熱膨張率 1.2×10-6/℃)であることが好ましい。
本発明の燃焼合成方法は、上記材質の反応器を用いることにより従来は困難であった空気中における燃焼合成方法が可能になることに着目し、チャンバー等を用いずに空気中で連続的に燃焼合成を行なうものである。
The transport reactor in the present invention is a movable member itself such as a conveyor, or a reaction vessel such as a crucible placed on these movable members. When the conveyor itself is used as a reactor, mixed raw materials are placed on the conveyor, and when a reaction vessel is used, the mixed raw materials are put into the reaction vessel. The material constituting these transport reactors is a low thermal expansion substance that does not undergo its own oxidation reaction at the portion in contact with the mixed raw material in the combustion chemical reaction of the above reaction step.
The material preferably has a thermal expansion coefficient smaller than that of graphite (thermal expansion coefficient 5 × 10 −6 / ° C.), and is particularly titanate-aluminum ceramic (thermal expansion coefficient 1.2 × 10 −6 / ° C.). Is preferred.
Focusing on the fact that the combustion synthesis method of the present invention enables a combustion synthesis method in air, which has been difficult in the past, by using a reactor of the above-described material, and continuously in the air without using a chamber or the like. Combustion synthesis is performed.

燃焼化学反応は、外部加熱を必要とすることなく、原料の化合時に放出される大量の燃焼熱を利用する反応であり、この反応により連鎖的に物質が合成される。本発明の燃焼合成方法としては、酸化物系原料と酸素供給源とを原料とする燃焼合成方法が挙げられる。該燃焼合成方法の反応系としては、(イ)4族元素を含む金属粉末、2族元素を含む元素の炭酸塩、および2族元素を含む元素の過酸化物とを少なくとも含む反応原料を用いる反応系、(ロ)4族元素を含む金属粉末と、2族元素を含む元素の炭酸塩と、過塩素酸ナトリウムとを少なくとも含む反応原料を用いる反応系が挙げられる。   A combustion chemical reaction is a reaction that uses a large amount of combustion heat released during the combination of raw materials without requiring external heating, and a substance is synthesized in a chain by this reaction. Examples of the combustion synthesis method of the present invention include a combustion synthesis method using an oxide-based material and an oxygen supply source as raw materials. As the reaction system of the combustion synthesis method, (i) a reaction raw material containing at least a metal powder containing a Group 4 element, a carbonate of an element containing a Group 2 element, and a peroxide of an element containing a Group 2 element is used. And (b) a reaction system using a reaction raw material containing at least a metal powder containing a Group 4 element, a carbonate of an element containing a Group 2 element, and sodium perchlorate.

上記(イ)の反応系としては、4族金属粉末、2族炭酸塩、および2族過酸化物のみ、または、これに4族金属酸化物を加えたものであることが反応生成物が圧電性、誘電特性、コスト面などに優れるので好ましい。例えば、チタン酸バリウム(BaTiO3 )やチタン酸カルシウム(CaTiO3 )などの誘電体セラミックスを合成する場合、以下の化学反応式にしたがって生成する。反応原料である4族金属粉末と、2族炭酸塩と、2族過酸化物とは、下記化学反応式を満たすそれぞれのモル質量に相当する量で配合する。
また、4族金属酸化物を配合する場合は、断熱火炎温度を 1500℃以上に維持できる割合で配合する。該4族金属酸化物の割合を増加させることで断熱火炎温度を下げることができる。

Ti+2TiO2+BaCO3+2BaO2→3BaTiO3+CO2
Ti+2TiO2+CaCO3+2CaO2→3CaTiO3+CO2
Ti+2TiO2+BaCO3+2CaO2→3(Ba1/3,Ca2/3)TiO3+CO2
Ti+2TiO2+CaCO3+2BaO2→3(Ba2/3,Ca1/3)TiO3+CO2
The reaction system (b) may be a group 4 metal powder, a group 2 carbonate, and a group 2 peroxide alone, or a reaction product obtained by adding a group 4 metal oxide to the piezoelectric. It is preferable because of its excellent properties, dielectric properties, cost and the like. For example, when dielectric ceramics such as barium titanate (BaTiO 3 ) and calcium titanate (CaTiO 3 ) are synthesized, they are generated according to the following chemical reaction formula. The group 4 metal powder, the group 2 carbonate, and the group 2 peroxide, which are reaction raw materials, are blended in amounts corresponding to respective molar masses that satisfy the following chemical reaction formula.
In addition, when blending Group 4 metal oxides, blend them at a rate that allows the adiabatic flame temperature to be maintained at 1500 ° C or higher. The adiabatic flame temperature can be lowered by increasing the proportion of the Group 4 metal oxide.

