JP2007035786A - Radial orientation magnetic field forming apparatus - Google Patents

Radial orientation magnetic field forming apparatus Download PDF

Info

Publication number
JP2007035786A
JP2007035786A JP2005214499A JP2005214499A JP2007035786A JP 2007035786 A JP2007035786 A JP 2007035786A JP 2005214499 A JP2005214499 A JP 2005214499A JP 2005214499 A JP2005214499 A JP 2005214499A JP 2007035786 A JP2007035786 A JP 2007035786A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
die
forming apparatus
core rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005214499A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
嵩司 古谷
Yoshitaka Sato
義隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Electronics Co Ltd
Original Assignee
Daido Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Electronics Co Ltd filed Critical Daido Electronics Co Ltd
Priority to JP2005214499A priority Critical patent/JP2007035786A/en
Publication of JP2007035786A publication Critical patent/JP2007035786A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radial orientation magnetic field forming apparatus capable of suppressing cogging torque during motor rotation while keeping high torque intact and of forming a highly reliable long annular bond magnet. <P>SOLUTION: The radial orientation magnetic field forming apparatus is configured such that a mixture 5 of magnetic powder and resin is filled between a central core rod 4B and annular dices 1 disposed around the core rod 4B, to form a magnetic field directed outward radially from the center of the dices 1 after passage through the core rod 4B, and in this state the mixture 5 is pressurized into a bond magnet. In the apparatus, the dices 1 are constructed by alternately arranging peripherally a dice piece 1A of a ferromagnetic material and a dice piece 1B of a non-magnetic material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はHDD,DVD等の情報機器用スピンドルモータや携帯電話用振動モータに使用されるリング状ボンド磁石を製造するためのラジアル配向磁場成形装置に関する。   The present invention relates to a radially oriented magnetic field forming apparatus for manufacturing a ring-shaped bonded magnet used in a spindle motor for information devices such as HDDs and DVDs and a vibration motor for mobile phones.

上記用途に使用されるリング状ボンド磁石には高い磁気性能が要求されており、従来の等方性ボンド磁石に代わる高性能磁石として異方性ボンド磁石が注目されている。異方性ボンド磁石は金属組織中の磁気モーメントが一様に特定の方向に揃ったもので、リング状のボンド磁石の場合にはラジアル配向磁場成形装置を使用して、成形金型の周囲に配置した電磁石で励起した磁界によって、磁性粉の磁気モーメントをラジアル方向へ配向させる。   The ring-shaped bonded magnet used for the above-described applications is required to have high magnetic performance, and an anisotropic bonded magnet is attracting attention as a high-performance magnet that can replace the conventional isotropic bonded magnet. An anisotropic bonded magnet is one in which the magnetic moments in the metal structure are uniformly aligned in a specific direction. In the case of a ring-shaped bonded magnet, a radially oriented magnetic field forming device is used around the mold. The magnetic moment of the magnetic powder is oriented in the radial direction by the magnetic field excited by the arranged electromagnet.

図4には従来のラジアル配向磁場成形装置の一例を示す。当該装置の成形金型は強磁性材よりなるリング状のダイス1、上コアロッド4A、下コアロッド4B、および非磁性材よりなる筒状の上パンチ2Aおよび下パンチ2Bで構成されている。ダイス1の上方には空芯状の上コイル3Aが上パンチ2Aの周囲を囲んで配置され、同じく空芯状の下コイル3Bが下パンチ2Bの周囲を囲んで配置されている。上コイル3A、上コアロッド4Aおよび上パンチ2Aが上昇した状態で原料の異方性磁性粉と熱硬化性樹脂の混合物5をダイス1内に充填し、上コアロッド4Aを下コアロッド4Bに当接するまで下降させる。その後、上パンチ2Aを下降させて混合物5を微圧にておさえ、上コイル3Aをダイス1の直上へ下降させる。   FIG. 4 shows an example of a conventional radial orientation magnetic field forming apparatus. The molding die of the apparatus includes a ring-shaped die 1 made of a ferromagnetic material, an upper core rod 4A, a lower core rod 4B, and a cylindrical upper punch 2A and a lower punch 2B made of a nonmagnetic material. Above the dice 1, an air-core upper coil 3A is disposed surrounding the upper punch 2A, and an air-core lower coil 3B is also disposed surrounding the lower punch 2B. Until the upper coil 3A, the upper core rod 4A and the upper punch 2A are raised, the mixture 5 of the raw anisotropic magnetic powder and the thermosetting resin is filled in the die 1, and the upper core rod 4A is in contact with the lower core rod 4B. Lower. Thereafter, even if the upper punch 2A is lowered and the mixture 5 is kept at a slight pressure, the upper coil 3A is lowered directly above the die 1.

