JP2007030075A - Electric discharge machining wire - Google Patents

Electric discharge machining wire Download PDF

Info

Publication number
JP2007030075A
JP2007030075A JP2005214221A JP2005214221A JP2007030075A JP 2007030075 A JP2007030075 A JP 2007030075A JP 2005214221 A JP2005214221 A JP 2005214221A JP 2005214221 A JP2005214221 A JP 2005214221A JP 2007030075 A JP2007030075 A JP 2007030075A
Authority
JP
Japan
Prior art keywords
wire
electric discharge
discharge machining
workpiece
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005214221A
Other languages
Japanese (ja)
Inventor
Keichi Takahashi
佳智 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005214221A priority Critical patent/JP2007030075A/en
Publication of JP2007030075A publication Critical patent/JP2007030075A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the purity of a body to be machined and to simplify a grinding process and cleaning process. <P>SOLUTION: This electric discharge machining wire is characterized in that it is formed of carbon fiber, and preferably the diameter of the section of the carbon fiber is equal to or less than 0.02 mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電加工用ワイヤに関する。さらに詳しくは被加工体が炭化ケイ素焼結体である放電加工用ワイヤに関する。   The present invention relates to an electric discharge machining wire. More specifically, the present invention relates to an electric discharge machining wire whose workpiece is a silicon carbide sintered body.

放電加工装置の形式の1つとして、被加工体にドリル等で孔をあけ、あけた孔にワイヤ電極を通し、そのワイヤ電極と被加工体を相対的に移動させて被加工体を切断加工する放電加工装置がある。この放電加工装置によればリング状部を備える最終成形品を得ることができる。かかる装置に用いられるワイヤは、真鍮、亜鉛メッキされたピアノ線、タングステン線などの金属から形成されているため、ワイヤ中の金属不純物が被加工体の表面に焼き付く傾向がある。そのため、高純度が求められる半導体製造用部品の加工にあたっては、製品の出荷前に焼き付き部を研削加工したり、薬液洗浄などして不純物部分を取り除く必要があった(例えば、特許文献1参照。)。特に、被加工体に線幅の狭い溝を研削加工する場合には細心の注意と熟練の技術が必要とされていた。
特開2001−9394号公報
As one of the types of electrical discharge machining equipment, a hole is drilled in a workpiece, a wire electrode is passed through the drilled hole, and the workpiece is cut by moving the wire electrode and the workpiece relative to each other. There is an electrical discharge machining device. According to this electric discharge machining apparatus, a final molded product having a ring-shaped portion can be obtained. Since the wire used in such an apparatus is made of a metal such as brass, galvanized piano wire, tungsten wire, or the like, metal impurities in the wire tend to stick to the surface of the workpiece. For this reason, when processing a semiconductor manufacturing part that requires high purity, it is necessary to grind the seizure part or remove the impurity part by chemical cleaning before shipping the product (see, for example, Patent Document 1). ). In particular, when grinding a narrow line width groove on the workpiece, great care and skill are required.
JP 2001-9394 A

そのため、被加工体の純度の向上と、研削加工や洗浄工程の簡略化が求められていた。   Therefore, improvement in the purity of the workpiece and simplification of the grinding process and cleaning process have been demanded.

即ち、本発明は、以下の記載事項に関する:
(1)炭素繊維により形成されたことを特徴とする放電加工用ワイヤ。
(2)上記炭素繊維の断面の直径は、0.02mm以下である上記(1)記載の放電加工用ワイヤ。
(3)上記炭素繊維は、引張強度が3500MPa以上である上記(1)又は(2)記載の放電加工用ワイヤ。
(4)上記炭素繊維は、複数のフィラメントの束からなり、15回/m以上で撚ってある上記(1)〜(3)のいずれかに記載の放電加工用ワイヤ。
(5)上記フィラメント数は、1000本以上である上記(4)記載の放電加工用ワイヤ。
(6)上記炭素繊維は、ポリアクリロニトリル系炭素樹脂である上記(1)〜(5)のいずれかに記載の放電加工用ワイヤ。
(7)上前記放電加工用ワイヤの被加工体は、炭化ケイ素焼結体である上記(1)〜(6)のいずれかに記載の放電加工用ワイヤ。
(8)上記炭素繊維は、表面にメッキ処理がなされている上記(1)〜(7)のいずれかに記載の放電加工用ワイヤ。
That is, the present invention relates to the following items:
(1) A wire for electric discharge machining formed of carbon fiber.
(2) The wire for electric discharge machining according to (1), wherein the carbon fiber has a cross-sectional diameter of 0.02 mm or less.
(3) The wire for electric discharge machining according to (1) or (2), wherein the carbon fiber has a tensile strength of 3500 MPa or more.
(4) The wire for electric discharge machining according to any one of (1) to (3), wherein the carbon fiber includes a bundle of a plurality of filaments and is twisted at 15 times / m or more.
(5) The wire for electric discharge machining according to (4), wherein the number of filaments is 1000 or more.
(6) The wire for electric discharge machining according to any one of (1) to (5), wherein the carbon fiber is a polyacrylonitrile-based carbon resin.
(7) The electric discharge machining wire according to any one of (1) to (6), wherein the workpiece of the electric discharge machining wire is a silicon carbide sintered body.
(8) The wire for electric discharge machining according to any one of (1) to (7), wherein a surface of the carbon fiber is plated.

