JP2007030068A - Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut - Google Patents
Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut Download PDFInfo
- Publication number
- JP2007030068A JP2007030068A JP2005213911A JP2005213911A JP2007030068A JP 2007030068 A JP2007030068 A JP 2007030068A JP 2005213911 A JP2005213911 A JP 2005213911A JP 2005213911 A JP2005213911 A JP 2005213911A JP 2007030068 A JP2007030068 A JP 2007030068A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- content point
- cutting
- point
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高い発熱を伴なう高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。 This invention exhibits excellent chipping resistance with a hard coating layer, especially when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel under high-speed cutting conditions with high heat generation. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
1〜15μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-X TiX)N(ただし、原子比で、Xは0.05〜0.30を示す)、
上記Al最低含有点が、組成式:(Al1-YTiY)N(ただし、原子比で、Yは0.35〜0.60を示す)、
を満足し、
かつ、隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであるAlとTiの複合窒化物層[以下、(Al,Ti)Nで示す]層、からなる硬質被覆層を物理蒸着してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の硬質被覆層である(Al,Ti)N層が、成分濃度分布変化構造のAlによってすぐれた高温硬さと耐熱性、同Tiによってすぐれた高温強度を具備することから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削を通常の条件で行うのに用いた場合は勿論のこと、これを高速切削加工条件で行うのに用いた場合にもすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
And having an average layer thickness of 1 to 15 μm, and along the layer thickness direction, Al highest content points and Al lowest content points are alternately present at predetermined intervals, and from the Al highest content point Al lowest content point, having a component concentration distribution structure in which the Al and Ti content continuously change from the Al lowest content point to the Al highest content point, respectively,
Furthermore, the Al highest content point, the composition formula: (Al 1-X Ti X ) N ( provided that an atomic ratio, X is shows the 0.05 to 0.30),
The Al minimum content point is a composition formula: (Al 1-Y Ti Y ) N (where Y represents 0.35 to 0.60 in atomic ratio),
Satisfied,
In addition, an Al and Ti composite nitride layer [hereinafter referred to as (Al, Ti) N] layer in which the interval between the adjacent Al highest content point and Al lowest content point is 0.01 to 0.1 μm, A coated carbide tool formed by physically vapor-depositing a hard coating layer is known, and the (Al, Ti) N layer, which is a hard coating layer of the coated carbide tool, is excellent due to Al having a component concentration distribution change structure. High temperature hardness and heat resistance, as well as excellent high temperature strength due to the same Ti, of course, when used to perform continuous cutting and intermittent cutting of various general steels and ordinary cast iron under normal conditions In addition, it is also known that excellent cutting performance is exhibited even when this is used for high-speed cutting.
さらに、上記の従来被覆超硬工具は、例えば図2(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Al−Ti合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Al,Ti)N層を形成することにより製造されるものであり、この結果形成された(Al,Ti)N層において、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記超硬基体が上記の他方側の相対的にTi含有量の高い(Al含有量の低い)Al−Ti合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造が形成されるものである。
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、被覆超硬工具には被削材の材種になるべく影響を受けない汎用性、すなわち、できるだけ多くの材種の被削材の切削加工が可能な被覆超硬工具が求められる傾向にあるが、上記の従来被覆超硬工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の高速切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高速で行った場合には、切削時の高い発熱によって難削材からなる被削材およびその切粉は高温に加熱されて粘性度が一段と増大し、これに伴なって硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, FA has been remarkable for cutting devices, but on the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and as a result, coated carbide tools have an influence on the grade of work material as much as possible. However, in the conventional coated carbide tools described above, this is a low alloy steel. There is no problem when used for high-speed cutting of general steel such as steel or carbon steel, or ordinary cast iron such as ductile cast iron or gray cast iron, but stainless steel with high chip viscosity and easy welding to the tool surface. When cutting difficult-to-cut materials such as steel, high-manganese steel, and mild steel at high speed, the work material and chips made of difficult-to-cut materials are heated to a high temperature due to high heat generated during cutting. Increased further. As a result, the adhesiveness and reactivity to the surface of the hard coating layer are further increased, and as a result, the occurrence of chipping (slight chipping) at the cutting edge portion increases rapidly, which causes a service life in a relatively short time. Is the current situation.