この後、上コイル3Aと下コイル3Bに直流通電して、図5の矢印で示すように、コアロッド4Aを経てダイス1中心から放射状(ラジアル)に外方へ向かう磁界を形成する。異方性磁性粉はラジアル状の磁界に合わせてその磁気モーメントが揃う。そこで、上下のパンチ2A,2Bの加圧力を上昇させて、混合物5を所定密度に成形してリング状ボンド磁石とする。必要時間直流通電した後、上コイル3Aと下コイル3Bに交流減衰電流を供給して成形体を金型内で脱磁し、上コアロッド4A、上パンチ2Aおよび上コイル3Aを上昇後退して、成形体を金型から脱離させる。   Thereafter, a direct current is applied to the upper coil 3A and the lower coil 3B to form a magnetic field radially outward from the center of the die 1 through the core rod 4A as indicated by arrows in FIG. The anisotropic magnetic powder has its magnetic moment aligned with the radial magnetic field. Therefore, the pressurizing force of the upper and lower punches 2A and 2B is increased, and the mixture 5 is molded to a predetermined density to obtain a ring-shaped bond magnet. After direct current is applied for the required time, an AC decay current is supplied to the upper coil 3A and the lower coil 3B to demagnetize the molded body in the mold, and the upper core rod 4A, the upper punch 2A and the upper coil 3A are lifted and retracted, The molded body is detached from the mold.

ここで、図6には上記ダイス1の平面図を示し、周方向で一様に形成された直流磁束(図の矢印)によってリング状ボンド磁石は360度一様にラジアル配向させられる。このようなリング状ボンド磁石を多極着磁した後の磁石表面の磁束密度パターンは図3の線Xで示すような方形波となる。   Here, FIG. 6 shows a plan view of the die 1, and the ring-shaped bonded magnet is radially oriented uniformly by 360 degrees by the DC magnetic flux (arrow in the figure) uniformly formed in the circumferential direction. The magnetic flux density pattern on the magnet surface after such a ring-shaped bonded magnet is multipolarized is a square wave as shown by line X in FIG.

なお、特許文献1には、リング状の成形空間を形成するダイスの、内周面の複数位置に凹陥するギャップを設けることによって、周方向へ間隔を置いて非磁性部を形成したラジアル配向磁場成形装置が示されている。
特開平06−124822
In Patent Document 1, a radial orientation magnetic field in which nonmagnetic portions are formed at intervals in the circumferential direction by providing gaps that are recessed at a plurality of positions on the inner peripheral surface of a die that forms a ring-shaped forming space. A forming apparatus is shown.
JP 06-124822 A

上記従来のラジアル配向磁場成形装置により製造される異方性のリング状ボンド磁石は全周で均等に磁性粉が配向しているために、多極着磁した後に得られる磁束密度の分布が上述のように周方向へ方形波状となる。このため、モータに使用すると、等方性のボンド磁石に比して高トルクが得られるものの、コギングトルクが過大となってモータの異音や振動の原因になるという問題があった。また、ラジアル配向では、コアロッド4A,4Bの外径d、ダイス1の内径D、成形高さHで表されるラジアルファクタFr=2DH/d2の値が1以下のときに十分な配向が形成されるから、Frが1以下となるように成形高さHが制限される。このため従来は、モータに組み込むボンド磁石の必要長が長くなると、Frが1以下となるように成形高さHを低くしたボンド磁石を、軸方向に複数継ぎ足して使用する必要があって、生産性やコスト、接合精度から生じる信頼性に問題があった。   In the anisotropic ring-shaped bonded magnet manufactured by the conventional radial orientation magnetic field forming apparatus, since the magnetic powder is uniformly oriented around the entire circumference, the distribution of the magnetic flux density obtained after multi-pole magnetization is described above. As shown in FIG. For this reason, when used in a motor, a high torque can be obtained compared to an isotropic bonded magnet, but there is a problem that the cogging torque becomes excessive and causes abnormal noise and vibration of the motor. In the radial orientation, sufficient orientation is formed when the radial factor Fr = 2DH / d2 expressed by the outer diameter d of the core rods 4A and 4B, the inner diameter D of the die 1 and the molding height H is 1 or less. Therefore, the molding height H is limited so that Fr is 1 or less. For this reason, conventionally, when the required length of the bond magnet to be incorporated into the motor is increased, it is necessary to use a plurality of bond magnets in which the molding height H is lowered so that the Fr is 1 or less. There was a problem in reliability resulting from reliability, cost, and bonding accuracy.

