JP2018182123A - Molding die for anisotropic magnet and manufacturing method of anisotropic magnet using the same - Google Patents

Molding die for anisotropic magnet and manufacturing method of anisotropic magnet using the same Download PDF

Info

Publication number
JP2018182123A
JP2018182123A JP2017081373A JP2017081373A JP2018182123A JP 2018182123 A JP2018182123 A JP 2018182123A JP 2017081373 A JP2017081373 A JP 2017081373A JP 2017081373 A JP2017081373 A JP 2017081373A JP 2018182123 A JP2018182123 A JP 2018182123A
Authority
JP
Japan
Prior art keywords
anisotropic magnet
mold
magnetic field
frame member
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081373A
Other languages
Japanese (ja)
Other versions
JP7131890B2 (en
Inventor
義博 坪井
Yoshihiro Tsuboi
義博 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017081373A priority Critical patent/JP7131890B2/en
Publication of JP2018182123A publication Critical patent/JP2018182123A/en
Application granted granted Critical
Publication of JP7131890B2 publication Critical patent/JP7131890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To adjust a surface flux density waveform into a desired waveform shape by applying a strong orientation field to each magnetic pole of an anisotropic magnet that should be molded, even without disposing a permanent magnet insides and only with a field acting from the outside of a die.SOLUTION: A molding die 1 for an anisotropic magnet comprises a die frame material 2 partitioning a cavity part 3 that can be filled with a composition Cm containing a material of the anisotropic magnet which should be molded, and capable of disposing the cavity part 3 in a field acting from the outside. The die frame material 2 includes: field generation frame materials 4 which are disposed oppositely in such a manner that the cavity part 3 is held therebetween, and consist of a magnetic substance generating a field in a direction across the cavity part 3; and orientation control frame material 5 which is provided in a portion of at least any one of the field generation frame materials 4 holding the cavity part 3 therebetween, facing the cavity part 3 and consists of a non-magnetic substance or a magnetic substance of which saturation magnetization is smaller than the field generation frame materials 4, for controlling an orientation field H determining a direction of magnetization in such a manner that a surface flux density waveform of the anisotropic magnet becomes a desired waveform shape.SELECTED DRAWING: Figure 1

Description

本発明は、異方性磁石の成形用金型に係り、特に、外部から作用する磁場中に配置されて異方性磁石を成形する異方性磁石の成形用金型及びこれを用いた異方性磁石の製造方法に関する。   The present invention relates to a mold for forming an anisotropic magnet, and in particular, a mold for forming an anisotropic magnet, which is disposed in a magnetic field acting from the outside to form the anisotropic magnet, and a mold using the same. The present invention relates to a method of manufacturing a anisotropic magnet.

異方性磁石の成形用金型としては、成形機に設けられたコイルにより生じる磁場を利用した外部磁場方式、金型内に電磁石を埋め込んだ方式、金型内に永久磁石を埋め込んだ方式がある。
外部磁場方式の金型で作製される磁石の配向は一方向で、円筒状磁石の場合は軸方向、ラジアル方向、径方向などがある。配向された磁石は後工程の着磁工程で多極に着磁して使用できるが、磁石の波形制御が困難でモータ等で使用する場合はコギングが生じて振動や発熱の原因となる。反面、外部磁場方式の成形用金型では、金型内に永久磁石を内蔵させないので、外部磁場を調整することで成形された異方性磁石の脱磁が容易であり、成形された異方性磁石の磁力を低減することができる。
As molds for forming anisotropic magnets, there are an external magnetic field method utilizing a magnetic field generated by a coil provided in a molding machine, a method in which an electromagnet is embedded in the mold, and a method in which a permanent magnet is embedded in the mold. is there.
The orientation of the magnet produced by the external magnetic field type mold is unidirectional, and in the case of a cylindrical magnet, there are an axial direction, a radial direction, a radial direction and the like. The oriented magnet can be used with multiple poles magnetized in the magnetizing step in the post process, but waveform control of the magnet is difficult and cogging occurs when used in a motor etc., causing vibration and heat generation. On the other hand, in the molding die of the external magnetic field type, since the permanent magnet is not built in the mold, demagnetization of the anisotropic magnet molded by adjusting the external magnetic field is easy, and the molded anisotropic is The magnetic force of the magnetic magnet can be reduced.

前記コギングを低減する異方性磁石構成として、成形された異方性磁石の表面磁束密度波形を正弦波状にする極異方性の技術が既に知られている。
極異方性の円筒状磁石の成形用金型としては、例えば特許文献1で示すように電磁石式と永久磁石式とがある。
特許文献1において、電磁石を用いる方法は、キャビティ当たりの構成に必要な体積が大きいため多数個取りが困難となることが指摘されている。
一方、永久磁石を用いた成形用金型は、金型を比較的コンパクトにできて多数個取りが可能となる反面、キャビティ内磁界が低く、特に配向に大きな磁界を必要とする希土類系磁石材料を用いた成形では配向に十分な磁界が得られないことが指摘されている。
これを解決して成形された磁石の磁気特性の向上を図る手段として、円筒状キャビティの外周に沿って多分割した各扇形領域に、永久磁石片を、N,Sいずれかの磁極がキャビティ面に対向する向きで且つ各領域の隣接相互間で極性を互いに逆として密接配置すると共に、該永久磁石の外周に強磁性材料のバックヨークを配置する異方性磁石金型が開示されている。
As an anisotropic magnet configuration for reducing the cogging, there is already known an art of polar anisotropy in which a surface magnetic flux density waveform of a shaped anisotropic magnet is made sinusoidal.
As a mold for molding a polar-anisotropic cylindrical magnet, for example, as shown in Patent Document 1, there are an electromagnet type and a permanent magnet type.
In Patent Document 1, it is pointed out that in the method using an electromagnet, it is difficult to take many pieces because the volume required for the configuration per cavity is large.
On the other hand, while a molding die using a permanent magnet can make the die relatively compact and can be taken out in large numbers, it is a rare earth magnet material which has a low in-cavity magnetic field and in particular requires a large magnetic field for orientation. It is pointed out that molding using the above can not obtain a magnetic field sufficient for orientation.
As a means for solving this and improving the magnetic characteristics of the molded magnet, permanent magnet pieces and N or S magnetic poles are on the cavity surface in each sector-shaped region divided into multiple along the outer periphery of the cylindrical cavity An anisotropic magnet mold is disclosed, in which the back yokes of ferromagnetic material are disposed close to each other in opposite directions and in opposite polarities with respect to each other in each region, and at the outer periphery of the permanent magnet.

また、外部磁場方式としては、例えば特許文献2に示すように、リング状のキャビティに磁石粉を充填する充填工程と、互いに反発する磁場をキャビティの所定領域毎に印加することにより磁石粉をラジアル方向に配向しかつ、配向された磁石粉を加圧成形して成形体を得る磁場中成形工程とを備えた磁場中成形方法が知られている。   Further, as an external magnetic field system, as shown in, for example, Patent Document 2, a filling step of filling magnet powder in a ring-shaped cavity, and application of a repulsive magnetic field to each other in a predetermined area of the cavity An in-magnetic-field molding method is known which comprises: an in-magnetic-field molding step of orienting in a direction and press-molding the oriented magnet powder to obtain a molded body.

特開平5−144649号公報(発明の詳細な説明,図1)JP-A-5-144649 (Detailed Description of the Invention, FIG. 1) 特開2006−19385号公報(発明を実施するための最良の形態,図1)JP-A-2006-19385 (Best mode for carrying out the invention, FIG. 1)

特許文献1では、永久磁石を用いた成形用金型で磁石成形を行った場合、配向用磁石を複雑形状に加工し、強い磁力を有する磁石を並べて配置する必要があり、キャビティ部を作成するために高価な配向用磁石材料と長期の作製期間を要し、金型費用のコストアップにつながる。加えて、成形すべき磁石の表面磁束密度波形を調整のために配向用磁石等を修正することは非常に困難で、再度はじめからキャビティ部を作り直す必要が生じる。また、成形された磁石は配向用磁石で着磁された状態となり、キャビティ部に吸着するため成形品の突出しに強い力が必要で、成形品の取り出しが困難である。更に、取り出した成形品は互いに吸着、反発するために割れ、欠けが生じる懸念もある。   In Patent Document 1, when magnet molding is performed with a molding die using a permanent magnet, it is necessary to process the orientation magnet into a complicated shape and to arrange the magnets having strong magnetic force side by side, and create a cavity portion. Because of this, expensive alignment magnet materials and a long preparation period are required, leading to an increase in the cost of the mold. In addition, it is very difficult to correct the orientation magnet or the like in order to adjust the surface magnetic flux density waveform of the magnet to be molded, and it is necessary to recreate the cavity from the beginning. Further, the molded magnet is magnetized by the alignment magnet, and since it is adsorbed to the cavity, a strong force is required for the protrusion of the molded product, and it is difficult to take out the molded product. Furthermore, there is a concern that the molded articles taken out may be broken or chipped due to adsorption and repulsion on one another.

本発明が解決しようとする技術的課題は、異方性磁石を成形するに際し、内部に永久磁石を配置せずに金型の外部から作用する磁場のみでも、成形すべき異方性磁石の各磁極に対して強い配向磁場を与え、表面磁束密度波形を所望の波形形状に調整可能な成形用金型を提供し、更には、この成形用金型を用いた異方性磁石の製造方法を提供することにある。   The technical problem to be solved by the present invention is to form each anisotropic magnet to be formed only by the magnetic field acting from the outside of the mold without arranging the permanent magnet inside when forming the anisotropic magnet. A strong orienting magnetic field is given to the magnetic pole to provide a molding die capable of adjusting the surface magnetic flux density waveform to a desired waveform shape, and further, a method of manufacturing an anisotropic magnet using this molding die It is to provide.

本発明の第1の技術的特徴は、成形すべき異方性磁石の材料を含む組成物が充填可能な空洞部を区画し、外部から作用する磁場中に前記空洞部を配置可能とする金型枠材を備え、前記金型枠材は、前記空洞部を挟むように対向して配置され、前記空洞部を横切る方向の磁場を生成する磁性材からなる磁場生成枠材と、前記空洞部を挟む磁場生成枠材の少なくともいずれか一方の前記空洞部に面した部位に設けられ、成形すべき異方性磁石の表面磁束密度波形が所望の波形形状になるように磁化の方向を決める配向磁場を制御する非磁性材若しくは前記磁場生成枠材よりも飽和磁化が小さい磁性材からなる配向制御枠材と、を有することを特徴とする異方性磁石の成形用金型である。   The first technical feature of the present invention is a gold which defines a cavity which can be filled with a composition containing a material of an anisotropic magnet to be molded, and which can arrange the cavity in an externally acting magnetic field. A magnetic field generation frame member comprising a mold material, the mold member being disposed opposite to sandwich the hollow portion, the magnetic field generation frame member comprising a magnetic material generating a magnetic field in a direction crossing the hollow portion, and the hollow portion Orientation that determines the direction of magnetization so that the surface magnetic flux density waveform of the anisotropic magnet to be formed has a desired waveform shape, provided at a portion facing at least one of the hollow portions of the magnetic field generating frame material sandwiching It is a metal mold | die for formation of the anisotropic magnet characterized by having the orientation control frame material which consists of a nonmagnetic material which controls a magnetic field, or a magnetic material whose saturation magnetization is smaller than said magnetic field production | generation frame material.

本発明の第2の技術的特徴は、第1の技術的特徴を備えた異方性磁石の成形用金型において、前記配向制御枠材は、成形すべき異方性磁石の各磁極間隔と同じ周期で肉厚が変化する薄肉部を有することを特徴とする異方性磁石の成形用金型である。
本発明の第3の技術的特徴は、第2の技術的特徴を備えた異方性磁石の成形用金型において、前記配向制御枠材は、成形すべき異方性磁石の各磁極間隔と同じ周期で肉厚が滑らかに変化する凹凸を有することを特徴とする異方性磁石の成形用金型である。
本発明の第4の技術的特徴は、第1の技術的特徴を備えた異方性磁石の成形用金型において、前記空洞部のうち成形すべき異方性磁石の磁極側と前記配向制御枠材との間を仕切る仕切り部材を備えることを特徴とする異方性磁石の成形用金型である。
本発明の第5の技術的特徴は、第1の技術的特徴を備えた異方性磁石の成形用金型において、前記金型枠材は円環状又は円弧状空洞部を区画し、外部から作用する磁場が前記空洞部に対して放射状に横切る方向から働くことを特徴とする異方性磁石の成形用金型である。
本発明の第6の技術的特徴は、第5の技術的特徴を備えた異方性磁石の成形用金型において、前記配向制御枠材は前記円環状又は円弧状空洞部の外周側に配置され、当該空洞部内の内周側又は外周側に成形すべき異方性磁石の磁極を形成することを特徴とする異方性磁石の成形用金型である。
本発明の第7の技術的特徴は、第5の技術的特徴を備えた異方性磁石の成形用金型において、前記配向制御枠材は前記円環状又は円弧状空洞部の内周側に配置され、当該空洞部内の内周側又は外周側に成形すべき異方性磁石の磁極を形成することを特徴とする異方性磁石の成形用金型である。
本発明の第8の技術的特徴は、第5の技術的特徴を備えた異方性磁石の成形用金型において、前記配向制御枠材は前記円環状又は円弧状空洞部の外周側及び内周側に夫々配置され、一方の配向制御枠材は前記空洞部内に成形すべき異方性磁石の磁極に対応した部位に磁束が集中する集束部を有し、他方の配向制御枠材は前記磁極間に対応した部位に前記集束部を有することを特徴とする異方性磁石の成形用金型である。
According to a second technical feature of the present invention, in the mold for forming an anisotropic magnet provided with the first technical feature, the orientation control frame member is formed of magnetic pole intervals of the anisotropic magnet to be formed and the like. It is a mold for forming an anisotropic magnet characterized by having a thin-walled portion whose thickness changes in the same cycle.
According to a third technical feature of the present invention, in the mold for forming an anisotropic magnet provided with the second technical feature, the orientation control frame member is formed of the magnetic pole intervals of the anisotropic magnet to be formed and the like. It is a mold for forming an anisotropic magnet characterized in that it has asperities in which the thickness changes smoothly in the same cycle.
According to a fourth technical feature of the present invention, in the mold for forming an anisotropic magnet having the first technical feature, the magnetic pole side of the anisotropic magnet to be formed in the hollow portion and the orientation control A mold for forming an anisotropic magnet, comprising: a partition member for partitioning the frame member.
According to a fifth technical feature of the present invention, in the mold for forming an anisotropic magnet having the first technical feature, the mold frame material defines an annular or arc-like cavity, and from the outside A mold for forming an anisotropic magnet, characterized in that an acting magnetic field acts in a direction radially crossing the cavity.
According to a sixth technical feature of the present invention, in the mold for forming an anisotropic magnet having the fifth technical feature, the orientation control frame member is disposed on the outer circumferential side of the annular or arc-like cavity. And forming a magnetic pole of an anisotropic magnet to be formed on the inner peripheral side or the outer peripheral side in the hollow portion.
According to a seventh technical feature of the present invention, in the mold for forming an anisotropic magnet having the fifth technical feature, the orientation control frame material is provided on the inner circumferential side of the annular or arc-like cavity. A mold for forming an anisotropic magnet, which is disposed and has a magnetic pole of an anisotropic magnet to be formed on the inner peripheral side or the outer peripheral side in the hollow portion.
According to an eighth technical feature of the present invention, in the mold for forming an anisotropic magnet having the fifth technical feature, the orientation control frame member is provided on the outer peripheral side and inside of the annular or arc-like cavity. Each alignment control frame member is disposed on the circumferential side, and one alignment control frame member has a focusing portion in which magnetic flux is concentrated at a portion corresponding to the magnetic pole of the anisotropic magnet to be formed in the hollow portion. It is a mold for forming an anisotropic magnet, characterized in that the focusing portion is provided at a portion corresponding to a space between magnetic poles.