そこで、本発明者等は、上述のような観点から、特に難削材の切削加工で、
硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Al,Ti)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(以下、VOMで示す。ただし、Mは酸素のバナジウム(V)に対する相対含有割合の変化値を示し、原子比で、VO、V2O3、V2O5、およびVO2などを示す)層を同じく1〜5μmの平均層厚で形成すると、前記VOM層は表面滑り性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間には常にすぐれた滑り性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減し、前記下部層である(Al,Ti)N層を十分に保護することから、(Al,Ti)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
Therefore, the present inventors, from the viewpoint as described above, particularly in cutting of difficult-to-cut materials,
In order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer, as a result of research conducted focusing on the above conventional coated carbide tool,
(A) The (Al, Ti) N layer, which is a hard coating layer of the above-mentioned conventional coated carbide tool, is formed with an average layer thickness of 1 to 5 μm as a lower layer, and a vanadium oxide (hereinafter referred to as VO) as an upper layer thereon. M represents a change value of the relative content ratio of oxygen to vanadium (V), and the atomic ratio indicates VO, V 2 O 3 , V 2 O 5 , VO 2, etc.) cutting edge to form with an average layer thickness of 1 to 5 [mu] m, the VO M layer is excellent surface slipperiness, even when this result workpiece by heat generated during cutting (difficult-to-cut materials) and its cutting scraps is high temperature heating Excellent slipperiness is always ensured between the part (the rake face and the flank face, and the cutting edge ridge line where these two surfaces intersect) and the work material and the chip, and the work material and the cutting edge part of the chip The adhesiveness and reactivity to the surface is significantly reduced, the lower layer ( l, Ti) N-layer because it sufficiently protect, (Al, Ti) having excellent characteristics N layer may become to be sufficiently exhibited for a long time.
(b)一方、上部層であるVOM層と下部層である(Al,Ti)N層との密着性は十分でなく、特に断続切削を行った場合に前記の層間の密着性不足が原因でチッピングが発生し易いが、前記VOM層と(Al,Ti)N層との間に窒化バナジウム(以下、VNで示す)層を0.1〜1.5μmの平均層厚で介在させると、前記VN層は前記VOM層および(Al,Ti)N層のいずれとも強固に密着することから、これら両層間にはすぐれた密着性が確保されるようになること。 (B) On the other hand, a VO M layer and the lower layer is an upper layer (Al, Ti) adhesion to the N layer is not sufficient, because the insufficient adhesion between layers, particularly when subjected to intermittent cutting Although in chipping occurs easily, the VO M layer (Al, Ti) vanadium nitride between the N layer (hereinafter, indicated by VN) when interposing the layer with an average layer thickness of 0.1~1.5μm , wherein the the VN layer VO M layer and (Al, Ti) since also firmly adhered to one of the N layer, it comes to be ensured good adhesion to both of these layers.
(c)上記(a)および(b)で構成される硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Al−Ti合金をカソード電極(蒸発源)として対向配置し、さらに前記両Al−Ti合金のそれぞれから90度離れた位置にカソード電極(蒸発源)として金属V(バナジウム)を配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記対向配置した両Al−Ti合金のカソード電極(蒸発源)とアノード電極との間にそれぞれアーク放電を発生させて、前記超硬基体の表面に下部層として(Al,Ti)N層を1〜5μmの平均層厚で蒸着し、ついで、前記両Al−Ti合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、同じく装置内雰囲気を窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、層間密着層としてVN層を0.1〜1.5μmの平均層厚で蒸着した後、前記金属Vとアノード電極との間のアーク放電を停止し、前記蒸着装置内の雰囲気を酸素雰囲気に切り替えた時点で、再びカソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、前記VN層に重ねて上部層として1〜5μmの平均層厚でVOM層を蒸着することにより形成することができること。 (C) The hard coating layer constituted by the above (a) and (b) is, for example, an arc ion plating apparatus having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. That is, a rotating table for mounting a carbide substrate is provided in the center of the apparatus, and an Al—Ti alloy with a relatively high Al content (low Ti content) is placed on one side and the other side is placed with the turning table sandwiched between them. In particular, an Al—Ti alloy having a high Ti content (low Al content) is arranged as a cathode electrode (evaporation source), and the cathode electrode (evaporation) is positioned 90 degrees away from each of the two Al—Ti alloys. An arc ion plating apparatus in which metal V (vanadium) is disposed as a source), and a plurality of cemented carbide substrates are disposed along the outer peripheral portion at a predetermined radial distance from the central axis on the rotary table of the apparatus. Re In this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the carbide substrate itself is rotated for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. Specifically, first, arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of both the Al-Ti alloys arranged opposite to each other as a lower layer (Al, Ti) on the surface of the cemented carbide substrate. The N layer is deposited with an average layer thickness of 1 to 5 μm, and then the arc discharge between the cathode electrode (evaporation source) and the anode electrode of both the Al—Ti alloys is stopped, and the atmosphere in the apparatus is changed to a nitrogen atmosphere. While holding, an arc discharge was generated between the metal V as the cathode electrode (evaporation source) and the anode electrode, and a VN layer was deposited as an interlayer adhesion layer with an average layer thickness of 0.1 to 1.5 μm. After When the arc discharge between the metal V and the anode electrode is stopped and the atmosphere in the vapor deposition apparatus is switched to the oxygen atmosphere, the arc discharge is again performed between the metal V as the cathode electrode (evaporation source) and the anode electrode. that can be a by generating, formed by depositing VO M layer with an average layer thickness of 1~5μm as an upper layer overlapping the VN layer.
