WO2007010948A1 - Brushless motor and rotor thereof - Google Patents

Brushless motor and rotor thereof Download PDF

Info

Publication number
WO2007010948A1
WO2007010948A1 PCT/JP2006/314297 JP2006314297W WO2007010948A1 WO 2007010948 A1 WO2007010948 A1 WO 2007010948A1 JP 2006314297 W JP2006314297 W JP 2006314297W WO 2007010948 A1 WO2007010948 A1 WO 2007010948A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
rare earth
bonded magnet
groove
Prior art date
Application number
PCT/JP2006/314297
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinobu Honkura
Hironari Mitarai
Hiroshi Matsuoka
Daisuke Nagaya
Original Assignee
Aichi Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corporation filed Critical Aichi Steel Corporation
Publication of WO2007010948A1 publication Critical patent/WO2007010948A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets

Definitions

  • the present invention relates to a brushless motor in which a bond magnet is provided on a rotor, and background art relating to the rotor
  • IPM motors and SPM motors are known as brushless motors!
  • IPM motors a structure in which a rare earth sintered magnet is embedded in a rotor is known!
  • silicon steel plates are mainly used for magnetic circuits, so there is a problem that the electromagnetic noise of the motor is large because of the saliency due to the distribution of surface magnetic flux due to the change in electrical angle.
  • the eddy current loss in the silicon steel plate it is necessary to reduce the thickness of the silicon steel plate to 0.3 mm or less. Even if this measure is taken, the eddy current loss is inferior to the SPM motor. .
  • Patent Document 1 discloses an SPM motor in which a magnet is provided on the surface of a rotor.
  • the outer periphery of the rotor is cylindrical and has a recess on the outer surface.
  • An anisotropic rare earth bonded magnet with polar anisotropy orientation is provided, and a rare earth sintered magnet is disposed in the recess.
  • scattering of rare earth sintered magnets becomes a problem. Therefore, a ring-shaped rare earth bonded magnet is in contact with the outer periphery of the rare earth sintered magnet and anisotropic rare earth bonded magnet. It is done.
  • Patent Document 1 JP 2004-242378 A
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to simplify the structure and facilitate manufacture by reducing the number of parts. Another object is to improve the output torque by making the manufacturing easier by eliminating the ring to prevent the magnets from scattering and by reducing the gap between the stator teeth. is there. Also, it is to improve the motor performance index (torque Z motor magnetic circuit component volume) and reduce the cogging torque.
  • the width taken in the circumferential direction of the opening on the side facing the armature of the rotor is the width in the circumferential direction inside the rotor.
  • a brushless motor comprising: a rotor having a narrower groove; and a bond magnet inserted into the groove.
  • the shape of the groove in the cross section perpendicular to the axis of the rotor is arbitrary.
  • the groove is opened on the side surface of the rotor, and the bonded magnet inserted into the groove is arranged so as to face the teeth of the stator directly at the opening of the groove.
  • the invention of claim 2 is the brushless motor according to claim 1, wherein in the rotor, a recess is formed from the outer periphery between adjacent grooves. By providing the recess, the cogging torque can be reduced.
  • the cross-sectional shape perpendicular to the rotor axis of the recess can be any shape such as strip, slit, V-shape, etc.
  • the invention of claim 3 is the brushless motor according to claim 1 or claim 2, wherein the bonded magnet is an anisotropic rare earth bonded magnet.
  • the output torque can be improved when the configuration of the present invention is employed.
  • the invention of claim 4 is the brushless motor according to any one of claims 1 to 3, wherein the bonded magnet is press-fitted into the groove. Since the bond magnet is elastic, it is possible to fix the bond magnet in the groove without using an adhesive by press-fitting into the rotor groove using the elasticity.
  • the invention according to claim 5 is an aperture in a brushless motor in which a rotor is provided with a permanent magnet, and the width taken in the circumferential direction of the opening on the side surface facing the armature of the rotor is an opening.
  • the rotor has a groove that is narrower than the width in the circumferential direction inside the rotor, and a bond magnet is inserted into the groove.
  • the invention according to claim 6 is the rotor according to claim 5, wherein a recess is formed from the outer periphery between adjacent grooves, and the invention according to claim 7
  • the bonded magnet is an anisotropic rare earth bonded magnet.
  • the above invention relates to a rotor used in the brushless motor according to claims 1 to 4, and the same configuration and modifications as those of the invention according to claims 1 to 4 can be adopted.
  • the circumferential width of the opening of the groove is configured to be narrower than the circumferential width of the groove inside the rotor. Will not be missed. Therefore, since it is not necessary to provide a ring made of a non-magnetic material or a magnetic material to prevent scattering, the magnetic resistance does not increase, and the output torque of the motor can be improved.
  • the magnetic ring for preventing scattering becomes a magnetic resistance in a magnetic circuit in which a magnetic flux that passes through the stator flows. Increasing force This magnetic ring does not exist in the present invention. Therefore, the output torque of the motor can be greatly improved. Further, since the outer peripheral surface force of the bonded magnet directly faces the stator teeth with a gap therebetween, almost all the magnetic flux of the bonded magnet can be passed through the stator teeth through the gap. As a result, the output torque can be improved.
  • the present invention makes it possible to reduce the torque motor performance index (torque Z magnetic circuit component volume) can be improved.
  • the present invention can improve torque even for IPM motors.
  • the torque per unit magnet usage (torque z magnet usage volume) is greatly improved.
  • the invention of claim 2 is characterized in that in the rotor, a recess is formed from the outer periphery between adjacent grooves.
  • the cogging torque can be reduced by forming the recess.
  • the bonded magnet is an anisotropic rare earth bonded magnet, the output torque can be improved.
  • the bonded magnet is press-fitted into the groove. Since it is fixed in the groove due to the elasticity of the bond magnet, the anti-scattering ring is not necessary, and there is no substance in the magnetic circuit that reduces the magnetic resistance, so the output torque can be increased.
  • inventions of claims 5 to 8 are inventions of a rotor used in the motor described above, and each exhibit the same effect as the above-described effect.
  • FIG. 1 is a configuration diagram showing a rotor of a brushless motor according to a specific embodiment of the present invention.
  • FIG. 2 is a perspective view showing the shape of an anisotropic rare earth bonded magnet.
  • FIG. 3 is a cross-sectional view showing an anisotropic rare earth bonded magnet attached to a rotor.
  • FIG. 4 is a cross-sectional view showing the structure of a rotor according to another embodiment.
  • FIG. 1 shows a configuration of a rotor 10 of an inner rotor type brushless motor.
  • a groove 20 having four openings 16 is provided on the outer peripheral surface 14 of a cylindrical rotor core 12 made of a magnetic laminate such as a silicon steel plate.
  • the circumferential width a of the opening 16 of the groove 20 is narrower than the width b of the groove inside the rotor.
  • the shape of the groove 20 on the cross section perpendicular to the axial direction has a crescent shape.
  • the groove 20 is composed of a curved surface 22 on the outer peripheral side and a curved surface 24 on the inner peripheral side, and the curved surface 24 on the inner peripheral side is formed concentrically with the outer peripheral surface 14 of the rotor iron core 12, and It is configured to be smaller than the curvature of the curved surface 22 on both sides. Due to the shape of the groove 20, the rotor iron core 12 has claws 51 and 52 formed on both sides of each groove 20. By the claws 51 and 52, the anisotropic rare earth bonded magnet 30 inserted into the groove 20 does not come off even when the port 10 rotates. An anisotropic rare earth bonded magnet 30 inserted into the groove 20 is configured as shown in FIG.