本発明の第9の技術的特徴は、第1乃至第8の技術的特徴のいずれかを備えた異方性磁石の成形用金型を用いて異方性磁石を製造するに際し、前記成形用金型の空洞部に成形すべき異方性磁石の材料を含む組成物を充填する充填工程と、前記充填工程後において前記成形用金型に外部から磁場を作用させることで前記空洞部に充填された組成物を磁気的に配向させると共に所定の形状に成形する配向・成形工程と、前記配向・成形工程にて成形された異方性磁石を冷却して前記成形用金型から取り出す取出工程と、を含むことを特徴とする異方性磁石の製造方法である。
本発明の第10の技術的特徴は、第9の技術的特徴を備えた異方性磁石の製造方法において、前記取出工程は、前記成形用金型に前記配向・成形工程時の磁場が反転させられた磁場を作用させて行われることを特徴とする異方性磁石の製造方法である。
According to a ninth technical feature of the present invention, in manufacturing an anisotropic magnet using a mold for molding an anisotropic magnet having any one of the first to eighth technical features, the molding method according to the present invention A filling step of filling a composition containing an anisotropic magnet material to be formed in a cavity of a mold, and filling the cavity by applying an external magnetic field to the forming die after the filling step Orientation / forming step of magnetically orienting the formed composition and forming it into a predetermined shape, and a removal step of cooling the anisotropic magnet formed in the orientation / forming step and removing it from the forming mold And a method of manufacturing an anisotropic magnet.
According to a tenth technical feature of the present invention, in the method of manufacturing an anisotropic magnet having the ninth technical feature, in the taking-out step, the magnetic field during the orientation and molding step is reversed in the molding die. It is a method of manufacturing an anisotropic magnet, characterized in that it is carried out by applying an applied magnetic field.

本発明の第1の技術的特徴によれば、異方性磁石を成形するに際し、内部に永久磁石を配置せずに金型の外部から作用する磁場のみでも、成形すべき異方性磁石の各磁極に対して強い配向磁場を与え、表面磁束密度波形を所望の波形形状に調整可能な成形用金型を提供することができる。
本発明の第2の技術的特徴によれば、配向制御枠材による配向磁場の制御作用を簡単に実現することができる。
本発明の第3の技術的特徴によれば、配向制御枠材の断面形状を工夫することで、配向磁場の制御作用をスムーズに変化させながら実現することができる。
本発明の第4の技術的特徴によれば、仕切り部材を用いない態様に比べて、成形された異方性磁石の外観を良好に保ち、かつ、成形品を金型から取り出しやすい。
本発明の第5の技術的特徴によれば、円環状又は円弧状の異方性磁石を成形するに際し、内部に永久磁石を配置せずに外部から作用する磁場のみでも、異方性磁石に対して強い配向磁場で表面磁束密度波形を所望の波形形状に調整可能な成形用金型を提供することができる。
本発明の第6の技術的特徴によれば、既存の成形用金型の外周側の金型枠材を工夫することで、円環状又は円弧状の異方性磁石を高精度に配向・成形することができる。
本発明の第7の技術的特徴によれば、既存の成形用金型の内周側の金型枠材を工夫することで、円環状又は円弧状の異方性磁石を高精度に配向・成形することができる。
本発明の第8の技術的特徴によれば、円環状又は円弧状空洞部の内周側又は外周側の一方に配向制御枠材を配置する態様に比べて、成形すべき異方性磁石の磁極に対する配向磁場を細かく制御することができる。
本発明の第9の技術的特徴によれば、異方性磁石に対して強い配向磁場で表面磁束密度波形を所望の波形形状に調整可能な成形用金型を利用し、外部から磁場を作用させる方式で磁力が高い高品質の異方性磁石を容易に製造することができる。
本発明の第10の技術的特徴によれば、本構成を有さない態様に比べて、成形用金型から成形された異方性磁石を取り出す作業時の操作力を低減することができる。
According to the first technical feature of the present invention, when forming an anisotropic magnet, it is possible to form an anisotropic magnet that should be formed only by a magnetic field acting from the outside of the mold without arranging the permanent magnet inside. A strong orienting magnetic field can be given to each magnetic pole, and a molding die capable of adjusting the surface magnetic flux density waveform to a desired waveform shape can be provided.
According to the second technical feature of the present invention, the control action of the orientation magnetic field by the orientation control frame material can be realized easily.
According to the third technical feature of the present invention, by devising the cross-sectional shape of the orientation control frame material, the control action of the orientation magnetic field can be realized while being smoothly changed.
According to the fourth technical feature of the present invention, the appearance of the molded anisotropic magnet can be kept good and the molded product can be easily taken out of the mold, as compared with the embodiment in which the partition member is not used.
According to the fifth technical feature of the present invention, when forming an annular or arc-shaped anisotropic magnet, it is possible to use an anisotropic magnet only with a magnetic field acting from the outside without arranging a permanent magnet inside. On the other hand, it is possible to provide a molding die capable of adjusting the surface magnetic flux density waveform to a desired waveform shape with a strong orientation magnetic field.
According to the sixth technical feature of the present invention, by designing a mold frame material on the outer peripheral side of the existing molding mold, the annular or arc-shaped anisotropic magnet is oriented and molded with high accuracy. can do.
According to the seventh technical feature of the present invention, the annular magnet or circular arc anisotropic magnet can be oriented with high accuracy by devising a mold frame material on the inner peripheral side of the existing molding mold. It can be molded.
According to the eighth technical feature of the present invention, compared to the aspect in which the orientation control frame material is disposed on one of the inner peripheral side or the outer peripheral side of the annular or circular hollow portion, the anisotropic magnet to be formed is The orientation field to the magnetic pole can be finely controlled.
According to the ninth technical feature of the present invention, the magnetic field is applied from the outside by using a molding die capable of adjusting the surface magnetic flux density waveform to a desired waveform shape with a strong orientation magnetic field to the anisotropic magnet. High quality anisotropic magnet with high magnetic force can be easily manufactured.
According to the tenth technical feature of the present invention, compared with the embodiment not having the present configuration, the operation force at the time of the operation of taking out the anisotropic magnet molded from the molding die can be reduced.

(a)は本発明が適用された異方性磁石の成形用金型の実施の形態の概要を示す説明図、(b)は(a)中Bで示す領域の拡大説明図、(c)は(a)で示す成形用金型を用いた異方性磁石の製造方法を示す説明図である。(A) is an explanatory view showing an outline of an embodiment of a mold for molding an anisotropic magnet to which the present invention is applied, (b) is an enlarged explanatory view of a region shown by B in (a), (c) FIG. 2 is an explanatory view showing a method of manufacturing an anisotropic magnet using a molding die shown in (a). (a)は実施の形態1に係る異方性磁石の製造装置を示す説明図、(b)は成形・配向工程で金型に作用する外部磁場の一例を示す説明図、(c)は取出工程で金型に作用する外部磁場の一例を示す説明図である。(A) is explanatory drawing which shows the manufacturing apparatus of the anisotropic magnet which concerns on Embodiment 1, (b) is explanatory drawing which shows an example of the external magnetic field which acts on a metal mold | die in a shaping | molding / orientation process, (c) is taken out. It is explanatory drawing which shows an example of the external magnetic field which acts on a metal mold | die by a process. (a)は図2(a)中III−III線で切断した方向から見た実施の形態1に係る成形用金型の全体構成を示す説明図、(b)は(a)中Bで示す領域の拡大説明図、(c)は比較の形態における図3(b)に相当する拡大説明図である。(A) is explanatory drawing which shows the whole structure of the molding die based on Embodiment 1 seen from the direction cut | disconnected by the III-III line in FIG. 2 (a), (b) is shown by B in (a) FIG. 3C is an enlarged explanatory view corresponding to FIG. 3B in the comparison mode. (a)は実施の形態1に係る成形用金型に外部磁場を作用させたときに当該成形用金型に充填された組成物に対する配向磁場の一例を示す説明図、(b)は比較の形態に係る成形用金型に充填された組成物に対する配向磁場の一例を示す説明図である。(A) is explanatory drawing which shows an example of the orientation magnetic field with respect to the composition with which the said shaping die was filled when making an external magnetic field act on the shaping die which concerns on Embodiment 1, (b) is a comparison. It is explanatory drawing which shows an example of the orientation magnetic field with respect to the composition with which the shaping mold which concerns on a form was filled. (a)は実施の形態1で用いられる金型枠材としての磁場生成枠材及び成形すべき異方性磁石の磁気ヒステリシス特性の一例を示す説明図、(b)は取出工程時において成形用金型に作用する外部磁場の一例を示す説明図である。(A) is explanatory drawing which shows an example of the magnetic hysteresis characteristic of a magnetic field production frame material as a metal mold frame material used in Embodiment 1, and the anisotropic magnet which should be shape | molded, (b) is for shaping at the time of taking-out process. It is explanatory drawing which shows an example of the external magnetic field which acts on a metal mold | die. (a)は実施の形態1に係る異方性磁石の成形用金型の変形の形態の要部を示す説明図、(b)は(a)中Bで示す領域の拡大説明図である。(A) is explanatory drawing which shows the principal part of the deformation | transformation form of the shaping | molding die of the anisotropic magnet which concerns on Embodiment 1, (b) is an expansion explanatory drawing of the area | region shown by B in (a). (a)は実施の形態2に係る異方性磁石の成形用金型の要部を示す説明図、(b)は(a)中Bで示す領域の拡大説明図である。(A) is explanatory drawing which shows the principal part of the metal mold | die for shaping | molding of the anisotropic magnet which concerns on Embodiment 2, (b) is an expansion explanatory drawing of the area | region shown by B in (a). (a)は実施の形態3に係る異方性磁石の成形用金型の要部を示す説明図、(b)は(a)中Bで示す領域の拡大説明図である。(A) is explanatory drawing which shows the principal part of the metal mold | die for shaping | molding of the anisotropic magnet which concerns on Embodiment 3, (b) is an expansion explanatory drawing of the area | region shown by B in (a). (a)は実施の形態4に係る異方性磁石の成形用金型の要部を示す説明図、(b)は(a)中Bで示す領域の拡大説明図である。(A) is explanatory drawing which shows the principal part of the metal mold | die for shaping | molding of the anisotropic magnet which concerns on Embodiment 4, (b) is an expansion explanatory drawing of the area | region shown by B in (a). (a)は実施例1にて成形された異方性磁石の着磁後の表面磁束密度分布のシミュレーション結果例を示す説明図、(b)は同磁石の着磁後の表面磁束密度波形の一例を示す説明図である。(A) is an explanatory view showing a simulation result example of surface magnetic flux density distribution after magnetization of the anisotropic magnet molded in Example 1, (b) is a surface magnetic flux density waveform after magnetization of the same magnet It is an explanatory view showing an example. 実施例2にて成形された異方性磁石の着磁後の表面磁束密度波形の一例を示す説明図である。FIG. 13 is an explanatory view showing an example of a surface magnetic flux density waveform after magnetization of an anisotropic magnet molded in Example 2. (a)は実施例3にて成形された異方性磁石の着磁後の表面磁束密度波形の一例を示す説明図、(b)は(a)に示す表面磁束密度波形と、正弦波形との対比を示す説明図である。(A) is explanatory drawing which shows an example of the surface magnetic flux density waveform after magnetization of the anisotropic magnet shape | molded in Example 3, (b) is a surface magnetic flux density waveform shown to (a), and a sine waveform It is explanatory drawing which shows contrast of. (a)は比較例1に係る異方性磁石の成形用金型の一例を示す説明図、(b)は比較例1にて成形された異方性磁石の着磁後の表面磁束密度波形の一例を示す説明図である。(A) is explanatory drawing which shows an example of the shaping | molding die of the anisotropic magnet which concerns on the comparative example 1, (b) is a surface magnetic flux density waveform after magnetization of the anisotropic magnet shape | molded by the comparative example 1. It is explanatory drawing which shows an example. 比較例2にて成形された異方性磁石の着磁後の表面磁束密度波形の一例を示す説明図である。FIG. 13 is an explanatory view showing an example of a surface magnetic flux density waveform after magnetization of an anisotropic magnet formed in Comparative Example 2;

◎実施の形態の概要
図1(a)(b)は本発明が適用された異方性磁石の成形用金型の実施の形態の概要を示す。
同図において、異方性磁石の成形用金型1は、成形すべき異方性磁石の材料を含む組成物Cmが充填可能な空洞部3を区画し、外部から作用する磁場中に空洞部3を配置可能とする金型枠材2を備え、金型枠材2は、空洞部3を挟むように対向して配置され、空洞部3を横切る方向の磁場を生成する磁性材からなる磁場生成枠材4(具体的には4a,4b)と、空洞部3を挟む磁場生成枠材4の少なくともいずれか一方(例えば4b)の空洞部3に面した部位に設けられ、成形すべき異方性磁石の表面磁束密度波形が所望の波形形状になるように磁化の方向を決める配向磁場Hを制御する非磁性材若しくは磁場生成枠材4よりも飽和磁化が小さい磁性材からなる配向制御枠材5と、を有するものである。
Outline of Embodiment FIG. 1 (a) (b) shows an outline of an embodiment of a mold for forming an anisotropic magnet to which the present invention is applied.
In the same figure, the mold 1 for molding an anisotropic magnet defines a cavity 3 which can be filled with the composition Cm containing the material of the anisotropic magnet to be molded, and the cavity is applied during an external magnetic field. The mold frame member 2 is provided with a mold frame member 2 capable of arranging 3, and the mold frame member 2 is disposed to face the hollow portion 3 so as to sandwich the hollow portion 3, and a magnetic field made of a magnetic material generating a magnetic field in a direction crossing the hollow portion 3. It is provided at a portion facing the cavity 3 of at least one of the generation frame 4 (specifically 4a, 4b) and the magnetic field generation frame 4 sandwiching the cavity 3 (for example, 4b) Orientation control frame consisting of a nonmagnetic material that controls the orientation magnetic field H that determines the direction of magnetization so that the surface magnetic flux density waveform of the anisotropic magnet has a desired waveform shape or a magnetic material whose saturation magnetization is smaller than the magnetic field generation frame 4 And the material 5.

このような技術的手段において、異方性磁石は成形材料として異方性磁石材料を用いるものであれば、異方性ボンド磁石を始めとして広く含む。
また、金型枠材2は、成形すべき異方性磁石の形状に対応した空洞部3を区画するものであればよく、空洞部3としては円環状、円柱状、直線板状など適宜選定して差し支えない。ここで、金型枠材2としては、例えば異方性磁石が円環状である場合には、円環状の空洞部3を内側、外側から区画する内枠材と外枠材とが用いられるが、金型内に別の部品を挿入して成形するいわゆるインサート成形や一体成形と呼ばれる成形の場合でも、空洞部3を区画するものを広く含む。
In such technical means, the anisotropic magnet widely includes anisotropic bonded magnets as long as the anisotropic magnet material is used as a molding material.
Moreover, the metal mold frame material 2 should just divide the cavity part 3 corresponding to the shape of the anisotropic magnet which should be shape | molded, As the cavity part 3, annular shape, a column shape, linear plate shape, etc. are selected suitably It does not matter. Here, as the mold frame material 2, for example, when the anisotropic magnet is annular, an inner frame material and an outer frame material that partition the annular cavity 3 from the inside and the outside are used. Even in the case of so-called insert molding or molding called integral molding, in which another part is inserted into a mold for molding, it widely includes those which define the cavity 3.