(d)上記の下部層、層間密着層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削加工でも、下部層である(Al,Ti)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層の介在によって前記下部層との間にすぐれた密着接合性が確保されたVOM層の作用で、前記難削材および切粉との間にすぐれた表面滑り性が確保され、前記難削材および切粉の切刃部表面に対する粘着性および反応性は著しく低減された状態で切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The coated carbide tool formed by vapor-depositing the hard coating layer composed of the lower layer, the interlayer adhesion layer, and the upper layer is a stainless steel, a high manganese steel, and a mild steel that are particularly highly viscous and sticky. Even in high-speed cutting with high heat generation of difficult-to-cut materials such as (Al, Ti) N layer, the lower layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and an interlayer adhesion layer wherein the action of VO M layer excellent adhesion bonding property is secured between the lower layer, excellent surface slipperiness between the flame cut materials and chips is ensured by the interposition of VN layer as, Since the cutting and cutting of the difficult-to-cut material and the chips to the surface of the cutting edge portion are significantly reduced, chipping does not occur in the cutting edge portion and can be used for a long time. Excellent wear resistance To be like that.
The research results shown in (a) to (d) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-X TiX)N(ただし、原子比で、Xは0.05〜0.30を示す)、
上記Al最低含有点が、組成式:(Al1-YTiY)N(ただし、原子比で、Yは0.35〜0.60を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである(Al,Ti)N層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有するVN層からなる層間密着層、
(c)1〜5μmの平均層厚を有するVOM層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) It has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al maximum content points and Al minimum content points are alternately present at predetermined intervals, and the Al maximum content A component concentration distribution structure in which the Al and Ti contents continuously change from the point to the Al minimum content point, from the Al minimum content point to the Al maximum content point,
Furthermore, the Al highest content point, the composition formula: (Al 1-X Ti X ) N ( provided that an atomic ratio, X is shows the 0.05 to 0.30),
The Al minimum content point is a composition formula: (Al 1-Y Ti Y ) N (where Y represents 0.35 to 0.60 in atomic ratio),
A lower layer composed of an (Al, Ti) N layer, wherein the interval between the Al highest content point and the Al minimum content point adjacent to each other is 0.01 to 0.1 μm,
(B) an interlayer adhesion layer comprising a VN layer having an average layer thickness of 0.1 to 1.5 μm;
(C) an upper layer composed of VO M layer having an average layer thickness of 1 to 5 [mu] m,
It is characterized by a coated cemented carbide tool that forms a hard coating layer composed of the above (a) to (c) and exhibits excellent chipping resistance in cutting of difficult-to-cut materials. is there.
つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(A)下部層
(a)Al最高含有点の組成
(Al,Ti)N層におけるAlは、高温硬さおよび耐熱性を向上させ、一方同Tiは高温強度を向上させる目的で含有するものであり、したがってAl最高含有点でのTiの割合(X値)がAlとの合量に占める割合(原子比)で0.05未満では、Tiの割合が低くなり過ぎて、急激に高温強度が低下し、切刃にチッピング(微小欠け)などが発生し易くなり、一方その割合(X値)が同じく0.30を越えると、Alの割合が低くなり過ぎて、所望のすぐれた高温硬さおよび耐熱性を確保することができなることから、その割合を0.05〜0.30と定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Lower layer (a) Composition of the highest Al content point Al in the (Al, Ti) N layer improves high-temperature hardness and heat resistance, while Ti is included for the purpose of improving high-temperature strength. Therefore, if the Ti ratio (X value) at the highest Al content point is less than 0.05 in terms of the total amount with Al (atomic ratio), the Ti ratio becomes too low and the high-temperature strength suddenly increases. When the ratio (X value) exceeds 0.30, the Al ratio becomes too low and the desired excellent high-temperature hardness. And since the heat resistance could not be ensured, the ratio was determined to be 0.05 to 0.30.