Ti + 2TiO 2 + BaCO 3 + 2BaO 2 → 3BaTiO 3 + CO 2
Ti + 2TiO 2 + CaCO 3 + 2CaO 2 → 3CaTiO 3 + CO 2
Ti + 2TiO 2 + BaCO 3 + 2CaO 2 → 3 (Ba 1/3 , Ca 2/3 ) TiO 3 + CO 2
Ti + 2TiO 2 + CaCO 3 + 2BaO 2 → 3 (Ba 2/3 , Ca 1/3 ) TiO 3 + CO 2

上記(ロ)の反応系としては、4族金属粉末、2族炭酸塩、およびNaClO4のみ、または、これに4族金属酸化物を加えたものであることが反応生成物が洗浄性に優れ、圧電性、誘電特性に優れるので好ましい。
例えばチタン酸ストロンチウム(SrTiO3)の場合、以下の化学反応式にしたがって生成する。各反応原料は、4族金属粉末と2族炭酸塩とは反応に必要なそれぞれのモル質量に相当する量を配合するが、酸素発生物質は反応に必要なモル質量以上を配合できる。

Ti+SrCO3+0.5NaClO4 → SrTiO3+CO2↑+0.5NaCl
The reaction system of (b) above is a group 4 metal powder, a group 2 carbonate, and NaClO 4 alone, or the addition of a group 4 metal oxide to this, and the reaction product has excellent detergency. It is preferable because of its excellent piezoelectricity and dielectric properties.
For example, in the case of strontium titanate (SrTiO 3 ), it is produced according to the following chemical reaction formula. Each reaction raw material is blended in an amount corresponding to the molar mass required for the reaction between the Group 4 metal powder and the Group 2 carbonate, but the oxygen generating substance can be blended in an amount greater than the molar mass necessary for the reaction.

Ti + SrCO 3 + 0.5NaClO 4 → SrTiO 3 + CO 2 ↑ + 0.5NaCl

本発明の燃焼合成方法において、酸化物系原料と酸素供給源とを所定割合で混合する混合工程1は、上記(イ)または(ロ)の反応系において最終生成物が形成できる原子割合で混合した原料をボールミル、ヘンシェルミキサー、レーディゲミキサー、タンブラー等の公知の混合装置を用いて混合する工程である。   In the combustion synthesis method of the present invention, the mixing step 1 in which the oxide-based raw material and the oxygen supply source are mixed at a predetermined ratio is mixed at an atomic ratio capable of forming a final product in the reaction system (b) or (b) In this step, the raw material is mixed using a known mixing apparatus such as a ball mill, a Henschel mixer, a Laedige mixer, or a tumbler.

また、混合工程1では、予備混合工程を設け反応性粉末である過酸化物粉末(反応性粉末X)と、同じく反応性粉末である金属粉末(反応性粉末Y)とが同時に接触しないように、反応性粉末Xと、これに反応することのない安定な原料粉末とを予備混合して安定な中間原料を得た後、反応性粉末Yを加えて混合することが好ましい。
反応性粉末は中間原料粉末の中で安定な原料粉末によって周囲を覆われているため、原料粉末中における該反応性粉末の濃度が低く反応因子が低減されるので、発火に至ることなく安全に乾式混合することができる。
Further, in the mixing step 1, a pre-mixing step is provided so that the peroxide powder (reactive powder X) which is a reactive powder and the metal powder (reactive powder Y) which is also a reactive powder do not contact at the same time. It is preferable that the reactive powder X and the stable raw material powder that does not react with this are premixed to obtain a stable intermediate raw material, and then the reactive powder Y is added and mixed.
Since the reactive powder is covered with a stable raw material powder in the intermediate raw material powder, the concentration of the reactive powder in the raw material powder is low and the reaction factor is reduced. Can be dry mixed.

上記(イ)または(ロ)の反応系において、反応原料としての4族元素を含む金属の形状は、微粉末であることが好ましく、比表面積が 0.01〜2 m2/g である。燃焼波が伝播し、かつ取り扱いやすいので好ましい比表面積の範囲は 0.1〜0.6 m2/g である。比表面積が 0.01 m2/g 未満の場合、発熱源となる金属粉未と酸素供給源となる過酸化物の接触面積が少ないため、燃焼波が伝播せず、セラミックスが合成できない場合がある。また、比表面積が 2 m2/g をこえる金属粉未は極めて活性であり、取り扱いが困難となるため好ましくない。
なお本発明において、金属粉末の比表面積は、BET法により測定された値をいう。
In the reaction system (a) or (b), the shape of the metal containing a group 4 element as a reaction raw material is preferably a fine powder, and the specific surface area is 0.01 to 2 m 2 / g. A preferable specific surface area is 0.1 to 0.6 m 2 / g because the combustion wave propagates and is easy to handle. When the specific surface area is less than 0.01 m 2 / g, the contact area between the metal powder that is a heat generation source and the peroxide that is an oxygen supply source is small, so that combustion waves may not propagate and ceramics may not be synthesized. In addition, metal powders having a specific surface area exceeding 2 m 2 / g are not preferable because they are extremely active and difficult to handle.
In the present invention, the specific surface area of the metal powder is a value measured by the BET method.

また、金属微粉末は、平均粒子径が同一であっても、比表面積が異なると反応性に差が認められる。すなわち、球状よりも比表面積が大きくなる形状の金属粉末を用いると燃焼合成反応がより速やかに進行した。比表面積が大きくなる形状としては、球状粒子表面に複数の凹凸が形成された粒子、粒子全体としていびつな形状の粒子、またはこれらの組み合わせがある。
本発明に使用できる平均粒子径としては 150μm 以下、好ましくは 0.1〜100μm である。150μm をこえると、他の原材料との混合が十分でなくなり、燃焼波が伝播しない場合が生じる。表面に凹凸が形成された粒子またはいびつな形状の平均粒子径の測定方法は、画像解析法が好ましい。
Moreover, even if the average particle diameter of the metal fine powder is the same, a difference in reactivity is recognized when the specific surface area is different. That is, when a metal powder having a specific surface area larger than that of a spherical shape was used, the combustion synthesis reaction proceeded more rapidly. Examples of the shape having a large specific surface area include particles having a plurality of irregularities formed on the surface of spherical particles, particles having an irregular shape as a whole, or a combination thereof.
The average particle size that can be used in the present invention is 150 μm or less, preferably 0.1 to 100 μm. If it exceeds 150 μm, mixing with other raw materials will be insufficient, and combustion waves may not propagate. An image analysis method is preferable as a method for measuring the average particle diameter of particles having irregularities formed on the surface or an irregular shape.