研削加工や洗浄工程の簡略化を図ることができる。   The grinding process and the cleaning process can be simplified.

以下に実施形態を挙げて本発明を説明するが、本発明が以下の実施形態に限定されないことはいうまでもない。
図1はワーク1を配置した放電加工装置の概略観念図を示す。かかる放電加工装置は、
ワイヤ供給ローラ11と、
ワイヤ供給ローラ11から供給され、ワイヤガイド13と上部ワイヤガイド15を介してワーク1の貫通孔1aを通り抜けるワイヤ3と、
ワーク1が配置されたステージ4と、
ワーク1を取り囲む仮想線で示された加工槽35と、
加工槽35にポンプ33を介して接続された加工液タンク31と、
ステージ4の下部に配置された下部ワイヤガイド17を介してワイヤ3を巻き取るワイヤ巻き取りローラ19と、
ステージ4のX軸駆動部21とY軸駆動部23に接続され、また上部ワイヤガイド15のX軸駆動部25とY軸駆動部27に接続されたステージ4と上部ワイヤガイド15の動作を制御するCPU50と、
ワイヤガイド13と上部ワイヤガイド15の間に接続された電気エネルギ供給部42とステージ4に接続された電気エネルギ供給部44を有するワイヤ3に電源を供給する加工電源40と、を備える。
Hereinafter, the present invention will be described with reference to embodiments, but it goes without saying that the present invention is not limited to the following embodiments.
FIG. 1 is a schematic conceptual diagram of an electric discharge machining apparatus in which a workpiece 1 is arranged. Such an electric discharge machine is
A wire supply roller 11;
A wire 3 that is supplied from the wire supply roller 11 and passes through the through hole 1a of the workpiece 1 via the wire guide 13 and the upper wire guide 15;
Stage 4 on which workpiece 1 is arranged;
A processing tank 35 indicated by an imaginary line surrounding the work 1,
A processing liquid tank 31 connected to the processing tank 35 via a pump 33;
A wire take-up roller 19 for winding the wire 3 via a lower wire guide 17 disposed at the lower part of the stage 4;
Controls the operation of the stage 4 and the upper wire guide 15 connected to the X axis drive unit 21 and the Y axis drive unit 23 of the stage 4 and connected to the X axis drive unit 25 and the Y axis drive unit 27 of the upper wire guide 15. CPU50 to do,
An electrical energy supply unit 42 connected between the wire guide 13 and the upper wire guide 15 and a machining power supply 40 for supplying power to the wire 3 having the electrical energy supply unit 44 connected to the stage 4 are provided.

ワイヤ3は、炭素繊維により形成されていることが好ましい。炭素繊維は導電性があり、機械的特性、例えば密度が金属に比べて小さく、引張強度、引張弾性率が高く、疲労特性、磨耗特性、潤滑性に優れるからである。さらに熱的特性、例えば線膨張係数が小さく、寸法安定性に優れており、高温下における機械的性質の低下並びに極低温域での熱伝導率も小さいからである。また炭素繊維製のワイヤ3は金属製ワイヤに比して不純物濃度の含有量が極めて少ないため、ワーク1に放電加工した場合、ワイヤ3の不純物がワーク1表面に焼き付くおそれが極めて低いからである。   The wire 3 is preferably made of carbon fiber. This is because carbon fibers are electrically conductive, have mechanical properties such as a density lower than that of metal, high tensile strength and tensile elastic modulus, and excellent fatigue properties, wear properties, and lubricity. Furthermore, the thermal characteristics such as the linear expansion coefficient are small, the dimensional stability is excellent, the mechanical properties are lowered at high temperatures, and the thermal conductivity in the cryogenic temperature range is also small. Further, the carbon fiber wire 3 has a very low impurity concentration compared to the metal wire, and therefore, when the workpiece 1 is subjected to electric discharge machining, the possibility that the impurities of the wire 3 are seized on the surface of the workpiece 1 is extremely low. .