(b)Al最低含有点の組成
上記の通りAl最高含有点は高温硬さおよび耐熱性のすぐれたものであるが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、Ti含有割合が相対的に高く、これによって高い高温強度を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがってTiの割合(Y値)がAlとの合量に占める割合(原子比)で0.35未満では、所望のすぐれた高温強度を確保することができず、一方その割合(Y値)が同じく0.60を越えると、相対的にTiの割合が多くなり過ぎて、Al最低含有点に所望の高温硬さおよび耐熱性を具備せしめることができなくなることから、その割合を0.35〜0.60と定めた。
(B) Composition of Al minimum content point As described above, the Al maximum content point is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in high-temperature strength. In order to compensate for this, the Ti content ratio is relatively high, thereby interposing the Al minimum content points that have high high-temperature strength alternately in the thickness direction, and therefore the Ti ratio (Y value) is If the ratio (atomic ratio) to the total amount with Al is less than 0.35, the desired excellent high-temperature strength cannot be secured, while if the ratio (Y value) also exceeds 0.60, In particular, the proportion of Ti is excessively increased, and the minimum Al content point cannot be provided with the desired high-temperature hardness and heat resistance. Therefore, the proportion is set to 0.35 to 0.60.
(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温特性および高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Al最低含有点であれば高温特性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
(C) Interval between the highest Al content point and the lowest Al content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. As a result, each layer has a desired high temperature. When it becomes impossible to secure the characteristics and high temperature strength and the interval exceeds 0.1 μm, the disadvantages of each point, that is, when the Al highest content point is insufficient high temperature strength, when the Al minimum content point is high temperature characteristics The shortage appears locally in the layer, and this makes it easier for chipping to occur on the cutting edge and promotes the progress of wear, so the interval was set to 0.01 to 0.1 μm.
(d)平均層厚
その平均層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が5μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur on the cutting edge. The average layer thickness was determined to be 1 to 5 μm.
(B)層間密着層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が1.5μmを越えると、硬質被覆層の強度が層間密着層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜1.5μmと定めた。
(B) Average layer thickness of interlayer adhesion layer If the average layer thickness is less than 0.1 μm, it is not possible to ensure a strong bonding strength between the upper layer and the lower layer, while the average layer thickness is 1.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases in the interlayer adhesion layer portion, which causes the occurrence of chipping. Therefore, the average layer thickness was determined to be 0.1 to 1.5 μm.
(C)上部層の平均層厚
上部層を構成するVOM層は、すぐれた表面滑り性を有し、上記の通り被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Al,Ti)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が1μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
VO M layer constituting the average layer thickness top layer of (C) the upper layer has excellent surface slipperiness, as described above workpiece tack and reactivity to (difficult-to-cut materials) and chips are very This is low, and since the work material is maintained without being changed even when the work material is heated at the time of cutting, the lower layer (Al, Ti) N layer is separated from the work material and chips heated at the high temperature. Protects and suppresses the occurrence of chipping, but if the average layer thickness is less than 1 μm, the desired effect cannot be obtained in the above-described operation, while if the average layer thickness exceeds 5 μm and becomes too thick. Since the chipping is likely to occur, the average layer thickness is determined to be 1 to 5 μm.
この発明の被覆超硬工具は、硬質被覆層を構成する下部層の(Al,Ti)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同層間密着層としてのVN層によって強固に密着接合した上部層としてのVOM層によって、被削材(難削材)および切粉との間にすぐれた表面滑り性が確保されることから、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削加工でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated carbide tool of the present invention, the lower (Al, Ti) N layer constituting the hard coating layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and as an interlayer adhesion layer. by the VO M layer as an upper layer was firmly adhered joined by VN layer, since the superior surface slipperiness between the workpiece (difficult-to-cut materials) and chips is ensured, in particular viscosity and tack Even in high-speed cutting with high heat generation of difficult-to-cut materials such as high-grade stainless steel, high-manganese steel, and mild steel, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time. is there.
