JP2007208104A - Compound bond magnet molding - Google Patents

Compound bond magnet molding Download PDF

Info

Publication number
JP2007208104A
JP2007208104A JP2006026819A JP2006026819A JP2007208104A JP 2007208104 A JP2007208104 A JP 2007208104A JP 2006026819 A JP2006026819 A JP 2006026819A JP 2006026819 A JP2006026819 A JP 2006026819A JP 2007208104 A JP2007208104 A JP 2007208104A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
ferrite
magnetic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006026819A
Other languages
Japanese (ja)
Inventor
Hiroki Asai
弘紀 浅井
Shinichi Tsutsumi
慎一 堤
Koji Ueda
浩司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006026819A priority Critical patent/JP2007208104A/en
Publication of JP2007208104A publication Critical patent/JP2007208104A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pole anisotropic compound bond magnet by arranging a rare-earth magnet by selectively filling it into a pole-oriented magnetic pole part to control a high surface magnetic flux density characteristic and corrugated magnetic flux density on the surface of the magnet, not by arranging the rare-earth magnet all over the entire ring circumference as before in order to solve the problem of a conventional technology. <P>SOLUTION: The compound bond magnet is the pole anisotropic compound bond magnet molding having a plurality of magnetic poles on its surface and mainly comprises a ferrite resin composite of the bond magnet molding with the rare-earth magnet arranged at a plurality of magnetic poles on its surface. The rare-earth magnet of the magnetic pole part comprises at least one of an NdFeB system alloy, an SmFeN system alloy, and an SmCo system alloy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は表面多極構成のボンド磁石成形体に関するものである。   The present invention relates to a bonded magnet molded body having a multi-surface configuration.

近年、永久磁石を活用したモータの高性能化にともない、用いる永久磁石材料の磁気特性に対する要求が高くなってきている。   In recent years, with the improvement in performance of motors using permanent magnets, there has been an increasing demand for magnetic properties of the permanent magnet materials used.

永久磁石の高性能化を実現することによりモータには基本性能の向上、それに伴う小型化や製造コストの低減、さらには高効率化によるエネルギー消費量の節減などのさまざまな部分で大きな効果が期待できる。そのため、高エネルギー積を実現する永久磁石材料の開発が進んでいる、一方で、永久磁石を用いた磁気回路を最適設計化することによる表面磁束密度の最大化の取り組みがなされている。前者の場合、永久磁石材料の性能を向上するために基本的な材料費用が高くなる。これに対して、後者の場合、磁気回路の設計技術のみによって磁気特性を向上することができ経済性については良いという利点があるものの、構成する材料の基本性能の向上より実現するものも少なくない。   By realizing high performance of permanent magnets, motors are expected to have significant effects in various areas, such as improvement of basic performance, concomitant miniaturization and reduction of manufacturing costs, and reduction of energy consumption due to high efficiency. it can. Therefore, the development of permanent magnet materials that achieve a high energy product is progressing, while efforts are made to maximize the surface magnetic flux density by optimizing the magnetic circuit using the permanent magnet. In the former case, the basic material cost is increased to improve the performance of the permanent magnet material. On the other hand, in the latter case, although magnetic characteristics can be improved only by the magnetic circuit design technology and there is an advantage that it is economical, there are many things that can be realized by improving the basic performance of the constituent materials. .

一般的に、リング形のボンド磁石成形体を製造する技術として、射出磁場成型技術及び圧縮磁場成型技術が挙げられる。   Generally, techniques for manufacturing a ring-shaped bonded magnet molding include an injection magnetic field molding technique and a compression magnetic field molding technique.

前記射出磁場成型技術は、フェライト粉末、アルニコ粉末、Sm−Co系粉末、Nd−Fe−B系粉末、又はSm−Fe−N系粉末などの永久磁石粉末を熱可塑性樹脂(例えば、ナイロン)と混合して、空気又は不活性ガスのある環境で150〜300℃の温度条件で混練してコンパウンドを作り、そして、流動性を与えるようにさらに当該コンパウンドを150〜300℃の温度で加熱してから、金型内に流し込みボンド磁石成形体を形成する。用いる磁石粉末に一軸異方性を有するものを用い磁場を印加しながら当該コンパウンドを一定形状の金型に射出成型することにより、任意の位置に磁極を有するものが作製可能となる。   In the injection magnetic field molding technique, permanent magnet powder such as ferrite powder, alnico powder, Sm-Co powder, Nd-Fe-B powder, or Sm-Fe-N powder is used as a thermoplastic resin (for example, nylon). Mix and knead in an environment with air or inert gas at a temperature of 150 to 300 ° C. to make a compound, and further heat the compound at a temperature of 150 to 300 ° C. to give fluidity. Then, it is poured into a mold to form a bonded magnet molded body. By using a magnetic powder having uniaxial anisotropy as the magnetic powder to be used and injecting the compound into a mold having a fixed shape while applying a magnetic field, it is possible to produce a magnetic pole having an arbitrary position.

