JP2007031591A - Method for decomposing vinyl alcohol-based polymer - Google Patents

Method for decomposing vinyl alcohol-based polymer Download PDF

Info

Publication number
JP2007031591A
JP2007031591A JP2005217845A JP2005217845A JP2007031591A JP 2007031591 A JP2007031591 A JP 2007031591A JP 2005217845 A JP2005217845 A JP 2005217845A JP 2005217845 A JP2005217845 A JP 2005217845A JP 2007031591 A JP2007031591 A JP 2007031591A
Authority
JP
Japan
Prior art keywords
pva
bacteria
medium
vinyl alcohol
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005217845A
Other languages
Japanese (ja)
Other versions
JP4599246B2 (en
Inventor
Yuko Nikaido
祐子 二階堂
Keiko Oka
桂子 岡
Ryuichiro Kondo
隆一郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kuraray Co Ltd
Original Assignee
Kyushu University NUC
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kuraray Co Ltd filed Critical Kyushu University NUC
Priority to JP2005217845A priority Critical patent/JP4599246B2/en
Publication of JP2007031591A publication Critical patent/JP2007031591A/en
Application granted granted Critical
Publication of JP4599246B2 publication Critical patent/JP4599246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently decomposing a vinyl alcohol-based polymer by using a fungus, especially a method for efficiently decomposing a vinyl alcohol-based polymer in a solid state even not through operation of dissolution or immersion in water. <P>SOLUTION: The method for decomposing a vinyl alcohol-based polymer comprises a process for bringing a fungus of the genus Gloeophyllum or a culture of the fungus into contact with a vinyl alcohol-based polymer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ビニルアルコール系ポリマーの分解方法に関する。さらに詳しくは、本発明は、キカイガラタケ属菌(Gloeophyllum.sp)又は該菌の培養物を用いた、ビニルアルコール系ポリマーの分解方法に関する。   The present invention relates to a method for decomposing a vinyl alcohol polymer. More specifically, the present invention relates to a method for decomposing a vinyl alcohol polymer using a bacterium belonging to the genus Gloeophyllum.sp or a culture of the bacterium.

ビニルアルコール系ポリマー(以下、「PVA」と称することがある)は、ビニロン繊維、フィルム、繊維・紙加工、接着剤、エマルジョン等の多様な用途に用いられている。これらの用途に使用された後のPVA廃棄物、特に水に難溶であるがゆえに生分解を受けがたい繊維、フィルム等の固体状PVA廃棄物は通常、焼却処理されている。近年、焼却時のダイオキシン発生等による環境汚染を防ぐという観点から、PVAをはじめ各種プラスチック廃棄物は高温での焼却処理が求められている。しかし、高温での焼却処理には、多量のエネルギーが必要であるだけでなく、温度制御が可能な高度な処理設備が必要となるほか、焼却炉の損傷等の問題が指摘されている。   Vinyl alcohol polymers (hereinafter sometimes referred to as “PVA”) are used in various applications such as vinylon fibers, films, fiber / paper processing, adhesives, and emulsions. PVA wastes after being used for these applications, particularly solid PVA wastes such as fibers and films that are hardly soluble in water because they are hardly soluble in water, are usually incinerated. In recent years, various plastic wastes such as PVA are required to be incinerated at high temperatures from the viewpoint of preventing environmental pollution caused by dioxin generation during incineration. However, incineration at high temperatures requires not only a large amount of energy, but also requires advanced treatment equipment capable of temperature control, and problems such as damage to the incinerator have been pointed out.

一方、微生物によるPVAの効率的な分解方法が開発されれば、省エネルギー的なPVA廃棄物分解処理方法につながると考えられる。また、コンポスト化等によるPVA廃棄物のマテリアルリサイクルも可能となると考えられる。   On the other hand, if an efficient method for decomposing PVA by microorganisms is developed, it will lead to an energy-saving PVA waste decomposition method. In addition, material recycling of PVA waste by composting etc. will be possible.

このような微生物を用いたPVAの分解方法としては、シュードモナス属、スフィンゴモナス属、バチルス属等の各種バクテリアを用いた方法が知られている(例えば、特許文献1、2、3、4等参照)。また、菌を用いたPVA分解も報告されている(非特許文献1、2等参照)。
特開平7−108297号公報 特開平8−140667号公報 特開2003−250527号公報 特開平10−75773号公報 Daniel m. Larking他、Enhanced Degradation of Polyvinyl Alcohol by Pycnoporus cinnabarium after Pretreatment with Fenton’s Reagent、Applied and Environmental Microbiology, 65(4)1798-1800(1999) Amanda Ines Mejia他、Biodegradation of poly(vinyl alcohol-co-ethylene) with the fungus Phanerochaete chrysosporium、Mat.Res.Innovat.,4,148-154(2001)
As methods for degrading PVA using such microorganisms, methods using various bacteria such as Pseudomonas, Sphingomonas, and Bacillus are known (see, for example, Patent Documents 1, 2, 3, and 4). ). In addition, PVA degradation using bacteria has also been reported (see Non-Patent Documents 1 and 2).
Japanese Unexamined Patent Publication No. 7-108297 JP-A-8-140667 JP 2003-250527 A Japanese Patent Laid-Open No. 10-75773 Daniel m. Larking et al., Enhanced Degradation of Polyvinyl Alcohol by Pycnoporus cinnabarium after Pretreatment with Fenton's Reagent, Applied and Environmental Microbiology, 65 (4) 1798-1800 (1999) Amanda Ines Mejia et al., Biodegradation of poly (vinyl alcohol-co-ethylene) with the fungus Phanerochaete chrysosporium, Mat. Res. Innovat., 4, 148-154 (2001)

しかし、前記のバクテリアは、乾燥条件下では生育できないため、PVAを分解させるためには、PVAを水へ溶解させる又は浸水条件下におくことが必要とされており、フィルム等の固体状のPVAに対しては分解効率が非常に悪いという問題があった。そのため、フィルム等の固体状PVAの分解にバクテリア等を適用しようとすると、ポリマーを熱水へ溶解させる操作や大規模な処理槽が必要となり、依然として多大なエネルギー及びコストが必要であった。   However, since the above-mentioned bacteria cannot grow under dry conditions, it is necessary to dissolve PVA in water or to leave it under water conditions in order to decompose PVA. There was a problem that the decomposition efficiency was very poor. Therefore, if bacteria or the like is applied to the decomposition of solid PVA such as a film, an operation for dissolving the polymer in hot water and a large-scale treatment tank are required, and a great deal of energy and cost are still required.