更に、金型枠材2は、磁場生成枠材4と、配向制御枠材5とを含むものであればよい。
本例では、磁場生成枠材4は空洞部3を挟んで対向して配置される磁性材からなるもので、外部から磁場を作用させたときに磁化し、空洞部3を横切るような磁場を生成する機能を有していればよい。
また、配向制御枠材5は非磁性材が好ましいが、非磁性材でなくても、磁場生成枠材4を構成する磁性材よりも飽和磁化が小さい例えばELMAX(登録商標)などの磁性材でも構成可能である。
本例では、配向制御枠材5は空洞部3を挟む磁場生成枠材4の少なくとも一方に設けられていればよいが、空洞部3内で成形すべき異方性磁石の表面磁束密度波形が所望の波形形状になるように磁化の方向を決める配向磁場Hを制御する機能を有することが必要である。このとき、いずれか一方に配向制御枠材5を設ける態様では、異方性磁石の磁極Mpに面した側に設けていてもよいし、磁極Mpに面していない側に設けていてもよく、磁極Mpに対応する磁束の粗密を制御することで所望の配向磁場Hを形成することが必要である。
ここで、配向制御枠材5については、当該配向制御枠材5の肉厚を周期的に変化させ、厚肉部に比べて薄肉部の方が磁場が透過し易いことを利用して磁束を集中させる集束部6とし、成形すべき異方性磁石の磁極Mpに対応する磁束の粗密を制御する態様が代表的であるが、これに限られず、例えば板状の配向制御枠材5のうち異方性磁石の磁極Mpと同じ周期で開口を形成し、当該開口を磁束が集中する集束部6とする態様でもよい。
Furthermore, the metal mold frame material 2 may include the magnetic field generation frame material 4 and the orientation control frame material 5.
In this example, the magnetic field generation frame member 4 is made of a magnetic material disposed opposite to each other with the hollow portion 3 interposed therebetween, and when the magnetic field is applied from the outside, it is magnetized to generate a magnetic field crossing the hollow portion 3. It only needs to have a function to generate.
The orientation control frame member 5 is preferably a nonmagnetic material, but even if it is not a nonmagnetic material, even a magnetic material such as ELMAX (registered trademark) whose saturation magnetization is smaller than that of the magnetic material forming the magnetic field generation frame 4 It is configurable.
In this example, the orientation control frame member 5 may be provided in at least one of the magnetic field generation frame members 4 sandwiching the cavity 3, but the surface magnetic flux density waveform of the anisotropic magnet to be formed in the cavity 3 is It is necessary to have a function of controlling the orientation magnetic field H which determines the direction of magnetization so as to obtain a desired waveform shape. At this time, in a mode in which the orientation control frame member 5 is provided on one side, it may be provided on the side facing the magnetic pole Mp of the anisotropic magnet or may be provided on the side not facing the magnetic pole Mp. It is necessary to form a desired orientation magnetic field H by controlling the density of the magnetic flux corresponding to the magnetic pole Mp.
Here, with regard to the orientation control frame 5, the thickness of the orientation control frame 5 is periodically changed, and magnetic flux is generated utilizing the fact that the thin portion is more likely to transmit the magnetic field than the thick portion. Although a mode of controlling the density of the magnetic flux corresponding to the magnetic pole Mp of the anisotropic magnet to be formed is representative as the focusing portion 6 to be concentrated, the invention is not limited thereto. For example, among the plate-like orientation control frame members 5 The openings may be formed in the same cycle as the magnetic poles Mp of the anisotropic magnet, and the openings may be used as the focusing portion 6 where magnetic flux is concentrated.

このように、本例では、外部から磁場を作用させることで、磁場生成枠材4にて空洞部3に磁場を生成し、更に、配向制御枠材5にて各磁極Mpに対する配向磁場Hを制御するものであり、これにより、成形すべき磁石の各磁極Mpに強い配向磁場Hを与え、成形後の着磁時に、成形すべき磁石の表面磁束密度波形を所望の波形形状(例えば正弦波形状に近似した波形)に形成するように、成形材料である組成物Cmに対し所望の配向特性を与えることが可能になる。   As described above, in the present example, a magnetic field is generated from the outside to generate a magnetic field in the cavity 3 by the magnetic field generation frame 4, and further, the orientation magnetic field H to each magnetic pole Mp is generated by the orientation control frame 5. A strong orientation magnetic field H is applied to each magnetic pole Mp of the magnet to be molded, and a surface magnetic flux density waveform of the magnet to be molded has a desired waveform shape (for example, a sine wave) at the time of magnetization after molding Desired orientation characteristics can be given to the composition Cm which is a molding material so as to be formed into a waveform approximate to the shape.

次に、本実施の形態に係る異方性磁石の成形用金型の代表的態様又は好ましい態様について説明する。
先ず、配向制御枠材5の代表的態様としては、成形すべき異方性磁石の各磁極Mp間隔と同じ周期で肉厚が変化する薄肉部を有する態様が挙げられる。本例は、配向制御枠材5の肉厚を周期的に変化させ、薄肉部7に磁束を集中させることで各磁極Mpに対する配向磁場Hを制御することができる。
ここで、配向制御枠材5の好ましい態様としては、成形すべき異方性磁石の各磁極Mp間隔と同じ周期で肉厚が滑らかに変化する凹凸を有する態様が挙げられる。本例は、配向制御枠材5の肉厚が滑らかに変化する凹凸を有し、凹部を薄肉部7、凸部を厚肉部8とし、しかも、凹部と凸部との変化部分をスムーズにするものであり、成形すべき異方性磁石の表面磁束密度波形を周期的に変化する滑らかな波形形状に形成する上で有効である。
Next, a representative aspect or a preferable aspect of the mold for forming an anisotropic magnet according to the present embodiment will be described.
First, as a typical aspect of the orientation control frame member 5, an aspect having a thin-walled part whose thickness changes in the same cycle as the interval between the magnetic poles Mp of the anisotropic magnet to be formed is mentioned. In this example, the thickness of the orientation control frame member 5 is periodically changed to concentrate the magnetic flux in the thin-walled portion 7, whereby the orientation magnetic field H for each magnetic pole Mp can be controlled.
Here, as a preferable embodiment of the orientation control frame member 5, an embodiment having an unevenness in which the thickness changes smoothly in the same cycle as the interval between the magnetic poles Mp of the anisotropic magnet to be formed may be mentioned. In this example, the thickness of the orientation control frame member 5 has unevenness smoothly, and the concave portion is a thin portion 7, the convex portion is a thick portion 8, and the changing portion between the concave portion and the convex portion is smooth. This is effective in forming the surface magnetic flux density waveform of the anisotropic magnet to be formed into a smooth waveform shape that changes periodically.

また、成形用金型1の好ましい態様としては、空洞部3のうち成形すべき異方性磁石の磁極Mp側と配向制御枠材5との間を仕切る仕切り部材9を備える態様が挙げられる。本例において、仕切り部材9は空洞部3内の組成物Cmと配向制御枠材5との間を仕切るものである。このような仕切り部材9を用いると、配向制御枠材5に組成物Cmが直接接触しないことから、配向制御枠材5の集束部6と他の部分とで例えば段差部が生じたとしても、成形された磁石の外観が損なわれることなく、成形された磁石が取り出しやすい等の効果を奏する。尚、仕切り部材9は磁性材、非磁性材のいずれでもよい。   Further, as a preferred embodiment of the molding die 1, there may be mentioned an embodiment including a partition member 9 for partitioning between the magnetic pole Mp side of the anisotropic magnet to be molded in the cavity 3 and the orientation control frame member 5. In the present embodiment, the partition member 9 partitions the composition Cm in the hollow portion 3 and the orientation control frame member 5. When such a partition member 9 is used, the composition Cm is not in direct contact with the orientation control frame 5. Therefore, even if, for example, a step is generated between the converging portion 6 of the orientation control frame 5 and other portions, The molded magnet can be easily removed without losing the appearance of the molded magnet. The partition member 9 may be either a magnetic material or a nonmagnetic material.

更に、円環状又は円弧状の異方性磁石を成形する態様では、金型枠材2は円環状又は円弧状空洞部3を区画し、外部から作用する磁場が空洞部3に対して放射状に横切る方向から働く態様が代表的である。
このような成形用金型1における配向制御枠材5の代表的態様としては、円環状又は円弧状空洞部3の外周側に配置され、当該空洞部3内の内周側又は外周側に成形すべき異方性磁石の磁極Mpを形成する態様が挙げられる。本例は、円環状又は円弧状空洞部3の外周側に配向制御枠材5を配置し、成形すべき異方性磁石の磁極Mpに対する配向磁場Hを制御するものである。
また、配向制御枠材5の他の代表的態様としては、円環状又は円弧状空洞部3の内周側に配置され、当該空洞部3内の内周側又は外周側に成形すべき異方性磁石の磁極Mpを形成する態様が挙げられる。本例は、円環状又は円弧状空洞部3の内周側に配向制御枠材5を配置し、成形すべき異方性磁石の磁極Mpに対する配向磁場Hを制御するものである。
更に、配向制御枠材5の別の代表的態様としては、配向制御枠材5は円環状又は円弧状空洞部3の外周側及び内周側に夫々配置され、一方の配向制御枠材5は空洞部3内に成形すべき異方性磁石の磁極Mpに対応した部位に磁束が集中する集束部6を有し、他方の配向制御枠材5は磁極Mp間に対応した部位に集束部6を有する態様が挙げられる。本例は、円環状又は円弧状空洞部3の内周側及び外周側に夫々配向制御枠材5を配置し、両方の配向制御枠材5にて成形すべき異方性磁石の磁極Mpに対する配向磁場Hを制御するものである。
Furthermore, in a mode of forming an annular or arc-shaped anisotropic magnet, the mold frame member 2 defines the annular or arc-shaped cavity 3, and a magnetic field acting from the outside radially with respect to the cavity 3. The aspect which works from the cross direction is typical.
As a typical aspect of the orientation control frame member 5 in such a molding die 1, the orientation control frame member 5 is disposed on the outer peripheral side of the annular or arc-shaped hollow portion 3, and is molded on the inner peripheral side or the outer peripheral side in the hollow portion 3. The aspect which forms the magnetic pole Mp of the anisotropic magnet which should be mentioned is mentioned. In this example, the orientation control frame member 5 is disposed on the outer peripheral side of the annular or arc-shaped cavity 3 to control the orientation magnetic field H with respect to the magnetic pole Mp of the anisotropic magnet to be formed.
In addition, as another typical aspect of the orientation control frame member 5, it is disposed on the inner peripheral side of the annular or arc-shaped hollow portion 3, and an anisotropy to be formed on the inner peripheral side or outer peripheral side in the hollow portion 3. Of forming the magnetic pole Mp of the magnetic magnet. In this example, the orientation control frame member 5 is disposed on the inner peripheral side of the annular or arc-shaped cavity 3 to control the orientation magnetic field H with respect to the magnetic pole Mp of the anisotropic magnet to be formed.
Furthermore, as another representative embodiment of the orientation control frame member 5, the orientation control frame member 5 is disposed on the outer circumferential side and the inner circumferential side of the annular or arc-shaped cavity 3, and one orientation control frame member 5 is A focusing portion 6 where magnetic flux is concentrated at a portion corresponding to the magnetic pole Mp of the anisotropic magnet to be formed in the hollow portion 3 is provided, and the other orientation control frame member 5 is located at a portion corresponding to the space between the magnetic poles Mp. The aspect which has is mentioned. In this example, the orientation control frame members 5 are disposed on the inner and outer circumferential sides of the annular or arc-shaped cavity 3 respectively, and the magnetic poles Mp of the anisotropic magnet to be formed by both orientation control frame members 5 are provided. The orientation magnetic field H is controlled.

また、前述した成形用金型1を用いて異方性磁石を製造する製造方法の代表的態様としては、図1(c)に示すように、成形用金型1の空洞部3に成形すべき異方性磁石の材料を含む組成物Cmを充填する充填工程と、充填工程後において成形用金型1に外部から磁場Hを作用させることで空洞部3に充填された組成物Cmを磁気的に配向させると共に所定の形状に成形する配向・成形工程と、配向・成形工程にて成形された異方性磁石を冷却して成形用金型1から取り出す取出工程と、を含む態様が挙げられる。
本例は、成形材料の充填工程、配向・成形工程及び取出工程を有するものであればよく、配向・成形工程としては、射出成形、押出成形などが含まれる。
また、異方性磁石の製造方法の好ましい態様としては、取出工程は、成形用金型1に配向・成形工程時の磁場Hが反転させられた磁場Hを作用させて行われる態様が挙げられる。本例は、成形用金型1から成形された異方性磁石(成形品)を取り出す際に、外部から反転磁場Hを作用させることで磁場生成枠材4の着磁状態を消磁すると共に、成形品の磁力を脱磁し成形品の取出しを阻害する磁力を抑制する。
In addition, as a typical embodiment of a manufacturing method of manufacturing an anisotropic magnet using the above-described molding die 1, as shown in FIG. 1 (c), molding is carried out in the hollow portion 3 of the molding die 1. The composition Cm filled in the cavity 3 by externally applying a magnetic field H 1 to the molding die 1 after the filling step of filling the composition Cm containing the material of the anisotropic magnet to be filled and the filling step after the filling step An embodiment including an orientation and molding process for magnetically orienting and molding into a predetermined shape, and a removal process for cooling the anisotropic magnet molded in the orientation and molding process and taking it out of the molding die 1 It can be mentioned.
This embodiment may be any one having a filling step of molding material, an orientation / molding step and a removal step, and the orientation / molding step includes injection molding, extrusion molding and the like.
Further, as a preferred embodiment of the method for producing an anisotropic magnet, the taking-out step is carried out by applying the magnetic field H 2 in which the magnetic field H 1 is reversed at the time of orientation and molding to the molding die 1. It can be mentioned. In this example, when taking out an anisotropic magnet (molded product) molded from the molding die 1, the magnetized state of the magnetic field generation frame member 4 is demagnetized by acting the reversal magnetic field H 2 from the outside. The magnetic force of the molded product is demagnetized to suppress the magnetic force that hinders the removal of the molded product.

