JP2007033263A - On-board measuring method of shape error of micro recessed surface shape, and measuring device - Google Patents

On-board measuring method of shape error of micro recessed surface shape, and measuring device Download PDF

Info

Publication number
JP2007033263A
JP2007033263A JP2005217703A JP2005217703A JP2007033263A JP 2007033263 A JP2007033263 A JP 2007033263A JP 2005217703 A JP2005217703 A JP 2005217703A JP 2005217703 A JP2005217703 A JP 2005217703A JP 2007033263 A JP2007033263 A JP 2007033263A
Authority
JP
Japan
Prior art keywords
concave surface
micro
shape
light
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005217703A
Other languages
Japanese (ja)
Inventor
Takaaki Yazawa
孝哲 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki University NUC
Original Assignee
Nagasaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki University NUC filed Critical Nagasaki University NUC
Priority to JP2005217703A priority Critical patent/JP2007033263A/en
Publication of JP2007033263A publication Critical patent/JP2007033263A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an on-board measuring method of a shape error of a micro recessed surface shape capable of measuring the shape error of a micro recessed surface in non-contact at high speed and high accuracy, and also to provide its measuring device. <P>SOLUTION: The measuring device comprises: an objective lens 23 facing the micro recessed surface 22; a light source module 25 for emitting converged light; a lens barrel 28 for making the optical axis 26 of the converged light and the axial center 27 common; an imaging element 29; a micro lens array 31 arranged between the lens barrel 28 and the imaging element 29; and a computer. The lens barrel 28 has two lenses 41 and 42 having a confocal, and a pinhole 44 arranged at the confocal. A measuring system is constituted so as to match condensing position of the converged light condensed through the objective lens 23 with the center of curvature of the micro recessed surface 22. The shape error of the micro recessed surface 22 is calculated based on the difference between the center of gravity position of each of light columns that are reflected from the micro recessed surface and formed on the imaging element 29 by the micro lens array 31 and the center of gravity position of a light column when a previously determined micro recessed surface 22 has an ideal shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、精密機械工作において、精密加工の高精度化、高能率化を目的とした、微小凹面形状誤差の精密な機上計測方法及びその計測装置に関するものである。   The present invention relates to a precise on-machine measurement method and measurement apparatus for minute concave surface shape errors for the purpose of improving precision and efficiency in precision machining.

従来より微小凹面形状の加工に精密機械加工が行われている。この場合、工作機械における工具の運動誤差や取付け誤差に起因した誤差があると、加工形状精度の劣化や工具寿命の低下を来すなど、加工上で障害となっている。この点に関して、被測定物を工作機械から取り外して微小凹面形状の形状誤差を計測し、誤差の起因となっている工具の運動誤差や取付け誤差を補正して再加工することが行われている。   Conventionally, precision machining has been performed for processing of a minute concave shape. In this case, if there is an error caused by a tool movement error or an attachment error in a machine tool, it causes a problem in machining, such as deterioration in machining shape accuracy and tool life. In this regard, the object to be measured is removed from the machine tool, the shape error of the minute concave shape is measured, and the rework is performed by correcting the movement error and the mounting error of the tool causing the error. .

例えば触針式輪郭形状測定器では、触針を被測定物に接触させつつ一方向に走査して微小凹面形状の断面形状誤差を測定した後、触針を微小凹面から離して元の位置に戻し走査方向と直角方向にわずかに移動して新たな断面の形状誤差を計測することを繰り返し、微小凹面形状誤差を、微小凹面全体に渡り計測している。   For example, in a stylus type contour shape measuring instrument, a cross-sectional shape error of a micro concave surface is measured by scanning the stylus in one direction while contacting the object to be measured, and then the stylus is moved away from the micro concave surface to the original position. The micro-concave surface error is measured over the entire micro-concave surface by repeatedly measuring the shape error of the new section by moving slightly in the direction perpendicular to the return scanning direction.

また、非接触光学式自動焦点計測器では、微小凹面の微小領域にレーザを出射する対物レンズの焦点を自動的に合せつつ一方向に走査して微小凹面形状の断面形状誤差を計測し、これを複数断面に渡り繰り返すことで、微小凹面全体に渡り計測している。
レーザ顕微鏡およびレーザプローブ式測定器では、レーザ光を光の触針として一横行に走査して断面形状誤差を計測している。
The non-contact optical autofocus measuring instrument measures the cross-sectional shape error of the micro concave surface by scanning in one direction while automatically focusing the objective lens that emits the laser on the micro area of the micro concave surface. Is repeated over a plurality of cross sections to measure over the entire concave surface.
In the laser microscope and the laser probe type measuring device, the cross-sectional shape error is measured by scanning the laser beam in one horizontal direction as a stylus of light.

さらに、白色光源を利用した干渉測定器や微小球凹面測定用トワイマンーグリーン式干渉測定器では、微小凹面全体の形状誤差を一度に計測している。
上記の他にも、レーザ光や触針を用いて、微小凹面の形状誤差を計測する多くの方法が開発され、使用されている。
Furthermore, in an interferometer using a white light source and a Twiman-Green interferometer for measuring a microsphere concave surface, the shape error of the entire microconcave surface is measured at once.
In addition to the above, many methods for measuring the shape error of a minute concave surface using a laser beam or a stylus have been developed and used.

特許文献1には、レーザーオートフォーカスによる非接触寸法測定方法の例が開示されている。また、特許文献2には、触針式の輪郭形状測定方法及びその装置の例が開示されている。
特許第3180091号 特許第3025413号
Patent Document 1 discloses an example of a non-contact dimension measurement method using laser autofocus. Patent Document 2 discloses an example of a stylus type contour shape measuring method and an apparatus therefor.
Patent No.3180091 Patent No. 3025413

ところで、上述の触針式輪郭形状測定器を用いて微小凹面形状誤差を計測する方法では、断面ごとの形状誤差計測のため、計測に時間がかかるとともに、触針走査方向と垂直方向の計測結果の信頼性が低い。また接触測定のために被測定物に触針によるスクラッチが出来るなどの課題があった。   By the way, in the method of measuring a minute concave surface shape error using the above-mentioned stylus type contour shape measuring instrument, it takes time to measure the shape error for each cross section, and the measurement result in the direction perpendicular to the stylus scanning direction. Is unreliable. In addition, there is a problem that the object to be measured can be scratched with a stylus for contact measurement.

非接触光学式自動焦点計測器を用いて微小凹面形状誤差を計測する方法では、非接触であるためスクラッチができない点を除き、触針式輪郭形状測定器と同様の課題がある。
レーザ顕微鏡およびレーザプローブ式測定器を用いた方法も、非接触であるためスクラッチができない点を除き、触針式輪郭形状測定器と同様の課題があった。
The method of measuring a minute concave surface shape error using a non-contact optical automatic focus measuring instrument has the same problem as the stylus type contour shape measuring instrument except that it is non-contact and cannot be scratched.
The method using the laser microscope and the laser probe type measuring device has the same problem as the stylus type contour shape measuring device except that it is non-contact and cannot be scratched.

さらに、白色光源を利用した干渉測定器や微小球凹面測定用トワイマンーグリーン式干渉測定器を用いた方法では、共通光路干渉計でないため温度変化や空気揺らぎ、振動などを抑制した厳しい測定環境制御が必要な上、計算に時間がかかる、また超精密切削などで発生しやすい微小な擦過傷が魔鏡効果により拡大されてしまうため、干渉縞とびが発生して計算できないことがある、といった課題があった。   In addition, the method using an interferometer using a white light source or a Twiman-Green interferometer for measuring microspherical concave surfaces is not a common optical path interferometer, so it is a harsh measurement environment that suppresses temperature changes, air fluctuations, vibrations, etc. Issues that control is required, time is required for calculation, and minute scratches that are likely to occur in ultra-precision cutting are magnified by the magic mirror effect. was there.

図12、図13に本発明が対象としている被加工物3の加工形状を示す。この加工形状は、中心軸1周りに回転対称形状をした、ボール中心4からの曲率半径Rの微小凹面2である(図12参照)。図13は図12のAーA線上の断面である。このような微小凹面2を精密機械加工するときは、例えばシェービング法あるいはミーリング法などで行われる。   FIG. 12 and FIG. 13 show the processed shape of the workpiece 3 targeted by the present invention. This processed shape is a minute concave surface 2 having a radius of curvature R from the ball center 4 and having a rotationally symmetric shape around the central axis 1 (see FIG. 12). FIG. 13 is a cross section taken along the line AA in FIG. When such a minute concave surface 2 is precision machined, for example, a shaving method or a milling method is performed.

シェービング法は、ノーズ半径Rの単結晶ダイヤモンド工具を用いて、中心軸に対しその直角方向に、切り込みを制御しながら送る方法である。
ミーリング法は、ボール半径Rのダイヤモンドボールエンドミルを用いて、その軸周りに回転して加工する方法である。
The shaving method is a method in which a single crystal diamond tool having a nose radius R is used to feed in a direction perpendicular to the central axis while controlling the cutting.
The milling method is a method in which a diamond ball end mill having a ball radius R is used to rotate around its axis.