所定割合で混合された混合物を投入する投入工程2は、混合粉末を搬送式反応器内に投入する工程である。コンベア自体を反応器として用いる場合は、該コンベア上に混合原料を連続して均一に敷き詰める。また、反応容器を用いる場合には、所定量の混合原料を反応容器毎に投入する。
混合原料Eは、必要に応じてペレット化した後に投入される。また、投入後において反応容器内でペレット状に押し固める等の処理を行なってもよい。ペレット状に押し固めるには、たとえばポリビニルアルコールなどの高分子材料を粘結剤として使用することができる。
The charging step 2 for charging the mixture mixed at a predetermined ratio is a step for charging the mixed powder into the transport reactor. When the conveyor itself is used as a reactor, the mixed raw materials are continuously spread uniformly on the conveyor. In addition, when using reaction vessels, a predetermined amount of the mixed raw material is charged into each reaction vessel.
The mixed raw material E is charged after being pelletized as necessary. Moreover, you may perform the process of pressing into a pellet form within reaction container after injection | throwing-in. For pressing into a pellet, a polymer material such as polyvinyl alcohol can be used as a binder.

搬送工程3は、混合原料Eを所定速度で搬送する工程である。
コンベア上に直接混合原料を投入する場合では、該搬送工程における搬送速度を、燃焼合成が伝播する速度と同調した速度とし、搬送方向を、燃焼合成反応の主伝播方向と略反対方向とすることが好ましい。この場合、搬送されてきた混合原料の先端部に着火させることにより、断熱火炎温度が 1500 ℃以上である燃焼合成反応が開始し、燃焼合成波となって未反応の混合原料が搬送されて来る方向に主として伝播するので、連続して燃焼合成反応を起こすことができる。
なお、燃焼合成波が伝播する速度は、混合原料において反応希釈剤となる4族金属酸化物等の割合を増加させることで減速できる。
また、コンベア上に坩堝等の反応容器をおいて、該反応容器毎に燃焼合成反応を行なうセミバッチ式の場合では、搬送速度は適宜決定できる。
また、反応工程前に混合原料を、予備加熱することで、反応の進みにくい系でも燃焼伝播がしやすくなる。予備加熱は、例えば反応装置の前部に、加熱ヒータ、遠赤外線ヒータ等を設置することで行なう。
The conveyance process 3 is a process of conveying the mixed raw material E at a predetermined speed.
When the mixed raw materials are directly fed onto the conveyor, the transport speed in the transport process is set to a speed synchronized with the speed at which the combustion synthesis is propagated, and the transport direction is substantially opposite to the main propagation direction of the combustion synthesis reaction. Is preferred. In this case, by igniting the leading end of the mixed raw material that has been conveyed, a combustion synthesis reaction with an adiabatic flame temperature of 1500 ° C or higher starts, and a non-reacted mixed raw material is conveyed as a combustion synthetic wave. Since it mainly propagates in the direction, it is possible to cause a combustion synthesis reaction continuously.
In addition, the speed at which the combustion synthetic wave propagates can be reduced by increasing the proportion of the group 4 metal oxide or the like that becomes the reaction diluent in the mixed raw material.
In the case of a semi-batch type in which a reaction vessel such as a crucible is placed on a conveyor and a combustion synthesis reaction is performed for each reaction vessel, the conveyance speed can be determined as appropriate.
Further, by preheating the mixed raw material before the reaction step, combustion propagation is facilitated even in a system in which the reaction does not proceed easily. Preheating is performed by installing a heater, a far-infrared heater, etc. in the front part of the reaction apparatus, for example.

反応工程4において上記混合原料に着火する方法は、混合原料が着火発熱可能となる方法であれば特に限定されない。本発明においては、燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質の材料を用いた搬送式反応器を用いているので、カーボンフィルムを着火発熱させて熱源とし、混合粉末に接触させて着火発熱させる方法が取り扱いに優れているので好ましい。
着火は、燃焼合成反応を途切れさせない時間間隔で行なう。なお、混合原料を反応容器内に投入する場合には、反応容器毎に1回行なう。
また反応工程4では、燃焼合成反応により得られた反応生成物を、自然放冷または強制冷却により冷却することが好ましい。
The method of igniting the mixed raw material in the reaction step 4 is not particularly limited as long as the mixed raw material can ignite and generate heat. In the present invention, since the oxidation reaction does not occur in the combustion chemical reaction and the transport reactor using the material of the low thermal expansion material is used, the carbon film is ignited to generate heat and contact the mixed powder. The method of causing the heat to ignite is preferable because it is excellent in handling.
Ignition is performed at time intervals that do not interrupt the combustion synthesis reaction. In addition, when charging the mixed raw material into the reaction vessel, it is performed once for each reaction vessel.
In the reaction step 4, the reaction product obtained by the combustion synthesis reaction is preferably cooled by natural cooling or forced cooling.