ワーク1に微細加工を行う観点からは炭素繊維の断面の直径は0.02mm以下であることが好ましい。ワイヤ3断面の直径の下限は特に制限されないが、0.005mm程度である。炭素繊維の引張強度は3500MPa以上であることが好ましい。上記強度よりも強度が低いと放電加工の際に、ワイヤ3が切れるおそれがあるからである。また炭素繊維は、複数のフィラメント、好ましくは1000本以上のフィラメント束からなることが好ましい。ワイヤ3の強度を上げてワイヤ3の切れを防止するためである。またワイヤ3は15回/m以上で撚ってあっても構わない。ワイヤ3をワーク1の貫通孔1aに挿入する際に挿入しやすくなるからである。またワイヤー径が一定となり寸法精度が向上するからである。ワーク1の高純度化を図る観点からは、炭素繊維中の鉄(Fe)、銅(Cu)、亜鉛(Zn)、タングステン(W)等の全不純物濃度の総計は100ppm以下が好ましい。   From the viewpoint of performing microfabrication on the workpiece 1, the diameter of the cross section of the carbon fiber is preferably 0.02 mm or less. The lower limit of the diameter of the cross section of the wire 3 is not particularly limited, but is about 0.005 mm. The tensile strength of the carbon fiber is preferably 3500 MPa or more. This is because if the strength is lower than the above strength, the wire 3 may be broken during electric discharge machining. The carbon fiber is preferably composed of a plurality of filaments, preferably 1000 or more filament bundles. This is because the strength of the wire 3 is increased to prevent the wire 3 from being cut. The wire 3 may be twisted at 15 turns / m or more. This is because it becomes easy to insert the wire 3 into the through hole 1a of the workpiece 1. In addition, the wire diameter is constant and the dimensional accuracy is improved. From the viewpoint of increasing the purity of the workpiece 1, the total concentration of all impurities such as iron (Fe), copper (Cu), zinc (Zn), tungsten (W), etc. in the carbon fiber is preferably 100 ppm or less.

炭素繊維としては、ポリアクリロニトリル系炭素樹脂やピッチ系炭素繊維が挙げられる。ポリアクリロニトリル系炭素樹脂としては、例えば東邦テナックス社製、商品名「ベスファイト」を用いることができる。尚、放電加工速度をあげる観点からは炭素繊維の表面にメッキ処理を施しても構わない。但し、ワーク1の純度の向上を図る観点からはメッキ処理なされていないことが好ましい。   Examples of the carbon fiber include polyacrylonitrile-based carbon resin and pitch-based carbon fiber. As the polyacrylonitrile-based carbon resin, for example, “BETHFITE” manufactured by Toho Tenax Co., Ltd. can be used. From the viewpoint of increasing the electric discharge machining speed, the surface of the carbon fiber may be plated. However, from the viewpoint of improving the purity of the workpiece 1, it is preferable that the plating process is not performed.

ワーク1とワイヤ3との間の相対運動は、ステージ4の移動により行われる。ステージ4の移動はX軸駆動部21とY軸駆動部23をそれぞれ制御することにより行われる。尚、放電加工装置としては、上記構成を備える装置であれば特に制限なく市販の放電加工装置を用いることができる。例えば三菱電機社製、商品名「ADOMAQ」を用いることができる。   The relative movement between the workpiece 1 and the wire 3 is performed by the movement of the stage 4. The stage 4 is moved by controlling the X-axis drive unit 21 and the Y-axis drive unit 23, respectively. In addition, as an electric discharge machine, if it is an apparatus provided with the said structure, a commercially available electric discharge machine can be used without a restriction | limiting in particular. For example, the product name “ADOMAQ” manufactured by Mitsubishi Electric Corporation can be used.