一方、前記圧縮磁場成型技術は、フェライト粉末、アルニコ粉末、Sm−Co系粉末、Nd−Fe−B系粉末、又はSm−Fe−N系粉末などの永久磁石粉末をエポキシなどの熱硬化性樹脂と混合して、空気又は不活性ガスのある環境で常温〜100℃の温度条件で混練してコンパウンドを作り、作られたコンパウンドを一定形状の金型に充填した後、成形しボンド磁石成形体を得る。前記と同様に磁石粉末に一軸異方性を有する粉末を用いることにより、成形時に磁場を印加してコンパウンドを磁場方向に配向させると同時に、圧縮成型を行うことにより上記と同様に任意の位置に磁極を有するボンド磁石が形成可能である。   On the other hand, the compression magnetic field molding technique is made of a permanent magnet powder such as ferrite powder, alnico powder, Sm-Co powder, Nd-Fe-B powder, or Sm-Fe-N powder, and a thermosetting resin such as epoxy. And then knead in an environment with air or inert gas at room temperature to 100 ° C to make a compound, and after filling the formed compound into a fixed shape mold, it is molded and bonded magnet molded body Get. By using a powder having uniaxial anisotropy in the magnet powder as described above, a magnetic field is applied during molding to orient the compound in the magnetic field direction, and at the same time by performing compression molding, it can be placed at any position as described above. Bonded magnets having magnetic poles can be formed.

つまり、ボンド磁石の製造方法においては金型のキャビティ部にコンパウンドを充填し永久磁石或いは電磁石を用いて磁場を形成することにより、磁場方向に粉末が配向されこれを成形することで任意の方向に配向させることが重要である。この場合、図2aに示すように、磁石の磁場配向方向がリングの円心からリングの外方へ放射する(矢印方向)ようになっているものはラジアル磁石であり、多極着磁をおこなうとラジアル配向磁石は磁石の両面にそれぞれ対になるようにNS極が現れる。このラジアル磁石の円周に沿って表面磁束密度を測定すると、鋸波状の表面磁束密度が得られる。しかし、このラジアル配向磁石をロータ用ボンド磁石として用いる場合、磁気特性には優れるものの、鋸波状の表面磁束密度分布によってモータの磁石と電機子の珪素鋼板間の磁気的な引力が増加してコギング(cogging)現像を引き起こす可能性はあるという問題点がある。   In other words, in the method of manufacturing a bonded magnet, a powder is oriented in the direction of the magnetic field by filling the cavity of the mold with a compound and forming a magnetic field using a permanent magnet or an electromagnet. It is important to align. In this case, as shown in FIG. 2a, the magnetic field orientation direction of the magnet radiates from the center of the ring to the outside of the ring (in the direction of the arrow) is a radial magnet, and multipolar magnetization is performed. In the radially oriented magnet, NS poles appear so as to be paired on both sides of the magnet. When the surface magnetic flux density is measured along the circumference of the radial magnet, a sawtooth surface magnetic flux density is obtained. However, when this radially oriented magnet is used as a bonded magnet for a rotor, although it has excellent magnetic properties, the magnetic attractive force between the motor magnet and the armature silicon steel sheet increases due to the sawtooth surface magnetic flux density distribution, thereby cogging. There is a problem that there is a possibility of causing (cogging) development.

一方、図2bに示すように、極配向磁石は磁石の片方の表面にNS極が現れるものであり、反対側の面には(裏面)にはNS極がほとんど現れないような配向方向になっている。極配向磁石は、一般的に、同じ材料で同一極数およびサイズのラジアル磁石と比べて表面磁束密度が30〜40%程高いため、モータに適用される場合に正弦波の波形が容易に得られる利点がある。   On the other hand, as shown in FIG. 2b, the pole-oriented magnet has NS poles appearing on one surface of the magnet, and the orientation direction is such that NS poles hardly appear on the opposite side (back side). ing. A pole-oriented magnet generally has a surface magnetic flux density of 30 to 40% higher than that of a radial magnet of the same material and the same number of poles and size. Therefore, a sinusoidal waveform can be easily obtained when applied to a motor. There are advantages to being

しかしながら、磁石の内部まで磁路を形成するために余分な材料が必要であるので材料費が高くなるという問題点がある。このような極配向磁石としてはフェライト磁性粉末を用いた射出成形ボンド磁石もしくは焼結磁石で形成されたものがほとんどであった。最近では、希土類磁石粉末でも射出成形にて極配向性磁石を形成する方法が開示されている。   However, since an extra material is required to form a magnetic path to the inside of the magnet, there is a problem that the material cost becomes high. Most of such polar-oriented magnets are formed of injection-molded bonded magnets or sintered magnets using ferrite magnetic powder. Recently, a method of forming a polar orientation magnet by injection molding using rare earth magnet powder has been disclosed.