一方、前記の菌を用いたPVA分解の報告は、いずれも水溶液状や浸水条件下での分解の報告に限られており、しかも分解効率が悪いため工業用途への応用は困難であった。   On the other hand, reports of PVA degradation using the above-mentioned bacteria are all limited to reports of degradation under aqueous conditions or under water conditions, and because of poor degradation efficiency, it has been difficult to apply to industrial applications.

PVA分解処理方法の実用化の観点から、固体状のPVAが水への溶解又は浸漬操作の有無によらず分解される方法の確立が求められるが、上記のように、微生物を用いて固体状のPVAを水への溶解又は浸漬操作の有無によらず分解することのできる十分に効率的な方法は、未だ確立されていないのが現状である。   From the viewpoint of the practical application of the PVA decomposition treatment method, it is required to establish a method in which solid PVA is decomposed regardless of whether or not it is dissolved in water or immersed in water. Currently, a sufficiently efficient method capable of decomposing the PVA with or without dissolving or immersing it in water has not yet been established.

上記の現状に鑑み、本発明の課題は、微生物を用いてPVAを効率的に分解する方法、特に固体状のPVAを水への溶解又は浸漬操作を経なくても効率的に分解することができる方法を提供することである。   In view of the above situation, the object of the present invention is to efficiently decompose PVA using microorganisms, in particular, to efficiently decompose solid PVA without dissolving or immersing it in water. It is to provide a way that can be done.

本発明者は、上記の課題を解決するため、さまざまな微生物を用いてPVAの分解実験を行った。   In order to solve the above problems, the present inventor conducted PVA degradation experiments using various microorganisms.

その結果、本発明者は、木材褐色腐朽性の菌の一種であるキカイガラタケ属菌が、固体状のPVAを水への溶解又は浸漬操作の有無によらず分解可能なことを見出し、本発明を完成させた。
すなわち、本発明は、
[1]キカイガラタケ属菌(Gloeophyllum.sp)又は該菌の培養物をビニルアルコール系ポリマーに接触させる工程を含む、該ビニルアルコール系ポリマーの分解方法
に関する。
As a result, the present inventor has found that the genus Bacillus genus, which is a kind of wood brown decaying fungus, can decompose solid PVA regardless of whether it is dissolved in water or immersed in water. Completed.
That is, the present invention
[1] The present invention relates to a method for decomposing a vinyl alcohol polymer, which comprises a step of bringing a cultivated genus Bloemophyllum.

本発明により、菌を用いてPVAを効率的に分解する方法、特に固体状のPVAを水への溶解又は浸漬操作を経なくても効率的に分解することができる方法が提供されるため、省エネルギー的なPVA廃棄物の分解処理が可能になるという効果が奏される。   According to the present invention, a method for efficiently decomposing PVA using a bacterium, particularly a method capable of efficiently decomposing solid PVA without dissolving or immersing in water, is provided. There is an effect that energy-saving PVA waste can be decomposed.

また、PVAを分解させた後に分解物をコンポスト化することで、コンポストとして用いることができる。   Moreover, it can be used as compost by composting the decomposed product after decomposing PVA.

本発明は、キカイガラタケ属菌又は該菌の培養物をビニルアルコール系ポリマーに接触させる工程を含む、該ビニルアルコール系ポリマーの分解方法に関する。かかる構成を有することにより、固体状のPVAを水への溶解又は浸漬操作を経なくても効率的に分解することができる。   The present invention relates to a method for decomposing a vinyl alcohol polymer, which comprises the step of bringing a bacterium belonging to the genus Bacillus or contact with a vinyl alcohol polymer. By having such a configuration, the solid PVA can be efficiently decomposed without undergoing a dissolution or immersion operation in water.

ここで、PVAの分解とは、PVAが水溶液中に溶解している場合はPVAの主鎖を切断することをいい、PVAが固体状である場合はPVAの重量が減少することをいう。PVAの主鎖の切断は、例えば、ゲル濾過クロマトグラフィー法にてPVAの分子量を測定し、PVAの分子量の低下を確認することにより評価できる。PVAの重量の減少は、例えば、PVAフィルムを凍結乾燥後、電子天秤にてPVAフィルムの重量を測定することにより評価できる。   Here, the decomposition of PVA means that the main chain of PVA is cleaved when PVA is dissolved in an aqueous solution, and the weight of PVA is reduced when PVA is solid. The cleavage of the main chain of PVA can be evaluated by, for example, measuring the molecular weight of PVA by gel filtration chromatography and confirming the decrease in the molecular weight of PVA. The decrease in the weight of PVA can be evaluated, for example, by measuring the weight of the PVA film with an electronic balance after freeze-drying the PVA film.

本発明の分解方法で用いられる菌は、キカイガラタケ属に属する菌であればよい。良好なPVAの分解の観点から、前記のキカイガラタケ属に属する菌は、キチリメンタケ(以下、Gloeophyllum trabeumという)ヒロハノキカイガラタケ(以下、Gloeophyllum striatumという)から選択される菌であることが好ましく、より好ましくはGloeophyllum trabeum NBRC番号6430、Gloeophyllum trabeum NBRC番号6509、またはGloeophyllum striatum NBRC番号30341である。
尚、菌は、菌糸または子実体であってもよく、それらの破砕物や抽出物を菌として使用することもできる。
The bacterium used in the decomposition method of the present invention may be a bacterium belonging to the genus Pleurotus. From the viewpoint of good PVA degradation, the bacterium belonging to the genus Pleurotus is preferably a bacterium selected from the mushrooms (hereinafter referred to as “Gloeophyllum trabeum”) or the “Gloeophyllum striatum”. Is Gloeophyllum trabeum NBRC number 6430, Gloeophyllum trabeum NBRC number 6509, or Gloeophyllum striatum NBRC number 30341.
Note that the fungus may be a mycelium or a fruit body, and a crushed material or an extract thereof may be used as the fungus.

前記の菌は、独立行政法人製品評価技術基盤機構から入手することができ、また、自然界からPVA分解活性を指標に公知の方法でスクリーニングすることにより得ることもできる。   The above-mentioned bacteria can be obtained from the National Institute of Technology and Evaluation Technology, and can also be obtained by screening by a known method using the PVA degradation activity as an indicator from nature.