以下、添付図面に示す実施の形態に基づいて本発明をより詳細に説明する。
◎実施の形態1
−異方性磁石の製造装置−
図2は実施の形態1に係る異方性磁石の製造装置の全体構成を示す。
同図において、異方性磁石の製造装置は、射出成形にて異方性磁石を製造する射出成形機であって、異方性磁石を成形する成形用金型(以下金型と略記する)30と、異方性磁石の材料を含む組成物Cmを金型30内に射出注入する射出ユニット20と、金型30内に射出注入された組成物Cmに対して外部から磁場を作用させる外部磁場器50と、を備えている。
本例では、異方性磁石はボンド磁石を対象としており、磁石の材料としては、フェライト系、Sm−Co系、Sm−Fe−N系、Nd−Fe−B系等及び/若しくはそれらの混合系から適宜選択することが可能であるが、各材料の飽和磁化に留意することが必要である。すなわち、例えばフェライト系材料で成形した磁石は所望の表面磁束密度波形が得られても、同じ金型で例えばSm−Fe−N系材料で成形した磁石は表面磁束密度波形が異なる場合がある。本例では、磁石の材料を含む組成物Cmとして、例えば異方性Sm−Fe−N微粉末や異方性Nd−Fe−B微粉末等の希土類異方性磁石粉体を1種類以上と熱可塑性樹脂との混合物を使用したものとする。
<射出ユニット>
本例では、射出ユニット20は、磁石の材料を含む組成物Cmをホッパ22からシリンダ21内に投入し、シリンダ21内に投入された組成物Cmをヒータ23にて加熱溶融すると共に、シリンダ21内で進退可能なスクリューロッド24で溶融した組成物Cmをシリンダ21の射出口25側に所定量貯めた後、金型30内に射出するものである。
Hereinafter, the present invention will be described in more detail based on the embodiments shown in the attached drawings.
実 施 Embodiment 1
-Manufacturing equipment of anisotropic magnet-
FIG. 2 shows the entire configuration of the anisotropic magnet manufacturing apparatus according to the first embodiment.
In the same figure, the anisotropic magnet manufacturing apparatus is an injection molding machine for manufacturing an anisotropic magnet by injection molding, and a molding die for molding the anisotropic magnet (hereinafter abbreviated as a mold) 30 and an injection unit 20 for injecting and injecting a composition Cm containing a material of an anisotropic magnet into the mold 30, and an external that applies an external magnetic field to the composition Cm injected and injected into the mold 30 And a magnetic field device 50.
In this example, the anisotropic magnet is a bonded magnet, and as a material of the magnet, ferrite, Sm-Co, Sm-Fe-N, Nd-Fe-B, etc. and / or a mixture thereof Although it is possible to select appropriately from the system, it is necessary to pay attention to the saturation magnetization of each material. That is, for example, even if a magnet molded with a ferrite-based material has a desired surface magnetic flux density waveform, magnets molded with a Sm-Fe-N-based material in the same mold may have different surface magnetic flux density waveforms. In this example, one or more kinds of rare earth anisotropic magnet powder such as anisotropic Sm-Fe-N fine powder and anisotropic Nd-Fe-B fine powder are used as the composition Cm containing the material of the magnet It is assumed that a mixture with a thermoplastic resin is used.
<Ejection unit>
In this example, the injection unit 20 supplies the composition Cm containing the material of the magnet from the hopper 22 into the cylinder 21 and heats and melts the composition Cm introduced into the cylinder 21 with the heater 23, and the cylinder 21 After a predetermined amount of the composition Cm melted by the internally retractable screw rod 24 is stored in the injection port 25 side of the cylinder 21, the composition Cm is injected into the mold 30.

<金型>
本例では、金型30は、図2(a)及び図3(a)に示すように、金型枠材40内に成形すべき異方性磁石の形状に対応した空洞部(本例では円環状空洞部)41を確保するようにしたものである。
ここで、金型30の設置箇所に対向した部位には射出ユニット20に接続可能な接続ユニット31が固定側取付板32で射出成形機に取り付けられ、射出ユニット20の射出口25に連通し且つ空洞部41に通じる供給経路26を有している。
また、金型30は図示外の型締めユニットにて矢印方向に進退可能な可動側取付板34に取り付けられており、型締めユニットの進退で金型30が接続ユニット31に接離し、接触時には図示外の位置合せ機構により位置合せされるようになっている。尚、本例では金型30と接続ユニット31との境界面が金型分離面PLとして機能するようになっている。
<Mold>
In this example, as shown in FIGS. 2 (a) and 3 (a), the mold 30 has a cavity corresponding to the shape of the anisotropic magnet to be formed in the mold frame member 40 (in this example, An annular cavity 41) is secured.
Here, a connection unit 31 connectable to the injection unit 20 is attached to the injection molding machine by the fixed side attachment plate 32 at a site opposed to the installation location of the mold 30, and communicates with the injection port 25 of the injection unit 20 It has a supply path 26 leading to the cavity 41.
Further, the mold 30 is attached to the movable side mounting plate 34 which can be advanced and retracted in the arrow direction by a mold clamping unit (not shown), and the mold 30 contacts and separates from the connection unit 31 by advancing and retracting the mold clamping unit. It is aligned by an alignment mechanism (not shown). In the present example, the interface between the mold 30 and the connection unit 31 functions as a mold separation surface PL.

また、金型30は可動側取付板34に固定された可動側型板35に金型枠材40を取り付けることで構成されている。本例では、金型枠材40は、円環状空洞部41の内側を区画する磁性材からなる円柱状の内枠材42と、円環状空洞部41の外側を区画する磁性材からなる外枠材43と、円環状空洞部41と外枠材43との間に設けられ、円環状空洞部41の外周部を仕切る例えば非磁性材からなる仕切り部材としての円環状スリーブ44と、この円環状スリーブ44と外枠材43との間に設けられ、円環状空洞部41に充填された組成物Cmに作用する配向磁場Hを制御する非磁性材からなる配向制御枠材45と、を有している。
ここで、内枠材42及び外枠材43を構成する磁性材としては、特には限定されないが、S50C等の普通鋼やSKD11等のダイス鋼のような飽和磁化の大きい強磁性体が好ましい。
また、円環状スリーブ44や配向制御枠材45を構成する非磁性材としては、公知のものを広く使用することができ、例えばSUS304等のオーステナイト系ステンレス鋼、IPA75等の時効処理鋼、非磁性超鋼を用いるようにすればよい。そしてまた、円環状スリーブ44としては、厚さが0.3〜1.5mm程度の薄いものが用いられる。このとき、円環状スリーブ44の厚さが1.5mm以下の厚さであれば、外部から作用する磁場が円環状空洞部41内の組成物Cmに作用し易く、円環状スリーブ44の合成を確保するという観点からすれば、厚さが0.3mm以上であることが好ましい。尚、円環状スリーブ44は磁性材を用いるようにしてもよく、また、配向制御枠材45は内枠材42、外枠材43に比べて飽和磁化が小さい磁性材を用いるようにしてもよい。
Further, the mold 30 is configured by attaching the mold frame member 40 to the movable side mold plate 35 fixed to the movable side mounting plate 34. In the present embodiment, the mold frame member 40 includes a cylindrical inner frame member 42 made of a magnetic material that divides the inside of the annular cavity 41 and an outer frame made of a magnetic material that divides the outer side of the annular cavity 41. An annular sleeve 44 as a partition member made of, for example, a nonmagnetic material, provided between the material 43 and the annular cavity 41 and the outer frame material 43 and partitioning the outer peripheral portion of the annular cavity 41; An orientation control frame member 45 made of a nonmagnetic material provided between the sleeve 44 and the outer frame member 43 and controlling the orientation magnetic field H acting on the composition Cm filled in the annular cavity 41; ing.
Here, the magnetic material constituting the inner frame member 42 and the outer frame member 43 is not particularly limited, but a ferromagnetic material having large saturation magnetization such as ordinary steel such as S50C or die steel such as SKD11 is preferable.
Also, as the nonmagnetic material constituting the annular sleeve 44 and the orientation control frame member 45, known materials can be widely used. For example, austenitic stainless steel such as SUS 304, aging treated steel such as IPA 75, nonmagnetic It is sufficient to use super steel. Also, as the annular sleeve 44, a thin one having a thickness of about 0.3 to 1.5 mm is used. At this time, if the thickness of the annular sleeve 44 is 1.5 mm or less, the magnetic field acting from the outside is likely to act on the composition Cm in the annular cavity 41, and the synthesis of the annular sleeve 44 can be performed. From the viewpoint of securing, the thickness is preferably 0.3 mm or more. The annular sleeve 44 may use a magnetic material, and the orientation control frame material 45 may use a magnetic material having a smaller saturation magnetization than the inner frame material 42 and the outer frame material 43. .

更に、本例では、成形すべき異方性磁石は、図4(a)に示すように、例えば内周面に複数の磁極Mp(本例では8磁極)を所定の角度間隔(本例では45度間隔)毎に形成するものである。
そして、配向制御枠材45は、図3(a)(b)に示すように、円環状スリーブ44の外周面に接触する円環状部材からなり、当該円環状部材の外周部形状が異方性磁石の各磁極Mp間隔と同じ周期で肉厚が滑らかに変化する凹凸状になっており、各磁極Mpの中間に位置する箇所には凹部からなる薄肉部45aを配置すると共に、各磁極Mpに対応した箇所には凸部からなる厚肉部45bを配置するようになっている。ここで、薄肉部45a、厚肉部45bの肉厚や形状は成形すべき異方性磁石の目標表面磁束密度波形により様々で、特に一意に定まるものではない。
また、外枠材43は断面正方形状の四角柱に孔部43cを有する形状であり、この孔部43c周面は配向制御枠材45の薄肉部45a及び厚肉部45bに対応して接触する凹凸部43dを有している。
更に、金型枠材40としての内枠材42、外枠材43、円環状スリーブ44及び配向制御枠材45は、例えばワイヤカット等の機械加工で所望の形状に加工された後、焼き嵌めや接着などの方法で組み上げられている。また、本例では、配向制御枠材45の薄肉部45a、厚肉部45bや外枠材43の凹凸部43dは滑らかに変化する凹凸状に形成されているため、円環状空洞部41に組成物Cmが充填され、内枠材42、外枠材43、円環状スリーブ44、配向制御枠材45に強い圧力が加わったとしても、局部的に応力が集中してクラックが発生する懸念はない。尚、以下の態様においても同様である。
Furthermore, in the present embodiment, as shown in FIG. 4A, the anisotropic magnet to be molded has, for example, a plurality of magnetic poles Mp (eight magnetic poles in the present embodiment) on the inner circumferential surface at predetermined angular intervals (in the present embodiment) It is formed every 45 degrees).
The orientation control frame member 45 is formed of an annular member in contact with the outer peripheral surface of the annular sleeve 44, as shown in FIGS. 3A and 3B, and the outer peripheral portion of the annular member is anisotropic. The thickness of the magnet varies smoothly in the same cycle as the intervals of the magnetic poles Mp, and a thin portion 45a composed of a recess is disposed at a position between the magnetic poles Mp and the magnetic poles Mp. A thick portion 45b made of a convex portion is disposed at a corresponding position. Here, the thickness and shape of the thin portion 45a and the thick portion 45b vary depending on the target surface magnetic flux density waveform of the anisotropic magnet to be formed, and are not uniquely determined.
Further, the outer frame member 43 has a shape having a hole 43c in a square pole having a square cross section, and the circumferential surface of the hole 43c contacts the thin portion 45a and the thick portion 45b of the orientation control frame member 45 correspondingly. It has an uneven portion 43d.
Furthermore, the inner frame member 42, the outer frame member 43, the annular sleeve 44 and the orientation control frame member 45 as the mold member 40 are processed into a desired shape by machining such as wire cutting, for example, and then shrink fit is performed. And is assembled by methods such as adhesion. Further, in this example, since the thin portion 45a and the thick portion 45b of the orientation control frame member 45 and the concave and convex portion 43d of the outer frame member 43 are formed to be smoothly varying, the composition in the annular cavity portion 41 Even if a strong pressure is applied to the inner frame member 42, the outer frame member 43, the annular sleeve 44, and the orientation control frame member 45, there is no concern that stress may concentrate locally and cracks may be generated. . The same applies to the following embodiments.

<外部磁場器>
外部磁場器50は、図2(a)に示すように、金型30を挟んだ部位に励磁コイル51,52を対向して配設し、図2(b)に示すように、これらの励磁コイル51,52の予め決められた巻き方向である正方向に通電することで金型30に対して外部から互いに反発する磁場を加えることにより、金型30の円環状空洞部41を横切る放射方向(ラジアル方向)に向かって外部磁場Hを作用させるようになっている。
また、図2(c)に示すように、両方の励磁コイル51,52の正方向とは逆方向に通電することで金型30の空洞部41を横切る方向が反転する外部磁場Hを作用させることが可能である。
<External magnetic field unit>
In the external magnetic field unit 50, as shown in FIG. 2 (a), the exciting coils 51, 52 are disposed opposite to each other on the part sandwiching the mold 30, and as shown in FIG. 2 (b) By applying a magnetic field which repels each other from the outside to the mold 30 by energizing in a positive direction which is a predetermined winding direction of the coils 51, 52, a radiation direction crossing the annular cavity 41 of the mold 30 is obtained. and it is adapted to act on the external magnetic field H 1 toward the (radial direction).
Further, as shown in FIG. 2 (c), acts an external magnetic field H 2, which is the positive direction of the both of the exciting coil 51 and 52 transverse to the cavity 41 of the mold 30 by energizing the opposite direction reverses It is possible to

次に、本実施の形態に係る異方性磁石の製造方法について説明する。
先ず、図示外の型嵌めユニットにより金型30を締めた状態にセットし、この後、射出ユニット20により異方性磁石の材料を含む組成物Cmを金型30の円環状空洞部41に射出注入して保圧する。
この後、図2(b)に示すように、外部磁場器50の励磁コイル51,52による外部磁場Hを作用させると、図3(a)(b)に示すように、当該外部磁場Hは互いに反発して金型30の円環状空洞部41に対して放射方向(ラジアル方向)に向かい、磁性材である内枠材42及び外枠材43を磁化することになり、円環状空洞部41を横切る方向の磁場が生成される。
このとき、円環状空洞部41と外枠材43との間には非磁性材からなる配向制御枠材45が設けられており、配向制御枠材45の薄肉部45aが厚肉部45bに比べて磁場が透過し易いことから、配向制御枠材45の薄肉部45aが磁束を集中させる集束部46として機能する。このため、円環状空洞部41内に充填された組成物Cmに対して内枠材42から放射方向に入射する磁力線(磁束)は配向制御枠材45の集束部46(薄肉部45a)を通じて外枠材43へ向かうことになり、円環状空洞部41内の組成物Cmには配向制御枠材45の集束部46に向かって磁束が集中するという磁束の粗密パターンを具備する配向磁場Hが得られる。
この結果、成形すべき異方性磁石となる組成物Cmには放射方向から傾斜した配向磁場Hに沿うように磁気的に配向が揃えられ、かつ、組成物Cmは内周側に所定数の磁極Mp、具体的には配向制御枠材45の集束部46間に対応する部位に磁極Mpを有する異方性磁石として成形される。
Next, a method of manufacturing the anisotropic magnet according to the present embodiment will be described.
First, the mold 30 is set in a clamped state by a mold fitting unit (not shown), and then the injection unit 20 ejects the composition Cm containing the material of the anisotropic magnet into the annular cavity 41 of the mold 30 Inject and hold pressure.
Thereafter, as shown in FIG. 2 (b), when the external magnetic field H 1 is applied by the exciting coils 51 and 52 of the external magnetic field unit 50, as shown in FIGS. 3 (a) and 3 (b), the external magnetic field H is concerned. 1 repel each other to be directed in the radial direction (radial direction) with respect to the annular cavity 41 of the mold 30, and to magnetize the inner frame material 42 and the outer frame material 43 which are magnetic materials, thereby forming an annular cavity A magnetic field in the direction transverse to the part 41 is generated.
At this time, an orientation control frame member 45 made of a nonmagnetic material is provided between the annular hollow portion 41 and the outer frame member 43, and the thin portion 45a of the orientation control frame member 45 is compared with the thick portion 45b. Since the magnetic field is easily transmitted, the thin portion 45a of the orientation control frame member 45 functions as a focusing portion 46 for concentrating the magnetic flux. Therefore, lines of magnetic force (magnetic flux) incident from the inner frame member 42 in the radial direction with respect to the composition Cm filled in the annular cavity portion 41 are made outside through the focusing portion 46 (thin portion 45a) of the orientation control frame member 45. The orientation magnetic field H having a coarse / dense pattern of magnetic flux in which the magnetic flux is concentrated toward the focusing portion 46 of the orientation control frame material 45 in the composition Cm in the annular cavity portion 41 is obtained. Be
As a result, the composition Cm to be an anisotropic magnet to be molded is magnetically aligned along the alignment magnetic field H inclined from the radial direction, and the composition Cm has a predetermined number of inner circumferences. The magnetic pole Mp is formed as an anisotropic magnet having the magnetic pole Mp at a portion corresponding to the focusing portion 46 of the orientation control frame member 45.