取出工程5は、燃焼合成が終了した反応生成物または反応生成物の入っている反応容器を搬送設備から取り出す工程である。取り出された反応生成物は粉砕、異物除去等の別工程を経て製品となる。   The take-out process 5 is a process of taking out the reaction product after the combustion synthesis or the reaction vessel containing the reaction product from the transport facility. The taken out reaction product becomes a product through other processes such as pulverization and foreign matter removal.

本発明の一実施例に係る連続式反応設備を図2に基づいて説明する。図2は、連続式反応設備のフローを示す図である。図2に示すように、連続式反応設備は、予め過酸化物粉末および金属粉末のいずれか一方と、安定な原料粉末とを予備混合して中間原料粉末を得る予備混合装置6と、上記予備混合に使用しなかった粉末を上記中間原料粉末に、所定の比率で混合する混合装置7と、混合された原料粉末を投入する投入装置8と、混合原料が投入された反応容器10aを所定速度で搬送するベルトコンベア9と、搬送中の前記混合原料に所定のタイミングで着火して反応させる反応装置10と、反応生成物を冷却後に搬送式反応器から取り出す取出装置11とから構成される。該実施例の場合、反応容器10aとベルトコンベア9とから搬送式反応器が構成されている。   A continuous reaction facility according to an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing a flow of the continuous reaction facility. As shown in FIG. 2, the continuous reaction equipment includes a premixing device 6 that preliminarily mixes one of a peroxide powder and a metal powder and a stable raw material powder to obtain an intermediate raw material powder, A mixing device 7 for mixing the powder not used for mixing with the intermediate raw material powder at a predetermined ratio, a charging device 8 for charging the mixed raw material powder, and a reaction vessel 10a charged with the mixed raw material at a predetermined speed. And a reaction device 10 that ignites and reacts the mixed raw material being conveyed at a predetermined timing, and a take-out device 11 that extracts the reaction product from the conveyance reactor after cooling. In the case of this example, a transport reactor is constituted by the reaction vessel 10a and the belt conveyor 9.

予備混合装置6は、原料となる過酸化物粉末および金属粉末のいずれか一方Aを計量する装置6aと、安定な原料粉末Bを計量する装置6bと、AおよびBを所定の割合で計量して予備混合した中間原料粉末Cを貯蔵する装置6cとを有し、混合装置7は予備混合に使用しなかった粉末Dを計量する装置7aと、中間原料粉末Cを計量して粉末Dと混合した混合原料Eを貯蔵する装置7bを有する。
これらの原料の混合にはボールミル、ニーダー、リボンブレンダー、ヘンシェルミキサー、レーディゲミキサー、タンブラー等の公知の混合装置を使用することができる。また、混合原料を所定の周期で連続的に作製するには、オートフィーダー等の自動計量機を混合装置に組み込むことが好ましい。混合装置としては、原料の混合、貯槽の機能を併せ持つことができ、自動計量機と組合せて、原料の計量、混合、貯蔵、投入の一連の操作を自動化しやすいリボンブレンダーやヘンシェルミキサーを用いることが好ましい。
The premixing device 6 is a device 6a that measures one of the raw material peroxide powder and metal powder A, a device 6b that measures stable raw material powder B, and measures A and B at a predetermined ratio. And a device 6c for storing the intermediate raw material powder C preliminarily mixed. The mixing device 7 measures the powder D not used for the premixing, and measures the intermediate raw material powder C and mixes it with the powder D. And a device 7b for storing the mixed raw material E.
For mixing these raw materials, a known mixing apparatus such as a ball mill, a kneader, a ribbon blender, a Henschel mixer, a Ladige mixer, and a tumbler can be used. In order to continuously produce the mixed raw material at a predetermined cycle, it is preferable to incorporate an automatic weighing machine such as an auto feeder into the mixing device. As a mixing device, it can have the functions of mixing and storage of raw materials, and in combination with an automatic weighing machine, use a ribbon blender or Henschel mixer that can easily automate the series of operations of raw material weighing, mixing, storage and charging. Is preferred.

混合原料Eは所定速度で搬送するベルトコンベア9の上に並べられた複数の連続して隣り合う反応容器10aに投入装置8によって投入される。投入された混合原料Eは搬送設備9により反応装置10に搬送される。
反応装置10は、着火治具10bと、燃焼合成反応により反応容器10aから飛散した原料および反応生成物が反応装置10から外に漏洩しない気密構造10cと、緊急異常事態の発生時に不活性ガスを供給する不活性ガス供給治具10dとを有する。気密構造10cは反応装置10の入口から出口まで設置されている。反応装置10に搬送された混合原料Eは着火治具10bにより、着火され反応容器10a内で燃焼合成反応が開始する。着火は、反応容器毎に1回行なう。
The mixed raw material E is charged by a charging device 8 into a plurality of continuously adjacent reaction vessels 10a arranged on a belt conveyor 9 that conveys at a predetermined speed. The charged mixed raw material E is transferred to the reaction apparatus 10 by the transfer facility 9.
The reactor 10 includes an ignition jig 10b, an airtight structure 10c in which raw materials and reaction products scattered from the reaction vessel 10a by the combustion synthesis reaction do not leak out from the reactor 10, and inert gas when an emergency abnormality occurs. And an inert gas supply jig 10d to be supplied. The airtight structure 10 c is installed from the inlet to the outlet of the reaction apparatus 10. The mixed raw material E conveyed to the reaction apparatus 10 is ignited by an ignition jig 10b and a combustion synthesis reaction starts in the reaction vessel 10a. Ignition is performed once for each reaction vessel.

燃焼合成反応が終了して得られた反応生成物Fは不活性ガス気流中で自然放冷することができる。また、この不活性ガスは反応装置10の気密構造10cにより反応装置10内をシールして、混合原料Eの異常燃焼による発火・爆発を防止する役割も果たす。本発明では、原料混合方法、反応容器材質および燃焼合成波の速度管理等、種々の安全対策を講じているので、緊急異常事態の発生時以外は通常、使用することは不要である。
冷却の終わった反応生成物Fは、取出装置11に搬送され、反応生成物Fの入っている反応容器10aと、回収治具11aにより回収された飛散反応生成物Fとを取り出す移送治具11bにより取り出される。
図2は、混合原料投入装置8から取出装置11までを直線的に配置した例であるが、これらの設備は、円形のサーキット状に配置することもできる。
The reaction product F obtained after the completion of the combustion synthesis reaction can be naturally cooled in an inert gas stream. The inert gas also serves to prevent the ignition / explosion due to abnormal combustion of the mixed raw material E by sealing the inside of the reaction apparatus 10 with the airtight structure 10c of the reaction apparatus 10. In the present invention, since various safety measures such as the raw material mixing method, the reaction vessel material and the speed control of the combustion synthetic wave are taken, it is usually unnecessary to use it except when an emergency abnormal situation occurs.
The cooled reaction product F is transported to the take-out device 11, and a transfer jig 11b for taking out the reaction vessel 10a containing the reaction product F and the scattered reaction product F recovered by the recovery jig 11a. Is taken out by
FIG. 2 is an example in which the mixed raw material charging device 8 to the take-out device 11 are linearly arranged, but these facilities can also be arranged in a circular circuit shape.

反応容器10aの材料は、原料の燃焼合成反応に際して反応容器自身の酸化反応が生じない材料である。また、燃焼合成反応は比較的短時間で終了するため、熱膨張特性に優れていることが好ましい。
また、燃焼合成反応を開始させるための着火は、カーボンフィルムに通電させて着火させることが多く、その場合、カーボンフィルムの接触による反応容器の損傷を防止するため、反応容器の材料は絶縁材であることが好ましい。
The material of the reaction vessel 10a is a material in which an oxidation reaction of the reaction vessel itself does not occur during the raw material combustion synthesis reaction. Further, since the combustion synthesis reaction is completed in a relatively short time, it is preferable that the thermal expansion characteristics are excellent.
In addition, the ignition for starting the combustion synthesis reaction is often performed by energizing the carbon film to ignite, and in this case, in order to prevent the reaction vessel from being damaged by the contact of the carbon film, the material of the reaction vessel is made of an insulating material. Preferably there is.

本発明の連続式反応設備の反応容器としては、チタン酸−アルミニウム系セラミックスが、熱膨張が少なく、燃焼合成反応時に酸化反応が生じないので好ましい材料である。チタン酸−アルミニウム系セラミックスとしては、Al2TiO5等が挙げられる。
上記材料を用いた反応容器としては、坩堝、坩堝類似の反応容器、角型浅皿、バット、セッター等を挙げることができる。また、本発明の上記材料は、反応装置内に設置され、円柱状などに成形された材料を載置するための基板等にも使用できる。なお、ベルトコンベア上に直接混合原料を投入し、該ベルトコンベア上で燃焼合成反応を起こす場合には、ベルトコンベアを上記材料で形成する。
As a reaction vessel of the continuous reaction equipment of the present invention, titanate-aluminum ceramic is a preferable material because it has little thermal expansion and does not cause an oxidation reaction during a combustion synthesis reaction. Examples of titanate-aluminum ceramics include Al 2 TiO 5 .
Examples of the reaction vessel using the above materials include a crucible, a reaction vessel similar to a crucible, a square shallow dish, a bat, and a setter. Moreover, the said material of this invention can be used also for the board | substrate etc. which install in the reactor and mount the material shape | molded in the column shape etc. In addition, when mixing raw material is directly injected | thrown-in on a belt conveyor and combustion synthesis reaction is raise | generated on this belt conveyor, a belt conveyor is formed with the said material.

実施例1
チタン酸−アルミニウム系セラミックス製反応容器(オーセラ(株)社製 レコジット)を反応容器として用い、ベルトコンベア上に並べ空気中で燃焼合成反応を行なった。用いた反応容器の熱膨張率は 1.2×10-6/℃であった。
配合原料は、Ti金属(比表面積 0.3 m2/g )を 100 モル、SrCO3を 100 モル、NaClO4を 50 モル用いた。これらの原材料をヘンシェルミキサーを用いて 3 分間混合し、壁面に付着した粉末をかき落とした後、再度3分間混合した。これを計 3 回繰り返した後、原料投入装置に貯蔵した。
原料投入装置から混合粉末を 1 kg を、ベルトコンベア上に並べられた反応容器1に、1 kg 投入し、反応容器内で成形治具を用いて形状調整した。この操作を 5 回繰り返し、最初の反応容器を着火位置まで搬送した。着火用のカーボンフィルムを搬送されてきた混合原料の先端部と接触させて着火した。着火により反応容器内の混合原料に燃焼波が伝播し、最初の反応容器内での燃焼合成反応が約 10 秒間で終了した。2 番目の反応容器を着火位置まで搬送し、最初の反応容器と同様に着火し、燃焼合成反応を起こさせた。この操作を 5 番目の反応容器まで行ない、冷却されて搬送されて来る反応生成物と副生成物(NaCl)を取出装置から順次取り出した。なお、燃焼合成時に反応容器の酸化反応による損傷は生じなかった。アルミナ製乳鉢を用いて反応生成物を粉砕し、平均粒子径が1μmの未洗浄セラミックス粉末を得た。
得られた未洗浄セラミックス粉末を十分水洗し、この粉末に付着したNaClを除去してセラミックスを得た。得られたセラミックス粉末の結晶相の同定をX線回折装置(XRD)を用いて行なったところ、SrTiO3であった。
Example 1
A reaction vessel made of titanic acid-aluminum ceramic (Recogit manufactured by Aucera Corp.) was used as a reaction vessel, and was placed on a belt conveyor and subjected to a combustion synthesis reaction in air. The thermal expansion coefficient of the reaction vessel used was 1.2 × 10 −6 / ° C.
The raw materials used were 100 moles of Ti metal (specific surface area 0.3 m 2 / g), 100 moles of SrCO 3 and 50 moles of NaClO 4 . These raw materials were mixed for 3 minutes using a Henschel mixer, scraped off the powder adhering to the wall surface, and then mixed again for 3 minutes. This was repeated a total of 3 times, and then stored in the raw material charging device.
1 kg of the mixed powder from the raw material charging apparatus was charged into the reaction vessel 1 arranged on the belt conveyor, and the shape was adjusted in the reaction vessel using a forming jig. This operation was repeated 5 times, and the first reaction vessel was transported to the ignition position. Ignition was performed by bringing the carbon film for ignition into contact with the tip of the mixed raw material that has been conveyed. The combustion wave propagated to the mixed material in the reaction vessel by ignition, and the combustion synthesis reaction in the first reaction vessel was completed in about 10 seconds. The second reaction vessel was transported to the ignition position and ignited in the same manner as the first reaction vessel, causing a combustion synthesis reaction. This operation was performed up to the fifth reaction vessel, and the reaction product and by-product (NaCl) that had been cooled and conveyed were sequentially taken out from the take-out device. In addition, the damage by the oxidation reaction of the reaction vessel did not occur during the combustion synthesis. The reaction product was pulverized using an alumina mortar to obtain an unwashed ceramic powder having an average particle size of 1 μm.
The obtained unwashed ceramic powder was sufficiently washed with water, and NaCl adhered to the powder was removed to obtain a ceramic. When the crystal phase of the obtained ceramic powder was identified using an X-ray diffractometer (XRD), it was SrTiO 3 .

実施例2
チタン酸−アルミニウム系セラミックス製反応容器(オーセラ(株)社製 レコジット)を反応容器として用い、ベルトコンベア上に並べ空気中で燃焼合成反応を行なった。用いた反応容器の熱膨張率は 1.2×10-6/℃であった。
配合原料は、Ti金属(比表面積 0.3 m2/g )を 100 モル、TiO2を 200 モル、BaCO3を 100 モル、BaO2を 200 モル用いた。これらの原材料をヘンシェルミキサーを用いて 3 分間混合し、壁面に付着した粉末をかき落とした後、再度3分間混合した。これを計 3 回繰り返した後、原料投入装置に貯蔵した。
この原料を用いて実施例1と同様の操作を行ない、冷却されて搬送されて来る反応生成物を取出装置から順次取り出した。なお、燃焼合成時に反応容器の酸化反応による損傷は生じなかった。
アルミナ製乳鉢を用いて合成粉末を粉砕し、平均粒子径が1μmのセラミックス粉末を得た。得られたセラミックス粉末の結晶相の同定をX線回折装置(XRD)を用いて行なったところ、BaTiO3であった。
Example 2
A reaction vessel made of titanic acid-aluminum ceramic (Recogit manufactured by Aucera Corp.) was used as a reaction vessel, and was placed on a belt conveyor and subjected to a combustion synthesis reaction in air. The thermal expansion coefficient of the reaction vessel used was 1.2 × 10 −6 / ° C.
The raw materials used were 100 moles of Ti metal (specific surface area 0.3 m 2 / g), 200 moles of TiO 2 , 100 moles of BaCO 3 and 200 moles of BaO 2 . These raw materials were mixed for 3 minutes using a Henschel mixer, scraped off the powder adhering to the wall surface, and then mixed again for 3 minutes. This was repeated a total of 3 times, and then stored in the raw material charging device.
Using this raw material, the same operation as in Example 1 was performed, and the reaction products cooled and conveyed were sequentially taken out from the take-out device. In addition, the damage by the oxidation reaction of the reaction vessel did not occur during the combustion synthesis.
The synthetic powder was pulverized using an alumina mortar to obtain a ceramic powder having an average particle size of 1 μm. When the crystal phase of the obtained ceramic powder was identified using an X-ray diffractometer (XRD), it was BaTiO 3 .

比較例1
黒鉛製反応容器(東洋炭素社製 IG−11)を反応容器として用いる以外は実施例1と同一の原料、方法で空気中で燃焼合成を行なった。得られたセラミックス粉末は、X線回折の結果、SrTiO3以外に、黒鉛反応容器との反応物であるTiCが検出された。
Comparative Example 1
Combustion synthesis was performed in air using the same raw materials and method as in Example 1 except that a graphite reaction vessel (IG-11 manufactured by Toyo Tanso Co., Ltd.) was used as the reaction vessel. As a result of X-ray diffraction, TiC, which is a reaction product with the graphite reaction vessel, was detected in the obtained ceramic powder in addition to SrTiO 3 .