シェービング法では、微小凹面に直角方向の送りと切り込み方向、ないしは回転方向の少なくとも同時2軸制御を行う必要があり、高精度な相対運動が必要である。しかも、運動軌跡が複雑なため、ダイヤモンド工具の送り方向と、送り方向に垂直な方向の形状が個別に発生するという問題がる。   In the shaving method, it is necessary to perform at least simultaneous two-axis control in the direction perpendicular to the minute concave surface and the cutting direction or the rotation direction, and high-precision relative motion is required. In addition, since the motion trajectory is complicated, there is a problem that the shape of the diamond tool feeding direction and the shape perpendicular to the feeding direction are generated separately.

一方、ミーリング法では、ボールエンドミルのチャッキング誤差や切れ刃陵の偏心により、ボールエンドミルの切れ刃が回転軸芯周りに振れ回った運動をする。その結果、要求された曲率半径Rとは異なる曲率半径R′の微小凹面が加工されるという問題がある。   On the other hand, in the milling method, due to the chucking error of the ball end mill and the eccentricity of the cutting edge, the ball end mill makes a movement that swings around the rotation axis. As a result, there is a problem that a minute concave surface having a curvature radius R ′ different from the requested curvature radius R is processed.

これらの加工法により、微小凹面を精密に加工するには、工具の送りや切り込み、あるいは回転といった運動を精度よく測定し、運動誤差を限りなく0に補正して加工することが試みられている。しかし、形状誤差がサブミクロン以下になると、各運動を精度よく測定・補正することが難しくなるばかりでなく、他の運動の影響を強く受ける。そのため、微小凹面形状誤差を計測し、その形状誤差から各運動の誤差をそれぞれ推定して補正加工を行うことが不可欠である。   In order to precisely machine a minute concave surface by these machining methods, it has been attempted to accurately measure a motion such as tool feed, cutting, or rotation, and to correct the motion error to zero as much as possible. . However, when the shape error becomes submicron or less, it becomes difficult not only to measure and correct each motion accurately, but also strongly influenced by other motions. For this reason, it is indispensable to perform correction processing by measuring a minute concave shape error and estimating each movement error from the shape error.

しかし、前述した測定法および測定器では、すべて工作機械とは別の測定器で測定することが必要なため、計測環境と加工環境が異なるとか、被測定物を取り外して測定した後に取付け直すことによる取付け誤差が発生すること、段取りに時間がかかる、等といった問題があった。このため、ミクロンあるいはサブミクロンといった加工形状精度が要求される場合には、
a.微小凹面形状誤差を計測すること、
b.誤差から算出した補正運動により試し切削すること、
を、何度も繰り返し行わなければ、所要の加工形状精度が確保できない。
However, all of the measurement methods and measuring instruments described above require measurement with a measuring instrument that is different from the machine tool, so the measurement environment and processing environment are different, or the measurement object must be removed and reattached after measurement. There are problems such as the occurrence of mounting errors due to the above, and the time required for setup. For this reason, when machining shape accuracy such as micron or submicron is required,
a. Measuring the micro concave shape error,
b. Trial cutting with the corrective motion calculated from the error,
If it is not repeatedly performed, the required machining shape accuracy cannot be ensured.

本発明は、上述の点に鑑み、微小凹面の形状誤差を、非接触で高速・高精度に計測でき、かつ精密加工機上で計測できる微小凹面形状の形状誤差機上計測方法及びその計測装置を提供することを目的とする。   In view of the above-described points, the present invention provides a micro-concave surface shape error measuring method and measuring apparatus capable of measuring a micro-concave surface shape error at high speed and high accuracy without contact and capable of being measured on a precision processing machine. The purpose is to provide.

本発明に係る微小凹面形状の形状誤差機上計測方法は、被測定用の微小凹面に対向する対物レンズと、光源を有して集束光を発する光源モジュールと、集束光の光軸と軸心を共通にするレンズ鏡筒と、撮像素子と、レンズ鏡筒と撮像素子間に配置されたマイクロレンズアレイと、演算処理機能を有するコンピュータとを備え、レンズ鏡筒が、共焦点を有する2個のレンズと、共焦点に配置されたピンホールとを有し、対物レンズを通して集光される集束光の集光位置と、微小凹面の曲率中心とを同じくして測定系を構成し、コンピュータにより、撮像素子上に達する微小凹面から反射されマイクロレンズアレイにより形成された光線列を取り込み、撮像素子上の光線列の各重心位置と、事前に求めた微小凹面が理想形状である場合の光線列の重心位置との差異から、微小凹面の形状誤差を算出することを特徴とする。   A shape error on-machine measuring method for a micro concave surface according to the present invention includes an objective lens facing a micro concave surface to be measured, a light source module having a light source and emitting focused light, an optical axis and an axis of the focused light. A lens barrel having a common lens, an image sensor, a microlens array disposed between the lens barrel and the image sensor, and a computer having an arithmetic processing function. And a pinhole arranged confocally, and the measurement system is configured with the same focusing position of the focused light focused through the objective lens and the center of curvature of the minute concave surface. , Taking in the light beam reflected from the minute concave surface reaching the image sensor and formed by the micro lens array, and the beam position when the center of gravity of each light beam on the image sensor and the minute concave surface obtained in advance are in an ideal shape of From the difference between the heart position, and calculates the fine concave shape error.

本発明に係る微小凹面形状の形状誤差機上計測方法は、被測定用の微小凹面に対向する対物レンズと、光源を有して集束光を発する光源モジュールと、光源と前記対物レンズ間にあって微小凹面からの反射光に影響しない位置に配置されて光線列を形成するマイクロレンズアレイと、集束光の光軸と軸心を共通にするレンズ鏡筒と、撮像素子と、演算処理機能を有するコンピュータとを備え、レンズ鏡筒が、共焦点を有する2個のレンズと、共焦点に配置されたピンホールとを有し、対物レンズを通して集光される集束光の集光位置と、微小凹面の曲率中心とを同じくして測定系を構成し、コンピュータにより、撮像素子上に達する微小凹面から反射された光線列を取り込み、撮像素子上の光線列の各重心位置と、事前に求めた微小凹面が理想形状である場合の光線列の重心位置との差異から、微小凹面の形状誤差を算出することを特徴とする。   A shape error on-machine measuring method for a micro concave surface according to the present invention includes an objective lens facing a micro concave surface for measurement, a light source module having a light source and emitting focused light, and a micro light source between the light source and the objective lens. A microlens array that is arranged at a position that does not affect the reflected light from the concave surface to form a light beam, a lens barrel that shares the optical axis and axis of the focused light, an image sensor, and a computer having an arithmetic processing function The lens barrel includes two lenses having a confocal point and a pinhole arranged at the confocal point, and a condensing position of focused light condensed through the objective lens, and a minute concave surface The measurement system is configured with the same center of curvature, and the computer captures the light beam reflected from the minute concave surface that reaches the image sensor. The center of gravity of the light beam on the image sensor and the minute concave surface obtained in advance Is From the difference between the position of the center of gravity of the beam column for a shape, and calculates the fine concave shape error.

本発明に係る微小凹面形状の形状誤差機上計測装置は、被測定用の微小凹面に対向する対物レンズと、光源を有して集束光を発する光源モジュールと、集束光の光軸と軸心を共通にするレンズ鏡筒と、撮像素子と、レンズ鏡筒と撮像素子間に配置されたマイクロレンズアレイと、演算処理機能を有するコンピュータとを備え、レンズ鏡筒が、共焦点を有する2個のレンズと、共焦点に配置されたピンホールとを有し、対物レンズを通して集光される集束光の集光位置と、微小凹面の曲率中心とを同じくして測定系が構成され、コンピュータにより、撮像素子上に達する微小凹面から反射されマイクロレンズアレイにより形成された光線列を取り込み、撮像素子上の光線列の各重心位置と、事前に求めた微小凹面が理想形状である場合の光線列の重心位置との差異から、微小凹面の形状誤差を算出するようにして成ることを特徴とする。   A micro-concave surface shape error measuring apparatus according to the present invention includes an objective lens facing a micro-concave surface to be measured, a light source module having a light source and emitting focused light, an optical axis and an axis of the focused light A lens barrel having a common lens, an image sensor, a microlens array disposed between the lens barrel and the image sensor, and a computer having an arithmetic processing function. And a pinhole arranged confocally, and the measurement system is configured by the same focusing position of the focused light focused through the objective lens and the center of curvature of the minute concave surface. , Taking in the light beam reflected from the minute concave surface reaching the image sensor and formed by the micro lens array, and the beam position when the center of gravity of each light beam on the image sensor and the minute concave surface obtained in advance are in an ideal shape From the difference between the position of the center of gravity, characterized in that it comprises so as to calculate the fine concave shape error.