  • the shape of the cross section perpendicular to the rotor shaft is a crescent, and is composed of an outer peripheral curved surface 32 and an inner peripheral curved surface 34.
  • the inner peripheral curved surface 34 is an outer peripheral curved surface.
  • the central curved surface 321 is concentric with the curved surface 321, and the curved surface 34 has a smaller curvature than the curved surfaces 322 on both sides of the curved surface 32 on the outer peripheral side.
  • the unusual rare earth bonded magnet 30 is formed in a tile shape with the cross section and crescent shape extending in the axial direction.
  • the motor of the present embodiment is provided with a stator having teeth on the outside of the rotor 10 with a gap therebetween. A coil is wound around the teeth.
  • the heterogeneous rare earth bonded magnet 30 has a maximum energy product of 14MGOe (ll lKjZm 3 ) or more, and the maximum energy product is large. Therefore, the magnetoresistance of the magnetic circuit in the case of using the present invention is large. Due to the reduction effect, motor performance is greatly improved.
  • the anisotropic rare earth bonded magnet 30 is magnetized so that the outer peripheral surface 32 and the inner peripheral surface 34 become S poles, N poles, or the opposite magnetic poles. In the stator, the number of teeth on which the steel wire is arranged is six.
  • the anisotropic rare earth bonded magnet 30 has been finally mass-produced by the applicant in recent years.
  • the anisotropic rare earth bonded magnet 30 is manufactured by the manufacturing method of Japanese Patent Application Laid-Open No. 2001-76997, Japanese Patent No. 2816668, Japanese Patent No. 3060104, and International Patent Application PCTZJP03Z04532.
  • this anisotropic rare earth bonded magnet those having a maximum energy product of 17 MGOe to 28 MGOe (135 KJ / m 3 to 223 KJ / m 3 ) can be manufactured at present.
  • the anisotropic rare earth bonded magnet 30 used in the motor device of the present embodiment is configured in a tile shape in which the cross section perpendicular to the axis of Nd-Fe-B is a crescent shape.
  • the anisotropic rare earth bond magnet 30 is a magnet that is manufactured by resin molding magnetic powder made of Nd—Fe—B and is strongly magnetized in the radial direction.
  • materials for anisotropic rare earth bonded magnets Nd-Fe-B, Nd-Fe-B-based materials such as materials containing other rare earth elements such as Nd and Nd, or other additive elements are used. be able to.
  • materials containing rare earth elements other than Nd such as Sm—Fe—N-based materials, SmCo-based materials, or Nd—Fe—B-based materials, and mixed materials thereof can be used.
  • the anisotropic rare earth bonded magnet 30 is also called a plastic magnet. This magnet is characterized by a maximum energy product (BH) of about 5 times or more compared to conventional sintered ferrite magnets.
  • BH maximum energy product
  • the maximum energy product (BH) of a standard sintered ferrite magnet is 3.5 MGOe max
  • this anisotropic rare-earth bonded magnet has 17MGOe ( It has a maximum energy product of 135 Kj / m 3 ) or more.
  • the weight ratio of the resin in the anisotropic rare earth bonded magnet 30 was in the range of 2 W% or more and 3 W% or less.
  • Anisotropic magnet powder and resin are supplied to a mold, and in a heated state, a magnetic field is applied for orientation, followed by compression molding.
  • This molded body was cured and the degree of cure of the resin was improved to 90-100%. This enhanced the bond between the magnetic powder and resin, and between the resin and resin.
  • the molded body of the anisotropic rare earth bonded magnet 30 after curing was heated at a temperature below the glass transition temperature. This heating reduces the strength of the material without breaking the bond between the magnetic powder and the resin and between the resin and the resin, that is, by softening the resin so that the anisotropic rare earth bonded magnet 30 is removed.
  • the mechanical strength was maintained by reducing the stress exerted on the anisotropic rare earth bonded magnet 30 when the end face force of the slot was pressed into the groove 20 of the rotor 10.
  • the anisotropic rare earth bonded magnet 30 was pressed into the groove 20 and left for a while to cool the anisotropic rare earth bonded magnet 30.
  • the temperature at the time of press-fitting is preferably 60 to 100 ° C. This temperature range does not deteriorate the characteristics of the anisotropic rare earth bonded magnet, in addition to magnetic powder and resin, resin and resin. It is ideal for softening the resin without breaking the bond between the two and inserting the anisotropic rare earth bonded magnet 30 into the groove 40.
  • the outer peripheral surface 32 of the anisotropic rare earth bonded magnet 30 forms a part of the outer peripheral surface 14 of the rotor core 12. Therefore, the outer peripheral surface 32 of the anisotropic rare earth bonded magnet 30 directly faces the teeth with a gap therebetween, so that the gap can be made as narrow as possible.
  • the gap width can be 0.05 mm or more and 0.4 mm or less. Therefore, since the magnetic resistance of the magnetic circuit can be made as small as possible, almost all the magnetic flux possessed by the anisotropic rare earth bonded magnet 30 can be passed through the teeth. As a result, the ability of the anisotropic rare earth bonded magnet 30 having a large energy product can be sufficiently exerted.
  • the torque and motor performance index (torque Z magnetic circuit component volume) is improved by attaching the magnet to the rotor surface and eliminating the anti-scatter ring for the motor that uses the anti-scatter ring on the outside. be able to.
  • the present invention can improve the torque for the IPM motor.
  • the amount of unit magnet used for the motor that is prevented from scattering by the anisotropic rare earth bonded magnet of Patent Document 1. Torque (torque Z magnet usage volume) is greatly improved.
  • the thickness of the thickest portion of the anisotropic rare earth bonded magnet 30 is set in the range of 0.7 to 3 mm. If it is thinner than 1 mm, the surface magnetic flux density is lowered by the demagnetizing field of the anisotropic rare earth bonded magnet 30, which is undesirable. If it is thicker than 3 mm, the motor performance index will decrease, which is not desirable.
  • the circumferential width a of the opening 16 of the groove 20 is configured to be narrower than the width of the groove inside the rotor. Therefore, the anisotropic rare earth bonded magnet inserted into the groove 20 is Even if the rotor 10 rotates, it does not come off. Therefore, since it is not necessary to provide a ring made of a non-magnetic material or a magnetic material to prevent scattering, the magnetic resistance does not increase, and the output torque of the motor can be improved. In addition, since the outer peripheral surface force of the bonded magnet directly faces the teeth of the stator with a gap therebetween, almost all the magnetic flux of the bonded magnet can be passed through the stator teeth through the gap. As a result, the output torque can be improved.
  • this shape allows the change in the magnetic flux between the magnetic poles to be a sliding force, thereby reducing the cogging torque.
  • anisotropic rare earth bonded magnets are used, the magnet powder is surrounded and electrically insulated by insulating grease, which can reduce rotor eddy current loss and improve power efficiency. It becomes possible to make it.
  • the weight ratio of the resin of the anisotropic rare earth bonded magnet 30 is set to 2 W% or more and 3 W% or less, compression molding is performed, and after curing treatment, the degree of curing is 90 to: LOO%
  • the anisotropic rare earth bonded magnet 30 can be easily inserted and fixed in the groove 20 of the rotor 12 by reheating at a temperature below the glass transition point to obtain a softened state.
  • the present invention is effective as a high-output motor that satisfies high torque, low electromagnetic noise, low cogging torque, and low eddy current loss.