比較例2
アルミナ製反応容器(ニッカトー社製 SSA−S)を反応容器として用いる以外は実施例1と同一の原料、方法で空気中で燃焼合成を行なった。アルミナの熱膨張率は、7×10-6/℃であり、反応時の急激な温度変化に反応容器の変形が追従できず、反応容器が破損し、合成粉末が飛散していた。
Comparative Example 2
Combustion synthesis was performed in air using the same raw materials and method as in Example 1 except that an alumina reaction vessel (SSA-S manufactured by Nikkato Co., Ltd.) was used as the reaction vessel. The thermal expansion coefficient of alumina was 7 × 10 −6 / ° C., the deformation of the reaction vessel could not follow the rapid temperature change during the reaction, the reaction vessel was damaged, and the synthetic powder was scattered.

比較例3
ジルコニア製反応容器(ニッカトー社製 YSZ−8)を反応容器として用いる以外は実施例1と同一の原料、方法で空気中で燃焼合成を行なった。ジルコニアの熱膨張率は、9.5×10-6/℃であり、反応時の急激な温度変化に反応容器の変形が追従できず、反応容器が破損し、合成粉末が飛散していた。
Comparative Example 3
Combustion synthesis was performed in air using the same raw materials and method as in Example 1 except that a reaction vessel made of zirconia (YSZ-8 manufactured by Nikkato Co., Ltd.) was used as the reaction vessel. The thermal expansion coefficient of zirconia was 9.5 × 10 −6 / ° C., the deformation of the reaction vessel could not follow the rapid temperature change during the reaction, the reaction vessel was damaged, and the synthetic powder was scattered.

本発明の燃焼合成方法および連続式反応設備は、燃焼合成反応によるセラミックスの量産製造に好適に利用できる。   The combustion synthesis method and continuous reaction facility of the present invention can be suitably used for mass production of ceramics by combustion synthesis reaction.

本発明の連続式の燃焼合成方法を示す工程図である。It is process drawing which shows the continuous combustion synthesis method of this invention. 本発明の一実施例に係る連続式反応設備のフローを示す図である。It is a figure which shows the flow of the continuous reaction equipment which concerns on one Example of this invention.

符号の説明Explanation of symbols

1 混合工程
2 投入工程
3 搬送工程
4 反応工程
5 取出工程
6 予備混合装置
7 混合装置
8 投入装置
9 コンベア
10 反応装置
10a 反応容器
10b 着火治具
10c 気密構造
10d 不活性ガス供給治具
11 取出装置
11a 回収治具
11b 移送治具
A 過酸化物粉末および金属粉末のいずれか一方
B 安定な原料粉末
C 中間原料
D Aに使用しなかった原料粉末
E 混合原料
F 反応生成物
DESCRIPTION OF SYMBOLS 1 Mixing process 2 Input process 3 Conveying process 4 Reaction process 5 Extraction process 6 Preliminary mixing apparatus 7 Mixing apparatus 8 Input apparatus 9 Conveyor 10 Reactor 10a Reaction container 10b Ignition jig 10c Airtight structure 10d Inert gas supply jig 11 Extraction apparatus 11a Recovery jig 11b Transfer jig A One of peroxide powder and metal powder B Stable raw material powder C Intermediate raw material D Raw material powder not used for A E Mixed raw material F Reaction product

Claims (5)