本発明に係る微小凹面形状の形状誤差機上計測装置は、被測定用の微小凹面に対向する対物レンズと、光源を有して集束光を発する光源モジュールと、光源と対物レンズ間にあって微小凹面からの反射光に影響しない位置に配置されて光線列を形成するマイクロレンズアレイと、集束光の光軸と軸心を共通にするレンズ鏡筒と、撮像素子と、演算処理機能を有するコンピュータとを備え、レンズ鏡筒が、共焦点を有する2個のレンズと、共焦点に配置されたピンホールとを有し、対物レンズを通して集光される集束光の集光位置と、微小凹面の曲率中心とを同じくして測定系が構成され、コンピュータにより、撮像素子上に達する微小凹面から反射された光線列を取り込み、撮像素子上の光線列の各重心位置と、事前に求めた微小凹面が理想形状である場合の光線列の重心位置との差異から、微小凹面の形状誤差を算出するようにして成ることを特徴とする。   A shape error on-machine measuring device having a micro concave shape according to the present invention includes an objective lens facing a micro concave surface to be measured, a light source module having a light source and emitting focused light, and a micro concave surface between the light source and the objective lens. A microlens array that is arranged at a position that does not affect the reflected light from the lens and forms a light beam, a lens barrel that shares the optical axis and axis of the focused light, an image sensor, and a computer having an arithmetic processing function, The lens barrel has two lenses having a confocal point and a pinhole arranged at the confocal point, and a condensing position of the condensed light condensed through the objective lens, and a curvature of the minute concave surface The measurement system is configured with the same center, and the computer captures the light beam reflected from the minute concave surface reaching the image sensor, and the position of each center of gravity of the light beam on the image sensor and the minute concave surface obtained in advance are ideal From the difference between the position of the center of gravity of the beam column for a Jo, characterized by comprising to calculate the fine concave shape error.

上述のマイクロレンズに代えて回折格子を用いることもできる。
上述の事前に求めた微小凹面が理想形状である場合の光線列の重心位置としては、コンピュータにより事前に計算された重心位置を用いることができる。あるいは、事前に求めた微小凹面が理想形状である場合の光線列の重心位置としては、対物レンズの焦点位置と曲率中心位置を同一にして配した被測定対象物の要求仕様以上の形状精度を有する球面鏡、あるいは対物レンズの焦点位置に置かれた光軸に垂直な平面鏡からの反射光の光線列の重心位置を用いることができる。
A diffraction grating can be used instead of the above-described microlens.
As the barycentric position of the light beam when the micro concave surface obtained in advance is an ideal shape, the barycentric position calculated in advance by a computer can be used. Alternatively, as the center of gravity position of the light beam when the micro concave surface obtained in advance is an ideal shape, the shape accuracy exceeds the required specification of the object to be measured with the focal point position of the objective lens and the center position of curvature arranged the same. It is possible to use the position of the center of gravity of the light beam of the reflected light from the spherical mirror or the plane mirror perpendicular to the optical axis placed at the focal position of the objective lens.

本発明に係る微小凹面形状の形状誤差機上計測方法及びその計測装置によれば、マイクロレンズアレイまたは回折格子を配置することにより、温度変化、空気の揺らぎ、振動といった外乱に強い幾何光学的な計測を行うことができ、走査や干渉などの計測手法に比べて計測を高速に行うことができる。また、2つのレンズとその共焦点に配置した空間周波数フィルタとなるピンホールとからなるレンズ鏡筒を配置することにより、このピンホールで微小凹面上の擦過傷の影響を受けた反射光を除去し、形状誤差の計測を高精度に行うことができる。   According to the on-machine measuring method and measuring apparatus for a minute concave surface according to the present invention, a geometrical optical element that is resistant to disturbances such as temperature changes, air fluctuations, and vibrations by arranging a microlens array or a diffraction grating. Measurement can be performed, and measurement can be performed at a higher speed than measurement methods such as scanning and interference. In addition, by arranging a lens barrel consisting of two lenses and a pinhole serving as a spatial frequency filter arranged at the confocal point, reflected light affected by scratches on a minute concave surface is removed by this pinhole. The shape error can be measured with high accuracy.

本実施の形態に係る微小凹面形状の形状誤差機上計測方法及びその計測装置は、マイクロレンズアレイまたは回折格子を挿入することで、温度変化、空気揺らぎ、振動といった外乱に強い幾何学光学的な計測を行うことができ、走査や干渉などの計測手法に比べて計測速度も高速にできる。また、空間周波数フィルタを挿入することで、微小凹面上では特に問題になる擦過傷の影響を受け反射光を制限し、形状誤差計測を高精度にできる。   The micro concave surface shape error measuring method and measuring apparatus according to the present embodiment is a geometric optical that is resistant to disturbances such as temperature change, air fluctuation, and vibration by inserting a micro lens array or a diffraction grating. Measurement can be performed, and the measurement speed can be increased compared to measurement methods such as scanning and interference. Further, by inserting a spatial frequency filter, it is possible to limit the reflected light under the influence of scratches that are particularly problematic on a minute concave surface, and to measure the shape error with high accuracy.

以下、図面を参照して本発明に係る実施の形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1及び図2に、本発明に係る微小凹面形状の形状誤差機上計測装置の一実施の形態、及びその原理構成を示す。本実施の形態の計測装置21は、被測定用の微小凹面22に対向する対物レンズ23と、光源24を有して集束光を発する光源モジュール25と、集束光の光軸26と軸心27を共通にするレンズ鏡筒28と、固体撮像素子本例ではCCD固体撮像装素子29と、レンズ鏡筒28とCCD固体撮像素子29との間に配置された光を複数のスポットに分割する手段となる例えばマイクロレンズアレイ31と、演算処理機能を有するコンピュータ(図示せず)とを備えて成る。   FIG. 1 and FIG. 2 show an embodiment of a micro-concave shape error measuring apparatus according to the present invention and the principle configuration thereof. The measuring apparatus 21 according to the present embodiment includes an objective lens 23 facing a micro concave surface 22 to be measured, a light source module 25 having a light source 24 and emitting focused light, an optical axis 26 and an axis 27 of the focused light. A lens barrel 28, a solid-state imaging device in this example, a CCD solid-state imaging device 29, and means for dividing light arranged between the lens barrel 28 and the CCD solid-state imaging device 29 into a plurality of spots For example, a microlens array 31 and a computer (not shown) having an arithmetic processing function are provided.

すなわち、対物レンズ23、光源モジュール25、レンズ鏡筒28、マイクロレンズアレイ31及びCCD固体撮像素子29が、この順に共通な光軸をもって配置されており、これら全体がカバー33にて覆われている(図1参照)。CCD固体撮像素子29の出力は、画像モニタおよび画像取得装置を組み込んだコンピュータ、いわゆるパーソナルコンピュータに取り込まれる。   That is, the objective lens 23, the light source module 25, the lens barrel 28, the microlens array 31, and the CCD solid-state imaging device 29 are arranged with a common optical axis in this order, and these are all covered with the cover 33. (See FIG. 1). The output of the CCD solid-state imaging device 29 is taken into a computer in which an image monitor and an image acquisition device are incorporated, a so-called personal computer.

光源モジュール25は、光源本例ではレーザ光源24と、偏光板34と、コリメータレンズ35と、直角プリズム36と、偏光ビームスプリッタ37と、1/4波長板38とから構成されている。レンズ鏡筒28は、共焦点を有する2つのレンズ41及び42と、共焦点位置に配置したピンホール44(本例では焦点位置にピンホール44を有するように配置されたピンホール板43)とを有して構成される。ここで、一方の偏光ビームスプリッタ37側のレンズ41は、フーリエ変換レンズとして構成され、他方のマイクロレンズアレイ31側のレンズ42は、逆フーリエ変換レンズとして構成される。ピンホール板43は、空間周波数フィルタとして機能する。   In this example, the light source module 25 includes a laser light source 24, a polarizing plate 34, a collimator lens 35, a right-angle prism 36, a polarizing beam splitter 37, and a quarter wavelength plate 38. The lens barrel 28 includes two lenses 41 and 42 having a confocal point, a pinhole 44 disposed at the confocal position (in this example, a pinhole plate 43 disposed to have the pinhole 44 at the focal position), and It is comprised. Here, the lens 41 on one polarization beam splitter 37 side is configured as a Fourier transform lens, and the lens 42 on the other microlens array 31 side is configured as an inverse Fourier transform lens. The pinhole plate 43 functions as a spatial frequency filter.

レンズ鏡筒28を構成する2つのレンズ41及び42の残りの一方の焦点面aと、マイクロレンズアレイ31の一方の焦点アレイとが一致するようになされる(図3参照)。また、マイクロレンズアレイ31の他方の焦点アレイbの前方あるいは後方に光軸と直交するように撮像面cが位置するようにCCD固体撮像素子29が配置される(図3参照)。レンズ鏡筒28を構成する2つのレンズ41及び42の残りの他方の焦点位置が対物レンズ23の焦点位置に合致される。   The remaining one focal plane a of the two lenses 41 and 42 constituting the lens barrel 28 and the one focal array of the microlens array 31 coincide with each other (see FIG. 3). In addition, the CCD solid-state imaging device 29 is disposed so that the imaging surface c is positioned in front of or behind the other focal array b of the microlens array 31 so as to be orthogonal to the optical axis (see FIG. 3). The other focal position of the other two lenses 41 and 42 constituting the lens barrel 28 is matched with the focal position of the objective lens 23.

次に、この計測装置21を用いて本実施の形態に係る被測定物の微小凹面の形状誤差を機上で計測する計測方法について説明する。   Next, a measurement method for measuring the shape error of the minute concave surface of the object to be measured according to the present embodiment using the measurement device 21 will be described.