そこで、本発明はこのような課題を解決するもので、高トルクを維持しつつモータ回転時のコギングトルクを抑え、かつ信頼性の高い長尺のリング状ボンド磁石を成形できるラジアル配向磁場成形装置を提供することを目的とする。   Therefore, the present invention solves such a problem, and maintains a high torque, suppresses cogging torque during motor rotation, and can form a long ring-shaped bonded magnet with high reliability. The purpose is to provide.

発明者らは、現在のラジアル配向磁場成形装置では上述のように、ダイス中心から360°にわたり放射状に磁力線を通過させているが、リング状ボンド磁石をモータに使用する場合に、着磁する極と極の間の境界領域を配向させずに等方性の状態としておくことができれば、磁束密度の方形波状の急峻な磁束変化を抑えてコギングトルクが過大となるのを防止できると考えた。そして同時に、ダイスの径方向へ通過する磁力線を節約できるから、その分、ボンド磁石の長さ方向において上記径方向へ通過する磁力線を増加させることができ、ボンド磁石の成形高さHを高くできると考えた。   As described above, the inventors have passed the magnetic lines of force radially from the center of the die over 360 ° in the present radial orientation magnetic field forming apparatus. However, when a ring-shaped bonded magnet is used for a motor, If the isotropic state can be maintained without orienting the boundary region between the pole and the pole, it is thought that the cogging torque can be prevented from being excessively suppressed by suppressing the square wave-like steep magnetic flux change of the magnetic flux density. At the same time, the magnetic lines of force passing in the radial direction of the die can be saved, and accordingly, the magnetic lines of force passing in the radial direction in the length direction of the bonded magnet can be increased, and the molding height H of the bonded magnet can be increased. I thought.

そこで、本発明では、中心のコアロッド(4A,4B)とその周囲に配置された環状のダイス(1)との間に磁性粉と樹脂の混合物(5)を充填して、コアロッド(4A,4B)を経てダイス(1)中心から放射状に外方へ向かう磁界を形成した状態で混合物(5)を加圧しボンド磁石に成形するラジアル配向磁場成形装置において、ダイス(1)を、図1に示すように、強磁性材のダイス片(1A)と非磁性材のダイス片(1B)を周方向へ交互に配設して構成する。   Therefore, in the present invention, a mixture (5) of magnetic powder and resin is filled between the central core rod (4A, 4B) and the annular die (1) disposed around the central core rod (4A, 4B). The die (1) is shown in FIG. 1 in a radially oriented magnetic field molding apparatus that presses the mixture (5) and forms a bond magnet in a state where a magnetic field radially outward from the center of the die (1) is formed. Thus, the die pieces (1A) of the ferromagnetic material and the die pieces (1B) of the nonmagnetic material are alternately arranged in the circumferential direction.

本発明においては、所望する極数に応じて磁極に対応する位置には強磁性材のダイス片(1A)を設け、磁極と磁極の間に対応する位置には非磁性材のダイス片(1B)を設けるので、図2に示すように磁力線は強磁性材のダイス片(1A)のみに選択的に流れる。この場合、非磁性材のダイス片(1B)部分では上下のコアロッド(4A,4B)からダイス(1)中心に集束した磁力線は通過しないので、ダイス片(1A)部分を通過する磁力線が増加する。このため、従来装置におけるよりも磁極部の磁界の強さを増加させることができ、結果的に成形高さを高くすることができる。   In the present invention, a ferromagnetic dice piece (1A) is provided at a position corresponding to the magnetic pole in accordance with the desired number of poles, and a non-magnetic dice piece (1B) is provided at a position corresponding to between the magnetic poles. 2), the magnetic field lines selectively flow only in the ferromagnetic die piece (1A) as shown in FIG. In this case, since the magnetic lines focused on the center of the die (1) from the upper and lower core rods (4A, 4B) do not pass through the non-magnetic die piece (1B), the magnetic lines passing through the die piece (1A) increase. . For this reason, the strength of the magnetic field of the magnetic pole part can be increased as compared with the conventional apparatus, and as a result, the molding height can be increased.