Abstract

[PROBLEMS] To increase the performance of a brushless motor. [MEANS FOR SOLVING PROBLEMS] This brushless motor (19) having permanent magnets on a rotor (12) comprises a rotor (10) having grooves in which the circumferential width (a) of opening parts (16) narrower than the circumferential width (b) of the parts of the rotor on the inner sides of the opening parts and anisotropic rare-earth bond magnets (30) inserted into the grooves (20). Since a part of the outer peripheral side curved surface (32) of the anisotropic rare-earth bond magnet directly faces the teeth of a stator through a gap, the magnetic resistance of a magnetic circuit can be minimized.

Description

ブラシレスモータおよびそのロータ  Brushless motor and its rotor
技術分野  Technical field
[0001] 本発明は、ロータにボンド磁石を設けたブラシレスモータおよびそのロータに関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a brushless motor in which a bond magnet is provided on a rotor, and background art relating to the rotor
[0002] 従来から、ブラシレスモータには、 IPMモータと SPMモータとが知られて!/、る。 IPM モータとしては、希土類系焼結磁石をロータの中に埋め込んだ構造が知られて!/ヽる。 IPMモータにおいては、珪素鋼板を磁気回路に主として使用するため、電気角の変 化に伴う表面磁束の分布にぉ 、て突極性を有するためモータの電磁音が大き 、と ヽ う問題点がある。また、珪素鋼板内の渦電流損失を低減するため、珪素鋼板の厚み を 0. 3mm以下に低減する必要がある力 この対策を施したとしても、渦電流損失は 、 SPMモータに比べ劣っている。  Conventionally, IPM motors and SPM motors are known as brushless motors! As an IPM motor, a structure in which a rare earth sintered magnet is embedded in a rotor is known! In IPM motors, silicon steel plates are mainly used for magnetic circuits, so there is a problem that the electromagnetic noise of the motor is large because of the saliency due to the distribution of surface magnetic flux due to the change in electrical angle. . In addition, in order to reduce the eddy current loss in the silicon steel plate, it is necessary to reduce the thickness of the silicon steel plate to 0.3 mm or less. Even if this measure is taken, the eddy current loss is inferior to the SPM motor. .
[0003] SPMモータとしては、焼結磁石をロータの表面に貼り付けた構造が知られている。  [0003] As an SPM motor, a structure in which a sintered magnet is attached to the surface of a rotor is known.
磁石をかわら形状に形成し、その磁石をロータ表面に貼り付けることが必要となるた めに、製造コストが高くなるという問題がある。また、欠け易い焼結磁石がロータの表 面に配設されているために、飛散防止のためのステンレスリングで磁石の表面を覆つ ている。そのためステータとロータとの間のエアギャップが広くなり、 IPMモータに対し てモータ効率が若干劣る。また、磁石の表面磁束を直接使用しているため、突極性 の問題は生じないため電磁音は小さいが、磁極が交互に変化するように、アキシャル 配向の磁石をローター表面に貼付しているので、電気角の変化に伴う表面磁束の分 布において磁石接合部で極性が急激に変化し、コギングトルク特性が劣る。また、 S PMモータは、 IPMモータよりは渦電流損失が少ないものの、モータ高出力化に伴い 、更なる渦電流損失の低減が求められていた。  Since it is necessary to form the magnet in a straw shape and attach the magnet to the rotor surface, there is a problem that the manufacturing cost increases. In addition, since sintered magnets that are easily chipped are arranged on the surface of the rotor, the surface of the magnet is covered with a stainless steel ring to prevent scattering. As a result, the air gap between the stator and the rotor becomes wider, and the motor efficiency is slightly inferior to the IPM motor. In addition, since the surface magnetic flux of the magnet is used directly, the problem of saliency does not occur, so the electromagnetic noise is small, but the axially oriented magnet is attached to the rotor surface so that the magnetic poles change alternately. In the distribution of the surface magnetic flux accompanying the change in the electrical angle, the polarity changes abruptly at the magnet junction, resulting in poor cogging torque characteristics. In addition, although the SPM motor has less eddy current loss than the IPM motor, further reduction in eddy current loss has been required as the motor output increases.
[0004] これらの課題を解決するために、下記特許文献 1に開示する技術が知られて!/ヽる。  [0004] In order to solve these problems, a technique disclosed in Patent Document 1 below is known! / Speak.
下記特許文献 1では、ロータの表面に磁石を設けた SPMモータが開示されている。 このブラシレスモータでは、ロータの外周に、円筒状であって外側面に凹部が形成さ れ、極異方性配向をさせた異方性希土類ボンド磁石を設け、その凹部に希土類焼結 磁石を配置したものである。し力しこの型のロータでは、希土類焼結磁石の飛散が問 題となるため、希土類焼結磁石と異方性希土類ボンド磁石の外周に接して、その外 側にリング状の希土類ボンド磁石を設けることが行われている。 Patent Document 1 below discloses an SPM motor in which a magnet is provided on the surface of a rotor. In this brushless motor, the outer periphery of the rotor is cylindrical and has a recess on the outer surface. An anisotropic rare earth bonded magnet with polar anisotropy orientation is provided, and a rare earth sintered magnet is disposed in the recess. However, in this type of rotor, scattering of rare earth sintered magnets becomes a problem. Therefore, a ring-shaped rare earth bonded magnet is in contact with the outer periphery of the rare earth sintered magnet and anisotropic rare earth bonded magnet. It is done.
特許文献 1:特開 2004 - 242378  Patent Document 1: JP 2004-242378 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、筒状の異方性希土類ボンド磁石の有する凹部に希土類焼結磁石を 挿入した後、さらに、飛散防止のためにリング状の希土類ボンド磁石を配置するため 、部品点数が多く構造及び製造が複雑になるという問題があった。 [0005] While inserting a ring-shaped rare earth bonded magnet to prevent scattering after inserting the rare earth sintered magnet into the concave portion of the cylindrical anisotropic rare earth bonded magnet, However, there is a problem that the structure and manufacturing are complicated.
本発明は、上記の課題を解決するために成されたものであり、その目的は、部品点 数を減少させて構造を単純ィ匕し製造を容易にすることである。また、他の目的は、磁 石の飛散防止のためのリングを排除することで、製造を容易にし、且つ、ステータの ティースとの間のギャップを小さくすることで、出力トルクを向上させることである。また 、モータの性能指標(トルク Zモータの磁気回路構成部体積)を向上させると共にコ ギングトルクを減少させることである。  The present invention has been made to solve the above-described problems, and an object of the present invention is to simplify the structure and facilitate manufacture by reducing the number of parts. Another object is to improve the output torque by making the manufacturing easier by eliminating the ring to prevent the magnets from scattering and by reducing the gap between the stator teeth. is there. Also, it is to improve the motor performance index (torque Z motor magnetic circuit component volume) and reduce the cogging torque.