このように磁力の強い希土類粉末は磁石性能向上に有効であるが、低磁気特性のフェライト粉末と比べて材料費が約10倍以上高くなることから、薄肉化することが必須である。   Such a rare earth powder having a strong magnetic force is effective in improving the magnet performance, but the material cost is about 10 times higher than that of the ferrite powder having a low magnetic property, so that it is essential to reduce the thickness.

薄肉化の際の問題点はすでに知られているように、成型時の冷却工程での割れが問題提起されている。これは、金型などの金属材料と熱膨張係数の差がある材料を薄肉で成形する際、その冷却工程での生じる歪によりものであり、これまでは素材と成形厚みにより吸収可能な条件であったが、希土類磁石の薄肉成形では前述の吸収しろがほとんどないために生じるものである。また、磁界中成形工程であることから、磁場配向工程において金型から発生する磁束が射出成形磁石をとおりぬけてしまう成分が多く、極配向性的な磁力分布にならず、結果的にロータの表面磁力波形が正弦波からずれる。このため、磁束が突き抜けないよう希土類層を厚くすることにより、金型からの配向磁束が磁石内でまわり、結果的に表面磁束波形が正弦波に近くなる。この結果、磁石の厚さをある程度厚くすればよいが、磁石材料の重量が多くなり、前述のようにロータの単価が高くなってしまうため希土類層を薄くしつつ表面磁束波形が正弦波になる手法が要求されており、このため磁石部分を2層にし表面側に希土類磁石を配置しさらにロータコア側にフェライトとすることが提案されている(例えば、特許文献1、特許文献2参照)。
特開2005−64448号公報 特開2005−151757号公報
As already known as a problem in thinning, cracks in the cooling process during molding have been raised. This is due to the distortion that occurs in the cooling process when molding a metal material with a difference in thermal expansion coefficient from a metal material such as a mold, so far under conditions that can be absorbed by the material and the molding thickness. However, it occurs because there is almost no absorption margin in the thin-wall molding of the rare earth magnet. In addition, since it is a molding process in a magnetic field, there are many components in which the magnetic flux generated from the mold passes through the injection-molded magnet in the magnetic field orientation process, and the magnetic orientation distribution of the rotor is not obtained as a result. The surface magnetic force waveform deviates from the sine wave. For this reason, by increasing the thickness of the rare earth layer so that the magnetic flux does not penetrate, the orientation magnetic flux from the mold rotates in the magnet, and as a result, the surface magnetic flux waveform becomes close to a sine wave. As a result, the thickness of the magnet may be increased to some extent, but the weight of the magnet material increases, and the unit price of the rotor increases as described above. Therefore, the surface magnetic flux waveform becomes a sine wave while thinning the rare earth layer. A technique is required, and for this reason, it has been proposed that the magnet portion has two layers, a rare earth magnet is disposed on the surface side, and a ferrite is formed on the rotor core side (see, for example, Patent Document 1 and Patent Document 2).
JP-A-2005-64448 JP 2005-151757 A

ロータ用永久磁石材料として希土類ボンド磁石を使用する場合、性能という観点からフェライトボンド磁石に比較して高い磁気特性を有するため有効磁石体積を小さくすることが可能であること、経済的な観点からは磁石コストの削減が要求されること、以上のことを考慮するとロータに使用される希土類磁石の厚さは薄肉に設計される。   When using a rare earth bonded magnet as a permanent magnet material for a rotor, it is possible to reduce the effective magnet volume because it has higher magnetic properties than a ferrite bonded magnet from the viewpoint of performance, from an economical viewpoint Considering the fact that reduction of magnet cost is required and considering the above, the thickness of the rare earth magnet used in the rotor is designed to be thin.

このことより、現行材料であるフェライト磁石をそのまま希土類磁石に置き換え薄肉化するだけでは材料コストが大幅増加することが明らかであり、また製造上、磁石の強度が低下し割れるなどの課題があり、磁石材料の二層化することで上記課題の解決が図られてきた。しかしながら、本発明は、上記従来技術の問題点を解決するために磁石材料の配置を向上させたものであり、高い表面磁束密度特性と磁石表面における磁束密度の波形コントロールした状態での、希土類磁石部分を局所的に配置した極異方複合ボンド磁石を提供するものである。   From this, it is clear that just replacing the ferrite magnet which is the current material with a rare earth magnet as it is and making it thin will significantly increase the material cost, and there are problems such as reduction in strength of the magnet and cracking in production, The solution of the above problems has been achieved by making the magnetic material into two layers. However, in the present invention, the arrangement of the magnet material is improved in order to solve the above-mentioned problems of the prior art, and the rare earth magnet in a state in which the high surface magnetic flux density characteristics and the waveform of the magnetic flux density on the magnet surface are controlled. It is an object of the present invention to provide a polar anisotropic composite bonded magnet having locally disposed portions.

上記課題を解決するため本発明の希土類ボンド磁石複合体は極配向性を有しその磁極部分にのみ選択的に希土類磁石を配置する構成とし、表面多極着磁後の磁極相当部分はフェ
ライトより高い磁気特性を有する希土類磁石で構成される構造体であることを特徴としている。開示例のように2種類のリング形状の磁石を積層したものとは基本構成が異なり、全周にわたり希土類磁石部分を形成しないため希土類磁石部分が割れることはない。
In order to solve the above problems, the rare earth bonded magnet composite of the present invention has a polar orientation, and a rare earth magnet is selectively disposed only on the magnetic pole portion, and the magnetic pole corresponding portion after surface multipolar magnetization is made of ferrite. It is characterized by being a structure composed of rare earth magnets having high magnetic properties. The basic configuration is different from that in which two types of ring-shaped magnets are stacked as in the disclosed example, and the rare earth magnet portion is not cracked because the rare earth magnet portion is not formed over the entire circumference.

成形する際には金型内の所望の位置に希土類磁石を配置した後、フェライト磁石を金型内に流しこみ、複合磁石体を形成する方法や先にフェライト磁石体を形成した後、別の金型で希土類磁石部分を形成する二段階成形などの方法が選択できるがいずれの方法を用いても、成形後の複合磁石の性能には影響がない。   When molding, after placing the rare earth magnet at a desired position in the mold, the ferrite magnet is poured into the mold, and a method of forming a composite magnet body or first forming a ferrite magnet body, Although a method such as two-stage molding in which a rare earth magnet portion is formed by a mold can be selected, the performance of the composite magnet after molding is not affected by any method.

本発明の磁石は、従来型の極配向フェライト磁石の磁極形成部分に希土類磁石を埋め込んだ構造である。磁極を有する側の表面からみるとフェライト材と希土類磁石材が交互に並んだ構成で、希土類磁石部が非連続に配置されたものである。これは、フェライト磁粉と熱可塑性樹脂から構成される混錬物よりなるコンパウンドを磁場配向金型中に射出成形することにより形成されるフェライト磁石の一部を別工程で形成する希土類磁石で構成し、この希土類部分を極配向の磁極相当部とすることで多極着磁後の表面磁束密度の高い複合極配向ボンド磁石を得るものである。   The magnet of the present invention has a structure in which a rare earth magnet is embedded in a magnetic pole forming portion of a conventional polar-oriented ferrite magnet. When viewed from the surface having the magnetic poles, the ferrite material and the rare earth magnet material are alternately arranged, and the rare earth magnet portions are discontinuously arranged. This is composed of rare earth magnets that are formed in a separate process in a part of the ferrite magnet formed by injection molding a compound made of a kneaded material composed of ferrite magnetic powder and thermoplastic resin into a magnetic field oriented mold. The composite pole-oriented bonded magnet having a high surface magnetic flux density after multipolar magnetization is obtained by using the rare earth portion as the pole-oriented portion corresponding to the pole.

本磁石を構成するフェライトは極配向性を有するボンド磁石成形体の基本となるものであり、異方性材料であることが望ましい。前記、本発明のボンド磁石複合体を構成するフェライト磁石は、フェライト系粉末単体、もしくはフェライト系粉末とNdFeB系希土類磁石との混合系粉末から選ばれた粉末からとすることができる。   The ferrite constituting this magnet is the basis of a bonded magnet molded body having polar orientation, and is preferably an anisotropic material. The ferrite magnet constituting the bonded magnet composite of the present invention can be made of a powder selected from a ferrite powder alone or a mixed powder of a ferrite powder and a NdFeB rare earth magnet.

本複合磁石を構成する希土類磁石材は等方性であっても異方性であってもよい。構成材料としてはNdFeBを主成分とする希土類強磁性粉末を含む磁石のみでなく、SmFeN、SmCoなどの強磁性粉末を含む磁石としてもよく、少なくとも1種の粉末から構成されるとすることができる。   The rare earth magnet material constituting the composite magnet may be isotropic or anisotropic. The constituent material is not limited to a magnet containing a rare earth ferromagnetic powder mainly composed of NdFeB, but may be a magnet containing a ferromagnetic powder such as SmFeN or SmCo, and may be composed of at least one kind of powder. .

ベースとなるフェライトボンド磁石のバインダーはポリアミドが好ましく、特に耐熱、耐薬品性が要求される際にはPPSを用いてもよい。希土類磁石部もボンド磁石とする場合、密着性を考慮し同一のバインダーを用いることが望ましい。しかし希土類層の成形工程やその後の工程で問題がなければ、特にこれにこだわる必要はない。   The binder of the ferrite bond magnet as the base is preferably polyamide, and PPS may be used particularly when heat resistance and chemical resistance are required. When the rare earth magnet portion is also a bonded magnet, it is desirable to use the same binder in consideration of adhesion. However, if there is no problem in the molding process of the rare earth layer and the subsequent processes, there is no need to stick to this.

磁場配向は金型内に埋め込まれた永久磁石による磁界による極異方成形を採用することで多極に配向したリング磁石が成形でき、かつこの磁石でロータを形成した際の磁石表面の磁力波形が正弦波に近いものが容易に製造出るため、特にモータの振動や騒音の低減、効率向上などの効果があり、好適である。   The magnetic field orientation can be formed into a multi-polar ring magnet by using polar anisotropic molding with a magnetic field by a permanent magnet embedded in the mold, and the magnetic force waveform on the magnet surface when the rotor is formed with this magnet. Since a product close to a sine wave is easily produced, there are particularly advantageous effects such as motor vibration and noise reduction and efficiency improvement.

本発明においてはフェライト磁石の厚みは特に限定されないがロータ形成後の着磁に際しロータコアへの磁束の漏れが小さくなることや表面磁束波形の乱れを抑制するように考慮することが望ましい。希土類層の厚さには特に限定はないが要求される表面磁束密度、材料費のバランスを考慮し希土類層厚さが選択される。   In the present invention, the thickness of the ferrite magnet is not particularly limited, but it is desirable to consider so as to reduce the leakage of magnetic flux to the rotor core and to suppress the disturbance of the surface magnetic flux waveform during magnetization after the rotor is formed. The thickness of the rare earth layer is not particularly limited, but the rare earth layer thickness is selected in consideration of the required surface magnetic flux density and balance of material costs.

成形工程は前述したようにフェライト磁石部は射出成形により行うものとし、この成型用の金型内に希土類磁石を配置しフェライト磁石と一体になるよう成型してもよいし、別工程で希土類磁石成型用の金型内で成形しても良い。また、二色成形法を採用することにより、同じ金型内でフェライト磁石と希土類磁石を連続的に成形しても良い。   As described above, the ferrite magnet part is formed by injection molding as described above, and a rare earth magnet may be placed in this molding die so as to be integrated with the ferrite magnet. You may shape | mold in the metal mold | die for shaping | molding. Further, by adopting a two-color molding method, the ferrite magnet and the rare earth magnet may be continuously molded in the same mold.

本発明の複合ボンド磁石は極配向した表面多極磁石であるから、成型時に印加する磁場
は、金型に設置されたコイルに電流を流して磁場を発生させる方法でも可能であるが、金型内部に永久磁石を埋め込んだ極異方成形型を用いることが望ましい。特に、フェライト磁石と希土類磁石の両方を射出成形より形成する場合には特に有効である。これは希土類磁石を成型する前の工程で形成されたフェライト磁石表面に配向磁界により磁極があらかじめ形成され、次工程の希土類磁石成形の際には配向磁石の一部として機能させることに有効である。
Since the composite bonded magnet of the present invention is a pole-oriented surface multi-pole magnet, the magnetic field applied at the time of molding can be a method in which a magnetic field is generated by passing a current through a coil installed in the mold. It is desirable to use an extremely anisotropic mold in which a permanent magnet is embedded. This is particularly effective when both ferrite magnets and rare earth magnets are formed by injection molding. This is effective for forming a magnetic pole in advance by the orientation magnetic field on the surface of the ferrite magnet formed in the process before molding the rare earth magnet, and functioning as a part of the orientation magnet in the rare earth magnet molding in the next process. .

以下、本発明の実施例の手順を詳細に説明するが、本発明の趣旨の範囲内においては以下の実施例に限定されるものではない。   Hereinafter, although the procedure of the Example of this invention is demonstrated in detail, within the meaning of this invention, it is not limited to a following example.

まず、フェライト磁石を射出成形により形成する。具体的には、フェライト系の磁石粉末をナイロン系の樹脂で混錬したコンパウンドから形成したペレットを射出機に仕込む。成形時の温度条件はフェライト磁石2の素材が流れ、かつ磁場配向用永久磁石3が減磁しない温度とすることが重要であり、40〜150℃の金型温度、200〜290℃の射出温度、及び800〜1500kg/cm2の射出圧力を具備する条件で、8極異方金型(外径50mm×内径30mm)に磁場を印加しながら射出成型を行うことによりフェライト極異方磁石を形成する。   First, a ferrite magnet is formed by injection molding. Specifically, pellets formed from a compound obtained by kneading ferrite-based magnet powder with nylon-based resin are charged into an injection machine. It is important that the temperature conditions at the time of molding are such that the material of the ferrite magnet 2 flows and the permanent magnet 3 for magnetic field orientation does not demagnetize, the mold temperature of 40 to 150 ° C., the injection temperature of 200 to 290 ° C. And forming a ferrite polar anisotropic magnet by performing injection molding while applying a magnetic field to an octupole anisotropic mold (outer diameter 50 mm × inner diameter 30 mm) under the conditions of injection pressure of 800-1500 kg / cm 2. .

次に希土類磁石を同様に射出成形により形成する。具体的には希土類を含む永久磁石材料であるNdFeB系の磁粉末を前記と同様にナイロン系の樹脂で混錬したコンパウンドから形成したペレットを射出機に仕込む。次に、前記フェライト磁石を金型内に配置し前述の条件下の範囲で磁界を印可し8極異方金型(外径50mm×内径30mm)に射出成形をおこない、磁極相当部分に希土類磁石を形成する。このように2段階の成形をおこない図1に示す複合ボンド磁石成形体を構成する。   Next, a rare earth magnet is similarly formed by injection molding. Specifically, pellets formed from a compound obtained by kneading NdFeB-based magnetic powder, which is a permanent magnet material containing rare earth, with a nylon-based resin in the same manner as described above are charged into an injection machine. Next, the ferrite magnet is placed in a mold, a magnetic field is applied within the range of the above-described conditions, and an 8-pole anisotropic mold (outer diameter 50 mm × inner diameter 30 mm) is injection-molded. Form. In this way, the composite bonded magnet molded body shown in FIG.

比較例として、前記8極異方金型でフェライト極異方磁石を単体で形成し得られた磁石の表面磁束密度をガウスメータで計測した結果、最大値は1700Gであった。磁極部分が略凹形状になる用にNdFeB系磁石を磁極部分に成形し図1に示す構成とし同様に表面磁束密度を測定した結果最大値2500Gまでに増加した。希土類磁石単体の磁気特性は(BH)max:8.8MGOeである。希土類磁石の埋めこみ深さは2mmとした。表面磁束波形は正弦波に近いものであった。比較として外周に希土類磁石2mm厚でリング形状に全周タイプのものも形成したが最大磁束密度は2300G同程度であった。図1の構成では希土類磁石が非連続的に配置されているので相対的に希土類磁石の占める体積を低減することが可能になった。   As a comparative example, as a result of measuring the surface magnetic flux density of a magnet obtained by forming a ferrite polar anisotropic magnet alone with the 8-pole anisotropic mold, the maximum value was 1700 G. As a result of measuring the surface magnetic flux density in the same manner as shown in FIG. 1 by forming an NdFeB-based magnet into the magnetic pole portion so that the magnetic pole portion has a substantially concave shape, the magnetic flux portion increased to a maximum value of 2500G. The magnetic property of the rare earth magnet alone is (BH) max: 8.8 MGOe. The embedding depth of the rare earth magnet was 2 mm. The surface magnetic flux waveform was close to a sine wave. For comparison, a rare earth magnet with a thickness of 2 mm was formed on the outer periphery, and a ring-shaped all-round type was also formed, but the maximum magnetic flux density was about 2300 G. In the configuration of FIG. 1, since the rare earth magnets are discontinuously arranged, the volume occupied by the rare earth magnet can be relatively reduced.

希土類磁石を非連続としたことにより、これまでのリング状磁石を積層したタイプに比較し表面磁束波形の原点近傍の傾きがより小さいものになった。この結果、本発明による埋めこみ型複合極異方磁石は、コギングトルクを低減可能となった。表面から見た際の希土類磁石の占める面積や埋めこみ深さを変えることにより、モータにあわせて様々な形に表面磁束密度波形を調整可能になり、モータの効率を向上させることができた。   By making the rare earth magnet discontinuous, the slope of the surface magnetic flux waveform near the origin is smaller than that of the conventional type in which ring magnets are laminated. As a result, the embedded composite polar anisotropic magnet according to the present invention can reduce the cogging torque. By changing the area occupied by the rare earth magnet and the embedding depth when viewed from the surface, the surface magnetic flux density waveform can be adjusted in various forms according to the motor, and the efficiency of the motor can be improved.

前述したように従来の技術に基づいて、金型内にあらかじめ希土類ボンド磁石体を設置しておきその後フェライト磁石を射出成形により一体となるよう形成し、所望の複合ボンド磁石を形成する。金型はBタイプのリング形状の金型を用いる。第一の工程として50〜100℃の範囲で予熱された等方性のNdFeB系希土類ボンド磁石ブロックを金型キャビティ内の外周に沿うように、かつ極配向の位置となるように配置し金型をセットする。希土類ボンド磁石ブロックの磁気特性は実施例1と同程度のものを用いた。次に閉じた金型内に実施例1の条件でフェライト磁石を射出成形により形成する。その後金型内で冷
却されることにより希土類磁石と一体となった複合磁石を得た。
As described above, based on the conventional technique, a rare earth bonded magnet body is previously installed in a mold, and then a ferrite magnet is formed integrally by injection molding to form a desired composite bonded magnet. A B-type ring-shaped mold is used as the mold. As a first step, an isotropic NdFeB rare earth bonded magnet block preheated in the range of 50 to 100 ° C. is disposed along the outer periphery of the mold cavity so as to be in a polar orientation position. Set. The magnetic properties of the rare earth bonded magnet block were the same as those in Example 1. Next, a ferrite magnet is formed by injection molding in the closed mold under the conditions of Example 1. Thereafter, the composite magnet integrated with the rare earth magnet was obtained by cooling in the mold.

本複合磁石を着磁しガウスメータを用い表面磁束密度を測定した結果、最大磁束密度は2550Gであった。また、表面磁束波形は正弦波に近いものであり、実施例1の条件で形成したものと同等特性のものを得ることが可能である。   As a result of magnetizing this composite magnet and measuring the surface magnetic flux density using a gauss meter, the maximum magnetic flux density was 2550G. Further, the surface magnetic flux waveform is close to a sine wave, and it is possible to obtain the same characteristics as those formed under the conditions of Example 1.

本発明のフェライト/希土類複合磁石は高い表面磁束密度が得られるため、これをもちいたロータを用いて形成したモータは、従来タイプに比較し高効率化が実現されるため、省エネに貢献する。   Since the ferrite / rare earth composite magnet of the present invention provides a high surface magnetic flux density, a motor formed using a rotor using the same contributes to energy saving because it achieves higher efficiency than the conventional type.

また、フェライト並みの熱的耐久性を維持しつつ、本磁石を搭載したモータの小型軽量化、高出力化、高効率化が可能である。   In addition, while maintaining the thermal durability similar to that of a ferrite, it is possible to reduce the size, weight, output, and efficiency of a motor equipped with this magnet.

また、本発明はロータのほかにも磁石を多極着磁するようなエンコーダーやセンサーなどに使用されるボンドマグネット応用商品へ応用が可能なものである。   In addition to the rotor, the present invention can be applied to a bonded magnet application product used for an encoder, a sensor, or the like that magnetizes a multipole magnet.

本発明のフェライト/希土類複合ボンド磁石の概略図Schematic of ferrite / rare earth composite bonded magnet of the present invention a)ラジアル磁石の磁化方向を示す例示図、b)極配向磁石の磁化方向を示す例示図a) Illustration showing the magnetization direction of a radial magnet, b) Illustration showing the magnetization direction of a pole-oriented magnet

符号の説明Explanation of symbols

11 フェライト磁石部
12 希土類磁石部
21 ラジアル配向磁石部
22 極配向磁石部
11 Ferrite Magnet Part 12 Rare Earth Magnet Part 21 Radial Oriented Magnet Part 22 Polar Oriented Magnet Part

Claims (4)

表面に複数の磁極を有する極異方性複合ボンド磁石成型体であって、ボンド磁石成形体フェライト樹脂組成物を主成分とするものであり、表面の複数の磁極部に希土類磁石を配置させたことを特徴とする複合ボンド磁石成形体。 A polar anisotropic composite bonded magnet molded body having a plurality of magnetic poles on the surface, the bonded magnet molded body is mainly composed of a ferrite resin composition, and rare earth magnets are arranged on a plurality of magnetic pole portions on the surface. A composite bonded magnet molded body characterized by that. 前記、磁極部の希土類磁石がNdFeB系合金、SmFeN系合金、SmCo系合金の少なくとも一つから構成されることを特徴とする請求項1記載の複合ボンド磁石成形体。 2. The composite bonded magnet molded body according to claim 1, wherein the rare earth magnet of the magnetic pole portion is made of at least one of an NdFeB alloy, an SmFeN alloy, and an SmCo alloy. 前記、フェライト樹脂組成物がNdFeB系合金、SmFeN系合金粉末SmCo系合金よりなる群から選ばれた少なくとも1種の合金粉末とフェライト系の粉末とを混合した粉末から形成する樹脂組成物であることを特徴とする請求項1記載の複合ボンド磁石成形体。 The ferrite resin composition is a resin composition formed from a powder obtained by mixing at least one alloy powder selected from the group consisting of an NdFeB alloy, an SmFeN alloy powder and an SmCo alloy, and a ferrite powder. The composite bonded magnet molded body according to claim 1. 前記複合ボンド磁石成形体は希土類磁石部とフェライト磁石部との境界面が略円弧形状を有することを特徴とする請求項1記載の複合ボンド磁石成形体。

The composite bonded magnet molded body according to claim 1, wherein a boundary surface between the rare earth magnet portion and the ferrite magnet portion has a substantially arc shape.

JP2006026819A 2006-02-03 2006-02-03 Compound bond magnet molding Pending JP2007208104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026819A JP2007208104A (en) 2006-02-03 2006-02-03 Compound bond magnet molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026819A JP2007208104A (en) 2006-02-03 2006-02-03 Compound bond magnet molding

Publications (1)

Publication Number Publication Date
JP2007208104A true JP2007208104A (en) 2007-08-16

Family

ID=38487281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026819A Pending JP2007208104A (en) 2006-02-03 2006-02-03 Compound bond magnet molding

Country Status (1)

Country Link
JP (1) JP2007208104A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997221A1 (en) * 2012-10-22 2014-04-25 Valeo Equip Electr Moteur HYBRID MAGNET, METHOD FOR MANUFACTURING A HYBRID MAGNET, AND ROTATING ELECTRIC MACHINE COMPRISING SUCH HYBRID MAGNETS
WO2013135258A3 (en) * 2012-03-13 2014-05-30 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft Würzburg Electrical machine
WO2018016067A1 (en) * 2016-07-22 2018-01-25 三菱電機株式会社 Electric motor, air conditioner, rotor, and method of manufacturing electric motor
CN111524671A (en) * 2020-04-30 2020-08-11 和也健康科技有限公司 Preparation method of high-corrosion-resistance coating on surface of flexible bonded neodymium iron boron-nickel zinc ferrite composite magnet
JPWO2020129123A1 (en) * 2018-12-17 2021-06-10 三菱電機株式会社 Rotor, motor, blower, and air conditioner, and how to manufacture the rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257703A (en) * 1986-05-01 1987-11-10 Seiko Epson Corp Resin-bonded magnetic material
JPH02211032A (en) * 1989-02-10 1990-08-22 Tomoyuki Okumura Composite-structured magnet member
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257703A (en) * 1986-05-01 1987-11-10 Seiko Epson Corp Resin-bonded magnetic material
JPH02211032A (en) * 1989-02-10 1990-08-22 Tomoyuki Okumura Composite-structured magnet member
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876397B2 (en) 2012-03-13 2018-01-23 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Electrical machine
US9634527B2 (en) 2012-03-13 2017-04-25 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Electrical machine with a high level of efficiency
WO2013135258A3 (en) * 2012-03-13 2014-05-30 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft Würzburg Electrical machine
US20150001977A1 (en) * 2012-03-13 2015-01-01 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Electrical machine
US9831726B2 (en) 2012-03-13 2017-11-28 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Electrical machine
US9634528B2 (en) 2012-03-13 2017-04-25 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Efficient electric machine
JP2015510388A (en) * 2012-03-13 2015-04-02 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク Electric machine
FR2997221A1 (en) * 2012-10-22 2014-04-25 Valeo Equip Electr Moteur HYBRID MAGNET, METHOD FOR MANUFACTURING A HYBRID MAGNET, AND ROTATING ELECTRIC MACHINE COMPRISING SUCH HYBRID MAGNETS
WO2014064351A1 (en) * 2012-10-22 2014-05-01 Valeo Equipements Electriques Moteur Hybrid magnet, method for producing a hybrid magnet, and rotating electrical machine comprising such hybrid magnets
WO2018016067A1 (en) * 2016-07-22 2018-01-25 三菱電機株式会社 Electric motor, air conditioner, rotor, and method of manufacturing electric motor
JPWO2018016067A1 (en) * 2016-07-22 2018-10-25 三菱電機株式会社 Electric motor, air conditioner, rotor, and method of manufacturing electric motor
JPWO2020129123A1 (en) * 2018-12-17 2021-06-10 三菱電機株式会社 Rotor, motor, blower, and air conditioner, and how to manufacture the rotor
JP7191121B2 (en) 2018-12-17 2022-12-16 三菱電機株式会社 ROTOR, ELECTRIC MOTOR, BLOWER, AIR CONDITIONER, AND ROTOR MANUFACTURING METHOD
US11888368B2 (en) 2018-12-17 2024-01-30 Mitsubishi Electric Corporation Rotor, electric motor, air blower, air conditioner, and method for fabricating rotor
CN111524671A (en) * 2020-04-30 2020-08-11 和也健康科技有限公司 Preparation method of high-corrosion-resistance coating on surface of flexible bonded neodymium iron boron-nickel zinc ferrite composite magnet
CN111524671B (en) * 2020-04-30 2022-04-12 和也健康科技有限公司 Preparation method of high-corrosion-resistance coating on surface of flexible bonded neodymium iron boron-nickel zinc ferrite composite magnet

Similar Documents

Publication Publication Date Title
US9876397B2 (en) Electrical machine
JP3864986B2 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
JP4796788B2 (en) Coreless motor
KR100579914B1 (en) Manufacture method of laminating polar hybrid magnet
Kim et al. A new anisotropic bonded NdFeB permanent magnet and its application to a small DC motor
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JP2007208104A (en) Compound bond magnet molding
WO2007010948A1 (en) Brushless motor and rotor thereof
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP6384543B2 (en) Polar anisotropic ring magnet and rotor using the same
JP2007028714A (en) Dc brush motor
US20100066192A1 (en) Radial-direction gap type magnet motor
JP2017212863A (en) Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP4241209B2 (en) Motor device and method for manufacturing casing thereof
JP2010098863A (en) Cylindrical magnet material and surface magnet type motor
JP2004242378A (en) Motor, motor rotor, and compound anisotropic magnet
JP5188775B2 (en) Small DC motor
JP4508019B2 (en) Anisotropic bond sheet magnet and manufacturing apparatus thereof
JP2007028725A (en) Anisotropic bonded magnet assembly, its manufacturing method, and permanent magnet motor using the magnet assembly
JP2001167963A (en) Method of manufacturing magnet and mold for molding magnet
JP2007043823A (en) Process for manufacturing permanent magnet rotor
JP2006311661A (en) Four-pole dc brush motor
JP2006280056A (en) Magnet and manufacturing method therefor, and rotor for stepping motor
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110511

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110805