前記の菌を培養するのに適した培地としては、特に限定されず、通常の木材腐朽菌の培養や酵素調製用に使用される培地を好適に用いることができる。かかる培地の具体例としては、例えば、ポテト・デキストロース培地、グルコース・コーンスティープリカー培地、麦芽エキス培地、フスマ培地、サブロー培地、高・低窒素合成培地、木粉等が挙げられる。これらの培地は、単独で用いてもよいが、2種以上を組合せて用いてもよい。   A medium suitable for culturing the above-mentioned fungus is not particularly limited, and a medium used for normal wood-rot fungus culture and enzyme preparation can be suitably used. Specific examples of such a medium include potato dextrose medium, glucose corn steep liquor medium, malt extract medium, bran medium, Sabouraud medium, high / low nitrogen synthesis medium, wood flour and the like. These media may be used alone or in combination of two or more.

本発明において、菌の培養物とは、前記の菌を前記の培地等を用いて培養したものであれば、PVA分解能を発現する限り、特に限定はなく、菌体と培地との混合物、菌培養後の培地由来成分、菌培養後の培地由来の酵素液等であってもよい。   In the present invention, the fungus culture is not particularly limited as long as it expresses the PVA resolution as long as the fungus is cultured using the medium or the like. It may be a medium-derived component after culturing, an enzyme solution derived from a medium after culturing bacteria, or the like.

なお、本発明の分解方法においては、前記の菌又は菌の培養物(以下、菌等と略称することがある)を単独で用いてもよいが、2種以上を共に用いてもよい。   In the degradation method of the present invention, the above-mentioned bacteria or a culture of bacteria (hereinafter sometimes abbreviated as bacteria) may be used alone, or two or more of them may be used together.

本発明の分解方法において分解されるビニルアルコール系ポリマーとは、ビニルアルコールユニットを主成分とするポリマーをいう。ビニルアルコール系ポリマーは、公知の化学合成方法により調製することができる。ビニルアルコール系ポリマーは、かかるポリマーであれば特に限定されず、分解が進行する範囲内で他の構成単位を有してもよく、また、後述の架橋剤で架橋された構造を有していてもよい。   The vinyl alcohol polymer to be decomposed in the decomposition method of the present invention refers to a polymer having a vinyl alcohol unit as a main component. The vinyl alcohol polymer can be prepared by a known chemical synthesis method. The vinyl alcohol polymer is not particularly limited as long as it is such a polymer, and may have other constitutional units within a range in which decomposition proceeds, and has a structure crosslinked with a crosslinking agent described later. Also good.

前記の他の構成単位としては、例えば、酢酸ビニル等のビニルエステル、エチレン、プロピレン、ブチレン等のオレフィン類、アクリル酸及びその塩、アクリル酸メチル等のアクリル酸エステル、メタクリル酸及びその塩、メタクリル酸メチル等のメタクリル酸エステル類、アクリルアミド、N−メチルアクリルアミド等のアクリルアミド誘導体、メタクリルアミド、N−メチロールメタクリルアミド等のメタクリルアミド誘導体、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類、ポリアルキレンオキシドを側鎖に有するアリルエーテル類、メチルビニルエーテル等のビニルエーテル類、アクリロニトリル等のニトリル類、塩化ビニル等のハロゲン化ビニル、マレイン酸及びその塩又はその無水物やそのエステル等の不飽和ジカルボン酸等がある。   Examples of the other structural units include vinyl esters such as vinyl acetate, olefins such as ethylene, propylene, and butylene, acrylic acid and salts thereof, acrylic esters such as methyl acrylate, methacrylic acid and salts thereof, methacrylic acid, and the like. Methacrylic acid esters such as methyl acid, acrylamide derivatives such as acrylamide and N-methylacrylamide, methacrylamide derivatives such as methacrylamide and N-methylol methacrylamide, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide and the like N-vinyl amides, allyl ethers having a polyalkylene oxide in the side chain, vinyl ethers such as methyl vinyl ether, nitriles such as acrylonitrile, vinyl halides such as vinyl chloride, maleic acid and salts thereof or the like There are anhydride or the like unsaturated dicarboxylic acid esters thereof.

前記の他の構成単位の導入は公知の方法、例えば共重合による方法や後反応による方法によって行うことができる。これらのビニルアルコールユニットではない構成単位成分の含有量は、効率的な分解の観点から、PVAの全構成単位中、通常44モル%以下が好ましく、20モル%以下がより好ましく、5モル%以下がさらに好ましい。   The introduction of the other structural units can be carried out by a known method, for example, a copolymerization method or a post-reaction method. The content of these structural unit components that are not vinyl alcohol units is usually preferably 44 mol% or less, more preferably 20 mol% or less, and more preferably 5 mol% or less in all the structural units of PVA from the viewpoint of efficient decomposition. Is more preferable.

本発明の分解方法において分解されるPVAはまた、1種あるいは2種以上の、構成単位の種類や導入量が異なるPVA又は分子量の異なるPVAのブレンド物や、これら以外の重合体、例えばでんぷん、セルロース等の天然高分子や、ポリ乳酸、ポリカプロラクトン等の生分解性を有する合成高分子とのブレンド物でもよい。   The PVA decomposed in the decomposition method of the present invention is also one or more kinds of PVA having different types and introduction amounts of structural units or blends of PVA having different molecular weights, and other polymers such as starch, A blend with a natural polymer such as cellulose or a synthetic polymer having biodegradability such as polylactic acid or polycaprolactone may also be used.

さらに、本発明の分解方法において分解されるPVAには、本発明の目的が損なわれない範囲内で、架橋剤、充填材、可塑剤及び他の熱可塑性樹脂、香料、着色剤、発泡剤、消臭剤、増量剤、滑剤、剥離剤、紫外線吸収剤、酸化防止剤、加工安定剤、耐候安定剤、帯電防止剤、難燃剤、離型剤、補強材等の添加剤が配合されていてもよい。   Further, the PVA decomposed in the decomposition method of the present invention includes a crosslinking agent, a filler, a plasticizer and other thermoplastic resins, a fragrance, a colorant, a foaming agent, and the like within the range in which the object of the present invention is not impaired. Additives such as deodorants, extenders, lubricants, release agents, UV absorbers, antioxidants, processing stabilizers, weathering stabilizers, antistatic agents, flame retardants, mold release agents, reinforcements, etc. Also good.