本実施の形態では、被測定物20の微小凹面形状22を凹球面形状とする。図2に示す計測装置21は、その対物レンズ23の焦点と凹球面形状22の曲率中心が一致するように被測定対象物(以下、被測定物という)20に対して配置される。計測装置21における光源モジュール25のレーザ光源24から出射されたレーザ光は、例えば図2の紙面に平行な振動成分のみが偏光板34を透過し、コリメータレンズ35で平行光となって直角プリズム36を通して偏光ビームスプリッタ37に入射する。偏光ビームスプリッタ37で全反射されたレーザ光は、1/4波長板38を透過して円偏光になり、対物レンズ23に入射する。   In the present embodiment, the minute concave surface shape 22 of the DUT 20 is a concave spherical shape. The measuring device 21 shown in FIG. 2 is arranged with respect to an object to be measured (hereinafter referred to as an object to be measured) 20 so that the focal point of the objective lens 23 and the center of curvature of the concave spherical shape 22 coincide. In the laser light emitted from the laser light source 24 of the light source module 25 in the measuring device 21, for example, only a vibration component parallel to the paper surface of FIG. 2 is transmitted through the polarizing plate 34 and becomes parallel light by the collimator lens 35 and is a right angle prism 36. Through the polarization beam splitter 37. The laser light totally reflected by the polarization beam splitter 37 passes through the quarter wavelength plate 38 to become circularly polarized light and enters the objective lens 23.

レーザ光は、対物レンズ23により集束球面波となり焦点を結んだ後、対物レンズ23の焦点と一致した位置に曲率中心を有する微小凹球面22に照射される。微小凹球面22で反射したレーザ光は、逆回転の円偏光となり、微小凹球面22の形状誤差と擦過傷の情報を有しつつ対物レンズ23を再び透過した後、1/4波長板38により振動方向が図の紙面に垂直になって偏光ビームスプリッタ37に入射する。偏光ビームスプリッタ37に入射したこの戻りのレーザ光は、偏光ビームスプリッタ37を透過し、レンズ鏡筒28のレンズ41に入射する。   The laser beam becomes a focused spherical wave by the objective lens 23 to be focused, and then irradiated to the minute concave spherical surface 22 having a center of curvature at a position coincident with the focal point of the objective lens 23. The laser light reflected by the minute concave spherical surface 22 becomes reversely rotated circularly polarized light, is transmitted again through the objective lens 23 while having information on the shape error of the minute concave spherical surface 22 and scratches, and then vibrates by the quarter wavelength plate 38. The direction is perpendicular to the paper surface of the figure and enters the polarization beam splitter 37. The returned laser light incident on the polarization beam splitter 37 passes through the polarization beam splitter 37 and enters the lens 41 of the lens barrel 28.

レーザ光はレンズ41によりフーリエ変換され、焦点に配置されたピンホール44によりレーザ光からの擦過傷成分のみが取り除かれる。すなわち、凹球面形状22内に形成された擦過傷で反射された擦過傷光成分(空間周波数が高い凹凸面で反射した光成分)は、ピンホール44から外れた位置に焦点を結ぶためピンホール(いわゆる空間周波数フィルタ)44を透過せず、したがって、このピンホール板43で取り除かれる。ピンホール44を透過したレーザ光は、レンズ42により逆フーリエ変換され、微小凹球面22の形状誤差成分を有する波面が再生される。再生された波面のレーザ光は、マイクロレンズアレイ31に入射し、マイクロレンズのピッチ間隔に応じた複数のビーム列に分割されてCCD固体撮像素子29に入射し、スポット列画像が取得される。   The laser beam is Fourier-transformed by the lens 41, and only the scratch component from the laser beam is removed by the pinhole 44 arranged at the focal point. That is, the scratch light component reflected by the scratch formed in the concave spherical shape 22 (the light component reflected by the uneven surface having a high spatial frequency) is focused on a position away from the pin hole 44 so as to focus on a pinhole (so-called It does not pass through the (spatial frequency filter) 44 and is therefore removed by this pinhole plate 43. The laser light transmitted through the pinhole 44 is subjected to inverse Fourier transform by the lens 42, and a wavefront having a shape error component of the minute concave spherical surface 22 is reproduced. The reproduced wavefront laser light is incident on the microlens array 31, divided into a plurality of beam arrays corresponding to the pitch interval of the microlenses, and incident on the CCD solid-state imaging device 29, thereby obtaining a spot array image.

そして、CCD固体撮像素子29により取得されたスポット列画像を、パーソナルコンピュータに取り込んだ後、微小凹球面22の形状誤差を算出する。   Then, after the spot row image acquired by the CCD solid-state imaging device 29 is taken into a personal computer, the shape error of the minute concave spherical surface 22 is calculated.

次に、スポット列画像から微小凹球面22の形状誤差算出の手順を図5〜図9を用いて説明する。図5には手順を示すフローチャートを、図6にはスポットと外乱光の判別を、図7には個々のスポットでの重心判別を、図8には重心位置マップ例を、図9には台形積分方向の説明を示している。なお、取得画像は、ビットマップ画像として説明している。   Next, the procedure for calculating the shape error of the minute concave spherical surface 22 from the spot row image will be described with reference to FIGS. FIG. 5 is a flowchart showing the procedure, FIG. 6 is a spot / disturbance light discrimination, FIG. 7 is a center of gravity discrimination for each spot, FIG. 8 is a center of gravity position map example, and FIG. An explanation of the integration direction is shown. The acquired image is described as a bitmap image.

先ず、図5に示すように、ステップS1において、スポット列画像から個々のスポットを別々のものと判別できる閾値で2値化(輝度の明と暗の2値化)する。このステップS1では、図6に示すように、2値化されて明るい画素45が多く集まった領域46と、同じく明るい画素45が少なく集まった領域47が得られる。   First, as shown in FIG. 5, in step S <b> 1, binarization (brightening of brightness and darkness) is performed with a threshold value that can distinguish individual spots from the spot row image. In step S1, as shown in FIG. 6, a binarized region 46 where many bright pixels 45 are gathered and a region 47 where few bright pixels 45 are gathered are obtained.

次に、ステップS2において、閾値を越えた2値化画像のうち、少なくとも後述する所要の点数以上(CCD固体撮像素子29の撮像面cにおける明るい単位画素45を1点とする)が隣接している点像以外を外乱光と見做し、図7に示すように、外乱光と見做された点像(領域47)を画像から消去する。ここで、最大の点数の10%以下の点数の場合は、外乱光と見做す。このステップS2の処理において、このとき、残った閾値以上の像のまとまりを1つのスポット(領域46に相当)と見做してその数を数え、事前に計算しておいた理想形状を持つ微小凹球面22の場合のスポット数と同数であれば次の処理、すなわちステップS3に進む。同数でなければ、2値化のレベルを変えて2値化からの処理(ステップS1)を繰り返す。   Next, in step S2, binarized images exceeding the threshold value are adjacent to at least the required number of points described later (one bright unit pixel 45 on the imaging surface c of the CCD solid-state image sensor 29 is adjacent). A point image other than the existing point image is regarded as disturbance light, and the point image (region 47) regarded as disturbance light is erased from the image as shown in FIG. Here, when the score is 10% or less of the maximum score, it is regarded as ambient light. In the process of step S2, at this time, a group of images exceeding the remaining threshold value is regarded as one spot (corresponding to the region 46), and the number thereof is counted, and the minute shape having the ideal shape calculated in advance. If the number is the same as the number of spots in the case of the concave spherical surface 22, the process proceeds to the next process, that is, step S3. If the number is not the same, the binarization level is changed and the binarization process (step S1) is repeated.

次に、ステップS3において、個々のスポットについて、それぞれ画像上のX方向(水平方向)の重心を算出する。個々のスポットにおけるX方向の重心は、スポット内のX方向の個々のビットにおける閾値以上の輝度を持つY方向(垂直方向)のビット数を重みとした加重平均より求める。例えば図7について見ると、X=5(画素数で5番目)ではY方向の明の画素が2つ、X=6ではY方向の明の画素が4つ、X=7ではY方向の明の画素が6つ、・・X=17ではY方向の明の画素が1つ、となり、これに基いてX方向の重心位置Xを下記数1から求める。Y方向の重心位置Y についても、同様にスポット内のY方向の個々のビットにおける閾値以上の輝度を持つX方向のビット数を重みとした加重平均より求める。このようにして、個々のスポットにおける重心位置G(X,Y )を求める。 Next, in step S3, the center of gravity in the X direction (horizontal direction) on the image is calculated for each spot. The center of gravity in the X direction in each spot is obtained by a weighted average using the number of bits in the Y direction (vertical direction) having a luminance equal to or higher than the threshold value in each bit in the X direction in the spot as a weight. For example, referring to FIG. 7, when X = 5 (the fifth pixel number), there are two bright pixels in the Y direction, when X = 6, there are four bright pixels in the Y direction, and when X = 7, the bright pixels in the Y direction. pixels are 6, Ming pixels .. in X = 17 Y direction one is, next, on the basis of this finding the center of gravity position X G in the X direction from the following equation 1. For even Y-direction of the center of gravity position Y G, similarly determined from weighted average weighed by the number of bits X direction having a luminance greater than or equal to the threshold in the individual bits in the Y direction in the spot. In this way, the center-of-gravity position G (X G , Y G ) in each spot is obtained.