原料が化合するときの燃焼化学反応により、外部加熱を必要とすることなく連鎖的に物質が合成される燃焼合成を連続的に行なう燃焼合成方法であって、
該燃焼合成方法は、複数の原料を混合する混合工程と、得られた混合原料を連続で移動する搬送式反応器内に投入する投入工程と、前記搬送中の混合原料に所定のタイミングで着火して反応させる反応工程と、得られた反応生成物を冷却後に前記搬送式反応器から取り出す取出工程とを備えてなり、
前記搬送式反応器を構成する材料は、前記反応工程の燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質であることを特徴とする燃焼合成方法。
A combustion synthesis method that continuously performs combustion synthesis in which materials are synthesized in a chain without the need for external heating by a combustion chemical reaction when raw materials combine,
The combustion synthesis method includes a mixing step of mixing a plurality of raw materials, an input step of charging the obtained mixed raw materials into a transport reactor that continuously moves, and igniting the mixed raw materials being transported at a predetermined timing. And a reaction step of reacting with each other, and an extraction step of taking out the obtained reaction product from the transport reactor after cooling,
The material constituting the transport reactor is a combustion synthesis method characterized in that it does not undergo its own oxidation reaction in the combustion chemical reaction of the reaction step and is a low thermal expansion substance.
前記混合原料は、酸素供給源である過酸化物粉末と、発熱源である金属粉末とを少なくとも含み、前記投入工程は、予め前記過酸化物粉末および金属粉末のいずれか一方と、安定な原料粉末とを所定の比率で予備混合して中間原料を得た後、この予備混合に使用しなかった粉末を前記中間原料に、所定の比率で混合して混合原料とした後に投入する工程であることを特徴とする請求項1記載の燃焼合成方法。   The mixed raw material includes at least a peroxide powder that is an oxygen supply source and a metal powder that is a heat generation source, and the charging step includes either one of the peroxide powder or the metal powder in advance and a stable raw material. This is a step of pre-mixing the powder with a predetermined ratio to obtain an intermediate raw material, and then mixing the powder not used for this pre-mixing with the intermediate raw material at a predetermined ratio to obtain a mixed raw material The combustion synthesis method according to claim 1. 前記搬送式反応器の搬送速度は、前記反応工程において燃焼合成が伝播する速度と同調した速度であり、その搬送方向は、前記反応工程における燃焼合成反応の主伝播方向と略反対方向であることを特徴とする請求項1または請求項2記載の燃焼合成方法。   The transport speed of the transport reactor is synchronized with the speed at which combustion synthesis is propagated in the reaction process, and the transport direction is substantially opposite to the main propagation direction of the combustion synthesis reaction in the reaction process. The combustion synthesis method according to claim 1 or 2, characterized in that. 前記反応工程における着火は、前記混合原料の燃焼合成反応を途切れさせない時間間隔で行なうことを特徴とする請求項1、請求項2または請求項3記載の燃焼合成方法。   4. The combustion synthesis method according to claim 1, wherein the ignition in the reaction step is performed at a time interval that does not interrupt the combustion synthesis reaction of the mixed raw material. 請求項1ないし請求項4のいずれか一項記載の燃焼合成方法により燃焼合成を行なうための連続式反応設備であって、
複数の原料を混合する混合装置と、前記混合原料を所定速度で連続で搬送する搬送式反応器と、前記混合装置により得られた混合原料を前記搬送式反応器内に投入する投入装置と、搬送中の前記混合原料に所定のタイミングで着火して反応させる反応装置と、得られた反応生成物を冷却後に前記搬送式反応器から取り出す取出装置とを備えてなり、
前記搬送式反応器を構成する材料は、前記反応装置内での燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質であることを特徴とする連続式反応設備。
A continuous reaction facility for performing combustion synthesis by the combustion synthesis method according to any one of claims 1 to 4,
A mixing device for mixing a plurality of raw materials, a transport reactor for continuously transporting the mixed raw material at a predetermined speed, and a charging device for charging the mixed raw material obtained by the mixing device into the transport reactor; A reaction device for igniting and reacting the mixed raw material being conveyed at a predetermined timing, and a take-out device for removing the obtained reaction product from the conveyance reactor after cooling,
The continuous reaction equipment characterized in that the material constituting the transport reactor is a low thermal expansion substance and does not undergo its own oxidation reaction in the combustion chemical reaction in the reaction apparatus.
JP2005221920A 2005-07-29 2005-07-29 Combustion synthesis method and continuous reaction equipment Pending JP2007039254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221920A JP2007039254A (en) 2005-07-29 2005-07-29 Combustion synthesis method and continuous reaction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221920A JP2007039254A (en) 2005-07-29 2005-07-29 Combustion synthesis method and continuous reaction equipment

Publications (1)

Publication Number Publication Date
JP2007039254A true JP2007039254A (en) 2007-02-15

Family

ID=37797582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221920A Pending JP2007039254A (en) 2005-07-29 2005-07-29 Combustion synthesis method and continuous reaction equipment

Country Status (1)

Country Link
JP (1) JP2007039254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116185095A (en) * 2023-04-27 2023-05-30 科大智能物联技术股份有限公司 Spray cooling control system based on infrared imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116185095A (en) * 2023-04-27 2023-05-30 科大智能物联技术股份有限公司 Spray cooling control system based on infrared imaging
CN116185095B (en) * 2023-04-27 2023-07-28 科大智能物联技术股份有限公司 Spray cooling control system based on infrared imaging

Similar Documents

Publication Publication Date Title
Weimer et al. Rapid process for manufacturing aluminum nitride powder
US10508058B2 (en) Heat-permeable tube containing ceramic matrix composite
US4920080A (en) Method of making glass with preliminary reaction of batch materials
JP2019500564A5 (en)
JP5369123B2 (en) Method for producing aluminum nitride
JP4874574B2 (en) Method for producing perovskite ceramics
JP2019184211A (en) Firing device
JP2007039254A (en) Combustion synthesis method and continuous reaction equipment
JP4533209B2 (en) Oxide ceramics and method for producing the same
CN102531611B (en) Method for preparing aluminum nitride
NO314990B1 (en) Continuous Process for Preparation of Aluminum Nitride by Carbon Nitriding of Alumina, and the Aluminum Nitride Product Obtained
JP2007054799A (en) Manufacturing method of combustion synthesis material
JP2006273696A (en) Dielectric ceramic
JP2022049185A (en) Generation method for lithium silicate and silicon
JP5069444B2 (en) Method for manufacturing dielectric ceramics
JP2006347823A (en) Combustion synthesis method and dielectric ceramic
JP2006347824A (en) Combustion synthesis method and oxide-based ceramic
JP4989044B2 (en) Method for manufacturing dielectric ceramics
JP5114013B2 (en) Method for manufacturing dielectric ceramics
JP7312690B2 (en) Method for producing metal nitride, and ignition agent compact
JP2008105915A (en) Combustion synthesis method, and combustion synthesis device
JP2021172572A (en) Method for production of aluminum nitride
JP2007091519A (en) Dielectric ceramic and method of manufacturing the same
KR100257477B1 (en) Method for forming al2o3-sic composite powder by self-propagating high-temperature synthesis
RU2357924C2 (en) Silicon hydrides process