課題を解決するための手段  Means for solving the problem
[0006] 請求項 1の発明は、ロータに永久磁石を設けたブラシレスモータにおいて、ロータ の電機子と対向する側面において、開口部の周回方向にとられた幅が、ロータ内部 における周回方向の幅よりも狭い溝を有したロータと、溝に挿入されたボンド磁石とを 有することを特徴とするブラシレスモータである。 [0006] In the brushless motor in which the rotor is provided with a permanent magnet, the width taken in the circumferential direction of the opening on the side facing the armature of the rotor is the width in the circumferential direction inside the rotor. A brushless motor comprising: a rotor having a narrower groove; and a bond magnet inserted into the groove.
ロータの軸に垂直な断面における溝の形状は任意である。溝はロータの側面に開 口しており、溝に挿入されたボンド磁石は、溝の開口部において、直接、ステータの ティースと対向するように配置されて 、る。  The shape of the groove in the cross section perpendicular to the axis of the rotor is arbitrary. The groove is opened on the side surface of the rotor, and the bonded magnet inserted into the groove is arranged so as to face the teeth of the stator directly at the opening of the groove.
[0007] また、請求項 2の発明は、ロータにおいて、隣接する溝と溝の間において、外周から 凹部が形成されて 、ることを特徴とする請求項 1に記載のブラシレスモータである。 凹部を設けることにより、コギングトルクを減少させることができる。凹部のロータの軸 に垂直な断面形状は、短冊、スリット、 V字状、など任意の形状を採用することができ る。 [0007] The invention of claim 2 is the brushless motor according to claim 1, wherein in the rotor, a recess is formed from the outer periphery between adjacent grooves. By providing the recess, the cogging torque can be reduced. The cross-sectional shape perpendicular to the rotor axis of the recess can be any shape such as strip, slit, V-shape, etc. The
[0008] また、請求項 3の発明は、ボンド磁石は、異方性希土類ボンド磁石であることを特徴 とする請求項 1又は請求項 2に記載のブラシレスモータである。この異方性希土類ボ ンド磁石を採用することで、本発明の構成を採用する場合に、出力トルクを向上させ ることが可能となる。  [0008] The invention of claim 3 is the brushless motor according to claim 1 or claim 2, wherein the bonded magnet is an anisotropic rare earth bonded magnet. By employing this anisotropic rare earth bond magnet, the output torque can be improved when the configuration of the present invention is employed.
[0009] また、請求項 4の発明は、ボンド磁石は溝に圧入されていることを特徴とする請求項 1乃至請求項 3の何れ力 1項に記載のブラシレスモータである。ボンド磁石は弾性が あるので、その弾性を用いてロータの溝に圧入することで、接着剤を用いることなぐ 溝にボンド磁石を固定することができる。  [0009] The invention of claim 4 is the brushless motor according to any one of claims 1 to 3, wherein the bonded magnet is press-fitted into the groove. Since the bond magnet is elastic, it is possible to fix the bond magnet in the groove without using an adhesive by press-fitting into the rotor groove using the elasticity.
[0010] 請求項 5に記載の発明は、ロータに永久磁石を設けたブラシレスモータにおける口 ータにおいて、ロータの電機子と対向する側面において、開口部の周回方向にとら れた幅が、開口部よりロータ内部における周回方向の幅よりも狭い溝を有し、その溝 にボンド磁石が挿入されていることを特徴とするロータである。また、請求項 6に記載 の発明は、隣接する溝と溝の間において、外周から凹部が形成されていることを特徴 とする請求項 5に記載のロータであり、請求項 7に記載の発明は、ボンド磁石は、異 方性希土類ボンド磁石であることを特徴とする請求項 5又は請求項 6に記載のロータ であり、請求項 8に記載の発明は、ボンド磁石は前記溝に圧入されていることを特徴 とする請求項 5乃至請求項 7の何れか 1項に記載のロータである。以上の発明は、請 求項 1〜4のブラシレスモータに用いられるロータに関するものであり、請求項 1〜4の 発明と同様な構成や変形を採用することができる。  [0010] The invention according to claim 5 is an aperture in a brushless motor in which a rotor is provided with a permanent magnet, and the width taken in the circumferential direction of the opening on the side surface facing the armature of the rotor is an opening. The rotor has a groove that is narrower than the width in the circumferential direction inside the rotor, and a bond magnet is inserted into the groove. The invention according to claim 6 is the rotor according to claim 5, wherein a recess is formed from the outer periphery between adjacent grooves, and the invention according to claim 7 The bonded magnet is an anisotropic rare earth bonded magnet. The rotor according to claim 5 or 6, wherein the bonded magnet is press-fitted into the groove. The rotor according to any one of claims 5 to 7, wherein the rotor is provided. The above invention relates to a rotor used in the brushless motor according to claims 1 to 4, and the same configuration and modifications as those of the invention according to claims 1 to 4 can be adopted.
発明の効果  The invention's effect
[0011] 請求項 1の発明では、溝の開口部の周回方向の幅は、溝のロータ内部の周回方向 の幅よりも狭く構成されているので、ロータが回転してもボンド磁石が遠心力により外 れることはない。よって、飛散防止のために非磁性体又は磁性体によるリングを設け る必要がないので、磁気抵抗が増大しないので、モータの出力トルクを向上させるこ とができる。上記特許文献 1の技術のように、飛散防止のための磁性体リングは、ステ ータを貫く磁束が流れる磁気回路においては磁気抵抗となるために、磁性体リングで あっても、エアギャップは増加する力 本件発明では、この磁性体リングも存在しない ので、モータの出力トルクを大きく向上させることができる。また、ボンド磁石の外周面 力 直接、ギャップを隔てて、ステータのティースに面していることから、ボンド磁石の およそ全磁束をギャップを介してステータのティースに貫通させることができる。これ により、出力トルクを向上させることができる。 [0011] In the invention of claim 1, the circumferential width of the opening of the groove is configured to be narrower than the circumferential width of the groove inside the rotor. Will not be missed. Therefore, since it is not necessary to provide a ring made of a non-magnetic material or a magnetic material to prevent scattering, the magnetic resistance does not increase, and the output torque of the motor can be improved. As in the technique of Patent Document 1 described above, the magnetic ring for preventing scattering becomes a magnetic resistance in a magnetic circuit in which a magnetic flux that passes through the stator flows. Increasing force This magnetic ring does not exist in the present invention. Therefore, the output torque of the motor can be greatly improved. Further, since the outer peripheral surface force of the bonded magnet directly faces the stator teeth with a gap therebetween, almost all the magnetic flux of the bonded magnet can be passed through the stator teeth through the gap. As a result, the output torque can be improved.