(放電加工方法)
まず、ワーク1を用意する。ここでは例として導電性を備えた高純度炭化ケイ素焼結体からなるブリヂストン株式会社製商品名「ピュアベータ」の円板状のワーク1を用いる。切り出された後のワーク1の最終形状はリング状の製品であるとする。
(Electrical discharge machining method)
First, work 1 is prepared. Here, as an example, a disk-shaped workpiece 1 having a trade name “Pure Beta” manufactured by Bridgestone Corporation and made of a high-purity silicon carbide sintered body having conductivity is used. It is assumed that the final shape of the work 1 after being cut out is a ring-shaped product.

次に、ワーク1の所定の位置に放電加工法を用いて貫通孔1aを設ける。貫通孔1aは図2に示すように、ワーク1の表面に中空部61aを備える放電電極61を押し付ける。そして加工溶液を供給しながら放電電極61に電流を流し、放電電極61とワーク1の間に生じた火花でワーク1を粉砕する。この工程を放電電極61を矢印Aの方向に向かって除々に移動させながら行う。その際、放電電極61の中空部61aから純水または加工溶液をワーク1の加工溝中に流し込み、加工溝中の粉砕紛をワーク1の表面に押し流しながら放電加工を行うことが好ましい。このようにして図3に示す仮想線で示す貫通孔1aを備えるワーク1を得る。   Next, the through-hole 1a is provided in the predetermined position of the workpiece | work 1 using the electrical discharge machining method. As shown in FIG. 2, the through-hole 1 a presses the discharge electrode 61 including the hollow portion 61 a on the surface of the work 1. Then, a current is passed through the discharge electrode 61 while supplying the machining solution, and the workpiece 1 is pulverized by a spark generated between the discharge electrode 61 and the workpiece 1. This step is performed while gradually moving the discharge electrode 61 in the direction of arrow A. At that time, it is preferable to carry out electric discharge machining while pouring pure water or a machining solution from the hollow portion 61 a of the discharge electrode 61 into the machining groove of the workpiece 1 and pushing the pulverized powder in the machining groove to the surface of the workpiece 1. In this way, a workpiece 1 having a through hole 1a indicated by a virtual line shown in FIG. 3 is obtained.

続いて、図4(a)(b)に示すように貫通孔1aを設けたワーク1をステージ4の中央に配置する。そして図5に示すようにワイヤ供給ローラ11から供給されたワイヤ3を、ワイヤ3ガイドと上部ワイヤガイド15を介してワーク1の貫通孔1aに通し、図6に示すようにステージ4下部に配置された下部ワイヤガイド17を介してワイヤ巻き取りローラ19で巻き取り、ワイヤ3を張る。   Subsequently, as shown in FIGS. 4A and 4B, the work 1 provided with the through hole 1 a is arranged at the center of the stage 4. Then, as shown in FIG. 5, the wire 3 supplied from the wire supply roller 11 is passed through the through hole 1a of the work 1 through the wire 3 guide and the upper wire guide 15, and is arranged at the lower part of the stage 4 as shown in FIG. The wire 3 is wound up by the wire winding roller 19 through the lower wire guide 17 and the wire 3 is stretched.

その後、加工電源40から電圧をワーク1とワイヤ3間に印加して放電によりワーク1の一部を溶融飛散する。その際、加工液タンク31からポンプ33を介して送られた加工液を仮想線で示される加工槽35内に設けられたノズル(図示せず)から、直接ワーク1に供給する。加工槽35には加工液や純水を浸漬させても構わない。加工液としては通常、イオン交換された水(純水に近い水)が用いられる。そしてステージ4の位置を少しずつ移動させて、ワーク1上に所望のパターンの溝を形成する。   Thereafter, a voltage is applied between the workpiece 1 and the wire 3 from the machining power source 40, and a part of the workpiece 1 is melted and scattered by electric discharge. At that time, the machining liquid sent from the machining liquid tank 31 via the pump 33 is directly supplied to the workpiece 1 from a nozzle (not shown) provided in the machining tank 35 indicated by a virtual line. A processing liquid or pure water may be immersed in the processing tank 35. Usually, ion-exchanged water (water close to pure water) is used as the processing liquid. Then, the position of the stage 4 is moved little by little to form a groove having a desired pattern on the work 1.