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。 Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / TiCN-based cemented carbide substrates B-1 to B-6 having a chip shape of CNMG120408 were formed.
(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで、一方側にカソード電極(蒸発源)として下部層のAl最高含有点形成用Al−Ti合金、他方側に同じく下部層のAl最低含有点形成用Al−Ti合金を対向配置し、さらに前記回転テーブルに沿って、かつ前記Al−Ti合金のそれぞれから90度離れた位置に同じくカソード電極(蒸発源)として層間密着層および上部層形成用金属Vを配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記下部層形成用両Al−Ti合金のうちのいずれか一方とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Al−Ti合金によってボンバード洗浄し、
(c)ついで,装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最高含有点形成用Al−Ti合金およびAl最低含有点形成用Al−Ti合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚を有する(Al,Ti)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用両Al−Ti合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じく4Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧も同じく−100Vとした条件で、カソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3,4に示される目標層厚のVN層を硬質被覆層の層間密着層として蒸着形成し、
(e)上記金属Vとアノード電極とのアーク放電を停止し、前記蒸着装置内の雰囲気を0.2Paの酸素雰囲気に切り替えた時点で、再びカソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、同じく表3,4に示される目標層厚のVOM層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, sandwiching the rotary table, the uppermost Al of the lower layer as the cathode electrode (evaporation source) on one side Al-Ti alloy for forming contained points, Al-Ti alloy for forming the lowest Al content point of the lower layer on the other side are arranged opposite to each other, and further along the rotary table and 90 degrees from each of the Al-Ti alloys. Similarly, the interlayer adhesion layer and the upper layer forming metal V are arranged as cathode electrodes (evaporation sources) at remote positions,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between either one of the two Al-Ti alloys for forming the lower layer of the cathode electrode and the anode electrode. The substrate surface is bombarded with the Al-Ti alloy,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating on the rotary table, An arc discharge is generated by flowing a current of 100 A between each cathode electrode (the Al-Ti alloy for forming the highest Al content point and the Al-Ti alloy for forming the lowest Al content point) and the anode electrode. On the surface of the hard substrate, the Al highest content point and the Al lowest content point of the target composition shown in Tables 3 and 4 along the layer thickness direction are alternately present at the target intervals shown in Tables 3 and 4 alternately. And having a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and , (Al, Ti) having a target layer thickness shown in 4 N layer were vapor deposited as the lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of both Al-Ti alloys for forming the lower layer is stopped, and the atmosphere in the apparatus is similarly maintained in a 4 Pa nitrogen atmosphere. Under the condition that the DC bias voltage is also -100 V, an arc discharge is generated by flowing a current of 120 A between the metal V of the cathode electrode and the anode electrode, and the target layer thicknesses shown in Tables 3 and 4 are also obtained. VN layer is vapor-deposited as an interlayer adhesion layer of a hard coating layer,
(E) When the arc discharge between the metal V and the anode electrode is stopped and the atmosphere in the vapor deposition apparatus is switched to an oxygen atmosphere of 0.2 Pa, it is again between the metal V and the anode electrode of the cathode electrode. by flowing a 120A current to generate arc discharge, also by the VO M layer of the target layer thicknesses shown in tables 3 to deposit formed as an upper layer of the hard coating layer, the present as the present invention coated cemented carbide Invention surface coated carbide throwaway tips (hereinafter referred to as the present invention coated tips) 1 to 16 were produced.