この後、異方性磁石を冷却、固化させた後、図示外の型締めユニットにて金型30を開き、金型30から異方性磁石の成形品を取り出すようにすればよい。
このとき、配向・成形工程時の外部磁場Hとは異なり、図5(b)に示すように、成形品の取出工程において、外部磁場Hを反転させた外部磁場Hを作用させることが好ましい。この場合、内枠材42及び外枠材43の磁性材が図5(a)に示すような磁気ヒステリシス特性を有していると仮定すると、配向・成形工程において、外部磁場Hにて内枠材42及び外枠材43がMレベルに磁化することになるが、外部磁場Hの作用を停止しただけでは内枠材42、外枠材43には残留磁化が残ってしまう。尚、図5(a)中、横軸Houtは外部磁場を示し、縦軸Mは磁化レベルを示す。
しかしながら、外部磁場Hを反転させた外部磁場Hを作用させると、内枠材42及び外枠材43の残留磁化が消磁されるほか、異方性磁石からなる成形品についても脱磁することが可能である。このため、取出工程において、金型30と成形品との間には磁力による拘束力が低減することから、図示外の突出し機構にて金型30から成形品を簡単に取り出すことが可能である。
このような製造過程で得られた異方性磁石の成形品については、後述する実施例で示すように、着磁装置にて異方性磁石からなる成形品の各磁極Mpに着磁すると、従前のラジアル方向に配向した異方性磁石では困難であった表面磁束密度波形として所望の波形形状(例えば正弦波形に近似した波形形状)に簡単に調整することができる。
更に、本例では、配向制御枠材45と円環状空洞部41との間に円環状スリーブ44が設けられているため、円環状空洞部41に充填された組成物Cmと配向制御枠材45とが直接接触することはない。このため、配向制御枠材45の内周面の一部に段差部などが仮にあったとしても、金型30から成形品を取り出す際に成形品の表面性が損なわれる懸念は少ない。尚、本例では、円環状スリーブ44を用いているが、配向制御枠材45の内周面が滑らかな段差のない面であれば、円環状スリーブ44を用いなくてもよい。
Thereafter, after the anisotropic magnet is cooled and solidified, the mold 30 may be opened by a mold clamping unit (not shown), and the molded article of the anisotropic magnet may be taken out from the mold 30.
In this case, unlike the external magnetic field H 1 at the orientation-molding process, as shown in FIG. 5 (b), in the removal step of the molded article, it is allowed to act the external magnetic field H 2 obtained by inverting the external magnetic field H 1 Is preferred. In this case, assuming that the magnetic material of the inner frame member 42 and the outer frame member 43 has a magnetic hysteresis characteristic as shown in FIG. 5 (a), in the orientation-molding process, the inner at the external magnetic field H 1 Although the frame material 42 and the outer frame material 43 are magnetized to the M 1 level, residual magnetization remains in the inner frame material 42 and the outer frame material 43 only by stopping the action of the external magnetic field H 1 . In FIG. 5A, the horizontal axis Hout indicates the external magnetic field, and the vertical axis M indicates the magnetization level.
However, when the action of the external magnetic field H 2 obtained by inverting the external magnetic field H 1, except that the residual magnetization of the inner frame member 42 and the outer frame member 43 is demagnetized, also demagnetize the molded article comprising anisotropic magnet It is possible. For this reason, in the taking-out step, since the restraining force by the magnetic force is reduced between the mold 30 and the molded product, it is possible to easily take out the molded product from the mold 30 by the projecting mechanism outside the illustration. .
As to the anisotropic magnet molded product obtained in such a manufacturing process, as shown in the embodiment described later, when magnetizing each magnetic pole Mp of the molded product made of an anisotropic magnet with a magnetizing device, The surface magnetic flux density waveform, which was difficult in the conventional radially oriented anisotropic magnet, can be easily adjusted to a desired waveform shape (for example, a waveform shape approximated to a sine waveform).
Furthermore, in the present embodiment, since the annular sleeve 44 is provided between the orientation control frame member 45 and the annular cavity portion 41, the composition Cm and the orientation control frame member 45 filled in the annular cavity portion 41. There is no direct contact with For this reason, even if a step portion or the like is temporarily present on a part of the inner peripheral surface of the orientation control frame member 45, there is little concern that the surface property of the molded product is impaired when the molded product is taken out from the mold 30. Although the annular sleeve 44 is used in this example, the annular sleeve 44 may not be used if the inner peripheral surface of the orientation control frame member 45 is a surface having no smooth step.

◎比較の形態1
本実施の形態に係る金型30の性能を評価する上で比較の形態1に係る金型30’を例に挙げて説明する。
比較の形態1に係る金型30’は、図3(c)に示すように、磁性材からなる内枠材42’と外枠材43’とで円環状空洞部41’を区画し、更に、外枠材43’と円環状空洞部41’との間に円環状スリーブ44’を設置し、実施の形態1の配向制御枠材45を取り除いたものである。
この場合において、金型30’に外部磁場Hを作用させると、図3(c)及び図4(b)に示すように、円環状空洞部41’内に充填された組成物Cmにはラジアル方向の配向磁場H’が働くことになり、成形すべき異方性磁石の表面磁束密度波形として所望の波形形状のものが得られないことが確認された。
形態 Form of comparison 1
In evaluating the performance of the mold 30 according to the present embodiment, a mold 30 'according to the comparative embodiment 1 will be described as an example.
As shown in FIG. 3 (c), the mold 30 'according to the comparative embodiment 1 divides the annular cavity 41' by the inner frame material 42 'and the outer frame material 43' made of magnetic material, and further The annular sleeve 44 'is placed between the outer frame 43' and the annular cavity 41 ', and the orientation control frame 45 of the first embodiment is removed.
In this case, 'when the action of the external magnetic field H 1, as shown in FIG. 3 (c) and 4 (b), an annular cavity 41' mold 30 Compositions Cm filled in It was confirmed that an oriented magnetic field H 'in the radial direction works, and a desired waveform shape can not be obtained as the surface magnetic flux density waveform of the anisotropic magnet to be formed.

◎変形の形態1
図6(a)は実施の形態1に係る異方性磁石の成形用金型の変形の形態を示す説明図である。
同図において、金型30の基本的構成は、実施の形態1と略同様に、円環状の異方性磁石の内周面に複数(本例では8つ)の磁極Mpを所定間隔(本例では45度)毎に形成するものであり、金型枠材40として、円環状空洞部41の内側を区画する磁性材からなる円柱状の内枠材42と、円環状空洞部41の外側を区画する磁性材からなる外枠材43と、円環状空洞部41と外枠材43との間に設けられ、円環状空洞部41の外周部を仕切る例えば非磁性材からなる仕切り部材としての円環状スリーブ44と、を有しているが、実施の形態1とは異なる配向制御枠材45を用い、更に、配向制御枠材45に接触する外枠材43の内周面形状を実施の形態1とは異なる構成にしたものである。尚、実施の形態1と同様な構成要素については実施の形態1と同様な符号を付してここではその詳細な説明を省略する。
本例において、配向制御枠材45は、例えば非磁性材からなる肉厚一定の円環状部材47を備え、成形すべき異方性磁石の磁極Mp角度間隔と同じ周期間隔でスリット状開口48を開設するようにしたものである。ここで、スリット状開口48は成形すべき異方性磁石の各磁極Mpの中間に位置する箇所に開設されている。また、配向制御枠材45の外周面形状が断面円形であることから、外枠材43の孔部43c内周面が断面円形状に形成されている。
形態 Modification 1
FIG. 6A is an explanatory view showing a modified embodiment of a molding die for anisotropic magnet according to the first embodiment.
In the figure, the basic configuration of the mold 30 is substantially the same as that of the first embodiment except that a plurality of (eight in this example) magnetic poles Mp are provided on the inner peripheral surface of the annular anisotropic magnet at a predetermined interval ( In the example, it is formed every 45 degrees, and as the mold frame member 40, a cylindrical inner frame member 42 made of a magnetic material that divides the inside of the annular cavity 41 and the outside of the annular cavity 41 As a partition member, for example, a nonmagnetic material, provided between the outer frame member 43 made of a magnetic material for partitioning the space, the annular hollow portion 41 and the outer frame member 43, and dividing the outer peripheral portion of the annular hollow portion 41 An orientation control frame member 45 having an annular sleeve 44 but using an orientation control frame member 45 different from that of the first embodiment, and further, the inner circumferential surface shape of the outer frame member 43 in contact with the orientation control frame member 45 The configuration is different from that of the first embodiment. The same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the detailed description thereof is omitted here.
In this example, the orientation control frame member 45 is provided with, for example, a constant thickness annular member 47 made of a nonmagnetic material, and the slit openings 48 are formed at the same periodic intervals as the magnetic pole Mp angular intervals of the anisotropic magnet to be formed. It is intended to be opened. Here, the slit-like opening 48 is opened in the middle of each magnetic pole Mp of the anisotropic magnet to be formed. Further, since the outer peripheral surface of the orientation control frame member 45 has a circular cross section, the inner peripheral surface of the hole 43 c of the outer frame member 43 is formed to have a circular cross section.

本変形の形態によれば、外部磁場器50の励磁コイル51,52から外部磁場Hが金型30の円環状空洞部41に作用すると、実施の形態1と同様に、外部磁場Hは円環状空洞部41を放射方向に横切ろうとする。このとき、図6(a)(b)に示すように、金型30の円環状空洞部41の外周側には配向制御枠材45が設置されており、配向制御枠材45のスリット状開口48が円環状部材47の他の部分に比べて磁束が透過し易いことから、スリット状開口48が磁束を集中させる集束部46として機能する。このため、円環状空洞部41内に充填された組成物Cmに対して内枠材42から放射方向に入射する磁力線(磁束)は配向制御枠材45の集束部46(スリット状開口48)を通じて外枠材43へ向かうことになり、円環状空洞部41内の組成物Cmには配向制御枠材45の集束部46に向かって磁束が集中するという磁束の粗密パターンを具備する配向磁場Hが得られる。
この結果、成形すべき異方性磁石となる組成物Cmには放射方向から傾斜した配向磁場Hに沿うように磁気的に配向が揃えられ、かつ、組成物Cmは内周側に所定数の磁極Mp、具体的には配向制御枠材45の集束部46間の中間に位置する部位に磁極Mpを有する異方性磁石として成形される。
この後、実施の形態1と同様に、異方性磁石を冷却、固化させた後、外部磁場Hを反転させた外部磁場Hを作用させた後に図示外の型締めユニットにて金型30を開き、金型30から異方性磁石の成形品を取り出すようにすればよい。
また、本例では、配向制御枠材45はスリット状開口48が所定角度間隔で開設されているため、スリット状開口48と当該スリット状開口48縁部との間には段差部が生ずることになるが、組成物Cmと配向制御枠材45との間は円環状スリーブ44で仕切られているため、実施の形態1と同様に、異方性磁石の成形品を取り出す際に、成形品の表面性が損なわれる懸念はない。
According to the embodiment of the present modification, when the external magnetic field H 1 acts on the annular cavity 41 of the mold 30 from the exciting coil 51 and 52 of the external magnetic field 50, as in the first embodiment, the external magnetic field H 1 is An attempt is made to traverse the annular cavity 41 in the radial direction. At this time, as shown in FIGS. 6 (a) and 6 (b), the orientation control frame material 45 is installed on the outer peripheral side of the annular cavity 41 of the mold 30, and the slit-like opening of the orientation control frame material 45 The slit-like opening 48 functions as a focusing portion 46 for concentrating the magnetic flux since the magnetic flux easily penetrates 48 as compared with the other portions of the annular member 47. Therefore, magnetic lines of force (magnetic flux) incident from the inner frame member 42 in the radial direction with respect to the composition Cm filled in the annular cavity portion 41 pass through the focusing portion 46 (slit opening 48) of the orientation control frame member 45. An oriented magnetic field H having a coarse / dense pattern of magnetic flux in which the magnetic flux is concentrated toward the focusing portion 46 of the orientation control frame member 45 in the composition Cm in the annular cavity portion 41 will be directed to the outer frame member 43. can get.
As a result, the composition Cm to be an anisotropic magnet to be molded is magnetically aligned along the alignment magnetic field H inclined from the radial direction, and the composition Cm has a predetermined number of inner circumferences. The magnetic pole Mp is formed as an anisotropic magnet having the magnetic pole Mp at a position located in the middle between the focusing portions 46 of the orientation control frame material 45.
Thereafter, as in the first embodiment, cooling the anisotropic magnet, after solidified, the mold in an unillustrated mold clamping unit after the action of the external magnetic field H 2 obtained by inverting the external magnetic field H 1 30 may be opened, and the molded article of the anisotropic magnet may be taken out of the mold 30.
Further, in this example, since the slit control openings 45 are opened at predetermined angular intervals in the orientation control frame member 45, a step portion is generated between the slit openings 48 and the edges of the slit openings 48. However, since the composition Cm and the orientation control frame member 45 are partitioned by the annular sleeve 44, when the molded article of the anisotropic magnet is taken out as in the first embodiment, There is no concern that surface properties will be lost.

◎実施の形態2
図7(a)は実施の形態2に係る異方性磁石の成形用金型の要部を示す。
同図において、金型30の基本的構成は、実施の形態1と略同様に、円環状の異方性磁石の内周面に複数(本例では8つ)の磁極Mpを所定間隔(本例では45度)毎に形成するものであり、金型枠材40として、実施の形態1と略同様に、内枠材42及び外枠材43で円環状空洞部41を区画するものであるが、実施の形態1とは異なり、円環状空洞部41と内枠材42との間に設けられ、円環状空洞部41の内周部を仕切る例えば非磁性材からなる仕切り部材としての円環状スリーブ44と、この円環状スリーブ44と内枠材42との間に設けられ、円環状空洞部41に充填された組成物Cmに作用する配向磁場Hを制御する非磁性材からなる配向制御枠材49と、を有している。
本例において、配向制御枠材49は、図7(a)(b)に示すように、円環状スリーブ44の内周面に接触する円環状部材からなり、当該円環状部材の内周部形状が異方性磁石の各磁極Mp間隔と同じ周期で肉厚が滑らかに変化する凹凸状になっており、各磁極Mpに対応した箇所には凹部からなる薄肉部49aを配置すると共に、各磁極Mpの中間に位置する箇所には凸部からなる厚肉部49bを配置するようになっている。
また、内枠材42は円柱状部材の周面に配向制御枠材49の薄肉部49a及び厚肉部49bに対応して接触する凹凸部42dを有している。
Second Embodiment
FIG. 7A shows the main part of a mold for forming an anisotropic magnet according to the second embodiment.
In the figure, the basic configuration of the mold 30 is substantially the same as that of the first embodiment except that a plurality of (eight in this example) magnetic poles Mp are provided on the inner peripheral surface of the annular anisotropic magnet at a predetermined interval ( In the example, it is formed every 45 degrees, and the annular frame portion 41 is divided by the inner frame member 42 and the outer frame member 43 as the mold frame member 40 in substantially the same manner as the first embodiment. However, unlike Embodiment 1, it is provided between the annular cavity 41 and the inner frame member 42, and partitions the inner periphery of the annular cavity 41. An orientation control frame made of a nonmagnetic material that is provided between the sleeve 44, the annular sleeve 44 and the inner frame member 42, and controls the orientation magnetic field H acting on the composition Cm filled in the annular cavity 41 And a material 49.
In this example, as shown in FIGS. 7A and 7B, the orientation control frame member 49 is formed of an annular member in contact with the inner peripheral surface of the annular sleeve 44, and the inner peripheral portion shape of the annular member Is a concavo-convex shape in which the thickness changes smoothly in the same cycle as the interval of each magnetic pole Mp of the anisotropic magnet, and a thin portion 49a consisting of a recess is disposed at a location corresponding to each magnetic pole Mp A thick portion 49b made of a convex portion is disposed at a position located in the middle of Mp.
In addition, the inner frame member 42 has an uneven portion 42d in contact with the peripheral surface of the cylindrical member corresponding to the thin portion 49a and the thick portion 49b of the orientation control frame member 49.

本実施の形態によれば、外部磁場器50の励磁コイル51,52による外部磁場Hを作用させると、図7(a)(b)に示すように、当該外部磁場Hは互いに反発して金型30の円環状空洞部41に対して放射方向(ラジアル方向)に向かい、磁性材である内枠材42及び外枠材43を磁化することになり、円環状空洞部41を横切る方向の磁場が生成される。
このとき、円環状空洞部41と内枠材42との間には非磁性材からなる配向制御枠材49が設けられており、配向制御枠材49の薄肉部49aが厚肉部49bに比べて磁場が透過し易いことから、配向制御枠材49の薄肉部49aが磁束を集中させる集束部46として機能する。このため、円環状空洞部41内に充填された組成物Cmに対して内枠材42から放射方向に入射する磁力線(磁束)は配向制御枠材49の集束部46(薄肉部49a)を通じて外枠材43へ向かうことになり、円環状空洞部41内の組成物Cmには配向制御枠材49の集束部46で一旦集中した磁束が拡散するという磁束の粗密パターンを具備する配向磁場Hが得られる。
この結果、成形すべき異方性磁石となる組成物Cmには放射方向から傾斜した配向磁場Hに沿うように磁気的に配向が揃えられ、かつ、組成物Cmは内周側に所定数の磁極Mp、具体的には配向制御枠材49の集束部46に対応する部位に磁極Mpを有する異方性磁石として成形される。
According to this embodiment, when the action of the external magnetic field H 1 generated by the excitation coil 51 and 52 of the external magnetic field 50, as shown in FIG. 7 (a) (b), the external magnetic field H 1 repel one another As a result, the inner frame member 42 and the outer frame member 43, which are magnetic members, are magnetized in the radial direction (radial direction) with respect to the annular cavity 41 of the mold 30, and the direction across the annular cavity 41 Magnetic field is generated.
At this time, an orientation control frame member 49 made of a nonmagnetic material is provided between the annular hollow portion 41 and the inner frame member 42, and the thin portion 49a of the orientation control frame member 49 is compared with the thick portion 49b. Since the magnetic field is easily transmitted, the thin portion 49a of the orientation control frame 49 functions as a focusing portion 46 for concentrating the magnetic flux. For this reason, magnetic lines of force (magnetic flux) incident in the radial direction from the inner frame member 42 with respect to the composition Cm filled in the annular cavity portion 41 are out through the focusing portion 46 (thin portion 49a) of the orientation control frame member 49. An oriented magnetic field H having a coarse / dense pattern of magnetic flux in which the magnetic flux once concentrated by the focusing portion 46 of the orientation control frame material 49 is diffused to the composition Cm in the annular cavity 41 will be directed to the frame material 43. can get.
As a result, the composition Cm to be an anisotropic magnet to be molded is magnetically aligned along the alignment magnetic field H inclined from the radial direction, and the composition Cm has a predetermined number of inner circumferences. The magnetic pole Mp, specifically, a portion corresponding to the focusing portion 46 of the orientation control frame member 49 is formed as an anisotropic magnet having the magnetic pole Mp.

◎実施の形態3
図8(a)は実施の形態3に係る異方性磁石の成形用金型の要部を示す。
同図において、金型30の基本的構成は、実施の形態1と略同様に、円環状の異方性磁石の内周面に複数(本例では8つ)の磁極Mpを所定間隔(本例では45度)毎に形成するものであり、金型枠材40として、実施の形態1と略同様に、内枠材42、外枠材43、円環状スリーブ44を有しているが、実施の形態1と異なり、円環状スリーブ44と外枠材43との間に設けられ、円環状空洞部41に充填された組成物Cmに作用する配向磁場Hを制御する非磁性材からなる外側配向制御枠材45と、円環状空洞部41と内枠材42との間に設けられ、円環状空洞部41に充填された組成物Cmに作用する配向磁場Hを制御する非磁性材からなる内側配向制御枠材49(実施の形態2の配向制御枠材に相当)と、を有している。
本例において、外側配向制御枠材45は実施の形態1で用いられた配向制御枠材45に相当する薄肉部45a及び厚肉部45bを備えており、外枠材43の孔部43c内周面には外側配向制御枠材45の薄肉部45a及び厚肉部45bと接触する凹凸部43dが形成されている。
一方、内側配向制御枠材49は実施の形態2で用いられた配向制御枠材49に相当する薄肉部49a及び厚肉部49bを備えており、内枠材42の外周面には内側配向制御枠材49の薄肉部49a及び厚肉部49bと接触する凹凸部42dが形成されている。
そして、外側配向制御枠材45の薄肉部45a、厚肉部45bは夫々内側配向制御枠材49の厚肉部49b、薄肉部49aに対向して配置されている。尚、本例では、実施の形態2と異なり、内側配向制御枠材49と円環状空洞部41との間には円環状スリーブは設けられていない。
Third Embodiment
FIG. 8A shows the main part of a mold for forming an anisotropic magnet according to the third embodiment.
In the figure, the basic configuration of the mold 30 is substantially the same as that of the first embodiment except that a plurality of (eight in this example) magnetic poles Mp are provided on the inner peripheral surface of the annular anisotropic magnet at a predetermined interval ( In the example, it is formed every 45 degrees, and as the mold frame member 40, the inner frame member 42, the outer frame member 43, and the annular sleeve 44 are provided substantially as in the first embodiment. Unlike the first embodiment, the outer side is provided between the annular sleeve 44 and the outer frame member 43 and made of a nonmagnetic material for controlling the orientation magnetic field H acting on the composition Cm filled in the annular cavity 41. It is made of a nonmagnetic material which is provided between the orientation control frame member 45, the annular cavity 41 and the inner frame member 42, and controls the orientation magnetic field H acting on the composition Cm filled in the annular cavity 41. And an inner alignment control frame member 49 (corresponding to the alignment control frame member of the second embodiment).
In this example, the outer orientation control frame member 45 includes a thin portion 45 a and a thick portion 45 b corresponding to the orientation control frame member 45 used in the first embodiment, and the inner periphery of the hole portion 43 c of the outer frame member 43. An uneven portion 43 d in contact with the thin portion 45 a and the thick portion 45 b of the outer orientation control frame member 45 is formed on the surface.
On the other hand, the inner alignment control frame member 49 includes thin portions 49a and thick portions 49b corresponding to the alignment control frame member 49 used in the second embodiment, and the inner alignment control on the outer peripheral surface of the inner frame member 42. An uneven portion 42 d is formed in contact with the thin portion 49 a and the thick portion 49 b of the frame member 49.
The thin portion 45a and the thick portion 45b of the outer orientation control frame member 45 are disposed to face the thick portion 49b and the thin portion 49a of the inner orientation control frame 49, respectively. In the present embodiment, unlike the second embodiment, no annular sleeve is provided between the inner orientation control frame 49 and the annular cavity 41.

本実施の形態によれば、外部磁場器50の励磁コイル51,52による外部磁場Hを作用させると、図8(a)(b)に示すように、当該外部磁場Hは互いに反発して金型30の円環状空洞部41に対して放射方向(ラジアル方向)に向かい、磁性材である内枠材42及び外枠材43を磁化することになり、円環状空洞部41を横切る方向の磁場が生成される。
このとき、円環状スリーブ44と外枠材43との間には非磁性材からなる外側配向制御枠材45が設けられており、外側配向制御枠材45の薄肉部45aが厚肉部45bに比べて磁場が透過し易いことから、外側配向制御枠材45の薄肉部45aが磁束を集中させる集束部46として機能する。
更に、円環状空洞部41と内枠材42との間には非磁性材からなる内側配向制御枠材49が設けられており、内側配向制御枠材49の薄肉部49aが厚肉部49bに比べて磁場が透過し易いことから、内側配向制御枠材49の薄肉部49aが磁束を集中させる集束部46として機能する。
このため、円環状空洞部41内に充填された組成物Cmに対して内枠材42から放射方向に入射する磁力線(磁束)は、内側配向制御枠材49の集束部46(薄肉部49a)及び外側配向制御枠材45の集束部46(薄肉部45a)を通じて外枠材43へ向かうことになる。
つまり、本例では、円環状空洞部41内の組成物Cmには、内側配向制御枠材49の集束部46で一旦集中した磁束が外側配向制御枠材45の集束部46を通じて外枠材43へと向かうという磁束の粗密パターンを具備する配向磁場Hが得られる。
この結果、成形すべき異方性磁石となる組成物Cmには放射方向から傾斜した配向磁場Hに沿うように磁気的に配向が揃えられ、かつ、組成物Cmは内周側に所定数の磁極Mp、具体的には内側配向制御枠材49の集束部46に対応する部位に磁極Mpを有する異方性磁石として成形される。
特に、本例では、円環状空洞部41を挟むように対構成の外側配向制御枠材45及び内側配向制御枠材49が設置されているため、実施の形態1,2のように、円環状空洞部41の外側又は内側の一方に配向制御枠材45又は49を設置する態様に比べて、組成物Cmに対する配向磁場Hのパターンの形成精度が高められる。
According to this embodiment, when the action of the external magnetic field H 1 generated by the excitation coil 51 and 52 of the external magnetic field 50, as shown in FIG. 8 (a) (b), the external magnetic field H 1 repel one another As a result, the inner frame member 42 and the outer frame member 43, which are magnetic members, are magnetized in the radial direction (radial direction) with respect to the annular cavity 41 of the mold 30, and the direction across the annular cavity 41 Magnetic field is generated.
At this time, an outer orientation control frame member 45 made of nonmagnetic material is provided between the annular sleeve 44 and the outer frame member 43, and the thin portion 45a of the outer orientation control frame member 45 is a thick portion 45b. In comparison, since the magnetic field is more easily transmitted, the thin portion 45a of the outer orientation control frame member 45 functions as a focusing portion 46 for concentrating the magnetic flux.
Furthermore, an inner orientation control frame member 49 made of a nonmagnetic material is provided between the annular hollow portion 41 and the inner frame member 42, and the thin portion 49a of the inner orientation control frame member 49 is a thick portion 49b. In comparison, since the magnetic field is easily transmitted, the thin portion 49a of the inner orientation control frame member 49 functions as a focusing portion 46 for concentrating the magnetic flux.
For this reason, magnetic lines of force (magnetic flux) incident from the inner frame member 42 in the radial direction with respect to the composition Cm filled in the annular cavity portion 41 become the converging portion 46 (thin portion 49a) of the inner orientation control frame member 49. And it goes to the outer frame material 43 through the converging part 46 (thin part 45 a) of the outer orientation control frame material 45.
That is, in the present embodiment, the magnetic flux once concentrated in the focusing portion 46 of the inner orientation control frame 49 is applied to the composition Cm in the annular cavity portion 41 through the focusing portion 46 of the outer orientation control frame 45. An oriented magnetic field H is obtained which has a coarse and dense pattern of magnetic flux that is directed to the
As a result, the composition Cm to be an anisotropic magnet to be molded is magnetically aligned along the alignment magnetic field H inclined from the radial direction, and the composition Cm has a predetermined number of inner circumferences. The magnetic pole Mp, specifically, a portion corresponding to the focusing portion 46 of the inner orientation control frame material 49 is formed as an anisotropic magnet having the magnetic pole Mp.
In particular, in this example, since the outer orientation control frame material 45 and the inner orientation control frame material 49 of the pair configuration are installed to sandwich the annular cavity 41, as in the first and second embodiments, The formation accuracy of the pattern of the alignment magnetic field H with respect to the composition Cm is enhanced as compared with the mode in which the alignment control frame member 45 or 49 is provided on one of the outer side or the inner side of the cavity 41.

◎実施の形態4
図9(a)は実施の形態4に係る異方性磁石の成形用金型の要部を示す。
本例に係る金型30は、板状の異方性磁石に複数の磁極Mpを配列する態様に適用されるものであり、異方性磁石の材料を含む組成物Cmが充填される直線状空洞部61を有し、金型枠材40としては、直線状空洞部61を挟むように磁性材からなる磁場生成枠材62,63を対向して設置し、更に、直線状空洞部61と磁場生成枠材63との間に仕切り部材としての仕切り板64を設置すると共に、当該仕切り板64と一方の磁場生成枠材62との間には直線状空洞部61に充填された組成物Cmに作用する配向磁場Hが制御可能な配向制御枠材65を設置したものである。
本例において、配向制御枠材65は成形すべき異方性磁石の磁極Mpに面していない側に設置されており、磁極Mpの間隔と同じ周期で肉厚が滑らかに変化するものであり、磁極Mpの中間に位置する部位に薄肉部65aを配置すると共に、磁極Mpに対応する部位に厚肉部65bを配置したものである。
更に、本例では、図示外の外部磁場器は直線状空洞部61と交差する所定の一方向に向かって外部磁場Hを作用させるものであり、必要に応じて外部磁場Hを反転させた外部磁場をも作用させることを可能とするものである。
Fourth Embodiment
FIG. 9A shows the main part of a mold for forming an anisotropic magnet according to the fourth embodiment.
The mold 30 according to the present embodiment is applied to an aspect in which a plurality of magnetic poles Mp are arranged in a plate-like anisotropic magnet, and a linear shape filled with the composition Cm containing the material of the anisotropic magnet. A magnetic field generation frame member 62, 63 made of a magnetic material is provided opposite to the mold frame member 40 so as to sandwich the linear cavity portion 61, and the mold frame member 40 is further provided with the linear cavity portion 61. A composition Cm in which a partition plate 64 as a partition member is installed between the magnetic field generation frame member 63 and the linear cavity 61 is filled between the partition plate 64 and one magnetic field generation frame member 62. Is provided with an orientation control frame member 65 capable of controlling the orientation magnetic field H acting thereon.
In this example, the orientation control frame member 65 is disposed on the side not facing the magnetic pole Mp of the anisotropic magnet to be formed, and the thickness changes smoothly in the same cycle as the interval of the magnetic pole Mp. The thin-walled portion 65a is disposed at a portion located in the middle of the magnetic pole Mp, and the thick-walled portion 65b is disposed at a portion corresponding to the magnetic pole Mp.
Further, in this embodiment, unillustrated external field device is intended for applying a external magnetic field H 1 toward a predetermined direction which crosses the linear cavity 61, by inverting the external magnetic field H 1 optionally It is possible to apply an external magnetic field as well.

本実施の形態によれば、図示外の外部磁場器による外部磁場Hを作用させると、図9(a)(b)に示すように、当該外部磁場Hは直線状空洞部61を交差する方向に向かい、磁性材からなる磁場生成枠材62,63を磁化する。このとき、外部磁場Hは直線状空洞部61に充填された組成物Cmを横切る磁束を生成することになるが、配向制御枠材65の薄肉部65aが厚肉部65bに比べて磁場を透過し易いことから、配向制御枠材65の薄肉部65aが磁束を集中させる集束部66として機能する。
このため、直線状空洞部61内に充填された組成物Cmに対して一方の磁場生成枠材62から所定方向に入射する磁力線(磁束)は配向制御枠材65の集束部66(薄肉部65aに相当)を通じて他方の磁場生成枠材63へ向かうことになり、直線状空洞部61内の組成物Cmには配向制御枠材65の集束部66に向かって磁束が集中するという磁束の粗密パターンを具備する配向磁場Hが得られる。
この結果、成形すべき異方性磁石となる組成物Cmには所定方向から傾斜した配向磁場Hに沿うように磁気的に配向が揃えられ、かつ、組成物Cmは一側に所定数の磁極Mp、具体的には配向制御枠材65の集束部66の中間に対応する部位に磁極Mpを有する異方性磁石として成形される。
この後、実施の形態1と同様に、異方性磁石を冷却、固化させた後、外部磁場Hを反転させた外部磁場(図示せず)を作用させた後に図示外の型締めユニットにて金型30を開き、金型30から異方性磁石の成形品を取り出すようにすればよい。
According to this embodiment, when the action of the external magnetic field H 1 by an unillustrated external magnetic field device, as shown in FIG. 9 (a) (b), the external magnetic field H 1 is a linear cavity 61 intersecting The magnetic field generation frame members 62 and 63 made of a magnetic material are magnetized. At this time, the external magnetic field H 1 is made to generate a magnetic flux crossing the composition Cm filled linearly cavity 61, the thin portion 65a of the alignment control frame member 65 is a magnetic field as compared with the thick portion 65b The thin portion 65a of the orientation control frame member 65 functions as a focusing portion 66 for concentrating the magnetic flux because it is easily transmitted.
For this reason, magnetic lines of force (magnetic flux) incident in a predetermined direction from one of the magnetic field generation frame members 62 with respect to the composition Cm filled in the linear hollow portion 61 are the converging portions 66 (thin portions 65 a of the orientation control frame 65 And the magnetic flux is concentrated toward the converging portion 66 of the orientation control frame 65 in the composition Cm in the linear cavity 61. An oriented magnetic field H is obtained.
As a result, the composition Cm to be an anisotropic magnet to be molded is magnetically aligned along the orientation magnetic field H inclined from the predetermined direction, and the composition Cm has a predetermined number of magnetic poles on one side. Specifically, it is formed as an anisotropic magnet having a magnetic pole Mp at a portion corresponding to the middle of the focusing portion 66 of the orientation control frame member 65.
Thereafter, as in the first embodiment, cooling the anisotropic magnet, after solidified, the unillustrated mold clamping unit after the action of an external magnetic field obtained by inverting the external magnetic field H 1 (not shown) The mold 30 may be opened, and the molded article of the anisotropic magnet may be taken out of the mold 30.

◎実施例1
本実施例は実施の形態1に係る異方性磁石の成形用金型(図3参照)を具現化したものであり、円環状の異方性磁石の内周面に8つの磁極Mpを形成するものである。
本例において、円環状空洞部41は外径φ25×内径φ21×長さL7mm、内枠材42、外枠材43を構成する磁性材はNAK55、円環状スリーブ44、配向制御枠材45を構成する非磁性材はSUS303をそれぞれ加工して組み込んだ。また、円環状スリーブ44の厚さは0.5mmとした。
本例の異方性磁石の成形用金型30を用いて住友金属鉱山株式会社製Sm−Fe−N系磁石成形用ペレット(商品名:WellmaxS4A−7M)原料を、シリンダ温度を210〜260℃、金型温度60〜80℃で射出成形して異方性磁石の作製を行った。
成形後に金型30内で反転磁場(外部磁場H)を加えて異方性磁石(成形品)の脱磁を行った。脱磁後の成形品は金型30の図示外の突出し機構で簡単に取り出せ、トレーに並べた成形品は互いに僅かに吸着する程度の磁力であった。尚、脱磁処理の効果については実施例2,3も同様である。
得られた異方性磁石(成形品)を内周8極の着磁治具で着磁した後、成形品の表面磁束密度分布をシミュレーションしたところ、図10(a)に示す結果が得られた。
同図によれば、着磁後の成形品は8磁極の極異方性配向に沿って着磁されていることが理解される。
また、ガウスメータのプローブを成形品の内周面に接触し、成形品を回転しながら、着磁後の成形品の表面磁束密度波形Brを測定したところ、図10(b)に示すような正弦波形に近似した波形形状が得られることが確認でき、そのピーク値は113mT(1.13kOeと同じ)であった。
Example 1
The present embodiment is an embodiment of a mold for forming an anisotropic magnet (see FIG. 3) according to the first embodiment, and eight magnetic poles Mp are formed on the inner peripheral surface of the annular anisotropic magnet. It is
In this example, the annular hollow portion 41 has an outer diameter of φ25 × an inner diameter of φ21 × length L7 mm, and the magnetic members constituting the inner frame member 42 and the outer frame member 43 are NAK 55, an annular sleeve 44 and an orientation control frame member 45 The nonmagnetic material to be processed was processed and incorporated into SUS303 respectively. The thickness of the annular sleeve 44 is 0.5 mm.
Sumitomo Metal Mining Co., Ltd. Sm-Fe-N magnet molding pellets (trade name: Wellmax S4A-7M) raw material using the mold 30 for forming anisotropic magnets of this example, cylinder temperature 210 to 260 ° C. The anisotropic magnet was manufactured by injection molding at a mold temperature of 60 to 80 ° C.
After molding, a reverse magnetic field (external magnetic field H 2 ) was applied in the mold 30 to demagnetize the anisotropic magnet (molded product). The demagnetized molded product was easily removed by a projecting mechanism (not shown) of the mold 30, and the molded products arranged in the tray had a magnetic force that slightly adsorbed each other. The effects of the demagnetizing process are the same as in the second and third embodiments.
After magnetizing the obtained anisotropic magnet (molded article) with a magnetizing jig of inner peripheral 8 poles, the surface magnetic flux density distribution of the molded article is simulated, and the result shown in FIG. 10A is obtained. The
According to the figure, it can be understood that the molded product after magnetization is magnetized along the pole anisotropic orientation of the eight magnetic poles.
Also, when the surface flux density waveform Br of the molded article after magnetization was measured while contacting the inner peripheral surface of the molded article with the probe of the Gauss meter and rotating the molded article, a sine as shown in FIG. 10 (b) It was confirmed that a waveform shape approximated to the waveform was obtained, and its peak value was 113 mT (same as 1.13 kOe).

◎実施例2
本実施例は実施の形態2に係る異方性磁石の成形用金型(図7参照)を具現化したものであり、円環状の異方性磁石の内周面に8つの磁極Mpを形成するものである。
本例において、円環状空洞部41は外径φ25×内径φ21×長さL7mm、内枠材42、外枠材43を構成する磁性材はNAK55、円環状スリーブ44、配向制御枠材49を構成する非磁性材はSUS303をそれぞれ加工して組み込んだ。また、円環状スリーブ44の厚さは0.5mmとした。
本例の異方性磁石の成形用金型30を用いて住友金属鉱山株式会社製Sm−Fe−N系磁石成形用ペレット(商品名:WellmaxS4A−7M)原料を、シリンダ温度を210〜260℃、金型温度60〜80℃で射出成形して異方性磁石の作製を行った。
得られた異方性磁石(成形品)を内周8極の着磁治具にて着磁した後、前述したようにガウスメータを用いて成形品の表面磁束密度波形Brを測定したところ、図11に示すような正弦波形に近似した波形形状が得られることが確認でき、そのピーク値は199mT(1.99kOeと同じ)であった。
Example 2
The present embodiment is an embodiment of a mold for forming an anisotropic magnet according to the second embodiment (see FIG. 7), and eight magnetic poles Mp are formed on the inner peripheral surface of the annular anisotropic magnet. It is
In this example, the annular hollow portion 41 has an outer diameter of φ25 × an inner diameter of φ21 × length L7 mm, and the magnetic members constituting the inner frame member 42 and the outer frame member 43 are NAK 55, an annular sleeve 44 and an orientation control frame member 49 The nonmagnetic material to be processed was processed and incorporated into SUS303 respectively. The thickness of the annular sleeve 44 is 0.5 mm.
Sumitomo Metal Mining Co., Ltd. Sm-Fe-N magnet molding pellets (trade name: Wellmax S4A-7M) raw material using the mold 30 for forming anisotropic magnets of this example, cylinder temperature 210 to 260 ° C. The anisotropic magnet was manufactured by injection molding at a mold temperature of 60 to 80 ° C.
The resulting anisotropic magnet (molded article) is magnetized by an inner peripheral 8 pole magnetizing jig, and then the surface magnetic flux density waveform Br of the molded article is measured using a gauss meter as described above. It can be confirmed that a waveform shape approximate to a sine waveform as shown in 11 can be obtained, and its peak value is 199 mT (same as 1.99 kOe).

◎実施例3
本実施例は実施の形態3に係る異方性磁石の成形用金型(図8参照)を具現化したものであり、円環状の異方性磁石の内周面に8つの磁極Mpを形成するものである。
本例において、円環状空洞部41は外径φ25×内径φ21×長さL7mm、内枠材42、外枠材43を構成する磁性材はNAK55、円環状スリーブ44、外側配向制御枠材45及び内側配向制御枠材49を構成する非磁性材はSUS303をそれぞれ加工して組み込んだ。また、円環状スリーブ44の厚さは0.5mmとした。
本例の異方性磁石の成形用金型30を用いて住友金属鉱山株式会社製Sm−Fe−N系磁石成形用ペレット(商品名:WellmaxS4A−7M)原料を、シリンダ温度を210〜260℃、金型温度60〜80℃で射出成形して異方性磁石の作製を行った。
得られた異方性磁石(成形品)を内周8極の着磁治具にて着磁した後、ガウスメータを用いて成形品の表面磁束密度波形Brを測定したところ、図12(a)に示すような正弦波形に近似した波形形状が得られることが確認でき、そのピーク値は196mT(1.96kOeと同じ)であった。
更に、ピーク値Bpで規格化した成形品の表面磁束密度波形Br/Bpは図12(b)に示すように正弦波形に極めて近似した極異方性を示す波形であることが確認された。
Example 3
The present embodiment is an embodiment of a mold for forming an anisotropic magnet (see FIG. 8) according to the third embodiment, and eight magnetic poles Mp are formed on the inner peripheral surface of the annular anisotropic magnet. It is
In this example, the annular hollow portion 41 has an outer diameter of φ25 × an inner diameter of φ21 × length L7 mm, the magnetic members constituting the inner frame member 42 and the outer frame member 43 are NAK 55, an annular sleeve 44, an outer orientation control frame member 45 and The nonmagnetic material which comprises the inner orientation control frame material 49 processed and integrated SUS303, respectively. The thickness of the annular sleeve 44 is 0.5 mm.
Sumitomo Metal Mining Co., Ltd. Sm-Fe-N magnet molding pellets (trade name: Wellmax S4A-7M) raw material using the mold 30 for forming anisotropic magnets of this example, cylinder temperature 210 to 260 ° C. The anisotropic magnet was manufactured by injection molding at a mold temperature of 60 to 80 ° C.
The obtained anisotropic magnet (molded product) is magnetized by an inner peripheral 8 poles magnetizing jig, and then the surface magnetic flux density waveform Br of the molded product is measured using a gauss meter, as shown in FIG. It can be confirmed that a waveform shape approximate to a sinusoidal waveform as shown in is obtained, and its peak value is 196 mT (same as 1.96 kOe).
Furthermore, it was confirmed that the surface magnetic flux density waveform Br / Bp of the molded product normalized with the peak value Bp is a waveform showing polar anisotropy very close to a sine waveform as shown in FIG. 12 (b).

◎比較例1
本比較例は、永久磁石を組み込んだ異方性磁石の成形用金型であって、円環状の異方性磁石の外周面に4つの磁極Mpを形成するものである。
本例において、金型30’は、図13(a)に示すように、金型枠材70で円環状空洞部71を区画し、例えば円環状空洞部71の外周に面した部位にN,Sが2つずつ交互に配列される配向用永久磁石72を複数(本例では8つ)組み込み、円環状空洞部71に充填した組成物Cmに対して配向用永久磁石72による配向磁場を与えるものである。尚、本例では、金型枠材70は、円環状空洞部71の内側を区画する内枠材73と、配向用永久磁石72の外周側を保持する外枠材74と、円環状空洞部71の外周を区画し、配向用永久磁石72の内周側を保持する円環状スリーブ75とを備えている。
本例において、円環状空洞部71は外径φ27.6×内径φ19×長さL27mmで配向用永久磁石72はNdFeB焼結磁石(42MGOe)を8個用いた。
そして、作製した異方性磁石の成形用金型を母型に組み込み、住友金属鉱山株式会社製Sm−Fe−N系磁石成形用ペレット(商品名:WellmaxS3A−12M)原料を、シリンダ温度を210〜260℃、金型温度60〜80℃で射出成形して異方性磁石を作製した。
得られた異方性磁石(成形品)を外周4極の着磁治具で着磁し、ガウスメータを用いて成形品の表面磁束密度波形Brを測定したところ、図13(b)に示すように正弦波形に近似した波形形状が得られ、そのピーク値は206mT(2.06kOeと同じ)であった。
但し、成形後の成形品は金型30’の突出し機構だけでは容易に取り出せなかったため、手で成形品を掴んで取り出しを行った。取り出した成形品をトレーに並べる際には、並んだ成形品に強く吸着するため筒状に吸着させた。吸着させる際には衝撃に因る割れや欠けに注意して吸着させた。
本金型は、実施例1に対して1.7倍の費用と2倍の期間を要した。
比較 Comparative Example 1
The present comparative example is a mold for forming an anisotropic magnet incorporating a permanent magnet, in which four magnetic poles Mp are formed on the outer peripheral surface of an annular anisotropic magnet.
In this example, as shown in FIG. 13A, the mold 30 ′ divides the annular cavity 71 by the mold frame member 70, and, for example, N, N at the site facing the outer periphery of the annular cavity 71. A plurality of (eight in this example) orientation permanent magnets 72 in which S are alternately arranged two by two are incorporated, and an orientation magnetic field is given by the orientation permanent magnets 72 to the composition Cm filled in the annular cavity 71 It is a thing. In the present embodiment, the mold frame member 70 includes an inner frame member 73 which divides the inner side of the annular cavity 71, an outer frame member 74 which holds the outer peripheral side of the orientation permanent magnet 72, and an annular cavity portion. An annular sleeve 75 is provided which defines the outer periphery of the outer circumferential surface 71 and holds the inner circumferential side of the orientation permanent magnet 72.
In this example, the ring-shaped cavity 71 has an outer diameter φ27.6 × inner diameter φ19 × length L27 mm, and eight permanent magnet 72 for orientation use NdFeB sintered magnets (42 MGOe).
Then, a mold for molding the anisotropic magnet produced is incorporated into a matrix, and a Sumitomo Metal Mining Co., Ltd. Sm-Fe-N based magnet molding pellet (trade name: Wellmax S3A-12M) raw material is used at a cylinder temperature of 210. The anisotropic magnet was produced by injection molding at ~ 260 ° C and a mold temperature of 60-80 ° C.
As shown in FIG. 13 (b), the obtained anisotropic magnet (molded article) is magnetized by means of a magnetizing jig with four outer peripheral poles, and the surface magnetic flux density waveform Br of the molded article is measured using a gauss meter. A waveform shape approximating a sine waveform was obtained, and its peak value was 206 mT (the same as 2.06 kOe).
However, since the molded product after molding could not be easily removed only by the protrusion mechanism of the mold 30 ′, the molded product was gripped and taken out by hand. When arranging the taken out molded products on a tray, they were adsorbed in a cylindrical shape in order to strongly adsorb to the arranged molded products. At the time of adsorption, attention was paid to the cracks and chips due to the impact.
This mold required 1.7 times the cost and twice the time of Example 1.