Figure 2007033263
ここで、
Kp.Kq:白点(明の画素)の総数である。
Xp:X方向の白点(明の画素)の数である。
Yq:Y方向の白点(明の画素)の数である。
Figure 2007033263
here,
Kp. Kq: the total number of white spots (bright pixels).
Xp: the number of white spots (bright pixels) in the X direction.
Yq: the number of white points (bright pixels) in the Y direction.

このようにして、図8に示す個々のスポット58(●印参照)の重心位置マップ59が作成される。   In this way, the center-of-gravity position map 59 of each spot 58 (see the mark ●) shown in FIG. 8 is created.

作成された重心位置マップ59に対し、例えばパーソナルコンピュータにより事前に計算した理想形状を持つ微小凹球面の場合の個々のスポット60の重心位置マップ61(図8の○印参照)を比較し、個々のスポット58ごとの重心位置の差異ΔX,ΔYから実際に測定した微小凹球面の形状誤差の傾きを算出する。   The center-of-gravity position map 59 is compared with the center-of-gravity position map 61 of each spot 60 in the case of a minute concave spherical surface having an ideal shape calculated in advance by a personal computer (see circles in FIG. 8). The inclination of the shape error of the minute concave spherical surface actually measured is calculated from the difference ΔX, ΔY in the center of gravity position for each spot 58.

なお、微小凹球面の形状誤差は、重心位置ごとの差異を台形積分することにより算出できるが、積分誤差の影響を抑えるため、図9に示すように、台形積分をX→Yの方向の経路1と、Y→Xの方向の経路2とを2つ別々に行い、その平均を微小凹球面の形状誤差としている。形状誤差Wは数2の式で求められる。   Although the shape error of the minute concave spherical surface can be calculated by trapezoidal integration of the difference for each gravity center position, in order to suppress the influence of the integration error, as shown in FIG. 1 and two paths 2 in the direction of Y → X are performed separately, and the average is defined as the shape error of the minute concave spherical surface. The shape error W is obtained by the equation (2).

Figure 2007033263
ここで、
ΔX,ΔY:理想形状のときのスポット重心位置と実際のスポット重心位置との差である。
δxn−1,δym−1:nとn−1のスポット間隔、mとm−1のスポット間隔である。
d:理想のスポット間隔である。
Figure 2007033263
here,
ΔX, ΔY: The difference between the spot centroid position in the ideal shape and the actual spot centroid position.
δxn−1, δym−1: the spot interval between n and n−1, and the spot interval between m and m−1.
d: Ideal spot interval.

上例では、本実施の形態の計測方法及びその計測装置を微小凹球面の形状誤差の計測に適用したが、凹球面以外の例えば放物面などの非凹球面等の形状誤差を計測する場合にも適用できる。すなわち、本実施の形態では、微小凹球面、微小非凹球面を含む微小凹面の形状誤差の計測を可能にする。   In the above example, the measurement method and the measurement device according to the present embodiment are applied to the measurement of the shape error of the minute concave spherical surface. However, when measuring the shape error of a non-concave spherical surface such as a paraboloid other than the concave spherical surface. It can also be applied to. That is, in this embodiment, it is possible to measure the shape error of a minute concave surface including a minute concave spherical surface and a minute non-concave spherical surface.

上述のように構成した計測装置21は、図4に示すように精密工作機械に搭載される。図4は、図1に示す計測装置(いわゆる振れ測定装置)21を搭載した門型フライス盤に適用した例である。図4において、71は門型フライス盤を全体として示し、この門型フライス盤51に一方向(矢印a方向)を往復動するように加工台72が配置され、この加工台72上に載置された被加工物(図2の被測定物20に対応する)73の上面に複数の凹面形状22の加工が施される。一方、被加工物73に対応する上方に支持されて、加工台72の面に対して垂直方向(矢印b方向)に往復動、水平方向(矢印c方向)に往復動可能に図1に示す構成の計測装置(振れ測定装置)21がその対物レンズ23を被加工物73に対向するように取付けられる。   The measuring device 21 configured as described above is mounted on a precision machine tool as shown in FIG. FIG. 4 is an example applied to a portal milling machine equipped with the measuring device (so-called shake measuring device) 21 shown in FIG. In FIG. 4, reference numeral 71 denotes a portal milling machine as a whole, and a machining table 72 is disposed on the portal milling machine 51 so as to reciprocate in one direction (arrow a direction), and is placed on the machining table 72. A plurality of concave shapes 22 are processed on the upper surface of the workpiece 73 (corresponding to the workpiece 20 in FIG. 2). On the other hand, it is supported above corresponding to the work piece 73 and can reciprocate in the vertical direction (arrow b direction) and reciprocate in the horizontal direction (arrow c direction) with respect to the surface of the work table 72 as shown in FIG. A measuring device (runout measuring device) 21 having the configuration is attached so that the objective lens 23 faces the workpiece 73.

この門型フライス盤71では、被加工物73に所望の微小凹球面22を加工した後、機上において、計測装置(振れ測定装置)21を計測すべき微小凹面に対して所定位置まで降下させると共に水平面内での微小凹面との相互位置を設定する。その後、微小凹球面2の形状誤差を計測し、その形状誤差をフィードバックさせて門型フライス盤の研削手段を微調整して最終的に形状誤差が可及的に0になる微小凹球面22を加工するようになす。   In this portal milling machine 71, after processing a desired minute concave spherical surface 22 on the workpiece 73, the measuring device (runout measuring device) 21 is lowered to a predetermined position with respect to the minute concave surface to be measured on the machine. The mutual position with the minute concave surface in the horizontal plane is set. Thereafter, the shape error of the minute concave spherical surface 2 is measured, the shape error is fed back, and the grinding means of the portal milling machine is finely adjusted to finally process the minute concave spherical surface 22 where the shape error becomes as small as possible. To do.

上述の本実施の形態に係る計測方法及びその計測装置によれば、マイクロレンズアレイ31を挿入した幾何光学的な計測により温度変化、空気揺らぎ、振動といった外乱の影響されずに、微小凹面22の形状誤差を、非接触で高速に計測することができる。さらに空間周波数フィルタとしてのピンホール44を挿入したレンズ鏡筒28を挿入することにより、微小凹面22上で問題となる擦過傷の影響を受けた反射光を除去することができ、高精度に計測することができる。しかも精密工作機械の機上で直接計測することができるので、更なる高速・高精度の計測を可能にする。特に、サブミクロン以下の形状誤差を精度良く計測することができる。   According to the measurement method and the measurement apparatus according to the above-described embodiment, the geometrical optical measurement with the microlens array 31 inserted does not affect the minute concave surface 22 without being affected by disturbances such as temperature change, air fluctuation, and vibration. The shape error can be measured at high speed without contact. Further, by inserting the lens barrel 28 in which the pinhole 44 as a spatial frequency filter is inserted, the reflected light affected by the scratches that cause a problem on the minute concave surface 22 can be removed, and measurement is performed with high accuracy. be able to. Moreover, since it can be directly measured on a precision machine tool, it enables further high-speed and high-precision measurement. In particular, it is possible to accurately measure a shape error of submicron or less.

図10に本発明に係る計測装置の他の実施の形態を示す。本実施の形態の計測装置81は、レーザ光源24と対物レンズ23間にあって微小凹面22からの反射光に影響しない位置にスポット列を形成するマイクロレンズアレイ31を配置して構成される。すなわち、本例ではマイクロレンズアレイ31をレーザ光源24と偏光板34との間に配置して、先にスポット列を形成するように構成される。その他の構成は図2と同様であるので、対応する部分には同一符号を付して重複説明を省略する。   FIG. 10 shows another embodiment of the measuring apparatus according to the present invention. The measuring device 81 of the present embodiment is configured by arranging a microlens array 31 that forms a spot row at a position between the laser light source 24 and the objective lens 23 and that does not affect the reflected light from the minute concave surface 22. That is, in this example, the microlens array 31 is arranged between the laser light source 24 and the polarizing plate 34 so that the spot row is formed first. Since other configurations are the same as those in FIG. 2, the corresponding portions are denoted by the same reference numerals, and redundant description is omitted.

本実施の形態の計測装置においても、図2の実施の形態で説明したと同様に、非接触で高速・高精度で微小凹面の形状誤差を計測することができる。   Also in the measurement apparatus of the present embodiment, the shape error of the minute concave surface can be measured at high speed and high accuracy in a non-contact manner, as described in the embodiment of FIG.