前記の架橋剤としては、例えば、ホルムアルデヒド等のアルデヒド類が挙げられる。   Examples of the crosslinking agent include aldehydes such as formaldehyde.

前記添加剤のPVA中における含有量は、PVAの十分な分解の観点から、好ましくは30重量%以下が好ましく、10重量%以下がより好ましい。   The content of the additive in the PVA is preferably 30% by weight or less, more preferably 10% by weight or less, from the viewpoint of sufficient decomposition of the PVA.

本発明において分解されるPVAの形状は、特に限定されず、PVAの水溶液、フィルム、繊維又は任意の成型体等であってもよい。   The shape of the PVA decomposed in the present invention is not particularly limited, and may be an aqueous solution of PVA, a film, a fiber, an arbitrary molded body, or the like.

菌をPVAに接触させる工程においては、前記の菌等と前記のPVAとが接触する限り、特に限定はない。かかる工程としては、例えば、前記のPVAと菌とこの菌の培養に適した培地とを共にインキュベーションする工程、前記PVAを含有する廃棄物に前記の菌等を直接添加してインキュベーションする工程等が挙げられ、PVAの十分な分解の観点から、前記のPVAと菌とこの菌の培養に適した培地とを共にインキュベーションする工程が好ましい。以下、インキュベーションする工程について説明する。   In the step of bringing the bacteria into contact with PVA, there is no particular limitation as long as the bacteria and the like come into contact with the PVA. Examples of the step include a step of incubating the PVA and the bacterium and a medium suitable for culturing the bacterium, a step of directly adding the bacterium and the like to the waste containing the PVA, and the like. In view of sufficient degradation of PVA, a step of incubating the PVA, the bacterium and a medium suitable for culturing the bacterium together is preferable. Hereinafter, the incubation step will be described.

本発明の分解方法において、インキュベーションとは、少なくとも前記のPVAと菌等とを含む試料を一定の範囲の温度条件に保つことを言う。インキュベーションは、恒温槽等の装置内において行われてもよいし、温度条件が一定の範囲に保たれるのであれば、屋外に静置された状態、又は土中に埋設された状態等で行われてもよい。   In the decomposition method of the present invention, incubation refers to maintaining a sample containing at least the PVA, bacteria, etc. in a certain range of temperature conditions. Incubation may be carried out in an apparatus such as a thermostatic bath, and if the temperature condition is kept within a certain range, it is carried out in a state where it is left outdoors or buried in the soil. It may be broken.

また、PVAと菌等とこの菌の培養に適した培地とを共にインキュベーションする場合、前記の試料中において、PVA、菌等及び培地は混合されてもよいが、菌等のPVA分解能が発揮されるのであれば、混合せずに接触させて静置するだけでもよい。   In addition, in the case where PVA, bacteria, etc. and a medium suitable for culturing the bacteria are incubated together, the PVA, bacteria, etc. and the medium may be mixed in the sample, but the PVA resolution of the bacteria, etc. is exhibited. If it is, it may be left in contact without mixing.

例えば、前記のPVAを含む培地に前記の菌を添加して、インキュベーションする態様等が好ましい。また、菌と培地とを含有する培養物、又はその処理物、例えばそれらを破砕して得られる酵素液などをPVAに接触させてインキュベーションする態様等も好ましい。   For example, the aspect etc. which add the said microbe to the culture medium containing said PVA and incubate are preferable. In addition, an embodiment in which a culture containing bacteria and a culture medium or a processed product thereof, for example, an enzyme solution obtained by crushing them is brought into contact with PVA and incubated is also preferred.

前記の試料中におけるPVA、菌及び培地の含有量比としては、用いる菌の種類により適宜選択でき、特に限定されるものではないが、PVAの十分な分解及び分解にかかるコストの観点から、インキュベーション開始時の菌の乾燥重量に対してPVA重量が乾燥重量で3〜200倍であることが好ましく、10〜30倍であればより好ましい。また、菌の良好な生育及び培地にかかるコストの観点から、インキュベーション開始時の菌の体積に対して培地体積が50〜2500倍であることが好ましく、100〜1000倍であればより好ましい。   The content ratio of PVA, bacteria and medium in the sample can be appropriately selected depending on the type of bacteria used, and is not particularly limited, but from the viewpoint of sufficient PVA degradation and degradation costs, incubation is performed. The dry weight of the PVA is preferably 3 to 200 times, more preferably 10 to 30 times the dry weight of the bacteria at the start. In addition, from the viewpoint of good growth of bacteria and the cost of the medium, the medium volume is preferably 50 to 2500 times, more preferably 100 to 1000 times the bacteria volume at the start of incubation.

インキュベーションする工程における温度条件は、用いる菌の種類により適宜選択でき、特に限定されるものではないが、菌の良好な生育およびPVAの十分な分解の観点から、一般的には10℃以上であることが好ましく、20℃以上であればより好ましい。また、この温度条件は、同じく菌の良好な生育の観点から、45℃以下であることが好ましく、40℃以下であればより好ましい。   The temperature condition in the incubation step can be appropriately selected depending on the type of bacteria to be used, and is not particularly limited, but is generally 10 ° C. or higher from the viewpoint of good growth of bacteria and sufficient degradation of PVA. Preferably, it is more preferably 20 ° C. or higher. Moreover, it is preferable that this temperature condition is 45 degrees C or less similarly from a viewpoint of the favorable growth of a microbe, and it is more preferable if it is 40 degrees C or less.

また、インキュベーションする工程における相対湿度の条件は、用いる菌の種類により適宜選択でき、特に限定されるものではないが、菌の良好な生育の観点およびPVAの十分な分解から、一般的には20%以上であることが好ましく、40%以上であればより好ましい。また、この相対湿度は、同じく菌の良好な生育の観点およびPVAの十分な分解から、90%以下であることが好ましく、80%以下であればより好ましい。   In addition, the relative humidity condition in the incubation step can be appropriately selected depending on the type of bacteria used, and is not particularly limited, but is generally 20 from the viewpoint of good growth of bacteria and sufficient degradation of PVA. % Or more is preferable, and 40% or more is more preferable. The relative humidity is preferably 90% or less, more preferably 80% or less, from the viewpoint of good growth of bacteria and sufficient PVA decomposition.