◎比較例2
本比較例は、実施の形態1に示す異方性磁石の成形用金型から配向制御枠材45を取り除いた態様であり、外部磁場を作用させることで異方性磁石を成形するものである。但し、本比較例では、円環状空洞部41は外径φ25×内径φ21×長さL30mmとした。
本比較例において、実施例1と同様に、着磁後の成形品の表面磁束密度波形Brを測定したところ、図14に示すように、正弦波形には近似しない波形形状になることが理解される。これにより、成形品の表面磁束密度波形を所望のものにするには、異方性磁石の成形用金型の構成要件として配向制御枠材45又は49が必要不可欠であることが理解された。
比較 Comparative Example 2
The present comparative example is an aspect in which the orientation control frame member 45 is removed from the mold for forming an anisotropic magnet shown in the first embodiment, and the anisotropic magnet is formed by applying an external magnetic field. . However, in the present comparative example, the annular hollow portion 41 has an outer diameter of φ25 × an inner diameter of φ21 × length of 30 mm.
In this comparative example, when the surface magnetic flux density waveform Br of the molded article after magnetizing was measured in the same manner as in Example 1, it is understood that as shown in FIG. Ru. From this, it is understood that, in order to make the surface magnetic flux density waveform of the molded product desired, the orientation control frame material 45 or 49 is indispensable as a constituent feature of the mold for forming an anisotropic magnet.

1 成形用金型
2 金型枠材
3 空洞部
4(4a,4b) 磁場生成枠材
5 配向制御枠材
6 集束部
7 薄肉部
8 厚肉部
9 仕切り部材
Cm 組成物
H,H’ 配向磁場
外部磁場
外部磁場
Mp 磁極
20 射出ユニット
21 シリンダ
22 ホッパ
23 ヒータ
24 スクリューロッド
25 射出口
26 供給経路
30,30’ 金型
31 接続ユニット
32 固定側取付板
34 可動側取付板
35 可動側型板
PL 金型分離面
40 金型枠材
41,41’ 円環状空洞部
42,42’ 内枠材
42d 凹凸部
43,43’ 外枠材
43c 孔部
43d 凹凸部
44,44’ 円環状スリーブ
45 配向制御枠材
45a 薄肉部
45b 厚肉部
46 集束部
47 円環状部材
48 スリット状開口
49 配向制御枠材
49a 薄肉部
49b 厚肉部
50 外部磁場器
51 励磁コイル
52 励磁コイル
61 直線状空洞部
62 磁場生成枠材
63 磁場生成枠材
64 仕切り板
65 配向制御枠材
65a 薄肉部
65b 厚肉部
66 集束部
70 金型枠材
71 円環状空洞部
72 配向用永久磁石
73 内枠材
74 外枠材
75 円環状スリーブ
DESCRIPTION OF SYMBOLS 1 Mold for molding 2 Mold frame material 3 Hollow part 4 (4a, 4b) Magnetic field generation frame material 5 Orientation control frame material 6 Focusing part 7 Thin part 8 Thick part 9 Partition member Cm Composition H, H 'Orientation magnetic field H 1 external magnetic field
H 2 external magnetic field Mp magnetic pole 20 injection unit 21 cylinder 22 hopper 23 heater 24 screw rod 25 injection port 26 supply path 30, 30 'mold 31 connection unit 32 fixed side mounting plate 34 movable side mounting plate 35 movable side plate PL gold Mold separation surface 40 Mold frame material 41, 41 'Annular cavity 42, 42' Inner frame material 42d Irregularities 43, 43 'Outer frame material 43c Hole 43d Irregularities 44, 44' Annular sleeve 45 Orientation control frame Material 45a Thin portion 45b Thick portion 46 Converging portion 47 Annular member 48 Slit-like opening 49 Orientation control frame member 49a Thin portion 49b Thick portion 50 External magnetic field unit 51 Excitation coil 52 Excitation coil 61 Linear cavity 62 Magnetic field generation frame Material 63 Magnetic field generation frame material 64 Partition plate 65 Orientation control frame material 65a Thin-walled part 65b Thick-walled part 66 Focused part 70 Gold Within frame frame member 71 annular cavity portion 72 oriented permanent magnet 73 material 74 outer frame member 75 annular sleeve

Claims (10)

成形すべき異方性磁石の材料を含む組成物が充填可能な空洞部を区画し、外部から作用する磁場中に前記空洞部を配置可能とする金型枠材を備え、
前記金型枠材は、前記空洞部を挟むように対向して配置され、前記空洞部を横切る方向の磁場を生成する磁性材からなる磁場生成枠材と、
前記空洞部を挟む磁場生成枠材の少なくともいずれか一方の前記空洞部に面した部位に設けられ、成形すべき異方性磁石の表面磁束密度波形が所望の波形形状になるように磁化の方向を決める配向磁場を制御する非磁性材若しくは前記磁場生成枠材よりも飽和磁化が小さい磁性材からなる配向制御枠材と、を有することを特徴とする異方性磁石の成形用金型。
A mold frame material which defines a cavity which can be filled with a composition containing a material of an anisotropic magnet to be molded, and which can arrange the cavity in an externally acting magnetic field;
The mold frame material is disposed to face the hollow portion so as to sandwich the hollow portion, and a magnetic field generation frame member made of a magnetic material that generates a magnetic field in a direction crossing the hollow portion;
The direction of magnetization is provided in a portion facing at least one of the hollow portions of the magnetic field generation frame material sandwiching the hollow portion, and the direction of magnetization so that the surface magnetic flux density waveform of the anisotropic magnet to be formed has a desired waveform shape. A mold for forming an anisotropic magnet, comprising: a nonmagnetic material for controlling an orientation magnetic field to be determined or an orientation control frame material made of a magnetic material having a saturation magnetization smaller than that of the magnetic field generation frame material.
請求項1に記載の異方性磁石の成形用金型において、
前記配向制御枠材は、成形すべき異方性磁石の各磁極間隔と同じ周期で肉厚が変化する薄肉部を有することを特徴とする異方性磁石の成形用金型。
In the mold for forming an anisotropic magnet according to claim 1,
A mold for forming an anisotropic magnet, wherein the orientation control frame member has a thin-walled portion whose thickness changes in the same cycle as an interval between magnetic poles of the anisotropic magnet to be formed.
請求項2に記載の異方性磁石の成形用金型において、
前記配向制御枠材は、成形すべき異方性磁石の各磁極間隔と同じ周期で肉厚が滑らかに変化する凹凸を有することを特徴とする異方性磁石の成形用金型。
In the mold for forming an anisotropic magnet according to claim 2,
A mold for forming an anisotropic magnet, wherein the orientation control frame member has an unevenness whose thickness changes smoothly in the same cycle as an interval between magnetic poles of the anisotropic magnet to be formed.
請求項1に記載の異方性磁石の成形用金型において、
前記空洞部のうち成形すべき異方性磁石の磁極側と前記配向制御枠材との間を仕切る仕切り部材を備えることを特徴とする異方性磁石の成形用金型。
In the mold for forming an anisotropic magnet according to claim 1,
A mold for forming an anisotropic magnet, comprising: a partition member for partitioning between the magnetic pole side of an anisotropic magnet to be formed in the hollow portion and the orientation control frame member.
請求項1に記載の異方性磁石の成形用金型において、
前記金型枠材は円環状又は円弧状空洞部を区画し、
外部から作用する磁場が前記空洞部に対して放射状に横切る方向から働くことを特徴とする異方性磁石の成形用金型。
In the mold for forming an anisotropic magnet according to claim 1,
The mold frame material defines an annular or arc-shaped cavity,
A mold for forming an anisotropic magnet, characterized in that an externally acting magnetic field acts in a direction radially across the cavity.
請求項5に記載の異方性磁石の成形用金型において、
前記配向制御枠材は前記円環状又は円弧状空洞部の外周側に配置され、当該空洞部内の内周側又は外周側に成形すべき異方性磁石の磁極を形成することを特徴とする異方性磁石の成形用金型。
In the mold for forming an anisotropic magnet according to claim 5,
The orientation control frame member is disposed on the outer peripheral side of the annular or arc-shaped hollow portion, and forms a magnetic pole of an anisotropic magnet to be formed on the inner peripheral side or the outer peripheral side in the hollow portion. Molds for the anisotropic magnet.
請求項5に記載の異方性磁石の成形用金型において、
前記配向制御枠材は前記円環状又は円弧状空洞部の内周側に配置され、当該空洞部内の内周側又は外周側に成形すべき異方性磁石の磁極を形成することを特徴とする異方性磁石の成形用金型。
In the mold for forming an anisotropic magnet according to claim 5,
The orientation control frame member is disposed on the inner peripheral side of the annular or arc-like hollow portion, and forms a magnetic pole of an anisotropic magnet to be formed on the inner peripheral side or the outer peripheral side in the hollow portion. Mold for forming anisotropic magnet.
請求項5に記載の異方性磁石の成形用金型において、
前記配向制御枠材は前記円環状又は円弧状空洞部の外周側及び内周側に夫々配置され、一方の配向制御枠材は前記空洞部内に成形すべき異方性磁石の磁極に対応した部位に磁束が集中する集束部を有し、他方の配向制御枠材は前記磁極間に対応した部位に前記集束部を有することを特徴とする異方性磁石の成形用金型。
In the mold for forming an anisotropic magnet according to claim 5,
The orientation control frame material is disposed on the outer circumferential side and the inner circumferential side of the annular or arc-shaped cavity, and one orientation control frame material corresponds to the magnetic pole of the anisotropic magnet to be formed in the cavity. A mold for forming an anisotropic magnet, comprising: a focusing portion where magnetic flux concentrates, and the other orientation control frame material having the focusing portion at a portion corresponding to the magnetic poles.
請求項1乃至8のいずれかに記載の異方性磁石の成形用金型を用いて異方性磁石を製造するに際し、
前記成形用金型の空洞部に成形すべき異方性磁石の材料を含む組成物を充填する充填工程と、
前記充填工程後において前記成形用金型に外部から磁場を作用させることで前記空洞部に充填された組成物を磁気的に配向させると共に所定の形状に成形する配向・成形工程と、
前記配向・成形工程にて成形された異方性磁石を冷却して前記成形用金型から取り出す取出工程と、を含むことを特徴とする異方性磁石の製造方法。
When manufacturing an anisotropic magnet using the mold for forming an anisotropic magnet according to any one of claims 1 to 8,
Filling the composition including the material of the anisotropic magnet to be formed in the cavity of the forming mold;
An orientation / forming step of magnetically orienting the composition filled in the cavity by forming a magnetic field from the outside on the molding die after the filling step, and forming the composition into a predetermined shape;
A method of manufacturing an anisotropic magnet, comprising: a removal step of cooling the anisotropic magnet molded in the orientation and molding step and taking it out from the molding die.
請求項9に記載の異方性磁石の製造方法において、
前記取出工程は、前記成形用金型に前記配向・成形工程時の磁場が反転させられた磁場を作用させて行われることを特徴とする異方性磁石の製造方法。
In the method of manufacturing an anisotropic magnet according to claim 9,
The method for producing an anisotropic magnet, wherein the taking-out step is performed by applying a magnetic field obtained by inverting the magnetic field at the time of the orientation and forming process to the molding die.
JP2017081373A 2017-04-17 2017-04-17 Anisotropic magnet molding die and anisotropic magnet manufacturing method using the same Active JP7131890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081373A JP7131890B2 (en) 2017-04-17 2017-04-17 Anisotropic magnet molding die and anisotropic magnet manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081373A JP7131890B2 (en) 2017-04-17 2017-04-17 Anisotropic magnet molding die and anisotropic magnet manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2018182123A true JP2018182123A (en) 2018-11-15
JP7131890B2 JP7131890B2 (en) 2022-09-06

Family

ID=64277102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081373A Active JP7131890B2 (en) 2017-04-17 2017-04-17 Anisotropic magnet molding die and anisotropic magnet manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP7131890B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737803A (en) * 1980-08-18 1982-03-02 Matsushita Electric Ind Co Ltd Manufacture of anisotropic magnet
JPS61196516U (en) * 1985-05-29 1986-12-08
JPS63316411A (en) * 1987-06-19 1988-12-23 Seiko Epson Corp Method for multipolar magnetization
JPH05144627A (en) * 1991-11-15 1993-06-11 Daido Steel Co Ltd Radial anisotropic ring magnet and manufacture thereof
JP2001274032A (en) * 2000-03-24 2001-10-05 Mitsubishi Electric Corp Die device for manufacturing anisotropic multipolar plastic magnet
JP2007035786A (en) * 2005-07-25 2007-02-08 Daido Electronics Co Ltd Radial orientation magnetic field forming apparatus
JP2014082349A (en) * 2012-10-17 2014-05-08 Samsung Electromechanics Japan Advanced Technology Co Ltd Magnetization device, method of manufacturing rotary apparatus and rotary apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2187520B1 (en) 2008-11-13 2011-04-06 Micro Crystal AG Packaging for piezoelectric resonator
JP5737803B2 (en) 2011-04-04 2015-06-17 関西ペイント株式会社 Coating composition with excellent corrosion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737803A (en) * 1980-08-18 1982-03-02 Matsushita Electric Ind Co Ltd Manufacture of anisotropic magnet
JPS61196516U (en) * 1985-05-29 1986-12-08
JPS63316411A (en) * 1987-06-19 1988-12-23 Seiko Epson Corp Method for multipolar magnetization
JPH05144627A (en) * 1991-11-15 1993-06-11 Daido Steel Co Ltd Radial anisotropic ring magnet and manufacture thereof
JP2001274032A (en) * 2000-03-24 2001-10-05 Mitsubishi Electric Corp Die device for manufacturing anisotropic multipolar plastic magnet
JP2007035786A (en) * 2005-07-25 2007-02-08 Daido Electronics Co Ltd Radial orientation magnetic field forming apparatus
JP2014082349A (en) * 2012-10-17 2014-05-08 Samsung Electromechanics Japan Advanced Technology Co Ltd Magnetization device, method of manufacturing rotary apparatus and rotary apparatus

Also Published As

Publication number Publication date
JP7131890B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP6870356B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP2018142635A (en) Molding die for anisotropic bond magnet and manufacturing method using the same
JP2018182123A (en) Molding die for anisotropic magnet and manufacturing method of anisotropic magnet using the same
JP4556439B2 (en) Mold for forming polar anisotropic cylindrical magnet for motor
JP6879457B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JP6878882B2 (en) Molds for forming anisotropic bond magnets and manufacturing methods using them
JP3702036B2 (en) Method for producing anisotropic resin magnet and mold for production
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
EP1542244B1 (en) Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof
JP7027898B2 (en) Mold for forming anisotropic magnet and method for manufacturing anisotropic magnet using this
JP2001167963A (en) Method of manufacturing magnet and mold for molding magnet
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JPH0824091B2 (en) Anisotropic resin rotor magnet
JP2018170423A (en) Anisotropic magnet and manufacturing method thereof
JPS6211209A (en) Magnet and manufacture thereof
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JP2016220286A (en) Device and method of manufacturing embedded magnet type rotor
JP3004204U (en) Anisotropic magnet
JPH0523307Y2 (en)
JPH0556644B2 (en)
JPH0613223A (en) Internal closed magnetic circuit type anisotropic magnet
JPS6211212A (en) Injection molding die for manufacturing plastic magnet
JPS61125009A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JP2002141223A (en) Method and device for demagnetizing rare-earth-based radially oriented ring magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210817

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210824

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210825

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210924

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210928

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220302

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220629

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220726

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7131890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150