最後にワーク1表面の洗浄を行う。洗浄液としては、純水、蒸留水、イオン交換水又は酸溶液等が挙げられる。ワークの逆汚染を防止する観点からは純水が好ましい。純水としては、純度が100ppt以下のレベルで、かつ比抵抗が16〜18MΩ・cmのものが好ましく、純度が10ppt未満のものがより好ましい。また、洗浄液として酸溶液を用いる場合、沸硝酸液{HF/HNO/水(0.5/0.5/3)(体積比)}を使用することが好ましい。洗浄液に炭化ケイ素焼結体を浸漬する時間は、2分〜60分が好ましく、5分〜30分がより好ましく、10分〜20分がさらに好ましい。洗浄液に浸漬する場合、常に新しい洗浄液によって洗浄されるように、オーバーフロー方式で行ってもよく、さらに、この方式とカスケード方式とを組み合わせて行ってもよい。炭化ケイ素焼結体の洗浄方法に用いられる洗浄装置としては、従来公知の装置や、従来公知の装置に改良を加えた装置を用いることができる。尚、洗浄方法は上記溶液洗浄に制限されず、超音波洗浄並びに上記溶液洗浄を組合せてもよい。 Finally, the surface of the workpiece 1 is cleaned. Examples of the cleaning liquid include pure water, distilled water, ion exchange water, and acid solution. Pure water is preferable from the viewpoint of preventing back contamination of the workpiece. The pure water preferably has a purity level of 100 ppt or less and a specific resistance of 16 to 18 MΩ · cm, more preferably a purity of less than 10 ppt. In the case of using an acid solution as the washing liquid, it is preferable to use a boiling nitric acid solution {HF / HNO 3 / water (0.5 / 0.5 / 3) (volume ratio)}. The time for immersing the silicon carbide sintered body in the cleaning liquid is preferably 2 minutes to 60 minutes, more preferably 5 minutes to 30 minutes, and even more preferably 10 minutes to 20 minutes. When immersing in the cleaning liquid, the overflow method may be performed so that the cleaning liquid is always cleaned with a new cleaning liquid, and this method may be combined with the cascade method. As a cleaning device used in the method for cleaning a silicon carbide sintered body, a conventionally known device or a device obtained by improving a conventionally known device can be used. Note that the cleaning method is not limited to the solution cleaning described above, and ultrasonic cleaning and the solution cleaning may be combined.

上記実施形態にかかる放電加工方法によれば、炭素繊維からなるワイヤ3を用いるため、不純物がワーク1に付着しずらい。そのため従来必要とされていた研削工程や洗浄工程の簡略化を図ることができる。さらに炭素繊維からなるワイヤ3は、従来のワイヤに比して直径が短いため、線幅の狭い溝を加工することができる。   According to the electric discharge machining method according to the above embodiment, since the wire 3 made of carbon fiber is used, impurities are difficult to adhere to the workpiece 1. Therefore, it is possible to simplify the grinding process and the cleaning process that have been conventionally required. Furthermore, since the wire 3 made of carbon fiber has a shorter diameter than a conventional wire, a groove having a narrow line width can be processed.

本実施形態により得られた炭化ケイ素焼結体は、半導体各種部材及び電子部品等に好適に使用することができる。半導体各種部材としては、ダミーウェハ、ヒーター、プラズマエッチング電極、イオン注入装置ターゲット等の高純度が望まれる部材が挙げられる。   The silicon carbide sintered body obtained according to the present embodiment can be suitably used for various semiconductor members and electronic components. Examples of various semiconductor members include members that require high purity, such as dummy wafers, heaters, plasma etching electrodes, ion implantation apparatus targets, and the like.

以下に、本発明の実施例を示すが、本発明はこれら実施例に何ら制限されない。   Examples of the present invention will be shown below, but the present invention is not limited to these examples.