また、比較の目的で、
(a)上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示されるアークイオンプレーティング装置内の回転テーブル上に外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Al−Ti合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Al−Ti合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記両Al−Ti合金のうちのいずれか一方とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Al−Ti合金でボンバード洗浄し、
(c)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最低含有点形成用Al−Ti合金およびAl最高含有点形成用Al−Ti合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表5,6に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表5,6に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表5,6に示される目標層厚の上記本発明被覆チップの下部層に相当する(Al,Ti)N層を硬質被覆層として蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。
For comparison purposes,
(A) Each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and the outer peripheral portion is placed on the rotary table in the arc ion plating apparatus shown in FIG. The Al-Ti alloy for forming an Al minimum content point having various component compositions as a cathode electrode (evaporation source) on one side, and various component compositions as a cathode electrode (evaporation source) on the other side Al-Ti alloy for forming the highest Al content point with a facing arrangement across the rotary table,
(B) First, the inside of the apparatus was heated to 500 ° C. with a heater while the inside of the apparatus was evacuated and kept at a vacuum of 0.1 Pa or less, and then a DC bias voltage of −1000 V was applied to the cemented carbide substrate, and A current of 100 A is passed between either one of the two Al—Ti alloys of the cathode electrode and the anode electrode to generate an arc discharge, whereby the carbide substrate surface is bombarded with the Al—Ti alloy,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating on the rotary table, An arc discharge is generated by flowing a current of 100 A between each cathode electrode (the Al-Ti alloy for forming the lowest Al content point and the Al-Ti alloy for forming the highest Al content point) and the anode electrode. On the surface of the hard substrate, the Al minimum content point and the Al maximum content point of the target composition shown in Tables 5 and 6 are alternately repeated at the target intervals shown in Tables 5 and 6 along the layer thickness direction, And having a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and , 6 by depositing a (Al, Ti) N layer corresponding to the lower layer of the above-described coated chip of the present invention as a hard coating layer, thereby producing a conventional surface-coated carbide as a conventional coated carbide tool. Slow away chips (hereinafter referred to as conventional coated chips) 1 to 16 were produced.
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件A)でのステンレス鋼の乾式断続高速切削加工試験(通常の切削速度は180m/min.)、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:2mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件(切削条件B)での軟鋼の乾式断続高速切削加工試験(通常の切削速度は200m/min.)、
被削材:JIS・SCMnH1の丸棒、
切削速度:230m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:8分、
の条件(切削条件C)での高マンガン鋼の乾式連続高速切削加工試験(通常の切削速度は150m/min.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 16 and the conventional coated chips 1 to 16 are as follows.
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 350 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
A dry intermittent high-speed cutting test of stainless steel under the conditions (cutting condition A) (normal cutting speed is 180 m / min.),
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 300 m / min. ,
Cutting depth: 2mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted high-speed cutting test of mild steel under the conditions (cutting condition B) (normal cutting speed is 200 m / min.),
Work material: JIS / SCMnH1 round bar,
Cutting speed: 230 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 8 minutes
The dry continuous high-speed cutting test (normal cutting speed is 150 m / min.) Of high manganese steel under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. . The measurement results are shown in Table 7.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide rod-forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of sintered rods for round bar were subjected to grinding, as shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の(Al,Ti)N層からなる下部層と、同じく表9に示される目標層厚のVN層からなる層間密着層およびVOM層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the Al minimum content point and the Al maximum content point of the target composition shown in Table 9 along the layer thickness direction alternately and repeatedly exist at the target interval shown in Table 9, and It has a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and also shown in Table 9 target layer thickness of (Al, Ti) which is a lower layer consisting of N layers and, likewise hard layer composed of a top layer made of a target layer thickness interlayer adhesion layer and VO M layer made of VN layer shown in Table 9 By evaporating and forming the book The surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 8 as the invention-coated carbide tools were produced, respectively.
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の上記本発明被覆エンドミルの下部層に相当する(Al,Ti)N層を硬質被覆層として蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. In the same condition as in Example 1 above, the lowest Al content point and the highest Al content point of the target composition shown in Table 10 along the layer thickness direction are alternately at the target interval shown in Table 10 It has a component concentration distribution structure that repeatedly exists and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and Similarly, a conventional surface-coated carbide as a conventional coated carbide tool is obtained by evaporating a (Al, Ti) N layer corresponding to the lower layer of the above-mentioned coated end mill of the present invention having a target layer thickness shown in Table 10 as a hard coated layer. End mill ( Under conventional coated end mill say) 1-8 were prepared, respectively.
つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:75m/min.、
溝深さ(切り込み):3mm、
テーブル送り:160mm/分、
の条件での軟鋼の乾式高速溝切削加工試験(通常の切削速度は40m/min.)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:80m/min.、
溝深さ(切り込み):4.5mm、
テーブル送り:200mm/分、
の条件でのステンレス鋼の湿式(水溶性切削油使用)高速溝切削加工試験(通常の切削速度は40m/min.)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:55m/min.、
溝深さ(切り込み):10mm、
テーブル送り:120mm/分、
の条件での高マンガン鋼の乾式高速溝切削加工試験(通常の切削速度は30m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and conventional coated end mills 1-8, the present invention coated end mills 1-3 and conventional coated end mills 1-3 are as follows:
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 75 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 160 mm / min,
With respect to the dry high-speed grooving test of mild steel under the conditions (normal cutting speed is 40 m / min.), The coated end mills 4 to 6 and the conventional coated end mills 4 to 6 of the present invention,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 4.5 mm,
Table feed: 200 mm / min,
Stainless steel wet (using water-soluble cutting oil) high-speed grooving test (normal cutting speed is 40 m / min.), Coated end mills 7 and 8 of the present invention, and conventional coated end mills 7 and 8
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 55 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 120 mm / min,
The high-manganese-steel dry high-speed grooving test (normal cutting speed is 30 m / min.) Under the above conditions was performed. The cutting groove length up to 0.1 mm, which is a guideline, was measured. The measurement results are shown in Tables 9 and 10, respectively.
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の(Al,Ti)N層からなる下部層と、同じく表11に示される目標層厚のVN層からなる層間密着層およびVOM層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. In the same conditions as in Example 1 above, the target minimum distance between the Al minimum content point and the Al maximum content point of the target composition shown in Table 11 along the layer thickness direction is also shown in Table 11 alternately. And having a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and also of the target layer thicknesses shown in Table 11 (Al, Ti) and a lower layer made of N layers, also in the upper layer consisting of interlayer adhesion layer and VO M layer made of VN layer of the target layer thicknesses shown in Table 11 Steam the constructed hard coating layer By forming these, drills made of the surface coated carbide of the present invention (hereinafter referred to as the present invention coated drills) 1 to 8 as the coated carbide tools of the present invention were produced.
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表12に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表12に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表12に示される目標層厚の上記本発明被覆ドリルの下部層に相当する(Al,Ti)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. In an ion plating apparatus, under the same conditions as in Example 1, the Al minimum content point and the Al maximum content point of the target composition shown in Table 12 along the layer thickness direction are alternately shown in Table 12 A component concentration distribution structure in which the Al (Ti) content continuously exists from the Al highest content point to the Al lowest content point, and the Al (Ti) content continuously changes from the Al lowest content point to the Al highest content point. And a (Al, Ti) N layer corresponding to the lower layer of the above-described coated drill of the present invention having the target layer thickness shown in Table 12 as a hard coating layer. Conventional surface coating Ltd. drill (hereinafter, conventional coating drill called) was 1-8 were prepared, respectively.
つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:130m/min.、
送り:0.2mm/rev、
穴深さ:8mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度は50 m/min.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:120m/min.、
送り:0.25mm/rev、
穴深さ:16mm、
の条件での高マンガン鋼の湿式高速穴あけ切削加工試験(通常の切削速度は60m/min.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:100m/min.、
送り:0.3mm/rev、
穴深さ:32mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験(通常の切削速度は60m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 130 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 8mm,
With respect to the wet high speed drilling test of stainless steel under the conditions (normal cutting speed is 50 m / min.), The present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 120 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 16mm,
For the high-manganese steel wet high speed drilling test (normal cutting speed is 60 m / min.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 100 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 32mm,
Wet high-speed drilling test of mild steel under normal conditions (normal cutting speed is 60m / min.), And any wet high-speed drilling test (using water-soluble cutting oil) is used to relieve the cutting edge surface. The number of drilling processes until the surface wear width reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.
この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Al,Ti)N層(下部層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Al,Ti)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 (Al, Ti) N constituting the hard coating layer of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tool obtained as a result Hard coating layer comprising the composition of the layer (lower layer) and the conventional coated tip 1-16 as a conventional coated carbide tool, the conventional coated end mill 1-8, and the (Al, Ti) N layer of the conventional coated drill 1-8 Were measured by an energy dispersive X-ray analysis method using a transmission electron microscope, and showed substantially the same composition as the target composition.
さらに、本発明被覆超硬工具の硬質被覆層を構成するVOM層(上部層)の組成を同じく測定したところ、原子比で、VOを主体とし、これにV2O3、V2O5、およびVO2などが含有する混合組織を示した。 Furthermore, when VO M layer constituting the hard layer of the present invention coated cemented carbide composition of (upper layer) was also measured, by atomic ratio, mainly the VO, this V 2 O 3, V 2 O 5 , And a mixed structure containing VO 2 or the like.