図11に、本発明に係る計測装置の他の実施の形態を示す。本実施の形態の計測装置84は、理想形状のスポット(光線)列の重心位置を事前に求める手段として、前述のパーソナルコンピュータ内で予め計算により求めるのに代えて、対物レンズ23の焦点位置と曲率中心位置を同一にする球面鏡85、すなわち被測定対象物の要求仕様以上の形状精度を有する球面鏡85を配置し、この球面鏡85からの反射光のスポット列の重心位置を使用するように構成される。例えば、球面鏡85は、測定する微小凹面22と取り替えて同様の位置、あるいは曲率中心を同じくする位置に置く。図11の球面鏡85では、曲率半径の大きな例を示す。理想形状のスポット(光線)列の重心位置を事前に求める他の手段としては、対物レンズ23の焦点位置に置かれた平面鏡86、すなわち光軸に垂直な平面鏡86からの反射光のスポット列の重心位置を使用するように構成される。その他の構成は図2と同様であるので、対応する部分に同一符号を付して重複説明を省略する。計測時には球面鏡85あるいは平面鏡86は取り除かれる。   FIG. 11 shows another embodiment of the measuring apparatus according to the present invention. The measuring device 84 according to the present embodiment uses the focal position of the objective lens 23 as a means for obtaining in advance the position of the center of gravity of the ideally shaped spot (ray) row, instead of obtaining it beforehand by calculation in the personal computer. A spherical mirror 85 having the same curvature center position, that is, a spherical mirror 85 having a shape accuracy higher than the required specification of the object to be measured is arranged, and the barycentric position of the spot row of reflected light from the spherical mirror 85 is used. The For example, the spherical mirror 85 is replaced with the minute concave surface 22 to be measured, and is placed at the same position or the same center of curvature. In the spherical mirror 85 of FIG. 11, an example with a large curvature radius is shown. As another means for obtaining in advance the barycentric position of the ideal-shaped spot (ray) array, the spot array of the reflected light from the plane mirror 86 placed at the focal position of the objective lens 23, that is, the plane mirror 86 perpendicular to the optical axis, It is configured to use the center of gravity position. Since other configurations are the same as those in FIG. 2, the same reference numerals are given to the corresponding portions, and redundant description is omitted. At the time of measurement, the spherical mirror 85 or the plane mirror 86 is removed.

この図11の方法の良い点は、光学系を組んだ後に理想形状のスポット列の重心が得られるので、取付けの誤差の影響を全てキャンセルできる。勿論、前述の図2の実施の形態と同様に、非接触で高速・高精度で微小凹面の形状誤差を計測することができる。   The good point of the method of FIG. 11 is that the center of gravity of the ideally shaped spot row can be obtained after assembling the optical system, so that all the effects of mounting errors can be canceled. Of course, the shape error of the minute concave surface can be measured at high speed and high accuracy without contact, as in the embodiment of FIG.

さらに、上述の各実施の形態において、マイクロレンズアレイに代えて、回折格子を配置した構成とすることもできる。この回折格子の例としては、縦横のスリット列を重ねて両スリットの交点の透過孔を利用して、スポット列を形成するようになす。あるいはファイバーグレーティング(ファイバーの回折格子)を用いてスポット列を形成することもできる。   Further, in each of the above-described embodiments, a configuration in which a diffraction grating is arranged instead of the microlens array may be employed. As an example of this diffraction grating, vertical and horizontal slit rows are overlapped and a spot row is formed by using a transmission hole at the intersection of both slits. Alternatively, a spot array can be formed using a fiber grating (fiber diffraction grating).

本発明に係る微小凹面形状の形状誤差機上計測装置の一実施の形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the shape error on-machine measuring device of a minute concave shape which concerns on this invention. 本発明に係る微小凹面形状の形状誤差機上計測装置の一実施の形態の原理的構成図である。It is a fundamental lineblock diagram of one embodiment of a shape error on-machine measuring device of the shape of a minute concave concerning the present invention. 図2の要部の拡大図である。It is an enlarged view of the principal part of FIG. 本発明に係る微小凹面形状の形状誤差機上計測装置を搭載した精密工作機械の一実施の形態を示す構成図である。It is a block diagram which shows one Embodiment of the precision machine tool which mounts the measurement apparatus on the shape error machine of the minute concave shape which concerns on this invention. 本発明に係る微小凹球面の形状誤差算出の手順を示すフローチャートである。It is a flowchart which shows the procedure of the shape error calculation of the minute concave spherical surface concerning this invention. スポットと外乱光の判別の説明に供する説明図である。It is explanatory drawing with which it uses for description of discrimination | determination of a spot and disturbance light. スポットの重心判別の説明に供する説明図である。It is explanatory drawing with which it uses for description of the gravity center discrimination | determination of a spot. 重心位置マップの例を示す重心位置マップ図である。It is a gravity center position map figure which shows the example of a gravity center position map. 本発明に係る形状誤差を台形積分で算出する際の積分経路を示す説明図である。It is explanatory drawing which shows the integration path | route at the time of calculating the shape error based on this invention by trapezoidal integration. 本発明に係る微小凹面形状の形状誤差機上計測装置の他の実施の形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment of the shape error on-machine measuring device of a micro concave surface shape which concerns on this invention. 本発明に係る微小凹面形状の形状誤差機上計測装置の他の実施の形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment of the shape error on-machine measuring device of a micro concave surface shape which concerns on this invention. 加工対象とする微小凹面を示す概略斜視図である。It is a schematic perspective view which shows the micro concave surface made into a process target. 図12のAーA線上の断面図である。It is sectional drawing on the AA line of FIG.

符号の説明Explanation of symbols

20・・被測定対象物、21、81、84・・微小凹面形状の形状誤差機上計測装置、22・・微小凹面、23・・対物レンズ、24・・レーザ光源、L・・レーザ光、25・・光源モジュール、26・・光軸、27・・軸心、28・・レンズ鏡筒、29・・固体撮像素子、31・・マイクロレンズアレイ、34・・偏光板、35・・コリメータレンズ、36・・直角プリズム、37・・偏光ビームスプリッタ、38・・1/4波長板、41、42・・レンズ、43・・ピンホール板、44・・ピンホール、45・・固体撮像素子の単位画素、46・・スポットと見做す領域、47・・外乱と見做す領域、58・・実際の測定されたスポット重心位置、59・・実際の測定されたスポット重心位置マップ、60・・理想形状のスポット重心位置、61・・理想形状のスポット重心位置マップ
20 .. Object to be measured, 21, 81, 84 .. Micro concave surface shape error measuring device, 22 .. Micro concave surface, 23 .. Objective lens, 24 .. Laser light source, L. 25 .. Light source module, 26 .. Optical axis, 27 .. Center axis, 28 .. Lens barrel, 29 .. Solid-state imaging device, 31 .. Micro lens array, 34. .., right angle prism, 37 .. polarizing beam splitter, 38 .. 1/4 wavelength plate, 41, 42 ... lens, 43 ... pinhole plate, 44 ... pinhole, 45 ... solid-state image sensor Unit pixel, 46... Area considered as spot, 47... Area considered as disturbance, 58 .. actual measured spot centroid position, 59 .. actual measured spot centroid position map, 60.・ Spot center of gravity of ideal shape , 61 ... of the ideal shape spot position of the center of gravity map

Claims (12)