以上の効果により、この発明は、磁石をロータ表面に貼り付け、その外側に飛散防 止リングを使用しているモータに対して飛散防止リングをなくすことにより、トルクゃモ ータ性能指標(トルク Z磁気回路構成部体積)を向上させることができる。また、本発 明は、 IPMモータに対してもトルクを向上させることができる。また、特許文献 1の異 方性希土類ボンド磁石による飛散防止をしたモータに対しては、単位磁石使用量当 たりのトルク(トルク z磁石使用体積)が大幅に向上する。  Due to the above-described effects, the present invention makes it possible to reduce the torque motor performance index (torque Z magnetic circuit component volume) can be improved. In addition, the present invention can improve torque even for IPM motors. In addition, for a motor that is prevented from scattering by the anisotropic rare earth bonded magnet of Patent Document 1, the torque per unit magnet usage (torque z magnet usage volume) is greatly improved.
[0012] 請求項 2の発明は、ロータにおいて、隣接する溝と溝の間において、外周から凹部 を形成したのが特徴である。この凹部の形成により、コギングトルクを減少させること ができる。  [0012] The invention of claim 2 is characterized in that in the rotor, a recess is formed from the outer periphery between adjacent grooves. The cogging torque can be reduced by forming the recess.
[0013] また、請求項 3の発明は、ボンド磁石は、異方性希土類ボンド磁石であるので、出 力トルクを向上させることが可能となる。請求項 4の発明は、ボンド磁石は溝に圧入し ている。ボンド磁石の弾性により、溝に固定されているので、飛散防止リングは必要で なくなり、磁気抵抗を低下させる物質が磁気回路に存在しないので、出力トルクを向 上させることができる。  [0013] In the invention of claim 3, since the bonded magnet is an anisotropic rare earth bonded magnet, the output torque can be improved. In the invention of claim 4, the bonded magnet is press-fitted into the groove. Since it is fixed in the groove due to the elasticity of the bond magnet, the anti-scattering ring is not necessary, and there is no substance in the magnetic circuit that reduces the magnetic resistance, so the output torque can be increased.
[0014] 請求項 5〜8の発明は、上記のモータに使用するロータの発明であり、それぞれ、 上記した効果と同一の効果を奏する。  [0014] The inventions of claims 5 to 8 are inventions of a rotor used in the motor described above, and each exhibit the same effect as the above-described effect.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の具体的な実施例に係るブラシレスモータのロータを示した構成図。  FIG. 1 is a configuration diagram showing a rotor of a brushless motor according to a specific embodiment of the present invention.
[図 2]異方性希土類ボンド磁石の形状を示した斜視図。  FIG. 2 is a perspective view showing the shape of an anisotropic rare earth bonded magnet.
[図 3]ロータに異方性希土類ボンド磁石を取り付けた様子を示した断面図。  FIG. 3 is a cross-sectional view showing an anisotropic rare earth bonded magnet attached to a rotor.
[図 4]他の実施例のロータの構造を示した断面図。  FIG. 4 is a cross-sectional view showing the structure of a rotor according to another embodiment.
符号の説明  Explanation of symbols
[0016] 10…ブラシレスモータ [0016] 10 ... Brushless motor
12· ··ロータ鉄心 14· · '外周面 12 ... Rotor core 14.
16· · -開口部  16 ·· -Opening
20· · '溝  20
22· · '外周側の曲面  22 ·· 'Curved surface
24· · -内周側の曲面  24 ·· -Inner curved surface
30· · '異方性希土類ボンド磁石  30 ·· 'Anisotropic rare earth bonded magnet
32· · '外周側の曲面  32 ·· 'Curved outer surface
34· · -内周側の曲面  34 ··-Curve on the inner circumference
321 …中央部曲面  321… curved surface
322 …両側部曲面  322… Both sides curved surface
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明を実施の形態に基づいて説明する。なお、本発明は、下記の実施形 態に限定されるものではない。  Hereinafter, the present invention will be described based on embodiments. Note that the present invention is not limited to the following embodiments.
実施例 1  Example 1
[0018] 図 1は、インナーロータ型のブラシレスモータのロータ 10の構成を示している。珪素 鋼板などの磁性体の積層体から成る円柱状のロータ鉄心 12の外周面 14に 4箇所の 開口部 16を有した溝 20が設けられている。この溝 20の開口部 16の周回方向の幅 a は、ロータ内部の溝の幅 bよりも狭く構成されている。この溝 20の軸方向に垂直な断 面上の形状は三日月形状をしている。すなわち、溝 20は、外周側の曲面 22と内周 側の曲面 24とで構成されており、内周側の曲面 24はロータ鉄心 12の外周面 14と同 心で形成されており、外周側の両側部の曲面 22の曲率よりも小さく構成されている。 この溝 20の形状により、ロータ鉄心 12は、各溝 20の両側に爪 51、 52が形成されるこ とになる。この爪 51、 52により、溝 20に挿入される異方性希土類ボンド磁石 30は、口 ータ 10が回転しても外れることがない。この溝 20に挿入される異方性希土類ボンド 磁石 30は図 2のように構成されている。すなわち、ロータ軸に垂直な断面の形状は三 日月形状をしており、外周側の曲面 32と内周側の曲面 34とで構成されており、内周 側の曲面 34は外周側の曲面 32の中央部曲面 321と同心に構成されており、曲面 3 4の曲率は、外周側の曲面 32の両側部曲面 322の曲率よりも小さく構成されている。 この断面、三日月形状が軸方向に伸びた瓦状に、異本性希土類ボンド磁石 30は形 成されている。 FIG. 1 shows a configuration of a rotor 10 of an inner rotor type brushless motor. A groove 20 having four openings 16 is provided on the outer peripheral surface 14 of a cylindrical rotor core 12 made of a magnetic laminate such as a silicon steel plate. The circumferential width a of the opening 16 of the groove 20 is narrower than the width b of the groove inside the rotor. The shape of the groove 20 on the cross section perpendicular to the axial direction has a crescent shape. That is, the groove 20 is composed of a curved surface 22 on the outer peripheral side and a curved surface 24 on the inner peripheral side, and the curved surface 24 on the inner peripheral side is formed concentrically with the outer peripheral surface 14 of the rotor iron core 12, and It is configured to be smaller than the curvature of the curved surface 22 on both sides. Due to the shape of the groove 20, the rotor iron core 12 has claws 51 and 52 formed on both sides of each groove 20. By the claws 51 and 52, the anisotropic rare earth bonded magnet 30 inserted into the groove 20 does not come off even when the port 10 rotates. An anisotropic rare earth bonded magnet 30 inserted into the groove 20 is configured as shown in FIG. That is, the shape of the cross section perpendicular to the rotor shaft is a crescent, and is composed of an outer peripheral curved surface 32 and an inner peripheral curved surface 34. The inner peripheral curved surface 34 is an outer peripheral curved surface. The central curved surface 321 is concentric with the curved surface 321, and the curved surface 34 has a smaller curvature than the curved surfaces 322 on both sides of the curved surface 32 on the outer peripheral side. The unusual rare earth bonded magnet 30 is formed in a tile shape with the cross section and crescent shape extending in the axial direction.