また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a scanning electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
表3〜12に示される結果から、本発明被覆超硬工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削加工でも、硬質被覆層の下部層である(Al,Ti)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層によって前記下部層に強固に密着したVOM層によって、前記被削材および切粉との間にすぐれた表面滑り性が確保されることから、切刃部にチッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Ti)N層で構成された従来被覆超硬工具においては、いずれも前記難削材の高速切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなり、これが原因で切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 12, all of the coated carbide tools of the present invention are particularly high-speed cutting accompanied by high heat generation of difficult-to-cut materials such as highly viscous and sticky stainless steel, high manganese steel, and mild steel. Even in processing, the (Al, Ti) N layer, which is the lower layer of the hard coating layer, has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and the lower layer is formed by the VN layer as an interlayer adhesion layer. by VO M layer firmly adhered, the since the superior surface slipperiness between the workpiece and chips is ensured, without the occurrence of chipping in the cutting edge, wear resistance superior over a long period In contrast, in the conventional coated carbide tool in which the hard coating layer is composed of an (Al, Ti) N layer, all of the above-mentioned difficult-to-cut materials are subjected to high-speed cutting work (hard-to-cut materials). And the adhesiveness between the chips and the hard coating layer, and It is clear that the reactivity is further increased, and this causes chipping at the cutting edge, leading to a service life in a relatively short time.
上述のように、この発明の被覆超硬工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に上記の難削材の高い発熱を伴なう高速切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated carbide tool of the present invention has excellent chipping resistance not only in cutting of general steel and ordinary cast iron, but also in high-speed cutting with high heat generation of the above difficult-to-cut materials. Since the cutting performance is excellent and exhibits excellent cutting performance over a long period of time, it is possible to satisfactorily respond to the FA of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.
Claims (1)
(a)1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-X TiX)N(ただし、原子比で、Xは0.05〜0.30を示す)、
上記Al最低含有点が、組成式:(Al1-YTiY)N(ただし、原子比で、Yは0.35〜0.60を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであるAlとTiの複合窒化物層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有する窒化バナジウム層からなる層間密着層、
(c)1〜5μmの平均層厚を有する酸化バナジウム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。 On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) It has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al maximum content points and Al minimum content points are alternately present at predetermined intervals, and the Al maximum content A component concentration distribution structure in which the Al and Ti contents continuously change from the point to the Al minimum content point, from the Al minimum content point to the Al maximum content point,
Furthermore, the Al highest content point, the composition formula: (Al 1-X Ti X ) N ( provided that an atomic ratio, X is shows the 0.05 to 0.30),
The Al minimum content point is a composition formula: (Al 1-Y Ti Y ) N (where Y represents 0.35 to 0.60 in atomic ratio),
A lower layer made of a composite nitride layer of Al and Ti, wherein the distance between the Al highest content point and the Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
(B) an interlayer adhesion layer comprising a vanadium nitride layer having an average layer thickness of 0.1 to 1.5 μm;
(C) an upper layer comprising a vanadium oxide layer having an average layer thickness of 1 to 5 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials, which is formed by forming the hard coating layer configured as described above in (a) to (c).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005213911A JP2007030068A (en) | 2005-07-25 | 2005-07-25 | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005213911A JP2007030068A (en) | 2005-07-25 | 2005-07-25 | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007030068A true JP2007030068A (en) | 2007-02-08 |
Family
ID=37789940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005213911A Withdrawn JP2007030068A (en) | 2005-07-25 | 2005-07-25 | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007030068A (en) |
-
2005
- 2005-07-25 JP JP2005213911A patent/JP2007030068A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007030098A (en) | Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut | |
JP2007038378A (en) | Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material | |
JP2007030100A (en) | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut | |
JP2007290091A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP4747719B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007290090A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP4747718B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007038379A (en) | Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP4849221B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4682826B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4682827B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2008260098A (en) | Surface-coated cutting tool | |
JP2007021649A (en) | Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material | |
JP2008188739A (en) | Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP2007313582A (en) | Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material | |
JP2007144595A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP2007030099A (en) | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut | |
JP4789068B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4682825B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007038377A (en) | Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material | |
JP2007030068A (en) | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut | |
JP2007030067A (en) | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut | |
JP2007038386A (en) | Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of hard-to-cut-material | |
JP2007021665A (en) | Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material | |
JP2007038374A (en) | Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081007 |