被測定用の微小凹面に対向する対物レンズと、
光源を有して集束光を発する光源モジュールと、
前記集束光の光軸と軸心を共通にするレンズ鏡筒と、
撮像素子と、
前記レンズ鏡筒と前記撮像素子間に配置されたマイクロレンズアレイと、
演算処理機能を有するコンピュータとを備え、
前記レンズ鏡筒が、共焦点を有する2個のレンズと、前記共焦点に配置されたピンホールとを有し、
前記対物レンズを通して集光される前記集束光の集光位置と、前記微小凹面の曲率中心とを同じくして測定系を構成し、
前記コンピュータにより、前記撮像素子上に達する前記微小凹面から反射され前記マイクロレンズアレイにより形成された光線列を取り込み、
前記撮像素子上の光線列の各重心位置と、事前に求めた前記微小凹面が理想形状である場合の光線列の重心位置との差異から、前記微小凹面の形状誤差を算出する
ことを特徴とする微小凹面形状の形状誤差機上計測方法。
An objective lens facing the micro concave surface for measurement;
A light source module having a light source and emitting focused light;
A lens barrel having a common optical axis and axis of the focused light;
An image sensor;
A microlens array disposed between the lens barrel and the imaging device;
A computer having an arithmetic processing function,
The lens barrel has two lenses having a confocal point, and a pinhole arranged at the confocal point,
A condensing position of the focused light condensed through the objective lens and a center of curvature of the minute concave surface are configured to constitute a measurement system,
The computer captures a light beam reflected by the micro concave surface reaching the image sensor and formed by the micro lens array,
A shape error of the micro concave surface is calculated from a difference between each barycentric position of the light beam on the image sensor and a barycentric position of the light beam when the micro concave surface obtained in advance has an ideal shape. Measuring method of on-machine error of minute concave shape.
前記レンズ鏡筒の2個のレンズの残りの一方の焦点面と、前記マイクロレンズアレイの一方の焦点アレイとを一致させ、
前記マイクロレンズアレイの他方の焦点アレイの前方あるいは後方に光軸と直交するように前記撮像素子を配置し、
前記レンズ鏡筒の2個のレンズの残りの他方の焦点位置を前記対物レンズの焦点位置に合わせ、
前記事前に求めた微小凹面が理想形状の場合の光線列の重心位置として、前記コンピュータにより事前に計算された重心位置を用いる
ことを特徴とする請求項1記載の微小凹面形状の形状誤差機上計測方法。
The remaining one focal plane of the two lenses of the lens barrel and the one focal array of the microlens array,
The imaging element is arranged so as to be orthogonal to the optical axis in front of or behind the other focal array of the microlens array,
The other focal position of the two lenses of the lens barrel is matched with the focal position of the objective lens,
The shape error machine for a minute concave surface according to claim 1, wherein the position of the center of gravity calculated in advance by the computer is used as the barycentric position of the ray train when the minute concave surface obtained in advance is an ideal shape. Upper measurement method.
被測定用の微小凹面に対向する対物レンズと、
光源を有して集束光を発する光源モジュールと、
前記光源と前記対物レンズ間にあって前記微小凹面からの反射光に影響しない位置に配置されて光線列を形成するマイクロレンズアレイと、
前記集束光の光軸と軸心を共通にするレンズ鏡筒と、
撮像素子と、
演算処理機能を有するコンピュータとを備え、
前記レンズ鏡筒が、共焦点を有する2個のレンズと、前記共焦点に配置されたピンホールとを有し、
前記対物レンズを通して集光される前記集束光の集光位置と、前記微小凹面の曲率中心とを同じくして測定系を構成し、
前記コンピュータにより、前記撮像素子上に達する前記微小凹面から反射された光線列を取り込み、
前記撮像素子上の光線列の各重心位置と、事前に求めた前記微小凹面が理想形状である場合の光線列の重心位置との差異から、前記微小凹面の形状誤差を算出する
ことを特徴とする微小凹面形状の形状誤差機上計測方法。
An objective lens facing the micro concave surface for measurement;
A light source module having a light source and emitting focused light;
A microlens array that is disposed between the light source and the objective lens and that does not affect the reflected light from the minute concave surface to form a light beam row;
A lens barrel having a common optical axis and axis of the focused light;
An image sensor;
A computer having an arithmetic processing function,
The lens barrel has two lenses having a confocal point, and a pinhole arranged at the confocal point,
A condensing position of the focused light condensed through the objective lens and a center of curvature of the minute concave surface are configured to constitute a measurement system,
The computer captures a light beam reflected from the minute concave surface reaching the image sensor,
A shape error of the micro concave surface is calculated from a difference between each barycentric position of the light beam on the image sensor and a barycentric position of the light beam when the micro concave surface obtained in advance has an ideal shape. Measuring method of on-machine error of minute concave shape.
前記光線列を平行にするコリメータレンズを配置し、
前記レンズ鏡筒の2個のレンズの残りの一方の焦点面から前方あるいは後方に光軸と直交するように前記撮像素子を配置し、
前記レンズ鏡筒の2個のレンズの残りの他方の焦点位置を前記対物レンズの焦点位置に合わせ、
前記事前に求めた微小凹面が理想形状の場合の光線列の重心位置として、前記コンピュータにより事前に計算された重心位置を用いる
ことを特徴とする請求項3記載の微小凹面形状の形状誤差機上計測方法。
Arranging a collimator lens for collimating the light beam;
The imaging element is disposed so as to be orthogonal to the optical axis forward or backward from the remaining focal plane of the two lenses of the lens barrel,
The other focal position of the two lenses of the lens barrel is matched with the focal position of the objective lens,
The shape error machine for a minute concave surface according to claim 3, wherein the position of the center of gravity calculated in advance by the computer is used as the barycentric position of the ray train when the minute concave surface obtained in advance is an ideal shape. Top measurement method.
前記マイクロレンズアレイに代えて回折格子を用いる
ことを特徴とする請求項1乃至請求項4のいずれかに記載の微小凹面形状の形状誤差機上計測方法。
5. The micro-concave shape error measurement method according to claim 1, wherein a diffraction grating is used instead of the micro lens array.
前記事前に求めた微小凹面が理想形状である場合の光線列の重心位置として、
前記対物レンズの焦点位置と曲率中心位置を同一にして置かれた被測定対象物の要求仕様以上の形状精度を有する球面鏡、あるいは前記対物レンズの焦点位置に置かれた前記光軸に垂直な平面鏡からの反射光の光線列の重心位置を用いる
ことを特徴とする請求項1乃至請求項5のいずれかに記載の微小凹面形状の形状誤差機上計測方法。
As the barycentric position of the ray train when the micro concave surface obtained in advance is an ideal shape,
A spherical mirror having a shape accuracy higher than the required specification of an object to be measured placed with the focal position of the objective lens being the same as the center of curvature, or a plane mirror perpendicular to the optical axis placed at the focal position of the objective lens The shape error on-machine measurement method of a minute concave shape according to any one of claims 1 to 5, wherein the position of the center of gravity of the ray train of reflected light from the center is used.
被測定用の微小凹面に対向する対物レンズと、
光源を有して集束光を発する光源モジュールと、
前記集束光の光軸と軸心を共通にするレンズ鏡筒と、
撮像素子と、
前記レンズ鏡筒と前記撮像素子間に配置されたマイクロレンズアレイと、
演算処理機能を有するコンピュータとを備え、
前記レンズ鏡筒が、共焦点を有する2個のレンズと、前記共焦点に配置されたピンホールとを有し、
前記対物レンズを通して集光される前記集束光の集光位置と、前記微小凹面の曲率中心とを同じくして測定系が構成され、
前記コンピュータにより、前記撮像素子上に達する前記微小凹面から反射され前記マイクロレンズアレイにより形成された光線列を取り込み、
前記撮像素子上の光線列の各重心位置と、事前に求めた前記微小凹面が理想形状である場合の光線列の重心位置との差異から、前記微小凹面の形状誤差を算出するようにして成る
ことを特徴とする微小凹面形状の形状誤差機上計測装置。
An objective lens facing the micro concave surface for measurement;
A light source module having a light source and emitting focused light;
A lens barrel having a common optical axis and axis of the focused light;
An image sensor;
A microlens array disposed between the lens barrel and the imaging device;
A computer having an arithmetic processing function,
The lens barrel has two lenses having a confocal point, and a pinhole arranged at the confocal point,
The measurement system is configured by concentrating the condensing position of the focused light condensed through the objective lens and the center of curvature of the minute concave surface,
The computer captures a light beam reflected by the micro concave surface reaching the image sensor and formed by the micro lens array,
The shape error of the minute concave surface is calculated from the difference between each barycentric position of the light beam on the image sensor and the barycentric position of the light beam when the minute concave surface obtained in advance has an ideal shape. A micro-concave surface shape error on-machine measuring device characterized by the above.
前記レンズ鏡筒の2個のレンズの残りの一方の焦点面と、前記マイクロレンズアレイの一方の焦点アレイとが一致され、
前記マイクロレンズアレイの他方の焦点アレイの前方あるいは後方に光軸と直交するように前記撮像素子が配置され、
前記レンズ鏡筒の2個のレンズの残りの他方の焦点位置が前記対物レンズの焦点位置に合わされ、
前記事前に求めた微小凹面が理想形状の場合の光線列の重心位置として、前記コンピュータにより事前に計算された重心位置が用いられて成る
ことを特徴とする請求項7記載の微小凹面形状の形状誤差機上計測装置。
The remaining one focal plane of the two lenses of the lens barrel is matched with one focal array of the microlens array,
The imaging element is arranged to be orthogonal to the optical axis in front of or behind the other focal array of the microlens array,
The other focal position of the two lenses of the lens barrel is adjusted to the focal position of the objective lens,
The micro concave surface shape according to claim 7, wherein the gravity center position calculated in advance by the computer is used as the barycentric position of the light beam when the micro concave surface obtained in advance is an ideal shape. Form error measuring device.
被測定用の微小凹面に対向する対物レンズと、
光源を有して集束光を発する光源モジュールと、
前記光源と前記対物レンズ間にあって前記微小凹面からの反射光に影響しない位置に配置されて光線列を形成するマイクロレンズアレイと、
前記集束光の光軸と軸心を共通にするレンズ鏡筒と、
撮像素子と、
演算処理機能を有するコンピュータとを備え、
前記レンズ鏡筒が、共焦点を有する2個のレンズと、前記共焦点に配置されたピンホールとを有し、
前記対物レンズを通して集光される前記集束光の集光位置と、前記微小凹面の曲率中心とを同じくして測定系が構成され、
前記コンピュータにより、前記撮像素子上に達する前記微小凹面から反射された光線列を取り込み、
前記撮像素子上の光線列の各重心位置と、事前に求めた前記微小凹面が理想形状である場合の光線列の重心位置との差異から、前記微小凹面の形状誤差を算出するようにして成る
ことを特徴とする微小凹面形状の形状誤差機上計測装置。
An objective lens facing the micro concave surface for measurement;
A light source module having a light source and emitting focused light;
A microlens array that is disposed between the light source and the objective lens and that does not affect the reflected light from the minute concave surface to form a light beam row;
A lens barrel having a common optical axis and axis of the focused light;
An image sensor;
A computer having an arithmetic processing function,
The lens barrel has two lenses having a confocal point, and a pinhole arranged at the confocal point,
The measurement system is configured by concentrating the condensing position of the focused light condensed through the objective lens and the center of curvature of the minute concave surface,
The computer captures a light beam reflected from the minute concave surface reaching the image sensor,
The shape error of the minute concave surface is calculated from the difference between each barycentric position of the light beam on the image sensor and the barycentric position of the light beam when the minute concave surface obtained in advance has an ideal shape. A micro-concave surface shape error on-machine measuring device characterized by the above.
前記光線列を平行にするコリメータレンズが配置され、
前記レンズ鏡筒の2個のレンズの残りの一方の焦点面から前方あるいは後方に光軸と直交するように前記撮像素子が配置され、
前記レンズ鏡筒の2個のレンズの残りの他方の焦点位置が前記対物レンズの焦点位置に合わされ、
前記事前に求めた微小凹面が理想形状の場合の光線列の重心位置として、前記コンピュータにより事前に計算された重心位置が用いられて成る
ことを特徴とする請求項9記載の微小凹面形状の形状誤差機上計測装置。
A collimator lens is arranged to make the light beam parallel,
The imaging element is arranged so as to be orthogonal to the optical axis forward or backward from the remaining one focal plane of the two lenses of the lens barrel,
The other focal position of the two lenses of the lens barrel is adjusted to the focal position of the objective lens,
10. The micro concave surface shape according to claim 9, wherein the gravity center position calculated in advance by the computer is used as the barycentric position of the light beam when the micro concave surface obtained in advance is an ideal shape. Form error measuring device.
前記マイクロレンズアレイに代えて回折格子が用いられて成る
ことを特徴とする請求項7乃至請求項11のいずれかに記載の微小凹面形状の形状誤差機上計測装置。
12. The micro-concave shape on-machine error measuring apparatus according to claim 7, wherein a diffraction grating is used instead of the micro lens array.
前記事前の求めた微小凹面が理想形状である場合の光線列の重心位置として、
前記対物レンズの焦点位置と曲率中心位置を同一にして置かれた被測定対象物の要求仕様以上の形状精度を有する球面鏡、あるいは前記対物レンズの焦点位置に置かれた前記光軸に垂直な平面鏡からの反射光の光線列の重心位置が用いられて成る
ことを特徴とする請求項7乃至請求項11のいずれかに記載の微小凹面形状の形状誤差機上計測装置。
As the barycentric position of the ray train when the micro concave surface obtained in advance is an ideal shape,
A spherical mirror having a shape accuracy higher than the required specification of an object to be measured placed with the focal position of the objective lens being the same as the center of curvature, or a plane mirror perpendicular to the optical axis placed at the focal position of the objective lens The shape error on-machine measuring device having a minute concave shape according to any one of claims 7 to 11, wherein the position of the center of gravity of the ray train of the reflected light from is used.
JP2005217703A 2005-07-27 2005-07-27 On-board measuring method of shape error of micro recessed surface shape, and measuring device Pending JP2007033263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217703A JP2007033263A (en) 2005-07-27 2005-07-27 On-board measuring method of shape error of micro recessed surface shape, and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217703A JP2007033263A (en) 2005-07-27 2005-07-27 On-board measuring method of shape error of micro recessed surface shape, and measuring device

Publications (1)

Publication Number Publication Date
JP2007033263A true JP2007033263A (en) 2007-02-08

Family

ID=37792712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217703A Pending JP2007033263A (en) 2005-07-27 2005-07-27 On-board measuring method of shape error of micro recessed surface shape, and measuring device

Country Status (1)

Country Link
JP (1) JP2007033263A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200257A (en) * 2012-03-26 2013-10-03 Canon Inc Measurement instrument, measurement method, and method of manufacturing optical component
KR20150129747A (en) * 2013-03-07 2015-11-20 케이엘에이-텐코 코포레이션 System and method for reviewing a curved sample edge
EP3009790A1 (en) 2014-10-15 2016-04-20 Canon Kabushiki Kaisha Slope data processing method, slope data processing apparatus and measurement apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887531A (en) * 1981-11-20 1983-05-25 Dainippon Printing Co Ltd Defect inspecting device of regular pattern
JPH05146406A (en) * 1990-03-16 1993-06-15 Intelligent Surgical Lasers Inc Device and method to perform mapping for topography of objective
JPH05297325A (en) * 1992-04-17 1993-11-12 Olympus Optical Co Ltd Artificial retina and artificial visual sensation device
JPH063119A (en) * 1991-05-24 1994-01-11 Matsushita Electric Works Ltd Measuring method of depth of minute recessed surface
JPH06300989A (en) * 1993-04-16 1994-10-28 Nippondenso Co Ltd Method and device for curved surface machining
JPH0783844A (en) * 1993-09-17 1995-03-31 Nikon Corp Defect inspection device
JPH07229845A (en) * 1994-02-22 1995-08-29 Nikon Corp Dust particle inspection system
JPH09257440A (en) * 1996-03-26 1997-10-03 Takaoka Electric Mfg Co Ltd Two-dimensional-array-type confocal optic device
JPH1114906A (en) * 1997-06-23 1999-01-22 Canon Inc Optical device, holding jig and image pickup device using the optical device
JPH11314184A (en) * 1998-04-30 1999-11-16 Narukkusu Kk Optical device machining apparatus
JP2002122416A (en) * 2000-10-16 2002-04-26 Sumitomo Osaka Cement Co Ltd Three-dimensional shape measuring device
JP2003050109A (en) * 2001-08-07 2003-02-21 Nikon Corp Surface shape measuring device and measuring method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887531A (en) * 1981-11-20 1983-05-25 Dainippon Printing Co Ltd Defect inspecting device of regular pattern
JPH05146406A (en) * 1990-03-16 1993-06-15 Intelligent Surgical Lasers Inc Device and method to perform mapping for topography of objective
JPH063119A (en) * 1991-05-24 1994-01-11 Matsushita Electric Works Ltd Measuring method of depth of minute recessed surface
JPH05297325A (en) * 1992-04-17 1993-11-12 Olympus Optical Co Ltd Artificial retina and artificial visual sensation device
JPH06300989A (en) * 1993-04-16 1994-10-28 Nippondenso Co Ltd Method and device for curved surface machining
JPH0783844A (en) * 1993-09-17 1995-03-31 Nikon Corp Defect inspection device
JPH07229845A (en) * 1994-02-22 1995-08-29 Nikon Corp Dust particle inspection system
JPH09257440A (en) * 1996-03-26 1997-10-03 Takaoka Electric Mfg Co Ltd Two-dimensional-array-type confocal optic device
JPH1114906A (en) * 1997-06-23 1999-01-22 Canon Inc Optical device, holding jig and image pickup device using the optical device
JPH11314184A (en) * 1998-04-30 1999-11-16 Narukkusu Kk Optical device machining apparatus
JP2002122416A (en) * 2000-10-16 2002-04-26 Sumitomo Osaka Cement Co Ltd Three-dimensional shape measuring device
JP2003050109A (en) * 2001-08-07 2003-02-21 Nikon Corp Surface shape measuring device and measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200257A (en) * 2012-03-26 2013-10-03 Canon Inc Measurement instrument, measurement method, and method of manufacturing optical component
KR20150129747A (en) * 2013-03-07 2015-11-20 케이엘에이-텐코 코포레이션 System and method for reviewing a curved sample edge
KR102065812B1 (en) * 2013-03-07 2020-02-11 케이엘에이 코포레이션 System and method for reviewing a curved sample edge
EP3009790A1 (en) 2014-10-15 2016-04-20 Canon Kabushiki Kaisha Slope data processing method, slope data processing apparatus and measurement apparatus
JP2016080475A (en) * 2014-10-15 2016-05-16 キヤノン株式会社 Slope data processing method, slope data processing device, and measurement device

Similar Documents

Publication Publication Date Title
KR100951221B1 (en) Method for measuring decentralization of optical axis on the front and the rear surface of lens
JP6219320B2 (en) Lithographic system and method for processing a target such as a wafer
TWI292033B (en)
JP4791118B2 (en) Image measuring machine offset calculation method
CN104416449A (en) Processing apparatus
JPWO2020090075A1 (en) Processing system and processing method
JP6288280B2 (en) Surface shape measuring device
JP7204428B2 (en) Eccentricity measuring method, lens manufacturing method, and eccentricity measuring device
CN114577125A (en) Non-contact optical lens center thickness measuring method and measuring device
JP2007033263A (en) On-board measuring method of shape error of micro recessed surface shape, and measuring device
JP5328025B2 (en) Edge detection apparatus, machine tool using the same, and edge detection method
JP7034803B2 (en) Distance measurement unit and light irradiation device
JP4986148B2 (en) Optical element molding die, molding die processing method, optical element, optical device, optical scanning device, image display device, and optical pickup device
WO2019016856A1 (en) Defect inspection apparatus and pattern chip
US11000917B2 (en) Laser marking system and method for laser marking a workpiece
CN106383396A (en) Micrometer-grade photoelectric centering method and micrometer-grade photoelectric centering device based on surface reflection image
JP7317976B2 (en) Alignment method of cylindrical lens in lens fixing part and optical system
US6831792B2 (en) Objective lens, combination of objective lenses, and method for adjusting optical system using objective lens
JP4519449B2 (en) Shape measuring instruments
JP2007218931A (en) Method and instrument for measuring shape of optical face, and recording medium
JP3333759B2 (en) Measuring method and setting method of distance between mask and wafer
JP5656243B2 (en) Shape measuring device and machine tool using the same
JP2009150865A (en) Edge detection method, edge detector and working machine using the same
JP2024082372A (en) Evaluation Equipment
JP2004287208A (en) Method and device for fixing spectacle lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Effective date: 20101105

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A02