[0019] また、本実施例のモータは、ロータ 10の外側にギャップを隔ててティースを有したス テータを設けたものとなっている。そのティースの回りには、コイルが巻かれている。  In addition, the motor of the present embodiment is provided with a stator having teeth on the outside of the rotor 10 with a gap therebetween. A coil is wound around the teeth.
[0020] 異本性希土類ボンド磁石 30には、最大エネルギー積が 14MGOe (l l lKjZm3 ) 以上を用いることにより、その最大エネルギー積が大きいために、本発明を用いた場 合における磁気回路の磁気抵抗の減少効果により、モータの性能向上が大きくなる 。異方性希土類ボンド磁石 30は、外周面 32と内周面 34とが S極、 N極、又は、その 逆の磁極となるように磁ィ匕されて 、る。ステータにお 、て卷線が配置されるティースの 数は 6個である。 [0020] The heterogeneous rare earth bonded magnet 30 has a maximum energy product of 14MGOe (ll lKjZm 3 ) or more, and the maximum energy product is large. Therefore, the magnetoresistance of the magnetic circuit in the case of using the present invention is large. Due to the reduction effect, motor performance is greatly improved. The anisotropic rare earth bonded magnet 30 is magnetized so that the outer peripheral surface 32 and the inner peripheral surface 34 become S poles, N poles, or the opposite magnetic poles. In the stator, the number of teeth on which the steel wire is arranged is six.
[0021] 尚、上記異方性希土類ボンド磁石 30は、出願人により、近年ようやく量産化が可能 となったものである。例えば、この異方性希土類ボンド磁石 30は、特開 2001— 7691 7号公報、特許第 2816668号公報、特許第 3060104号公報、及び国際特許出願 PCTZJP03Z04532の製造方法で製造される。この異方性希土類ボンド磁石は、 最大ェネルギー積17MGOe〜28MGOe (135KJ/m3〜223KJ/m3 )のものを、 現在、製造することができる。 [0021] The anisotropic rare earth bonded magnet 30 has been finally mass-produced by the applicant in recent years. For example, the anisotropic rare earth bonded magnet 30 is manufactured by the manufacturing method of Japanese Patent Application Laid-Open No. 2001-76997, Japanese Patent No. 2816668, Japanese Patent No. 3060104, and International Patent Application PCTZJP03Z04532. As this anisotropic rare earth bonded magnet, those having a maximum energy product of 17 MGOe to 28 MGOe (135 KJ / m 3 to 223 KJ / m 3 ) can be manufactured at present.
[0022] 本実施例のモータ装置に使用される異方性希土類ボンド磁石 30は、 Nd—Fe— B カゝらなる軸に垂直な断面が三日月状をした瓦状に構成されている。異方性希土類ボ ンド磁石 30は、 Nd—Fe— Bからなる磁粉を榭脂成型することにより製造され、径方 向に強く磁ィ匕された磁石である。異方性希土類ボンド磁石の材料は、 Nd— Fe— Bの 他、 Nd— Fe— B系材料、例えば Ndと Ndの他の希土類元素を含んだり、その他の添 加元素を含んだ材料を用いることができる。更に、 Nd以外の希土類元素を含んだ材 料、例えば、 Sm— Fe— N系材料、 SmCo系材料、または、 Nd—Fe— B系材料とこ れらの混合物質を用いることができる。  [0022] The anisotropic rare earth bonded magnet 30 used in the motor device of the present embodiment is configured in a tile shape in which the cross section perpendicular to the axis of Nd-Fe-B is a crescent shape. The anisotropic rare earth bond magnet 30 is a magnet that is manufactured by resin molding magnetic powder made of Nd—Fe—B and is strongly magnetized in the radial direction. As materials for anisotropic rare earth bonded magnets, Nd-Fe-B, Nd-Fe-B-based materials such as materials containing other rare earth elements such as Nd and Nd, or other additive elements are used. be able to. Furthermore, materials containing rare earth elements other than Nd, such as Sm—Fe—N-based materials, SmCo-based materials, or Nd—Fe—B-based materials, and mixed materials thereof can be used.
[0023] 異方性希土類ボンド磁石 30はプラスチック磁石とも言われる。この磁石は、従来の 焼結フェライト磁石と比較して最大エネルギー積 (BH) が約 5倍以上となる特徴が max  [0023] The anisotropic rare earth bonded magnet 30 is also called a plastic magnet. This magnet is characterized by a maximum energy product (BH) of about 5 times or more compared to conventional sintered ferrite magnets.
ある。即ち、標準的な焼結フェライト磁石の最大エネルギー積 (BH) が 3. 5MGOe max  is there. That is, the maximum energy product (BH) of a standard sintered ferrite magnet is 3.5 MGOe max
(28KjZm3 )に対して、この異方性希土類ボンド磁石は、その約 5倍の 17MGOe ( 135Kj/m3 )以上の最大エネルギー積を有する。 (28KjZm 3 ), this anisotropic rare-earth bonded magnet has 17MGOe ( It has a maximum energy product of 135 Kj / m 3 ) or more.
[0024] 異方性希土類ボンド磁石 30における榭脂の重量割合は、 2W%以上 3W%以下の 範囲とした。異方性磁石粉末と榭脂とを金型に供給し、加熱した状態で磁場を印加し て配向させ、さらに圧縮成形する。  [0024] The weight ratio of the resin in the anisotropic rare earth bonded magnet 30 was in the range of 2 W% or more and 3 W% or less. Anisotropic magnet powder and resin are supplied to a mold, and in a heated state, a magnetic field is applied for orientation, followed by compression molding.
[0025] この成形体をキュア一処理して、榭脂の硬化度を 90〜100%まで向上させた。これ により、磁粉と樹脂、榭脂と樹脂との間の結合を高めた。次に、硬化後の異方性希土 類ボンド磁石 30の成形体をガラス転移点温度以下の温度で加熱した。この加熱によ り、磁粉と樹脂、榭脂と樹脂との間の結合を切ることなぐ材質強度を下げる、すなわ ち、榭脂を軟ィ匕させることにより、異方性希土類ボンド磁石 30をロータ 10の溝 20に口 一タの端面力 圧入する時に異方性希土類ボンド磁石 30に応力が力かるのを低減 して機械的強度を保持した。異方性希土類ボンド磁石 30を溝 20に圧入して、しばら くの間放置して、異方性希土類ボンド磁石 30を冷却させた。  [0025] This molded body was cured and the degree of cure of the resin was improved to 90-100%. This enhanced the bond between the magnetic powder and resin, and between the resin and resin. Next, the molded body of the anisotropic rare earth bonded magnet 30 after curing was heated at a temperature below the glass transition temperature. This heating reduces the strength of the material without breaking the bond between the magnetic powder and the resin and between the resin and the resin, that is, by softening the resin so that the anisotropic rare earth bonded magnet 30 is removed. The mechanical strength was maintained by reducing the stress exerted on the anisotropic rare earth bonded magnet 30 when the end face force of the slot was pressed into the groove 20 of the rotor 10. The anisotropic rare earth bonded magnet 30 was pressed into the groove 20 and left for a while to cool the anisotropic rare earth bonded magnet 30.
[0026] 圧入時の温度は、 60〜100°Cが望ましい、この温度範囲は、異方性希土類ボンド 磁石の特性を低下させることがないことに加えて、磁粉と樹脂、榭脂と樹脂との間の 結合を切断することなぐ榭脂を軟化させ、異方性希土類ボンド磁石 30を溝 40に圧 入するのに最適である。  [0026] The temperature at the time of press-fitting is preferably 60 to 100 ° C. This temperature range does not deteriorate the characteristics of the anisotropic rare earth bonded magnet, in addition to magnetic powder and resin, resin and resin. It is ideal for softening the resin without breaking the bond between the two and inserting the anisotropic rare earth bonded magnet 30 into the groove 40.
[0027] このようにして、図 3に示すように、異方性希土類ボンド磁石 30の外周面 32がロー タ鉄心 12の外周面 14の一部を形成することになる。したがって、この異方性希土類 ボンド磁石 30の外周面 32は、ギャップを隔てて、ティースと、直接、対面することにな り、ギャップの幅を極力狭くすることができる。例えば、ギャップの幅を 0. 05mm以上 0. 4mm以下とすることができる。よって、磁気回路の磁気抵抗を極力小さくできるの で、異方性希土類ボンド磁石 30の有するほぼ全磁束をティースに貫通させることが できる。この結果、エネルギー積の大きい異方性希土類ボンド磁石 30の能力を十分 に発揮させることができる。すなわち、磁石をロータ表面に貼り付け、その外側に飛散 防止リングを使用しているモータに対して飛散防止リングをなくすことにより、トルクや モータ性能指標(トルク Z磁気回路構成部体積)を向上させることができる。また、本 発明は、 IPMモータに対してもトルクを向上させることができる。また、特許文献 1の 異方性希土類ボンド磁石による飛散防止をしたモータに対しては、単位磁石使用量 当たりのトルク(トルク Z磁石使用体積)が大幅に向上する。 In this way, as shown in FIG. 3, the outer peripheral surface 32 of the anisotropic rare earth bonded magnet 30 forms a part of the outer peripheral surface 14 of the rotor core 12. Therefore, the outer peripheral surface 32 of the anisotropic rare earth bonded magnet 30 directly faces the teeth with a gap therebetween, so that the gap can be made as narrow as possible. For example, the gap width can be 0.05 mm or more and 0.4 mm or less. Therefore, since the magnetic resistance of the magnetic circuit can be made as small as possible, almost all the magnetic flux possessed by the anisotropic rare earth bonded magnet 30 can be passed through the teeth. As a result, the ability of the anisotropic rare earth bonded magnet 30 having a large energy product can be sufficiently exerted. In other words, the torque and motor performance index (torque Z magnetic circuit component volume) is improved by attaching the magnet to the rotor surface and eliminating the anti-scatter ring for the motor that uses the anti-scatter ring on the outside. be able to. In addition, the present invention can improve the torque for the IPM motor. In addition, the amount of unit magnet used for the motor that is prevented from scattering by the anisotropic rare earth bonded magnet of Patent Document 1. Torque (torque Z magnet usage volume) is greatly improved.
[0028] また、異方性希土類ボンド磁石 30の最も厚いところの厚さは、 0. 7〜3mmの範囲 に設定している。 1mmより薄いと、異方性希土類ボンド磁石 30の反磁場により、表面 磁束密度が低下するので望まし行くない。 3mmより厚いと、モータ性能指標が低下 するので望ましくない。  [0028] The thickness of the thickest portion of the anisotropic rare earth bonded magnet 30 is set in the range of 0.7 to 3 mm. If it is thinner than 1 mm, the surface magnetic flux density is lowered by the demagnetizing field of the anisotropic rare earth bonded magnet 30, which is undesirable. If it is thicker than 3 mm, the motor performance index will decrease, which is not desirable.
[0029] 以上のように、溝 20の開口部 16の周回方向の幅 aは、ロータ内部の溝の幅 よりも 狭く構成されているので、溝 20に挿入される異方性希土類ボンド磁石は、ロータ 10 が回転しても外れることがない。よって、飛散防止のために非磁性体又は磁性体によ るリングを設ける必要がないので、磁気抵抗が増大しないので、モータの出力トルク を向上させることができる。また、ボンド磁石の外周面力 直接、ギャップを隔てて、ス テータのティースに面していることから、ボンド磁石のおよそ全磁束をギャップを介し てステータのティースに貫通させることができる。これにより、出力トルクを向上させる ことができる。  [0029] As described above, the circumferential width a of the opening 16 of the groove 20 is configured to be narrower than the width of the groove inside the rotor. Therefore, the anisotropic rare earth bonded magnet inserted into the groove 20 is Even if the rotor 10 rotates, it does not come off. Therefore, since it is not necessary to provide a ring made of a non-magnetic material or a magnetic material to prevent scattering, the magnetic resistance does not increase, and the output torque of the motor can be improved. In addition, since the outer peripheral surface force of the bonded magnet directly faces the teeth of the stator with a gap therebetween, almost all the magnetic flux of the bonded magnet can be passed through the stator teeth through the gap. As a result, the output torque can be improved.
また、この形状により磁極間の磁束の変化が滑ら力となりコギングトルクを減少させ ることができる。さらに、異方性希土類ボンド磁石を用いていることから、磁石粉末が 絶縁性榭脂で囲まれて電気的に絶縁されて ヽるので、ロータの渦電流損失を低下で き、電力効率を向上させることが可能となる。  In addition, this shape allows the change in the magnetic flux between the magnetic poles to be a sliding force, thereby reducing the cogging torque. In addition, since anisotropic rare earth bonded magnets are used, the magnet powder is surrounded and electrically insulated by insulating grease, which can reduce rotor eddy current loss and improve power efficiency. It becomes possible to make it.
[0030] また、図 4に示すように、ロータ鉄心 12の周囲から切り込みを入れて 4つの凹部 60 を形成するのが望ましい。このようにすることで、コギングトルクを減少させることがで きる。よって、異方性希土類ボンド磁石 30の有する全磁束のほとんどをティースに導 くことができる。この結果、モータのトルクを向上させることが可能となる。  In addition, as shown in FIG. 4, it is desirable to form notches from the periphery of the rotor core 12 to form four recesses 60. By doing so, the cogging torque can be reduced. Therefore, most of the total magnetic flux of the anisotropic rare earth bonded magnet 30 can be guided to the teeth. As a result, the motor torque can be improved.
[0031] また、異方性希土類ボンド磁石 30の榭脂の重量割合を 2W%以上 3W%以下とし て、圧縮成形して、キュア一処理を施し、硬化度を 90〜: LOO%にした後、ガラス転移 点以下の温度で再加熱をして、軟化させた状態とすることで、異方性希土類ボンド磁 石 30をロータ 12の溝 20に容易に挿入して固定することができる。  [0031] Further, after the weight ratio of the resin of the anisotropic rare earth bonded magnet 30 is set to 2 W% or more and 3 W% or less, compression molding is performed, and after curing treatment, the degree of curing is 90 to: LOO% The anisotropic rare earth bonded magnet 30 can be easily inserted and fixed in the groove 20 of the rotor 12 by reheating at a temperature below the glass transition point to obtain a softened state.
産業上の利用可能性  Industrial applicability
[0032] 本発明は、高トルク、低電磁音、低コギングトルク、及び低渦電流損失を満足させる 高出力モータとして有効である。 The present invention is effective as a high-output motor that satisfies high torque, low electromagnetic noise, low cogging torque, and low eddy current loss.
L6Z l£/900Zdr/13d 6 81?60ΐ0/.00Ζ OAV L6Z l £ / 900Zdr / 13d 6 81? 60ΐ0 / .00Ζ OAV

Claims

請求の範囲 The scope of the claims
[1] ロータに永久磁石を設けたブラシレスモータにおいて、  [1] In a brushless motor with a permanent magnet on the rotor,
前記ロータの電機子と対向する側面において、開口部の周回方向にとられた幅が 、ロータ内部における周回方向の幅よりも狭い溝を有したロータと、  On the side surface of the rotor facing the armature, the width taken in the circumferential direction of the opening is a rotor having a groove narrower than the width in the circumferential direction inside the rotor;
前記溝に挿入されたボンド磁石と  A bonded magnet inserted into the groove;
を有することを特徴とするブラシレスモータ。  A brushless motor characterized by comprising:
[2] 前記ロータにおいて、隣接する溝と溝の間において、外周から凹部が形成されてい ることを特徴とする請求項 1に記載のブラシレスモータ。  2. The brushless motor according to claim 1, wherein in the rotor, a recess is formed from the outer periphery between adjacent grooves.
[3] 前記ボンド磁石は、異方性希土類ボンド磁石であることを特徴とする請求項 1又は 請求項 2に記載のブラシレスモータ。 3. The brushless motor according to claim 1, wherein the bonded magnet is an anisotropic rare earth bonded magnet.
[4] 前記ボンド磁石は前記溝に圧入されて 、ることを特徴とする請求項 1乃至請求項 3 の何れ力 1項に記載のブラシレスモータ。 4. The brushless motor according to any one of claims 1 to 3, wherein the bonded magnet is press-fitted into the groove.
[5] ロータに永久磁石を設けたブラシレスモータにおけるロータにおいて、 [5] In a rotor in a brushless motor having a permanent magnet on the rotor,
前記ロータの電機子と対向する側面において、開口部の周回方向にとられた幅が On the side surface of the rotor facing the armature, the width taken in the circumferential direction of the opening is
、開口部よりロータ内部における周回方向の幅よりも狭い溝を有し、その溝にボンド 磁石が挿入されて!ヽることを特徴とするロータ。 A rotor having a groove that is narrower than the opening in the circumferential direction inside the rotor, and a bond magnet is inserted into the groove.
[6] 隣接する溝と溝の間において、外周から凹部が形成されていることを特徴とする請 求項 5に記載のロータ。 [6] The rotor according to claim 5, wherein a recess is formed from the outer periphery between adjacent grooves.
[7] 前記ボンド磁石は、異方性希土類ボンド磁石であることを特徴とする請求項 5又は 請求項 6に記載のロータ。  7. The rotor according to claim 5, wherein the bonded magnet is an anisotropic rare earth bonded magnet.
[8] 前記ボンド磁石は前記溝に圧入されて 、ることを特徴とする請求項 5乃至請求項 7 の何れ力 1項に記載のロータ。 8. The rotor according to any one of claims 5 to 7, wherein the bond magnet is press-fitted into the groove.
PCT/JP2006/314297 2005-07-20 2006-07-19 Brushless motor and rotor thereof WO2007010948A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005210617A JP4124215B2 (en) 2005-07-20 2005-07-20 Brushless motor
JP2005-210617 2005-07-20

Publications (1)

Publication Number Publication Date
WO2007010948A1 true WO2007010948A1 (en) 2007-01-25

Family

ID=37668824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314297 WO2007010948A1 (en) 2005-07-20 2006-07-19 Brushless motor and rotor thereof

Country Status (2)

Country Link
JP (1) JP4124215B2 (en)
WO (1) WO2007010948A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2461462A3 (en) * 2010-12-03 2012-10-24 C. & E. Fein GmbH Permanent magnetic motor with reduced detent torque
EP3021458A1 (en) * 2014-11-13 2016-05-18 Siemens Aktiengesellschaft Rotor of a wind turbine
CN106464108A (en) * 2014-04-29 2017-02-22 三菱电机株式会社 Permanent magnet motor
US20230024290A1 (en) * 2021-07-02 2023-01-26 Moteurs Leroy-Somer Rotating electrical machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507208B2 (en) * 2007-02-28 2010-07-21 日立金属株式会社 Magnet rotor and rotation angle detection apparatus using the same
JP5066214B2 (en) * 2010-03-30 2012-11-07 株式会社日立産機システム Permanent magnet synchronous machine and press machine or injection molding machine using the same
JP5641517B2 (en) * 2010-06-16 2014-12-17 株式会社明電舎 Brushless motor
CN107800215A (en) * 2016-09-07 2018-03-13 赖国荣 Motor rotor magnet fixation structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157253A (en) * 1987-12-11 1989-06-20 Fuji Electric Co Ltd Rotor with permanent magnet
JP2000188837A (en) * 1998-12-21 2000-07-04 Matsushita Electric Ind Co Ltd Permanent magnet rotor and its manufacture
JP2004103871A (en) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Method of manufacturing anisotropic rare earth bonded magnet, and permanent magnet motor using the anisotropic rare earth bonded magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157253A (en) * 1987-12-11 1989-06-20 Fuji Electric Co Ltd Rotor with permanent magnet
JP2000188837A (en) * 1998-12-21 2000-07-04 Matsushita Electric Ind Co Ltd Permanent magnet rotor and its manufacture
JP2004103871A (en) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Method of manufacturing anisotropic rare earth bonded magnet, and permanent magnet motor using the anisotropic rare earth bonded magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2461462A3 (en) * 2010-12-03 2012-10-24 C. & E. Fein GmbH Permanent magnetic motor with reduced detent torque
CN106464108A (en) * 2014-04-29 2017-02-22 三菱电机株式会社 Permanent magnet motor
CN106464108B (en) * 2014-04-29 2018-11-16 三菱电机株式会社 permanent magnet motor
EP3021458A1 (en) * 2014-11-13 2016-05-18 Siemens Aktiengesellschaft Rotor of a wind turbine
US20230024290A1 (en) * 2021-07-02 2023-01-26 Moteurs Leroy-Somer Rotating electrical machine

Also Published As

Publication number Publication date
JP4124215B2 (en) 2008-07-23
JP2007028857A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US9876397B2 (en) Electrical machine
JP3864986B2 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
JP5614501B2 (en) Rotating electric machine rotor, rotating electric machine, and method for manufacturing rotating electric machine rotor
US8659199B2 (en) Axial gap permanent magnet motor, rotor used for the same, and production method of the rotor
US7981359B2 (en) Rotor and process for manufacturing the same
WO2007010948A1 (en) Brushless motor and rotor thereof
US20190199149A1 (en) Consequent-pole-type rotor, electric motor, and air conditioner
US20160276894A1 (en) Motor
KR101888205B1 (en) Rotating electric machine in particular for a motor vehicle starter
JP2010119190A (en) Rotor for magnet-embedded motors and magnet-embedded motor
KR102124988B1 (en) Permanent magnet rotor, method for its production and magnetization device
JP3630332B2 (en) Permanent magnet rotor
JP2000333429A (en) Brushless electric motor and manufacturing method thereof
JP4029679B2 (en) Bond magnet for motor and motor
JP2007028714A (en) Dc brush motor
JP2007208104A (en) Compound bond magnet molding
JP4241209B2 (en) Motor device and method for manufacturing casing thereof
JP4238588B2 (en) Motor, motor rotor and composite anisotropic magnet
JP3083510B2 (en) Brushless motor, method of manufacturing the same, and method of manufacturing magnet rotor
JP2002034188A (en) Permanent magnet motor and manufacturing method thereof
JP3777839B2 (en) Permanent magnet embedded motor
JP2009112121A (en) Rotor and motor including the same
JP5188775B2 (en) Small DC motor
JP2006311661A (en) Four-pole dc brush motor
WO2023007708A1 (en) Rotor and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781264

Country of ref document: EP

Kind code of ref document: A1