さらに、インキュベーションする工程におけるインキュベーション日数は、用いる菌の種類により異なるので、特に限定されるものではないが、PVAの十分な分解の観点から、一般的には1日間以上であることが好ましい。また、このインキュベーション日数は、PVAの経済的な分解の観点から、300日間以下であることが好ましく、200日間以下であればより好ましく、100日間以下であればさらに好ましい。   Furthermore, the number of days of incubation in the incubation step varies depending on the type of bacteria used, and is not particularly limited. However, from the viewpoint of sufficient PVA degradation, it is generally preferably 1 day or longer. The incubation days are preferably 300 days or less, more preferably 200 days or less, and even more preferably 100 days or less from the viewpoint of economical degradation of PVA.

インキュベーションする工程において、菌の良好な生育およびPVAの十分な分解の観点から、通気撹拌してもよいが、菌の生育に十分な酸素の供給が可能であれば通気撹拌をしなくてもよい。すなわち、インキュベーションする工程においては、通気撹拌の有無に関わらず菌にPVAを分解させることができる。   In the incubation step, aeration and agitation may be performed from the viewpoint of good growth of bacteria and sufficient degradation of PVA, but aeration and agitation may be omitted if sufficient oxygen supply is possible for growth of the bacteria. . That is, in the incubation step, the PVA can be decomposed by the bacteria regardless of the presence or absence of aeration stirring.

本発明の分解方法は、前記のインキュベーションする工程のようなキカイガラタケ属の菌等をPVAに接触させる工程のみからなる方法であってもよいが、かかる工程の前に、例えば、PVAを小断片に粉砕する、又は水に溶解もしくは浸漬させる工程、菌を前培養する工程、前培養した菌を小片に破砕する工程、及び/又はPVAもしくは培地を滅菌する工程等の他の工程を含んでもよい。   The decomposition method of the present invention may be a method comprising only a step of bringing a bacterium belonging to the genus Pleurotus genus into contact with PVA as in the step of incubating, but before such step, for example, PVA is converted into small fragments. Other steps such as a step of pulverizing or dissolving or immersing in water, a step of pre-culturing the bacteria, a step of crushing the pre-cultured bacteria into small pieces, and / or a step of sterilizing the PVA or the medium may be included.

図1は、本発明の分解方法の一例を表わす工程図である。本発明の分解方法は、図1に示されるように、前記のPVAと菌とこの菌の培養に適した培地とを共にインキュベーションする工程(C)を有し得る。   FIG. 1 is a process diagram showing an example of the decomposition method of the present invention. As shown in FIG. 1, the degradation method of the present invention may have a step (C) of incubating the PVA, the bacterium and a medium suitable for culturing the bacterium together.

本発明の分解方法において、菌によるPVAの分解は、PVAの表面から内部へと向かって進行する。そのため、PVAを小断片に粉砕したり、水に溶解又は浸漬させた場合には、PVAの表面積が大きくなり、PVAの分解の進行が促進されるという効果が得られる。   In the degradation method of the present invention, the degradation of PVA by bacteria proceeds from the surface to the inside of the PVA. Therefore, when PVA is pulverized into small pieces or dissolved or immersed in water, the surface area of PVA is increased, and the effect of promoting the progress of PVA decomposition is obtained.

従って、本発明の分解方法は、例えば、図1に示されるように、インキュベーションする工程(C)の前に、PVAを小断片に粉砕する、又は水に溶解もしくは浸漬する工程(A)を含むことができる。なお、工程(A)において、PVA廃棄物を省エネルギー的に分解処理する観点から、PVAを小断片に粉砕する方法が望ましい。   Therefore, the decomposition method of the present invention includes, for example, a step (A) of crushing PVA into small pieces, or dissolving or immersing in water before the step (C) of incubation as shown in FIG. be able to. In the step (A), a method of pulverizing PVA into small pieces is desirable from the viewpoint of energy-saving decomposition treatment of PVA waste.

また、本発明の分解方法に生育期の菌を用いた場合、より短時間で菌体量が増加することから、効率的にPVAの分解を進行させることができる。したがって、本発明の分解方法は、例えば、図1に示されるように、インキュベーションする工程(C)の前に、菌を前培養する工程(B)を含むことが望ましい。   In addition, when a growing cell is used in the decomposition method of the present invention, the amount of cells increases in a shorter time, so that the decomposition of PVA can proceed efficiently. Therefore, for example, as shown in FIG. 1, the degradation method of the present invention preferably includes a step (B) of pre-culturing bacteria before the step (C) of incubation.

菌を前培養する工程に用いられる培地の種類は、特に限定されず、例えば、ポテト・デキストロース寒天培地等の通常の木材腐朽菌の培養や酵素調製用に使用される培地を好適に用いることができる。   The type of medium used in the step of pre-culturing the fungus is not particularly limited. For example, it is preferable to use a medium used for culture of normal wood-rotting fungi such as potato dextrose agar medium or enzyme preparation. it can.

菌を前培養する工程における温度条件は、特に限定されるものではないが、菌の良好な生育の観点から、一般的には10℃以上であることが好ましく、20℃以上であればより好ましい。また、同じく菌の良好な生育の観点から、45℃以下であることが好ましく、40℃以下であればより好ましい。   The temperature condition in the step of pre-culturing the bacterium is not particularly limited, but is generally preferably 10 ° C. or higher, more preferably 20 ° C. or higher, from the viewpoint of good growth of the bacterium. . Moreover, it is preferable that it is 45 degrees C or less similarly from a viewpoint of the favorable growth of a microbe, and it is more preferable if it is 40 degrees C or less.

菌を前培養する工程における培養日数は、用いる菌の種類により異なるので、特に限定されるものではないが、菌の十分な生育の観点から、一般的には1日間以上であることが好ましく、菌の十分な生存の観点から、30日間以下であることが好ましい。   The number of days of culture in the step of pre-culturing the fungus varies depending on the type of fungus used, and is not particularly limited. However, from the viewpoint of sufficient growth of the fungus, it is generally preferably 1 day or more, From the viewpoint of sufficient survival of bacteria, it is preferably 30 days or less.