(実施例)(比較例1、2)
上記実施形態の手法に従って、ワーク1に放電加工を行った。
ワーク1としては、ブリヂストン株式会社製、商標名「ピュアベータ」の高純度炭化ケイ素焼結体からなる直径40mm厚さ30mmの円板状試験片を用いた。
放電加工機としては、三菱電機社製、商品名「ADOMAQ」の改良型放電加工機を用いた。
炭素繊維ワイヤ3としては、東邦ラナックス株式会社製、商品名「ベスファイト」のフィラメント数12000本、撚り回数15回/m、直径0.007mmのワイヤ3を用いた。黄銅ワイヤ3としては、株式会社KHS社製、商品名「KHワイヤ3」の直径0.15mmのワイヤ3を用いた。黄銅被覆ピアノ線ワイヤ3としては、株式会社KHS社製、商品名「APワイヤ3」の直径0.05mmのワイヤ3を用いた。
洗浄条件としては、超音波をかけながらの純水洗浄40分、FMN溶液(フッ酸、硝酸、純水)洗浄40分、超音波をかけながらの純水洗浄30分、50%硝酸洗浄60分、超音波をかけながらの純水洗浄5分、純水洗浄5分の順番でワーク1を洗浄した。
ワーク1に放電加工を行った直後に、不純物元素濃度を測定した。また、洗浄後にワーク1の平面と溝の不純物元素濃度を測定した。また、参考例として放電加工前のワーク1の表面の不純物元素濃度を測定した。得られた分析結果をそれぞれ表1、2、3に示す。不純物元素濃度としては、鉄(Fe)、銅(Cu)、亜鉛(Zn)の濃度を測定した。分析装置としては、全反射蛍光X線分析装置を用いた。

Figure 2007030075
Figure 2007030075
Figure 2007030075
(Example) (Comparative Examples 1 and 2)
The workpiece 1 was subjected to electric discharge machining according to the method of the above embodiment.
As the work 1, a disk-shaped test piece having a diameter of 40 mm and a thickness of 30 mm made of a high-purity silicon carbide sintered body manufactured by Bridgestone Corporation and trade name “Pure Beta” was used.
As the electric discharge machine, an improved electric discharge machine manufactured by Mitsubishi Electric Corporation and having a trade name “ADOMAQ” was used.
As the carbon fiber wire 3, a wire 3 made by Toho Lanax Co., Ltd., having a trade name of “Besfite” having 12,000 filaments, 15 twists / m, and a diameter of 0.007 mm was used. As the brass wire 3, a wire 3 having a diameter of 0.15 mm manufactured by KHS Corporation and having a trade name “KH wire 3” was used. As the brass-coated piano wire 3, a wire 3 having a diameter of 0.05 mm made by KHS Co., Ltd. and trade name “AP wire 3” was used.
As cleaning conditions, pure water cleaning for 40 minutes while applying ultrasonic waves, FMN solution (hydrofluoric acid, nitric acid, pure water) cleaning for 40 minutes, pure water cleaning for 30 minutes while applying ultrasonic waves, 50% nitric acid cleaning for 60 minutes The workpiece 1 was cleaned in the order of 5 minutes of pure water cleaning while applying ultrasonic waves and 5 minutes of pure water cleaning.
Immediately after electric discharge machining was performed on the workpiece 1, the impurity element concentration was measured. Further, after cleaning, the impurity element concentrations in the plane and groove of the workpiece 1 were measured. As a reference example, the impurity element concentration on the surface of the workpiece 1 before electric discharge machining was measured. The obtained analysis results are shown in Tables 1, 2, and 3, respectively. As the impurity element concentration, the concentrations of iron (Fe), copper (Cu), and zinc (Zn) were measured. A total reflection X-ray fluorescence analyzer was used as the analyzer.
Figure 2007030075
Figure 2007030075
Figure 2007030075

図1はワークを配置した放電加工装置の概略観念図を示す。FIG. 1 is a schematic conceptual diagram of an electric discharge machining apparatus in which a workpiece is arranged. 図2は、ワークに放電加工法を用いて貫通孔を設ける工程図を示す。FIG. 2 is a process diagram in which a through hole is provided in a workpiece using an electric discharge machining method. 図3は、貫通孔を備えるワークの側面図を示す。FIG. 3 shows a side view of a workpiece having a through hole. 図4(a)はステージの側面図を示し、図4(b)はステージの上面図を示す。4A shows a side view of the stage, and FIG. 4B shows a top view of the stage. 図5はワークの貫通孔にワイヤを通す工程図を示す。FIG. 5 shows a process diagram for passing the wire through the through hole of the workpiece. 図6はワークの貫通孔に通したワイヤを巻き取る工程図を示す。FIG. 6 is a process diagram for winding the wire passed through the through hole of the workpiece.

符号の説明Explanation of symbols

1…ワーク
1a…貫通孔
3…ワイヤ
4…ステージ
11…ワイヤ供給ローラ
13、18…ワイヤガイド
15…上部ワイヤガイド
17…下部ワイヤガイド
19…ワイヤ巻き取りローラ
21、25…X軸駆動部
23、27…Y軸駆動部
31…加工液タンク
33…ポンプ
35…加工槽
40…加工電源
42、44…電気エネルギ供給部
50…CPU
DESCRIPTION OF SYMBOLS 1 ... Work 1a ... Through-hole 3 ... Wire 4 ... Stage 11 ... Wire supply roller 13, 18 ... Wire guide 15 ... Upper wire guide 17 ... Lower wire guide 19 ... Wire winding roller 21, 25 ... X-axis drive part 23, 27 ... Y-axis drive unit 31 ... working fluid tank 33 ... pump 35 ... processing tank 40 ... processing power supply 42, 44 ... electric energy supply unit 50 ... CPU

Claims (8)

炭素繊維により形成されたことを特徴とする放電加工用ワイヤ。   A wire for electric discharge machining formed of carbon fiber. 前記炭素繊維の断面の直径は、0.02mm以下であることを特徴とする請求項1記載の放電加工用ワイヤ。   The wire for electric discharge machining according to claim 1, wherein a diameter of a cross section of the carbon fiber is 0.02 mm or less. 前記炭素繊維は、引張強度が3500MPa以上であることを特徴とする請求項1又は2記載の放電加工用ワイヤ。   The wire for electric discharge machining according to claim 1 or 2, wherein the carbon fiber has a tensile strength of 3500 MPa or more. 前記炭素繊維は、複数のフィラメントの束からなり、15回/m以上で撚ってあることを特徴とする請求項1〜3のいずれかに記載の放電加工用ワイヤ。   The wire for electric discharge machining according to any one of claims 1 to 3, wherein the carbon fiber comprises a bundle of a plurality of filaments and is twisted at 15 times / m or more. 前記フィラメント数は、1000本以上であることを特徴とする請求項4記載の放電加工用ワイヤ。   The wire for electric discharge machining according to claim 4, wherein the number of filaments is 1000 or more. 前記炭素繊維は、ポリアクリロニトリル系炭素樹脂であることを特徴とする請求項1〜5のいずれかに記載の放電加工用ワイヤ。   The wire for electric discharge machining according to any one of claims 1 to 5, wherein the carbon fiber is a polyacrylonitrile-based carbon resin. 前記放電加工用ワイヤの被加工体は、炭化ケイ素焼結体であることを特徴とする請求項1〜6のいずれかに記載の放電加工用ワイヤ。   The electric discharge machining wire according to any one of claims 1 to 6, wherein a workpiece of the electric discharge machining wire is a silicon carbide sintered body. 前記炭素繊維は、表面にメッキ処理がなされていることを特徴とする請求項1〜7のいずれかに記載の放電加工用ワイヤ。   The wire for electric discharge machining according to claim 1, wherein a surface of the carbon fiber is plated.
JP2005214221A 2005-07-25 2005-07-25 Electric discharge machining wire Pending JP2007030075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214221A JP2007030075A (en) 2005-07-25 2005-07-25 Electric discharge machining wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214221A JP2007030075A (en) 2005-07-25 2005-07-25 Electric discharge machining wire

Publications (1)

Publication Number Publication Date
JP2007030075A true JP2007030075A (en) 2007-02-08

Family

ID=37789946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214221A Pending JP2007030075A (en) 2005-07-25 2005-07-25 Electric discharge machining wire

Country Status (1)

Country Link
JP (1) JP2007030075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7490950B2 (en) 2019-12-12 2024-05-28 三菱マテリアル株式会社 Manufacturing method for insulating circuit board

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188025A (en) * 1985-02-14 1986-08-21 Riken Corp Electrode wire for electric discharge machining
JPS6257823A (en) * 1985-09-06 1987-03-13 Kawatetsu Techno Res Kk Electrode wire for wire electric discharge machining
JPS6257824A (en) * 1985-09-06 1987-03-13 Kawatetsu Techno Res Kk Electrode wire for wire electric discharge machining
JPS62130824U (en) * 1986-02-12 1987-08-18
JPS62271632A (en) * 1986-05-19 1987-11-25 Brother Ind Ltd Wire electrode for wire cut electric discharge machining
JPS63134119A (en) * 1986-11-25 1988-06-06 Mitsubishi Electric Corp Electrode material for wire-cut electric discharge machining
JPS63134118A (en) * 1986-11-25 1988-06-06 Mitsubishi Electric Corp Electrode material for wire-cut electric discharge machining
JPH01289621A (en) * 1988-05-17 1989-11-21 Mitsubishi Electric Corp Electrode material for wire cut electric discharge machining
JPH08156152A (en) * 1994-12-09 1996-06-18 Sho Bond Constr Co Ltd Reinforcing use fabric base material
JP2003159616A (en) * 2001-11-27 2003-06-03 Bridgestone Corp Method for machining silicon carbide sintered compact
JP2005163197A (en) * 2003-11-28 2005-06-23 Mitsubishi Rayon Co Ltd Method for producing metal-coated carbon fiber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188025A (en) * 1985-02-14 1986-08-21 Riken Corp Electrode wire for electric discharge machining
JPS6257823A (en) * 1985-09-06 1987-03-13 Kawatetsu Techno Res Kk Electrode wire for wire electric discharge machining
JPS6257824A (en) * 1985-09-06 1987-03-13 Kawatetsu Techno Res Kk Electrode wire for wire electric discharge machining
JPS62130824U (en) * 1986-02-12 1987-08-18
JPS62271632A (en) * 1986-05-19 1987-11-25 Brother Ind Ltd Wire electrode for wire cut electric discharge machining
JPS63134119A (en) * 1986-11-25 1988-06-06 Mitsubishi Electric Corp Electrode material for wire-cut electric discharge machining
JPS63134118A (en) * 1986-11-25 1988-06-06 Mitsubishi Electric Corp Electrode material for wire-cut electric discharge machining
JPH01289621A (en) * 1988-05-17 1989-11-21 Mitsubishi Electric Corp Electrode material for wire cut electric discharge machining
JPH08156152A (en) * 1994-12-09 1996-06-18 Sho Bond Constr Co Ltd Reinforcing use fabric base material
JP2003159616A (en) * 2001-11-27 2003-06-03 Bridgestone Corp Method for machining silicon carbide sintered compact
JP2005163197A (en) * 2003-11-28 2005-06-23 Mitsubishi Rayon Co Ltd Method for producing metal-coated carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7490950B2 (en) 2019-12-12 2024-05-28 三菱マテリアル株式会社 Manufacturing method for insulating circuit board

Similar Documents

Publication Publication Date Title
Oza et al. Traveling wire electrochemical discharge machining (TW-ECDM) of quartz using zinc coated brass wire: investigations on material removal rate and kerf width characteristics
RU2516125C2 (en) Wire electrode for arc cutting
JP6089128B2 (en) Electrode wire for electric discharge machining
CN105834533B (en) Wire electrode for slow wire feeding spark cutting
Bhuyan et al. Experimental study of traveling wire electrochemical spark machining of borosilicate glass
Dongre et al. Multi-objective optimization for silicon wafer slicing using wire-EDM process
JP6380174B2 (en) Silver plated copper terminal material and terminal
KR20040068601A (en) Wire for high-speed electrical discharge machining
JPH09150314A (en) Wire saw and manufacture thereof
Boopathi et al. Experimental comparative study of near‐dry wire‐cut electrical discharge machining (WEDM)
JP2010260151A (en) Wire electric discharge machining device and method for electric discharge machining
JP6317908B2 (en) Electrode wire for electric discharge machining and method for manufacturing the same
Choudhury et al. Study on the influence of hybridized powder mixed dielectric in electric discharge machining of alloy steels
TW201540403A (en) Electrode silk for linear cutting and linear cutting device using the same
WO2006019163A1 (en) Production device and production method for extra-long tool
JP2007030075A (en) Electric discharge machining wire
KR20130053798A (en) Device and method of hybrid process for micro electrochemical discharge machining equipped with electrolytic polishing and electrode cleaning
KR20010055980A (en) Wire saw with adhesive diamond electrodeposited on it and its manufacturing method
JP5613125B2 (en) Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
Mitra et al. Analysis of traveling wire electrochemical discharge machining of Hylam based composites by Taguchi method
TWI552820B (en) A fixed abrasive sawing wire and producing method thereof
JP5891470B2 (en) Cutting method of silicon ingot
TWI722646B (en) Device for slicing ingot
CN113275659B (en) Superfine high-strength alloy tungsten wire diamond wire saw and preparation method thereof
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100810

A131 Notification of reasons for refusal

Effective date: 20100817

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101215