ここで、ボンド磁石の磁極数をnとした場合に、強磁性材のダイス片(1A)を、ボンド磁石の各磁極の位置に対応させて磁極間角度360/n°の50%〜80%の角度範囲に設けると良い。残る角度範囲には非磁性材のダイス片(1B)を設ける。この場合のラジアルファクタFrはP・2DH/d2で表される。ここで、Pの値は、強磁性材のダイス片(1A)が上述のように磁極間角度の50%〜80%に設けられることから0.5〜0.8となる。P<0.5にすると、ボンド磁石の成形高さHは大きくとれるが、着磁後の表面磁束密度の分布が図3の線Yのように極中心で狭幅な分布となり、コギングトルクは低いもののモータの駆動トルクも小さくなってしまう。一方、P>0.8では、成形高さHをそれほど高くできず、本発明の効果が得られない。なお、強磁性材としては純鉄、パーメンジュールなどの高飽和磁化の強磁性材が好適であるが、強磁性材であればこれらに限定されない。また非磁性材としては通常の非磁性鋼や非磁性超鋼であればよい。   Here, when the number of magnetic poles of the bonded magnet is n, the die piece (1A) of the ferromagnetic material is matched with the position of each magnetic pole of the bonded magnet, and 50% to 80% of the magnetic pole angle 360 / n °. It is good to provide in the angle range. A non-magnetic die piece (1B) is provided in the remaining angle range. In this case, the radial factor Fr is expressed by P · 2DH / d2. Here, the value of P is 0.5 to 0.8 because the ferromagnetic dice piece (1A) is provided at 50% to 80% of the angle between the magnetic poles as described above. When P <0.5, the molding height H of the bonded magnet can be increased, but the distribution of the surface magnetic flux density after magnetization becomes a narrow distribution at the pole center as shown by the line Y in FIG. Although it is low, the driving torque of the motor is also reduced. On the other hand, if P> 0.8, the molding height H cannot be increased so much that the effects of the present invention cannot be obtained. The ferromagnetic material is preferably a highly saturated magnetization ferromagnetic material such as pure iron or permendur, but is not limited thereto as long as it is a ferromagnetic material. The nonmagnetic material may be a normal nonmagnetic steel or nonmagnetic super steel.

以上のように、本発明のラジアル配向磁場成形装置によれば、高トルクを維持しつつモータ回転時のコギングトルクを抑え、かつ信頼性の高い長尺のリング状ボンド磁石を成形することができる。   As described above, according to the radially oriented magnetic field forming apparatus of the present invention, it is possible to form a long ring-shaped bonded magnet with high reliability while suppressing cogging torque during motor rotation and maintaining high torque. .

以下、表1の実施例と比較例によって本発明を具体的に説明する。各実施例と比較例において、異方性NdFeB系磁性粉とエポキシ樹脂を混合して、磁性粉の重量比率が92wt%の乾燥混合粉を作製した。乾燥後、混合粉の粒度を32メッシュ以下とした。成形金型は以下に説明するダイスを除いて従来技術で説明したのと同様とした。ダイスは4極としてその内径をφ23mmとし、コアロッドの外径をφ21mmとした。各実施例では図1に示すように環状のダイス1を、扇形に成形された強磁性材のダイス片1Aと非磁性材のダイス片1Bを周方向へ交互に配置して互いに接合して構成した。ダイス片を設ける角度範囲θは、各磁極の位置に対応させて磁極間角度90°の50%〜80%(P値で0.5〜0.8)とする。これに対して各比較例においては、ダイスは全て強磁性材で構成してあり、したがってP値は1となっている。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples shown in Table 1. In each Example and Comparative Example, anisotropic NdFeB-based magnetic powder and epoxy resin were mixed to produce a dry mixed powder having a magnetic powder weight ratio of 92 wt%. After drying, the particle size of the mixed powder was 32 mesh or less. The molding die was the same as that described in the prior art except for the dies described below. The die has four poles, the inner diameter is 23 mm, and the outer diameter of the core rod is 21 mm. In each embodiment, as shown in FIG. 1, the annular die 1 is formed by alternately arranging fan-shaped ferromagnetic die pieces 1A and non-magnetic die pieces 1B in the circumferential direction and joining them together. did. The angle range θ where the die pieces are provided is 50% to 80% (P value 0.5 to 0.8) of the 90 ° angle between the magnetic poles corresponding to the position of each magnetic pole. On the other hand, in each comparative example, the dies are all made of a ferromagnetic material, and therefore the P value is 1.

上記混合粉5(図4参照)をダイス1、上下コアロッド4A,4B、上下パンチ2A,2Bで形成される空間に充填し、上パンチ2Aにて該空間を閉鎖した段階で上下コイル3A,3Bに100Aの直流電流を6秒印加後、10ton/cm2にて加圧し、その後、交番磁界を印加して脱磁し、脱型した。これを150℃にて加熱硬化させ、硬化後、配向度を調べるために成形硬化したリング状ボンド磁石から1.5mm角の立方体を切り出し、x,y,z方向の残留磁化Mx,My,Mzをもとめた。ここでMxがラジアル配向方向に対応するものとすると、配向度は次式で与えられる。
配向度(%)=100×Mx/(√(Mx2+My2+Mz2))
The mixed powder 5 (see FIG. 4) is filled into a space formed by the die 1, the upper and lower core rods 4A and 4B, and the upper and lower punches 2A and 2B, and the upper and lower coils 3A and 3B are closed when the upper punch 2A closes the space. A DC current of 100 A was applied to the substrate for 6 seconds, and then pressure was applied at 10 ton / cm 2. Then, an alternating magnetic field was applied to demagnetize and demold. This was heat-cured at 150 ° C., and after curing, a 1.5 mm square cube was cut out from the ring-shaped bonded magnet formed and hardened to examine the degree of orientation, and residual magnetizations Mx, My, Mz in the x, y, z directions were cut out. Sought. Here, assuming that Mx corresponds to the radial alignment direction, the degree of alignment is given by the following equation.
Degree of orientation (%) = 100 × Mx / (√ (Mx2 + My2 + Mz2))

このようなボンド磁石を着磁した後、6極の櫛歯状巻き線ヨークを有するモータに組み込んで、駆動トルクを測定した。   After magnetizing such a bonded magnet, it was incorporated into a motor having a 6-pole comb-like winding yoke, and the driving torque was measured.

表1の実施例1、実施例2ではラジアル配向磁場成形装置のP値を0.72とした。ボンド磁石の成形高さHを7mmとした実施例1では176mN−mと、十分大きなモータ駆動トルクを得ることができる。この条件では成形高さHを13mmにしても(実施例2)モータ駆動トルクは160mN−mと十分な大きさが維持される。さらに、実施例3に示すようにP値を0.55にすると、成形高さHを18mmにしても、モータ駆動トルクは158mN−mと十分大きなものとなる。これに対して、P値が1である従来装置では、比較例1に示すように、成形高さHを7mmにしておけば163mN−mと十分なモータ駆動トルクが得られるが、比較例2や比較例3のように、成形高さHをそれぞれ13mm、18mmにするとモータ駆動トルクは110mN−m、80mN−mと小さくなり、十分なトルクを維持できない。   In Example 1 and Example 2 of Table 1, the P value of the radial orientation magnetic field forming apparatus was set to 0.72. In Example 1 in which the molding height H of the bonded magnet is 7 mm, a sufficiently large motor driving torque of 176 mN-m can be obtained. Under this condition, even if the molding height H is 13 mm (Example 2), the motor driving torque is maintained at a sufficient magnitude of 160 mN-m. Furthermore, when the P value is 0.55 as shown in Example 3, the motor driving torque is sufficiently large as 158 mN-m even if the molding height H is 18 mm. On the other hand, in the conventional apparatus having a P value of 1, as shown in Comparative Example 1, if the molding height H is 7 mm, a sufficient motor driving torque of 163 mN-m can be obtained. As in Comparative Example 3, when the molding height H is set to 13 mm and 18 mm, respectively, the motor driving torque is reduced to 110 mN-m and 80 mN-m, and sufficient torque cannot be maintained.