上記のような本発明の分解方法によれば、菌を用いてPVAを水への溶解又は浸漬操作を経なくても効率的に分解することが可能となり、さらには省エネルギー的なPVA廃棄物分解処理方法につながると考えられる。   According to the decomposition method of the present invention as described above, it becomes possible to efficiently decompose PVA without using a fungus to dissolve or immerse in water, and further, energy-saving PVA waste decomposition It is thought that it leads to the processing method.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

実験準備
1.PVAフィルムの調製
PVAとして表1に示す3種のポリビニルアルコール、または1種のエチレンを4%共重合させたポリビニルアルコールを用い、これらを70℃ドラム流延法により、厚さ90−100μmのPVAフィルムに成形した。このPVAフィルムを50mm角の大きさに切断し、PVAフィルム試料No.1〜4を作製した。
Preparation for experiment 1. Preparation of PVA film
As PVA, three types of polyvinyl alcohol shown in Table 1 or polyvinyl alcohol obtained by copolymerizing one type of ethylene with 4% were molded into a PVA film having a thickness of 90 to 100 μm by a 70 ° C. drum casting method. . This PVA film was cut to a size of 50 mm square, and PVA film samples No. 1 to 4 were produced.

Figure 2007031591
Figure 2007031591

2.使用菌株
以下の実施例及び比較例において、PVAフィルム試料の分解試験に用いた菌を以下の表2に示す。また、各菌は表2中の対応する供試菌略号で表されることがある。
2. Bacterial strains In the following Examples and Comparative Examples, the bacteria used in the PVA film sample degradation test are shown in Table 2 below. In addition, each bacterium may be represented by a corresponding test bacterium abbreviation in Table 2.

Figure 2007031591
Figure 2007031591

3.使用菌株の前培養
使用菌株の前培養のための培地として、ポテト・デキストロース粉末(日水製薬社製:ポテト浸出液末4.0g、ブドウ糖20.2g、寒天15.0g含有)39.0gとイオン交換水1.0Lの組成からなるポテト・デキストロース培地を作製した。このポテト・デキストロース培地をオートクレーブ内で121℃、15分間滅菌処理を実施した後、滅菌済みシャーレ(BIOBIK製φ90mm)に15mlずつ分注して、固化させ、ポテト・デキストロース培地プレートを作製した。次いで、このポテト・デキストロース培地プレート上に、表2記載の使用菌株を植菌して、30℃で10日間培養した。
3. Pre-culture of the used strain As a medium for pre-culture of the used strain, 39.0 g of potato dextrose powder (Nissui Pharmaceutical Co., Ltd .: containing potato leachate powder 4.0 g, glucose 20.2 g, agar 15.0 g) and ion-exchanged water 1.0 L A potato-dextrose medium having the following composition was prepared. The potato-dextrose medium was sterilized at 121 ° C. for 15 minutes in an autoclave, then dispensed in 15 ml portions into a sterilized petri dish (BIOBIK φ90 mm), and solidified to prepare a potato-dextrose medium plate. Subsequently, the used strains listed in Table 2 were inoculated on the potato-dextrose medium plate and cultured at 30 ° C. for 10 days.

実施例1
(i) 菌処理
PVAフィルム試料分解試験用の培地として、表3に示す組成からなる低窒素合成培地を調製し、滅菌処理(121℃、15分)後、滅菌済みシャーレ(BIOBIK製φ90mm)に15mlずつ分注して、固化させ、試験用寒天培地を作製した。上記培地上に、70%エタノール中に30秒間浸して滅菌し、滅菌水中で5分間洗浄したPVAフィルム試料(表1中のNo.1)を1枚置いた。
Example 1
(i) Bacteria treatment
Prepare a low nitrogen synthesis medium with the composition shown in Table 3 as a medium for PVA film sample decomposition test. After sterilization (121 ° C, 15 minutes), dispense 15 ml each into a sterilized petri dish (BIOBIK φ90 mm). And solidified to prepare a test agar medium. One PVA film sample (No. 1 in Table 1) that had been sterilized by immersion in 70% ethanol for 30 seconds and washed in sterile water for 5 minutes was placed on the medium.

供試菌aを前培養したポテト・デキストロース培地プレートをコルクボーラー(アズワン(株)製)で打抜き、直径9mm、厚さ3mmの菌ペレットを作製した。この菌ペレットを上記の培地上のPVAフィルムの上に1個置くことにより、植菌を行った。この様にして植菌した培地を、恒温槽内において、30℃、湿度90%の条件で、28日間インキュベーションを行った。   A potato-dextrose medium plate pre-cultured with the test bacteria a was punched out with a cork borer (manufactured by AS ONE Co., Ltd.) to prepare a bacterial pellet having a diameter of 9 mm and a thickness of 3 mm. One bacterial pellet was placed on the PVA film on the above medium to inoculate it. The medium inoculated in this manner was incubated for 28 days in a thermostatic chamber at 30 ° C. and a humidity of 90%.

インキュベーション終了後、シャーレ内からPVAフィルム試料を回収した。PVAフィルム試料に付着した菌糸や培地等をイオン交換水で洗い落とした後、PVAフィルム試料を−80℃で凍結後、真空凍結乾燥機 FZ-1型(LABCONCO社製)を用いて室温(25℃)にて10mmHgで15〜20h乾燥させた。   After the incubation, a PVA film sample was collected from the petri dish. After washing mycelia and medium attached to the PVA film sample with ion-exchanged water, freezing the PVA film sample at -80 ° C, then using a vacuum freeze dryer FZ-1 type (LABCONCO) at room temperature (25 ° C) ) And dried at 10 mmHg for 15 to 20 hours.

(ii) 重量減少率
得られた菌処理済のPVAフィルム試料の重量を測定し、下記の式に基づいて試験開始時のフィルム試料の重量からの重量減少率を求めた。
(ii) Weight reduction rate The weight of the obtained bacteria-treated PVA film sample was measured, and the weight reduction rate from the weight of the film sample at the start of the test was determined based on the following formula.

重量減少率(%)=(試験開始時フィルム重量−菌処理済フィルム試料重量)÷ 試験開始時フィルム重量×100 Weight reduction rate (%) = (film weight at start of test−bacteria treated film sample weight) ÷ film weight at start of test × 100

なお、上記のPVAフィルム試料分解試験用培地上に、表1のNo.1に記載のPVAフィルム試料1枚を置き、植菌することなく上記と同様にインキュベーションを行った後、回収したフィルムについて、上記と同様にして重量減少率を求めた。この値をブランク値として上記の菌処理済試料の重量減少率から差し引いた値を表4に示す。   In addition, on the above PVA film sample decomposition test medium, No. 1 in Table 1 was obtained. After placing one PVA film sample described in 1 and incubating in the same manner as above without inoculating it, the weight loss rate of the recovered film was determined in the same manner as described above. Table 4 shows values obtained by subtracting this value as a blank value from the weight reduction rate of the above-mentioned fungus-treated sample.