なお、実施例2,3と比較例1ではモータ駆動トルクはほぼ同じ大きさになっているが、比較例1では上述のように成形高さが7mmと低いとともに、磁束密度の分布が、既に説明した図3の線Xで示すように周方向へ方形波状となるため、コギングトルクが過大となる。これに対して、実施例1と同様に強磁性材のダイス片と非磁性材のダイス片を交互に配置したダイスを使用した実施例2,3では、磁束密度の分布が図3の線Zで示すように、着磁された極と極の間の境界領域で急峻に立ち上がることなく緩やかなものとなるからコギングトルクが小さく抑えられてモータの異音や振動の発生が防止される。   In Examples 2 and 3 and Comparative Example 1, the motor drive torque is almost the same. In Comparative Example 1, the molding height is as low as 7 mm as described above, and the distribution of magnetic flux density is already present. As indicated by the line X in FIG. 3 described above, the cogging torque becomes excessive because of a square wave shape in the circumferential direction. On the other hand, in Examples 2 and 3 using dies in which ferromagnetic material dice pieces and non-magnetic material dice pieces are alternately arranged in the same manner as in Example 1, the distribution of magnetic flux density is the line Z in FIG. As shown in FIG. 5, since the magnetic pole does not rise steeply in the boundary region between the magnetized poles and becomes gentle, the cogging torque is suppressed to be small, and the generation of noise and vibration of the motor is prevented.

Figure 2007035786
Figure 2007035786

本発明の一実施形態を示す、ラジアル配向磁場成形装置の概略水平断面図である。1 is a schematic horizontal sectional view of a radial alignment magnetic field forming device showing an embodiment of the present invention. ラジアル配向磁場成形装置の磁束分布を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows magnetic flux distribution of a radial orientation magnetic field shaping | molding apparatus. 着磁されたリング状ボンド磁石の表面磁束密度の分布を示すグラフである。It is a graph which shows distribution of the surface magnetic flux density of the magnetized ring-shaped bond magnet. 従来のラジアル配向磁場成形装置の概略垂直断面図である。It is a general | schematic vertical sectional view of the conventional radial orientation magnetic field shaping | molding apparatus. ラジアル配向磁場成形装置における磁束分布を示す概略垂直断面図である。It is a general | schematic vertical sectional view which shows magnetic flux distribution in a radial orientation magnetic field shaping apparatus. ラジアル配向磁場成形装置における磁束分布を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows magnetic flux distribution in a radial orientation magnetic field shaping apparatus.

符号の説明Explanation of symbols

1…ダイス、1A,1B…ダイス片、4A,4B…コアロッド、5…混合物。   DESCRIPTION OF SYMBOLS 1 ... Dice, 1A, 1B ... Die piece, 4A, 4B ... Core rod, 5 ... Mixture.

Claims (2)

中心のコアロッドとその周囲に配置された環状のダイスとの間に磁性粉と樹脂の混合物を充填して、コアロッドを経てダイス中心から放射状に外方へ向かう磁界を形成した状態で混合物を加圧しボンド磁石に成形するラジアル配向磁場成形装置において、前記ダイスを、強磁性材のダイス片と非磁性材のダイス片を周方向へ交互に配設して構成したラジアル配向磁場成形装置。 Fill the mixture of magnetic powder and resin between the core rod in the center and the annular dies arranged around it, and pressurize the mixture in a state where a magnetic field radially outward from the die center is formed through the core rod. A radial alignment magnetic field forming apparatus for forming a bonded magnet in a radial alignment magnetic field forming apparatus, wherein the die is formed by alternately arranging ferromagnetic die pieces and nonmagnetic die pieces in the circumferential direction. ボンド磁石の磁極数をnとして、強磁性材のダイス片を、ボンド磁石の各磁極の位置に対応させて磁極間角度360/n°の50%〜80%の角度範囲に設けた請求項1に記載のラジアル配向磁場成形装置。 2. The number of magnetic poles of the bond magnet is n, and the die pieces of the ferromagnetic material are provided in an angle range of 50% to 80% of the magnetic pole angle 360 / n ° corresponding to the position of each magnetic pole of the bond magnet. The radial orientation magnetic field shaping apparatus described in 1.
JP2005214499A 2005-07-25 2005-07-25 Radial orientation magnetic field forming apparatus Pending JP2007035786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214499A JP2007035786A (en) 2005-07-25 2005-07-25 Radial orientation magnetic field forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214499A JP2007035786A (en) 2005-07-25 2005-07-25 Radial orientation magnetic field forming apparatus

Publications (1)

Publication Number Publication Date
JP2007035786A true JP2007035786A (en) 2007-02-08

Family

ID=37794695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214499A Pending JP2007035786A (en) 2005-07-25 2005-07-25 Radial orientation magnetic field forming apparatus

Country Status (1)

Country Link
JP (1) JP2007035786A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360697A (en) * 2011-08-10 2012-02-22 张淑华 Annular magnet with radial magnetic orientation
CN102360914A (en) * 2011-08-10 2012-02-22 张淑华 Method for manufacturing annular magnet with radial magnetic orientation
CN106230205A (en) * 2015-06-02 2016-12-14 株式会社捷太格特 The manufacture method of embedding magnet type rotor unit and magnetizing assembly
JP2018182123A (en) * 2017-04-17 2018-11-15 住友金属鉱山株式会社 Molding die for anisotropic magnet and manufacturing method of anisotropic magnet using the same
DE102018112683A1 (en) 2017-07-03 2019-01-03 Fuji Polymer Industries Co., Ltd. Method and device for producing a radially oriented magnetorheological elastomer molded body
WO2023042639A1 (en) * 2021-09-16 2023-03-23 株式会社デンソー Rotor manufacturing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360697A (en) * 2011-08-10 2012-02-22 张淑华 Annular magnet with radial magnetic orientation
CN102360914A (en) * 2011-08-10 2012-02-22 张淑华 Method for manufacturing annular magnet with radial magnetic orientation
CN106230205A (en) * 2015-06-02 2016-12-14 株式会社捷太格特 The manufacture method of embedding magnet type rotor unit and magnetizing assembly
JP2016226207A (en) * 2015-06-02 2016-12-28 株式会社ジェイテクト Manufacturing method of embedded magnet type rotor unit and magnetization device
JP2018182123A (en) * 2017-04-17 2018-11-15 住友金属鉱山株式会社 Molding die for anisotropic magnet and manufacturing method of anisotropic magnet using the same
DE102018112683A1 (en) 2017-07-03 2019-01-03 Fuji Polymer Industries Co., Ltd. Method and device for producing a radially oriented magnetorheological elastomer molded body
US10903001B2 (en) 2017-07-03 2021-01-26 Fuji Polymer Industries Co., Ltd. Method and apparatus for producing radially aligned magnetorheological elastomer molded body
WO2023042639A1 (en) * 2021-09-16 2023-03-23 株式会社デンソー Rotor manufacturing device

Similar Documents

Publication Publication Date Title
JP2006086319A (en) Ring type sintered magnet
JP2007035786A (en) Radial orientation magnetic field forming apparatus
CN100414819C (en) Apparatus for manufacturing ring-shaped powder compact and method of manufacturing sintered ring magnet
JP5904124B2 (en) Arc-shaped magnet having polar anisotropic orientation, method for manufacturing the same, and mold for manufacturing the same
TW200407919A (en) Radial anisotropic ring magnet and its manufacturing method
JP2006304472A (en) Ring magnet, and manufacturing apparatus and manufacturing method thereof
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
US20140265716A1 (en) Soft magnetic core and motor including the same
CN101118807B (en) Magnetic aligning device of aeolotropism adhesive bonding or sintered multipolar annular magnetic body
JPWO2004027795A1 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
JP4029679B2 (en) Bond magnet for motor and motor
JP5766134B2 (en) Shaft type linear motor mover, permanent magnet, linear motor
JP2019004606A (en) Method for manufacturing magnet material and method for manufacturing motor
JP2003124019A (en) Permanent magnet and rotor for motor using the same
JP7275707B2 (en) MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
JP2007208104A (en) Compound bond magnet molding
JP5942178B1 (en) Electric motor and electric device including the same
JP2017229192A (en) Rotary electric machine and manufacturing method for rotary electric machine
JP2007028725A (en) Anisotropic bonded magnet assembly, its manufacturing method, and permanent magnet motor using the magnet assembly
CN201069705Y (en) Magnetic field direction device for anisotropical adhesion or agglomeration multi-pole ring magnetic body
US11251686B2 (en) Radially oriented solid cylindrical magnet and production method and device thereof
JP4508019B2 (en) Anisotropic bond sheet magnet and manufacturing apparatus thereof
JP6712518B2 (en) Polar anisotropic magnet, manufacturing method thereof, and permanent magnet type motor generator
JP2008172977A (en) Cylindrical-magnet manufacturing method and cylindrical-magnet manufacturing device
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field