実施例2〜9
供試菌(キカイガラタケ属菌a〜cから選択した)、PVAフィルム試料および分解試験用培地の組合せを変更した以外は、実施例1と同様にして、菌処理後のフィルムの重量減少率からブランク値を差し引いた値を求めた。結果を表4に示す。
Examples 2-9
A blank from the weight reduction rate of the film after the fungus treatment was performed in the same manner as in Example 1 except that the combination of the test bacteria (selected from the genus Bacillus a-c), the PVA film sample, and the medium for degradation test was changed. The value obtained by subtracting the value was obtained. The results are shown in Table 4.

比較例1
供試菌に、水溶液状のポリビニルアルコールを分解したという報告がある木材白色腐朽菌の1種である供試菌dを使用した以外は、実施例1と同様にして、菌処理後のフィルムの重量減少率からブランク値を差し引いた値を求めた。結果を表4に示す
Comparative Example 1
In the same manner as in Example 1, except that the test bacterium d, which is one of the wood white rot fungi that has been reported to have decomposed aqueous polyvinyl alcohol, was used as the test bacterium. A value obtained by subtracting the blank value from the weight reduction rate was determined. The results are shown in Table 4.

比較例2〜6
PVAフィルム試料および分解試験用培地の組合せを変更した以外は、比較例1と同様にして、菌処理後のフィルムの重量減少率からブランク値を差し引いた値を求めた。結果を表4に示す。
Comparative Examples 2-6
A value obtained by subtracting the blank value from the weight reduction rate of the film after the bacteria treatment was determined in the same manner as in Comparative Example 1 except that the combination of the PVA film sample and the degradation test medium was changed. The results are shown in Table 4.

Figure 2007031591
Figure 2007031591

Figure 2007031591
Figure 2007031591

実施例1の結果から、供試菌aを用いた菌処理により、固体状PVAフィルムの有意な重量減少が生じたことが分かった。即ち、供試菌aが固体状PVAの分解に有効であることが確認された。
また、実施例1〜6の結果から、供試菌aが、重合度及び/又はけん化度が異なる種々の固体状PVA分解に有効であることが確認された。また、供試菌aが、高窒素合成培地又は低窒素合成培地のいずれにおいても固体状PVA分解に有効であることも確認された。
また、実施例7の結果から、供試菌aが、共重合成分を含む固体状PVAの分解にも有効であることが確認された。
また、実施例8の結果から、供試菌aと同じくGloeophyllum trabeumに属する供試菌bもまた、供試菌aと同様に固体状PVA分解に有効であることが確認された。
さらに、実施例9の結果から、Gloeophyllum trabeumではないが、供試菌a及びbと同じくキカイガラタケ属に属する供試菌cもまた、供試菌a及びbと同様に固体状PVA分解に有効であることが確認された。
From the results of Example 1, it was found that the weight reduction of the solid PVA film was caused by the bacterial treatment using the test bacteria a. That is, it was confirmed that the test bacterium a was effective in decomposing solid PVA.
Moreover, from the results of Examples 1 to 6, it was confirmed that the test bacterium a was effective for various solid PVA decompositions having different degrees of polymerization and / or saponification. Moreover, it was also confirmed that the test bacterium a was effective for solid PVA degradation in either the high nitrogen synthesis medium or the low nitrogen synthesis medium.
In addition, from the results of Example 7, it was confirmed that the test bacterium a was also effective in decomposing solid PVA containing a copolymer component.
Moreover, from the result of Example 8, it was confirmed that the test bacterium b belonging to Gloeophyllum trabeum as well as the test bacterium a is also effective for decomposing solid PVA like the test bacterium a.
Furthermore, from the result of Example 9, although not Gloeophyllum trabeum, the test bacterium c belonging to the genus Pleurotus as well as the test bacteria a and b is also effective in decomposing solid PVA as in the test bacteria a and b. It was confirmed that there was.

一方、比較例1〜6の結果から、白色腐朽菌である供試菌dを用いた菌処理によっては、高窒素合成培地又は低窒素合成培地のいずれにおいても、重合度及び/またはけん化度の異なる種々のPVAフィルムは、ほとんど分解されなかった。
以上より、本発明に用いるキカイガラタケ属菌は、固体状のPVAの分解において、従来の微生物には見られない効果を奏することが分かった。
On the other hand, from the results of Comparative Examples 1 to 6, the degree of polymerization and / or the degree of saponification of either the high nitrogen synthetic medium or the low nitrogen synthetic medium depending on the bacterial treatment using the test bacterium d which is a white rot fungus. Various different PVA films were hardly degraded.
From the above, it was found that the genus Bacillus genus used in the present invention has an effect not seen in conventional microorganisms in the degradation of solid PVA.

実施例10
表1中のNo.1のPVAのペレット試料をオートクレーブにて110℃、20分加熱して、2重量%のPVA水溶液を調製した。表3記載の低窒素合成培地から寒天を除いた液体培地に、前記のPVA水溶液をPVA濃度が0.03重量%となるように添加して分解試験用培地とした。回転子を入れた培養瓶(タイテック株式会社製、φ55mm)に前記の分解試験用培地200ml及び実施例1と同様にして調製した供試菌aの菌ペレットを8枚添加し、30℃
200rpmで撹拌培養した。培養0日目および8日目の培養液をフィルター(ミリポア製、孔径0.2μm)で濾過した濾液を用いて、ゲル濾過クロマトグラフィー法(カラムTSK gel GMPWXL, 東ソー株式会社製)にて濾液中のPVAの分子量を測定した。分子量標準物質としてプルラン(株式会社林原生物化学研究所製)を用いた。その結果、PVAの平均分子量が、0日目では93000だったのに対し、8日目では24000に低下したことから、PVAの分解が生じたことが分かった。即ち、供試菌aは、水溶液状PVA分解能力も有することが確認された。
Example 10
No. in Table 1 One PVA pellet sample was heated in an autoclave at 110 ° C. for 20 minutes to prepare a 2 wt% PVA aqueous solution. The PVA aqueous solution was added to a liquid medium obtained by removing agar from the low nitrogen synthesis medium shown in Table 3 so that the PVA concentration would be 0.03% by weight, thereby preparing a medium for degradation test. 200 ml of the above-described medium for degradation test and 8 pellets of the test bacteria a prepared in the same manner as in Example 1 were added to a culture bottle (manufactured by Taitec Co., Ltd., φ55 mm) containing a rotor, and 30 ° C.
The stirring culture was performed at 200 rpm. Using the filtrate obtained by filtering the culture solution on day 0 and day 8 through a filter (Millipore, pore size 0.2 μm), the filtrate was subjected to gel filtration chromatography (column TSK gel GMPW XL , manufactured by Tosoh Corporation). The molecular weight of the PVA inside was measured. Pullulan (produced by Hayashibara Biochemical Laboratories, Inc.) was used as a molecular weight standard substance. As a result, the average molecular weight of PVA was 93,000 on the 0th day, but decreased to 24000 on the 8th day, indicating that PVA was decomposed. That is, it was confirmed that the test bacterium a also has an aqueous PVA decomposition ability.

本発明の分解方法によれば、PVA廃棄物、特に水に難溶であるがゆえに生分解を受けがたい繊維、フィルム等の固体状PVA廃棄物を省エネルギー的に分解処理することができる。   According to the decomposition method of the present invention, PVA wastes, particularly solid PVA wastes such as fibers and films that are hardly soluble in water because they are hardly soluble in water, can be decomposed in an energy-saving manner.

本発明のPVAの分解処理方法の一例を表わす工程図である。It is process drawing showing an example of the decomposition processing method of PVA of this invention.

Claims (3)

キカイガラタケ属菌(Gloeophyllum.sp)又は該菌の培養物をビニルアルコール系ポリマーに接触させる工程を含む、該ビニルアルコール系ポリマーの分解方法。   A method for decomposing a vinyl alcohol polymer, comprising the step of bringing a cultivated genus Gloeophyllum.sp or a culture of the bacterium into contact with a vinyl alcohol polymer. ビニルアルコール系ポリマーが固体状のビニルアルコール系ポリマーである請求項1記載の方法。   The method according to claim 1, wherein the vinyl alcohol polymer is a solid vinyl alcohol polymer. キカイガラタケ属菌が、キチリメンタケ(Gloeophyllum trabeum)及びヒロハノキカイガラタケ(Gloeophyllum striatum)である請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the genus Bacillus genus Mushroom is Gloeophyllum trabeum and Gloeophyllum stratum.
JP2005217845A 2005-07-27 2005-07-27 Decomposition method of vinyl alcohol polymer Expired - Fee Related JP4599246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217845A JP4599246B2 (en) 2005-07-27 2005-07-27 Decomposition method of vinyl alcohol polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217845A JP4599246B2 (en) 2005-07-27 2005-07-27 Decomposition method of vinyl alcohol polymer

Publications (2)

Publication Number Publication Date
JP2007031591A true JP2007031591A (en) 2007-02-08
JP4599246B2 JP4599246B2 (en) 2010-12-15

Family

ID=37791222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217845A Expired - Fee Related JP4599246B2 (en) 2005-07-27 2005-07-27 Decomposition method of vinyl alcohol polymer

Country Status (1)

Country Link
JP (1) JP4599246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729285B2 (en) 2008-03-14 2014-05-20 Konica Minolta Business Technologies, Inc. Copper complex compound and electrophotographic toner containing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213993A (en) * 2000-02-03 2001-08-07 Idemitsu Petrochem Co Ltd Method of decomposing unsaturated carboxylic acid copolymer
JP2004099738A (en) * 2002-09-09 2004-04-02 Sumitomo Rubber Ind Ltd Decomposition treatment method for vulcanized rubber composition using wood putrefactive bacteria
JP2006158237A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Microorganism having polyurethane decomposing ability and method for decomposing polyurethane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213993A (en) * 2000-02-03 2001-08-07 Idemitsu Petrochem Co Ltd Method of decomposing unsaturated carboxylic acid copolymer
JP2004099738A (en) * 2002-09-09 2004-04-02 Sumitomo Rubber Ind Ltd Decomposition treatment method for vulcanized rubber composition using wood putrefactive bacteria
JP2006158237A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Microorganism having polyurethane decomposing ability and method for decomposing polyurethane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729285B2 (en) 2008-03-14 2014-05-20 Konica Minolta Business Technologies, Inc. Copper complex compound and electrophotographic toner containing the same

Also Published As

Publication number Publication date
JP4599246B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
Lim et al. Biodegradation of polymers in managing plastic waste—A review
Amann et al. Biodegradability of Poly (vinyl acetate) and Related Polymers
Erdal et al. Degradation of cellulose derivatives in laboratory, man-made, and natural environments
Pattanasuttichonlakul et al. Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge combined with PLA-degrading bacterium
Chiellini et al. Biodegradation of poly (vinyl alcohol) based materials
US8222316B2 (en) Chemical additives to make polymeric materials biodegradable
Yang et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms
Chandra et al. Biodegradable polymers
US8513329B2 (en) Chemical additives to make polymeric materials biodegradable
Di Franco et al. Degradation of polycaprolactone/starch blends and composites with sisal fibre
CN104718247B (en) Biodegradable composition, method and application thereof
Elsamahy et al. Biodegradation of low-density polyethylene plastic waste by a constructed tri-culture yeast consortium from wood-feeding termite: Degradation mechanism and pathway
La Fuente et al. Biodegradable polymers: A review about biodegradation and its implications and applications
Tiwari et al. Recent development of biodegradation techniques of polymer
Ozaki et al. Biodegradable composites from waste wood and poly (vinyl alcohol)
Maiti et al. Isolation and characterisation of starch/polyvinyl alcohol degrading fungi from aerobic compost environment
Rana et al. Biodegradation studies of textiles and clothing products
Altun et al. Tailoring the microbial community for improving the biodegradation of chitosan films in composting environment
Brzezinka et al. Microbial degradation of polyhydroxybutyrate with embedded polyhexamethylene guanidine derivatives
JP4599246B2 (en) Decomposition method of vinyl alcohol polymer
Khatua et al. Myco-remediation of plastic pollution: current knowledge and future prospects
JP2017086040A (en) Method for decomposing biodegradable plastic efficiently
JP2003128835A (en) Method for decomposing polyolefin resin
Bharathiraja et al. Biodegradation of Poly (vinyl alcohol) using Pseudomonas alcaligenes
JP3656963B2 (en) Woody defibrated material, method for producing the same, and microbial material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees