JP2007038377A - Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material - Google Patents

Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material Download PDF

Info

Publication number
JP2007038377A
JP2007038377A JP2005227912A JP2005227912A JP2007038377A JP 2007038377 A JP2007038377 A JP 2007038377A JP 2005227912 A JP2005227912 A JP 2005227912A JP 2005227912 A JP2005227912 A JP 2005227912A JP 2007038377 A JP2007038377 A JP 2007038377A
Authority
JP
Japan
Prior art keywords
layer
content point
hard coating
cutting
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005227912A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和則 佐藤
Yusuke Tanaka
裕介 田中
Akihiro Kondou
暁裕 近藤
Tsutomu Ogami
強 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005227912A priority Critical patent/JP2007038377A/en
Publication of JP2007038377A publication Critical patent/JP2007038377A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cemented-carbide cutting tool with a hard coating layer capable of showing excellent chipping resistance in high speed cutting of a difficult-to-cut material. <P>SOLUTION: The surface-coated cemented-carbide cutting tool has the hard coating layer on the surface of a base body composed of cemented carbide or cermet, the hard coating layer being composed of (a) a lower layer which has a mean layer thickness of 1 to 5 μm, and is composed of a (Ti, Al, Si)N layer in which a maximum Al containing point and a minimum Al containing point repeatedly exist, and the contents of Al and Ti continuously vary in the direction from the maximum Al containing point to the minimum Al containing point, and also in the reversed direction, respectively, and further the maximum Al containing points and the minimum Al containing points satisfy a specific composition formula, and the interval of adjacent maximum Al containing points and minimum Al containing points is 0.01 to 0.1 μm; (b) an interlayer adhesive layer composed of a vanadium nitride layer having a mean layer thickness of 0.1 to 1.5 μm; and (c) an upper layer which has a mean layer thickness of 1 to 5 μm, and has a texture in which a metal V is dispersively distributed in a matrix of VO<SB>M</SB>(vanadium oxide). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高い発熱を伴なう高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention exhibits excellent chipping resistance with a hard coating layer, especially when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel under high-speed cutting conditions with high heat generation. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
1〜15μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-(X+Y)TiXSi)N(ただし、原子比で、Xは0.10〜0.35、Yは0.01〜0.1を示す)、
上記Al最低含有点が、組成式:(Al1-(A+B)TiSi)N(ただし、原子比で、Aは0.40〜0.65、Bは0.01〜0.1を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであるAlとTiとSiの複合窒化物層[以下、組成変化(Al,Ti,Si)N層という]、
からなる硬質被覆層を物理蒸着してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の硬質被覆層である組成変化(Al,Ti,Si)N層が、成分濃度分布変化構造のAlによってすぐれた高温硬さと耐熱性、同Tiによってすぐれた高温強度を具備し、さらにSi成分含有による一段の耐熱性向上と相俟って、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削を通常の条件で行うのに用いた場合は勿論のこと、これを高速切削加工条件で行うのに用いた場合にもすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
And having an average layer thickness of 1 to 15 μm, and along the layer thickness direction, Al highest content points and Al lowest content points are alternately present at predetermined intervals, and from the Al highest content point Al lowest content point, having a component concentration distribution structure in which the Al and Ti content continuously change from the Al lowest content point to the Al highest content point, respectively,
Furthermore, the Al highest content point, the composition formula: (Al 1- (X + Y ) Ti X Si Y) N ( provided that an atomic ratio, X is 0.10 to 0.35, Y is from 0.01 to 0. 1)
The Al minimum content point is the composition formula: (Al 1− (A + B) Ti A Si B ) N (where A is 0.40 to 0.65 and B is 0.01 to 0.1 in atomic ratio). Show),
And an interval between the Al highest content point and the Al minimum content point adjacent to each other is 0.01 to 0.1 μm, a composite nitride layer of Al, Ti, and Si [hereinafter, composition change (Al, Ti, Si) N layer]
A coated carbide tool formed by physically vapor-depositing a hard coating layer is known, and the composition change (Al, Ti, Si) N layer, which is the hard coating layer of the coated carbide tool, changes the component concentration distribution. It has excellent high-temperature hardness and heat resistance due to the structure of Al, and excellent high-temperature strength due to the Ti, and combined with the further improvement of heat resistance due to the inclusion of the Si component, this can be used for various general steels and ordinary cast iron, etc. It is known that excellent cutting performance is exhibited not only when continuous cutting or intermittent cutting is used under normal conditions, but also when it is used under high-speed cutting conditions.

さらに、上記の従来被覆超硬工具は、例えば図2(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti−Si合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Al−Ti−Si合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に組成変化(Al,Ti,Si)N層を形成することにより製造されるものであり、この結果形成された組成変化(Al,Ti,Si)N層において、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にAl含有量の高い(Ti含有量の低い)Al−Ti−Si合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記超硬基体が上記の他方側の相対的にTi含有量の高い(Al含有量の低い)Al−Ti−Si合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造が形成されるものである。
特開2004−223619号
Further, the above conventional coated carbide tool has, for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 2A and a schematic front view in FIG. A turntable for mounting is provided, and an Al—Ti—Si alloy having a relatively high Al content (low Ti content) on one side and a relatively high Ti content on the other side across the turntable. Using an arc ion plating apparatus in which an Al—Ti—Si alloy (with a low Al content) is disposed as a cathode electrode (evaporation source) and facing, a predetermined radial direction from the central axis of the apparatus is provided on the rotary table of the apparatus. A plurality of cemented carbide substrates are mounted in a ring shape at a distance from each other, and in this state, the atmosphere inside the apparatus is turned to a nitrogen atmosphere, the rotary table is rotated, and the thickness of the hard coating layer formed by vapor deposition is made uniform. For this purpose, while rotating the carbide substrate itself, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides to change the composition on the surface of the carbide substrate (Al, Ti, Si) N layer is manufactured, and in the composition change (Al, Ti, Si) N layer formed as a result, the cemented carbide substrate arranged in a ring shape on the rotary table is the above-mentioned The highest Al content point is formed in the layer when it is closest to the cathode electrode (evaporation source) of the Al-Ti-Si alloy having a relatively high Al content (low Ti content) on one side of When the cemented carbide substrate is closest to the cathode electrode of the Al—Ti—Si alloy having a relatively high Ti content (low Al content) on the other side, a minimum Al content point is formed in the layer. By rotating the rotary table In the layer, the highest Al content point and the lowest Al content point appear alternately at predetermined intervals along the layer thickness direction, and the lowest Al content point from the highest Al content point, from the lowest Al content point, A component concentration distribution structure in which the Al and Ti contents continuously change to the Al highest content point is formed.
JP 2004-223619 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、被覆超硬工具には被削材の材種になるべく影響を受けない汎用性、すなわち、できるだけ多くの材種の被削材の切削加工が可能な被覆超硬工具が求められる傾向にあるが、上記の従来被覆超硬工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の高速切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高速で行った場合には、切削時の高い発熱によって難削材からなる被削材およびその切粉は高温に加熱されて粘性度が一段と増大し、これに伴なって硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and as a result, coated carbide tools have an influence on the grade of work material as much as possible. However, in the conventional coated carbide tools described above, this is a low alloy steel. There is no problem when used for high-speed cutting of general steel such as steel or carbon steel, or ordinary cast iron such as ductile cast iron or gray cast iron, but stainless steel with high chip viscosity and easy welding to the tool surface. When cutting difficult-to-cut materials such as steel, high-manganese steel, and mild steel at high speed, the work material and chips made of difficult-to-cut materials are heated to a high temperature due to high heat generated during cutting. Increased further. As a result, the adhesiveness and reactivity to the surface of the hard coating layer are further increased, and as a result, the occurrence of chipping (slight chipping) at the cutting edge portion increases rapidly, which causes a service life in a relatively short time. Is the current situation.

そこで、本発明者等は、上述のような観点から、特に難削材の高速切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である組成変化(Al,Ti,Si)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(以下、VOで示す。ただし、Mは酸素のバナジウム(V)に対する相対含有割合の変化値を示し、原子比で、VO、V、V、およびVOなどを示す)層を同じく1〜5μmの平均層厚で形成すると、前記VO層は表面滑り性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間には常にすぐれた滑り性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減し、前記下部層である組成変化(Al,Ti,Si)N層を十分に保護することから、組成変化(Al,Ti,Si)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the present inventors have developed the above-mentioned conventional coating in order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed cutting of difficult-to-cut materials. As a result of conducting research with a focus on carbide tools,
(A) A composition change (Al, Ti, Si) N layer, which is a hard coating layer of the above conventional coated carbide tool, is formed with an average layer thickness of 1 to 5 μm as a lower layer, and vanadium oxide as an upper layer thereon (Hereinafter referred to as VO M. However, M represents a change value of the relative content ratio of oxygen to vanadium (V), and represents VO, V 2 O 3 , V 2 O 5 , VO 2 and the like in atomic ratio. ) layer when similarly formed with an average layer thickness of 1 to 5 [mu] m, the VO M layer is excellent surface slipperiness, this result workpiece by heat generated during cutting (difficult-to-cut materials) and its cutting scraps is high temperature heating Even in the state, excellent slipperiness is always ensured between the cutting edge (the rake face and the flank face, and the cutting edge ridge line where these two surfaces intersect) and the work material and the chip. The adhesiveness and reactivity to the cutting edge surface of the Since the composition change (Al, Ti, Si) N layer, which is the partial layer, is sufficiently protected, the excellent characteristics of the composition change (Al, Ti, Si) N layer can be sufficiently exhibited over a long period of time. To become.

(b)上記(a)のVO層を構成するVOを素地とし、これに前記VOとの合量に占める割合で0.5〜7原子%の金属バナジウム(以下、金属Vで示す)を分散含有させて、VOの素地に金属Vが分散分布した組織を有するV分散VO層とすると、この結果のV分散VO層においては、素地に分散分布する金属Vが、切削時の高い発熱雰囲気で酸化して、VOとなるが、この生成VOが同じくVOからなる素地の摩耗進行を著しく抑制するように作用することから、上記(a)のVO層に比してすぐれた耐摩耗性を示すようになること。
さらに、上記のV分散VO層は、例えば金属V粉末を酸化雰囲気で加熱酸化してVO粉末とし、これに所定量の金属V粉末を配合し、混合し、圧粉体にプレス成形した後、この圧粉体を、Ar雰囲気中、1300℃の温度に1時間保持の条件で焼結して、V分散VO焼結体を製造し、この結果得られたV分散VO焼結体をスパッタリング装置のカソード電極として用い、Ar雰囲気中でスパッタ蒸着することにより形成できること。、
(B) the the VO M and matrix constituting the VO M layer (a), which the VO M and 0.5 to 7 atomic% of vanadium metal as a percentage of the total amount (hereinafter, indicated by metal V ) a dispersing contained, the metal V into a green body of VO M is a V dispersed VO M layer having dispersed distribution organization, in the V dispersed VO M layer of this result, the metal V to disperse distribution into a green body, the cutting by oxidation with highly exothermic atmosphere with time, but the VO M, since it acts to significantly suppress the wear progress of green bodies this product VO M consists likewise VO M, the VO M layer of the (a) Be superior to wear resistance.
Further, V dispersed VO M layer described above, for example, a metal V powder was heated oxidized in an oxidizing atmosphere and VO M powder, this mixed a predetermined amount of the metal V powder, mixed and press-molded into a powder compact after, the green compact in an Ar atmosphere, and sintered under the conditions of 1 hour hold time at a temperature of 1300 ° C., to produce a V dispersion VO M sintered body, the resulting V dispersed VO M sintering The body can be formed by sputtering vapor deposition in an Ar atmosphere using the cathode electrode of the sputtering apparatus. ,

(c)一方、上部層であるV分散VO層と下部層である組成変化(Al,Ti,Si)N層との密着性は十分でなく、特に断続切削を行った場合に前記の層間の密着性不足が原因でチッピングが発生し易いが、前記VO層と組成変化(Al,Ti,Si)N層との間に窒化バナジウム(以下、VNで示す)層を0.1〜1.5μmの平均層厚で介在させると、前記VN層は前記VO層および組成変化(Al,Ti,Si)N層のいずれとも強固に密着することから、これら両層間にはすぐれた密着性が確保されるようになること。 (C) On the other hand, the composition change is V dispersion VO M layer and the lower layer is an upper layer (Al, Ti, Si) adhesion to the N layer is not sufficient, the interlayer especially when subjected to intermittent cutting of it adhesiveness insufficient chipping due likely to occur, the VO M layer and the composition changes (Al, Ti, Si) between the N layer vanadium nitride (hereinafter indicated by VN) layer 0.1-1 When interposing an average layer thickness of .5Myuemu, the VN layer the VO M layer and the composition changes (Al, Ti, Si) because it is also firmly adhered to one of the N layer, adhesion with excellent in both of these layers Will be secured.

(d)上記(a)〜(c)で構成される硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)として金属V、他方側に前記SP装置のカソード電極(蒸発源)としてV分散VO焼結体を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属VおよびV分散VO焼結体のそれぞれから90度離れた位置の一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti−Si合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Al−Ti−Si合金をカソード電極(蒸発源)として対向配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記対向配置した両Al−Ti−Si合金のカソード電極(蒸発源)とアノード電極との間にそれぞれアーク放電を発生させて、前記超硬基体の表面に下部層として組成変化(Al,Ti,Si)N層を1〜5μmの平均層厚で蒸着し、ついで、前記両Al−Ti−Si合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、同じく装置内雰囲気を窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、層間密着層としてVN層を0.1〜1.5μmの平均層厚で蒸着した後、前記金属Vとアノード電極との間のアーク放電を停止し、前記蒸着装置内の雰囲気をAr雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したV分散VO焼結体のスパッタリングを行って前記VN層に重ねて上部層として1〜5μmの平均層厚でV分散VO層を蒸着蒸着することにより形成することができること。 (D) The hard coating layer constituted by the above (a) to (c) is, for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1 (a) and a schematic front view in (b). (Hereinafter abbreviated as AIP apparatus) and sputtering apparatus (hereinafter abbreviated as SP apparatus) coexisting vapor deposition apparatus, that is, a rotating table for mounting a carbide substrate is provided at the center of the apparatus, metal V as a cathode electrode of the AIP device side (evaporation source), a cathode electrode (vapor source) as V dispersion VO M sintered body of the SP device on the other side opposed, further along the rotary table, and wherein (a low Ti content) while a relatively high Al content on the side of the position apart 90 ° from each of the metal V and V dispersed VO M sintered Al-Ti-Si alloy, relative to the other side Ti-containing A vapor deposition apparatus in which an Al—Ti—Si alloy having a high amount (low Al content) was placed as a cathode electrode (evaporation source) opposed to each other was separated from the central axis on the rotary table of the apparatus by a predetermined distance in the radial direction. At the position, a plurality of carbide substrates are mounted in a ring shape along the outer periphery, and in this state, the rotary table is rotated with the atmosphere inside the apparatus as a nitrogen atmosphere, and the thickness of the hard coating layer formed by vapor deposition is made uniform. Basically, while rotating the carbide substrate itself for the purpose of aiming, first, arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of both the Al-Ti-Si alloys arranged opposite to each other, A composition change (Al, Ti, Si) N layer is deposited on the surface of the cemented carbide substrate as a lower layer with an average layer thickness of 1 to 5 μm, and then cathode electrodes (evaporation source) of both the Al—Ti—Si alloys. And The arc discharge between the cathode electrode and the anode electrode is stopped, and the arc in the apparatus is kept in the nitrogen atmosphere, and the arc discharge is generated between the metal V as the cathode electrode (evaporation source) and the anode electrode, After vapor-depositing the VN layer as an interlayer adhesion layer with an average layer thickness of 0.1 to 1.5 μm, the arc discharge between the metal V and the anode electrode is stopped, and the atmosphere in the vapor deposition apparatus is set to an Ar atmosphere. with the cathode electrode V dispersed VO M layer with an average layer thickness of 1~5μm as an upper layer overlapping the VN layer disposed was performed sputtering of V dispersion VO M sintered body as (evaporation source) of the SP device It can be formed by vapor deposition.

(d)上記の下部層、層間密着層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削加工でも、下部層である組成変化(Al,Ti,Si)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、前記耐熱性はSi成分の共存含有によって一段と向上したものになり、かつ層間密着層としてのVN層の介在によって前記下部層との間にすぐれた密着接合性が確保されたV分散VO層の作用で、前記難削材および切粉との間にすぐれた表面滑り性が確保され、前記難削材および切粉の切刃部表面に対する粘着性および反応性は著しく低減された状態で切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The coated carbide tool formed by vapor-depositing the hard coating layer composed of the lower layer, the interlayer adhesion layer, and the upper layer is a stainless steel, a high manganese steel, and a mild steel that are particularly highly viscous and sticky. Even in high-speed cutting with high heat generation such as difficult-to-cut materials, the lower layer composition change (Al, Ti, Si) N layer has excellent high temperature hardness and heat resistance, and excellent high temperature strength, the heat resistance becomes that further improved by coexistence content of the Si component, and the V dispersion VO M layer excellent adhesion bonding property between the lower layer by an intervening the VN layer is ensured as an interlayer adhesion layer With this action, excellent slipperiness between the difficult-to-cut material and the chips is ensured, and the sticking and reactivity of the difficult-to-cut material and chips to the surface of the cutting edge are significantly reduced. Is going to be done In addition, chipping will not occur at the cutting edge, and excellent wear resistance will be exhibited over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-(X+Y)TiXSi)N(ただし、原子比で、Xは0.10〜0.35、Yは0.01〜0.1を示す)、
上記Al最低含有点が、組成式:(Al1-(A+B)TiSi)N(ただし、原子比で、Aは0.40〜0.65、Bは0.01〜0.1を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである組成変化(Al,Ti,Si)N層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有するVN層からなる層間密着層、
(c)1〜5μmの平均層厚を有し、かつVOの素地に、前記VOとの合量に占める割合で、0.5〜7原子%の金属Vが分散分布した組織を有するV分散VO層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) It has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al maximum content points and Al minimum content points are alternately present at predetermined intervals, and the Al maximum content A component concentration distribution structure in which the Al and Ti contents continuously change from the point to the Al minimum content point, from the Al minimum content point to the Al maximum content point,
Furthermore, the Al highest content point, the composition formula: (Al 1- (X + Y ) Ti X Si Y) N ( provided that an atomic ratio, X is 0.10 to 0.35, Y is from 0.01 to 0. 1)
The Al minimum content point is the composition formula: (Al 1− (A + B) Ti A Si B ) N (where A is 0.40 to 0.65 and B is 0.01 to 0.1 in atomic ratio). Show),
And a lower layer composed of a composition change (Al, Ti, Si) N layer in which the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
(B) an interlayer adhesion layer comprising a VN layer having an average layer thickness of 0.1 to 1.5 μm;
(C) it has an average layer thickness of 1 to 5 [mu] m, and the matrix of VO M, a percentage of the total amount of the VO M, with a tissue 0.5 to 7 atomic% of the metal V are dispersed distribution An upper layer consisting of V-dispersed VO M layers;
What is characterized by a coated carbide tool that exhibits a chipping resistance with excellent hard coating layer in high-speed cutting of difficult-to-cut materials, formed by forming a hard coating layer composed of (a) to (c) above It is.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(A)下部層
(a)Al最高含有点の組成
組成変化(Al,Ti,Si)N層のAl成分は、高温硬さおよび耐熱性を向上させ、同Ti成分は高温強度を向上させ、さらに同Si成分は一段と耐熱性を向上させる作用があり、したがって相対的にAl成分の含有割合が高いAl最高含有点では一段とすぐれた高温硬さと耐熱性を具備し、高熱発生を伴う高速切削で、すぐれた耐摩耗性を発揮するようになるが、Tiの割合を示すX値がAlとSiの合量に占める割合(原子比)で0.10未満になると、相対的にAlの割合が多くなり過ぎて、相対的に高い高温強度を有するAl最低含有点が隣接して存在しても層自体の強度低下は避けられず、この結果チッピングなどが発生し易くなり、一方Ti成分の割合を示すX値が同0.35を越えると、相対的にAlの割合が少なくなり過ぎて、所望のすぐれた高温硬さおよび耐熱性を確保することができなくなり、またSi成分の割合を示すY値がAlとTiの合量に占める割合(原子比)で0.01未満では所望の耐熱性向上効果が得られず、さらに同Y値が0.10を超えると、高温強度が急激に低下するようになることから、X値を0.10〜0.35、Y値を0.01〜0.10とそれぞれ定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Lower layer (a) Composition of Al highest content point Al component of composition change (Al, Ti, Si) N layer improves high temperature hardness and heat resistance, the Ti component improves high temperature strength, Furthermore, the Si component has the effect of further improving the heat resistance, and therefore, at the highest Al content point where the content ratio of the Al component is relatively high, it has excellent high-temperature hardness and heat resistance, and is capable of high-speed cutting with high heat generation. However, when the X value indicating the ratio of Ti occupies the total amount of Al and Si (atomic ratio) is less than 0.10, the ratio of Al is relatively high. Even if there is an Al minimum content point having a relatively high high-temperature strength adjacent to each other, a decrease in the strength of the layer itself is inevitable, and as a result, chipping and the like are likely to occur, while the proportion of the Ti component X value of Then, the proportion of Al becomes relatively small, and it becomes impossible to secure desired excellent high-temperature hardness and heat resistance, and the Y value indicating the proportion of Si component is the total amount of Al and Ti. If the proportion (atomic ratio) is less than 0.01, the desired heat resistance improvement effect cannot be obtained, and if the Y value exceeds 0.10, the high-temperature strength suddenly decreases. Was set to 0.10 to 0.35, and the Y value was set to 0.01 to 0.10.

(b)Al最低含有点の組成
上記の通りAl最高含有点は高温硬さおよび耐熱性のすぐれたものであるが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、Ti含有割合が相対的に高く、これによって高い高温強度を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがってTiの割合(A値)がAlとSiとの合量に占める割合(原子比)で0.40未満では、所望のすぐれた高温強度を確保することができず、一方その割合(A値)が同じく0.65を越えると、相対的にTiの割合が多くなり過ぎて、Al最低含有点に所定の高温硬さおよび耐熱性を具備せしめることができなくなることから、その割合を0.40〜0.65と定めたものであり、またSi成分の割合を示すB値は上記のAl最高含有点におけると同じ理由で0.01〜0.10と定めた。
(B) Composition of Al minimum content point As described above, the Al maximum content point is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in high-temperature strength. In order to compensate for this, the Ti content ratio is relatively high, thereby interposing the Al minimum content points that have high high-temperature strength alternately in the thickness direction, and therefore the Ti ratio (A value) is If the ratio (atomic ratio) in the total amount of Al and Si is less than 0.40, the desired excellent high-temperature strength cannot be ensured, while the ratio (A value) also exceeds 0.65. The ratio of Ti is set to 0.40 to 0.65 because the ratio of Ti becomes relatively large and the Al minimum content point cannot be provided with the predetermined high temperature hardness and heat resistance. And the Si component The B value indicating the ratio was determined to be 0.01 to 0.10 for the same reason as in the above Al highest content point.

(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さと耐熱性、および高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Al最低含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
(C) Interval between the highest Al content point and the lowest Al content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. As a result, each layer has a desired high temperature. Hardness, heat resistance, and high-temperature strength cannot be ensured, and if the distance exceeds 0.1 μm, each point has a defect, that is, if Al is the highest content point, insufficient high-temperature strength, Al minimum content point If so, high-temperature hardness and insufficient heat resistance appear locally in the layer, which makes it easier for chipping to occur on the cutting edge and promotes the progress of wear. It was defined as ˜0.1 μm.

(d)平均層厚
その平均層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が5μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur on the cutting edge. The average layer thickness was determined to be 1 to 5 μm.

(B)層間密着層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が1.5μmを越えると、硬質被覆層の強度が層間密着層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜1.5μmと定めた。
(B) Average layer thickness of interlayer adhesion layer If the average layer thickness is less than 0.1 μm, it is not possible to ensure a strong bonding strength between the upper layer and the lower layer, while the average layer thickness is 1.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases in the interlayer adhesion layer portion, which causes the occurrence of chipping. Therefore, the average layer thickness was determined to be 0.1 to 1.5 μm.

(C)上部層の平均層厚および分散金属Vの含有割合
上部層を構成するV分散VO層は、すぐれた表面滑り性を有し、上記の通り被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である組成変化(Al,Ti,Si)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が1μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
また、上記のV分散VO層における金属Vには、上記の通り切削時の高い発熱雰囲気で酸化して、VOとなり、この結果の生成VOが同じくVOからなる素地の摩耗進行を著しく抑制する作用があり、したがって、前記V分散VO層は、素地を構成するVOだけからなるVO層に比してすぐれた耐摩耗性を示すが、金属Vの含有割合が、素地のVO層との合量に占める割合で0.5原子%未満では所望の耐摩耗性向上効果が得られず、一方金属Vの含有割合が、同7原子%を超えると、層自体の強度が急激に低下し、チッピング発生の原因となることから、その含有割合を0.5〜7原子%と定めた。
(C) V dispersion VO M layer constituting the content upper layer of the average layer thickness and dispersed metal V of the upper layer is excellent has a surface slip properties, as described above workpiece (difficult-to-cut materials) and switching The adhesiveness and reactivity to powder are extremely low, and this is maintained without changing even when the work material is heated at the time of cutting, so the composition change (Al, Ti, Si) N layer as the lower layer Is protected from the high-temperature heated work material and chips, and the effect of suppressing the occurrence of chipping is exerted. However, if the average layer thickness is less than 1 μm, the desired effect cannot be obtained in the above-described operation. If the average layer thickness exceeds 5 μm and becomes too thick, chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 5 μm.
Further, the metal V in V dispersed VO M layer above, by oxidation with a high heating atmosphere during cutting as described above, next VO M, the wear progress of green bodies produced VO M of this result consists likewise VO M There is remarkable inhibitory action, therefore, the V distributed VO M layer, show compared to VO M layer consisting only VO M excellent wear resistance for constituting the matrix, the content of the metal V, matrix a percentage of the total amount of the VO M layer is less than 0.5 atomic% can not be obtained the desired wear resistance improving effect, whereas the content of the metal V exceeds the same 7 atomic%, the layer itself Since the strength is abruptly reduced and causes chipping, the content is determined to be 0.5 to 7 atomic%.

この発明の被覆超硬工具は、硬質被覆層を構成する下部層の組成変化(Al,Ti,Si)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同層間密着層としてのVN層によって強固に密着接合した上部層としてのV分散VO層によって、被削材(難削材)および切粉との間にすぐれた表面滑り性が確保されることから、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削加工でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated carbide tool of this invention, the composition change (Al, Ti, Si) N layer of the lower layer constituting the hard coating layer has excellent high temperature hardness and heat resistance, and excellent high temperature strength. the V dispersion VO M layer as an upper layer was firmly adhered joined by VN layer as an interlayer adhesion layer, since the superior surface slipperiness between the workpiece (difficult-to-cut materials) and chips is ensured In particular, it shows excellent chipping resistance and high wear resistance over a long period of time even in high-speed cutting with high heat generation of difficult-to-cut materials such as highly viscous and sticky stainless steel, high manganese steel, and mild steel It demonstrates the nature.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Carbide substrates B-1 to B-6 made of TiCN-based cermet having a chip shape of CNMG120408 were formed.

さらに、硬質被覆層の上部層形成用カソード電極(蒸発源)として、まず、平均粒径:0.8μmの金属V粉末を用意し、これを10Paの酸化雰囲気中、温度:1000℃に1時間保持の条件で加熱酸化処理して、VO粉末とし、これに同じく平均粒径:0.8μmの金属V粉末を所定量配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を、6PaのAr雰囲気中、1200〜1400℃の範囲内の所定の温度に1時間保持の条件で焼結することにより、金属Vを所定の割合で分散含有したV分散VO焼結体を調製した。 Furthermore, as a cathode electrode (evaporation source) for forming the upper layer of the hard coating layer, first, a metal V powder having an average particle diameter of 0.8 μm is prepared, and this is placed in an oxidizing atmosphere of 10 Pa at a temperature of 1000 ° C. for 1 hour. by heating oxidation treatment under conditions of retention, and VO M powder, likewise an average particle diameter thereto: a 0.8μm of metal V powder predetermined amount, after 72 hours wet mixed in a ball mill and dried, the pressure of 100MPa Is pressed into a green compact, and the green compact is sintered in a 6 Pa Ar atmosphere at a predetermined temperature within a range of 1200 to 1400 ° C. for 1 hour, thereby allowing the metal V to be predetermined. V dispersion VO M sintered body containing dispersed at a ratio was prepared.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として層間密着層形成用金属V、他方側のSP装置のカソード電極(蒸発源)として上部層形成用V分散VO焼結体を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属VおよびV分散VO焼結体のそれぞれから90度離れた位置の一方側にカソード電極(蒸発源)として下部層のAl最高含有点形成用Al−Ti−Si合金、他方側に同じく下部層のAl最低含有点形成用Al−Ti−Si合金を対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記下部層形成用両Al−Ti−Si合金のうちのいずれか一方とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Al−Ti−Si合金によってボンバード洗浄し、
(c)ついで,装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最高含有点形成用Al−Ti−Si合金およびAl最低含有点形成用Al−Ti−Si合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚を有する組成変化(Al,Ti,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用両Al−Ti−Si合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じく4Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧も同じく−100Vとした条件で、カソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3,4に示される目標層厚のVN層を硬質被覆層の層間密着層として蒸着形成し、
(e)上記金属Vとアノード電極とのアーク放電を停止し、前記蒸着装置内の雰囲気を0.5PaのAr雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したV分散VO焼結体に、スパッタ出力:3kWの条件でスパッタリングを開始し、同じく表3,4に示される目標層厚を有し、かつ金属V目標含有割合に相当する金属Vをそれぞれ分散含有したV分散VO層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table, an interlayer adhesion layer forming metal V as the cathode electrode (evaporation source) of the AIP device on one side, and the SP on the other side the upper layer forming V dispersion VO M sintered body placed opposite a cathode (evaporation source) of the device, further along said rotating table, and each 90 degrees of the metal V and V dispersed VO M sintered body An Al—Ti—Si alloy for forming the highest Al content point of the lower layer as the cathode electrode (evaporation source) on one side of the remote position, and an Al—Ti—Si alloy for forming the lowest Al content point of the lower layer on the other side as well. Facing each other,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And a 100 A current is passed between one of the two Al-Ti-Si alloys for forming the lower layer of the cathode electrode and the anode electrode to generate an arc discharge. The carbide substrate surface is bombarded with the Al-Ti-Si alloy,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, and a DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating on the rotary table, An arc discharge is generated by flowing a current of 100 A between each cathode electrode (the Al-Ti-Si alloy for forming the highest Al content point and the Al-Ti-Si alloy for forming the lowest Al content point) and the anode electrode. Thus, on the surface of the carbide substrate, the Al highest content point and the Al lowest content point of the target composition shown in Tables 3 and 4 along the layer thickness direction alternately at the target intervals shown in Tables 3 and 4 as well. It has a component concentration distribution structure that repeatedly exists and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, One also change in composition with a target layer thickness shown in Table 3,4 (Al, Ti, Si) N layer were vapor deposited as the lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of both the Al-Ti-Si alloys for forming the lower layer is stopped, the atmosphere in the apparatus is kept in a nitrogen atmosphere of 4 Pa, and the carbide substrate Under the condition that the direct current bias voltage to -100V is also -100V, an arc discharge is generated by passing a current of 120A between the metal V of the cathode electrode and the anode electrode. A thick VN layer is deposited as an interlayer adhesion layer of a hard coating layer,
(E) Arc discharge between the metal V and the anode electrode is stopped, the atmosphere in the vapor deposition apparatus is changed to an Ar atmosphere of 0.5 Pa, and a V-dispersed VO arranged as a cathode electrode (evaporation source) of the SP apparatus Sputtering was started on the M sintered body under the condition of sputtering output: 3 kW, V having the target layer thickness shown in Tables 3 and 4 and containing metal V corresponding to the metal V target content ratio in a dispersed manner. by depositing form a dispersion VO M layer as the upper layer of the hard coating layer, the present invention coated carbide tool as the present invention the surface coating cemented carbide indexable (hereinafter, referred to as the present invention coated chip) 1 to 16 Each was manufactured.

また、比較の目的で、
(a)上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示されるアークイオンプレーティング装置内の回転テーブル上に外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Al−Ti−Si合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Al−Ti−Si合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記両Al−Ti−Si合金のうちのいずれか一方とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Al−Ti−Si合金でボンバード洗浄し、
(c)ついで、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最低含有点形成用Al−Ti−Si合金およびAl最高含有点形成用Al−Ti−Si合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表5,6に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表5,6に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表5,6に示される目標層厚の上記本発明被覆チップの下部層に相当する組成変化(Al,Ti,Si)N層を硬質被覆層として蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。
For comparison purposes,
(A) Each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and the outer peripheral portion is placed on the rotary table in the arc ion plating apparatus shown in FIG. As a cathode electrode (evaporation source) on one side, an Al-Ti-Si alloy for forming the lowest Al content point having various component compositions, and various cathode electrodes (evaporation source) on the other side Al-Ti-Si alloy for forming the highest Al content point having a component composition is disposed oppositely across the rotary table,
(B) First, the inside of the apparatus was heated to 500 ° C. with a heater while the inside of the apparatus was evacuated and kept at a vacuum of 0.1 Pa or less, and then a DC bias voltage of −1000 V was applied to the cemented carbide substrate, and An arc discharge is generated by flowing a current of 100 A between either one of the two Al—Ti—Si alloys of the cathode electrode and the anode electrode, so that the surface of the carbide substrate is made of the Al—Ti—Si alloy. Bombard washed,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, and a DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating on the rotary table, An arc discharge is generated by flowing a current of 100 A between each cathode electrode (the Al-Ti-Si alloy for forming the lowest Al content point and the Al-Ti-Si alloy for forming the highest Al content point) and the anode electrode. Thus, on the surface of the cemented carbide substrate, the Al minimum content point and the Al maximum content point of the target composition shown in Tables 5 and 6 along the layer thickness direction alternately at the target intervals shown in Tables 5 and 6 as well. It has a component concentration distribution structure that repeatedly exists and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, Similarly, a conventional coated carbide tool is formed by depositing a composition change (Al, Ti, Si) N layer corresponding to the lower layer of the above-described coated chip of the present invention having the target layer thickness shown in Tables 5 and 6 as a hard coating layer. Conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated tips) 1 to 16 were produced respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・S15Cの丸棒、
切削速度:380m/min.、
切り込み:1.5mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件(切削条件A)での軟鋼の乾式連続高速切削加工試験(通常の切削速度は250m/min.)、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:1.2mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件B)でのステンレス鋼の乾式断続高速切削加工試験(通常の切削速度は200m/min.)、
被削材:JIS・SCMnH1の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件C)での高マンガン鋼の乾式断続高速切削加工試験(通常の切削速度は200m/min.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 16 and the conventional coated chips 1 to 16 are as follows.
Work material: JIS / S15C round bar,
Cutting speed: 380 m / min. ,
Incision: 1.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of mild steel under the conditions (cutting condition A) (normal cutting speed is 250 m / min.),
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 350 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
A dry intermittent high-speed cutting test of stainless steel under the conditions (cutting condition B) (normal cutting speed is 200 m / min.),
Work material: JIS · SCMnH1 lengthwise equidistant four round grooved round bars,
Cutting speed: 320 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Of high manganese steel under normal conditions (cutting condition C) (normal cutting speed was 200 m / min.), And the flank wear width of the cutting edge was measured in any cutting test. . The measurement results are shown in Table 7.

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide rod-forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of sintered rods for round bar were subjected to grinding, as shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Al,Ti,Si)N層からなる下部層と、同じく表9に示される目標層厚のVN層からなる層間密着層と、さらに同じく表9に示される目標層厚を有し、かつ金属V目標含有割合に相当する金属Vをそれぞれ分散含有したV分散VO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. And the Al minimum content point and the Al maximum content point of the target composition shown in Table 9 along the layer thickness direction alternately and repeatedly exist at the target interval shown in Table 9, and the Al maximum A target layer having a component concentration distribution structure in which the Al (Ti) content continuously changes from the content point to the Al minimum content point, from the Al minimum content point to the Al maximum content point, and also shown in Table 9 Composition change in thickness (Al, Ti, Si) A lower layer composed of an N layer, an interlayer adhesion layer composed of a VN layer having the target layer thickness shown in Table 9, and a target layer thickness also shown in Table 9. And metal V corresponding to the target content ratio of metal V By depositing form a hard coating layer composed of a top layer made of V dispersed VO M layer dispersed containing Re respectively, the present invention present invention surface coating cemented carbide end mills of the coated cemented carbide (hereinafter, the present invention 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の上記本発明被覆エンドミルの下部層に相当する組成変化(Al,Ti,Si)N層を硬質被覆層として蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. In the same condition as in Example 1 above, the lowest Al content point and the highest Al content point of the target composition shown in Table 10 along the layer thickness direction are alternately at the target interval shown in Table 10 It has a component concentration distribution structure that repeatedly exists and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and Similarly, a conventional change as a conventional coated carbide tool is performed by depositing a composition change (Al, Ti, Si) N layer corresponding to the lower layer of the above-described coated end mill of the present invention having a target layer thickness shown in Table 10 as a hard coating layer. Surface coated carbide End mill (hereinafter, conventional coating end mill called) was 1-8 were prepared, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:110m/min.、
溝深さ(切り込み):3mm、
テーブル送り:160mm/分、
の条件でのステンレス鋼の乾式高速溝切削加工試験(通常の切削速度は70m/min.)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:90m/min.、
溝深さ(切り込み):5mm、
テーブル送り:180mm/分、
の条件での軟鋼の乾式高速溝切削加工試験(通常の切削速度は60m/min.)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:80m/min.、
溝深さ(切り込み):10mm、
テーブル送り:160mm/分、
の条件での高マンガン鋼の乾式高速溝切削加工試験(通常の切削速度は50m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and conventional coated end mills 1-8, the present invention coated end mills 1-3 and conventional coated end mills 1-3 are as follows:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 110 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 160 mm / min,
For the stainless steel dry high-speed grooving test (normal cutting speed is 70 m / min.), The coated end mills 4 to 6 and the conventional coated end mills 4 to 6
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 90 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 180mm / min,
With respect to the dry high-speed grooving test of mild steel under the conditions (normal cutting speed is 60 m / min.), The present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 160 mm / min,
Each of the high-manganese steel dry high-speed grooving test (normal cutting speed is 50 m / min.) Under the above conditions. The flank wear width of the outer peripheral edge of the cutting edge is the service life in any grooving test. The cutting groove length up to 0.1 mm, which is a guideline, was measured. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Al,Ti,Si)N層からなる下部層と、同じく表11に示される目標層厚のVN層からなる層間密着層と、さらに同じく表11に示される目標層厚を有し、かつ金属V目標含有割合に相当する金属Vをそれぞれ分散含有したV分散VO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the lowest Al content point and the highest Al content point of the target composition shown in Table 11 along the layer thickness direction are repeatedly present at the target intervals shown in Table 11 alternately. And a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and The target layer thickness composition change (Al, Ti, Si) N layer shown in FIG. 11, the interlayer adhesion layer consisting of the VN layer of the target layer thickness also shown in Table 11, and also shown in Table 11 Target layer thickness and metal V target By depositing form a hard coating layer composed of a top layer made of a metal V corresponding to chromatic ratio from V dispersed VO M layer dispersed containing respectively present invention surface coating made of cemented carbide as the present invention coated cemented carbide Drills (hereinafter referred to as the present invention-coated drills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表12に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表12に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表12に示される目標層厚の上記本発明被覆ドリルの下部層に相当する組成変化(Al,Ti,Si)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. In an ion plating apparatus, under the same conditions as in Example 1, the Al minimum content point and the Al maximum content point of the target composition shown in Table 12 along the layer thickness direction are alternately shown in Table 12 A component concentration distribution structure in which the Al (Ti) content continuously exists from the Al highest content point to the Al lowest content point, and the Al (Ti) content continuously changes from the Al lowest content point to the Al highest content point. And a composition change (Al, Ti, Si) N layer corresponding to the lower layer of the above-described coated drill of the present invention having the target layer thickness shown in Table 12 is formed by vapor deposition as a hard coating layer. As a carbide tool Come surface coating cemented carbide drills (hereinafter, conventional coating drill called) was 1-8 were prepared, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:160m/min.、
送り:0.25mm/rev、
穴深さ:8mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験(通常の切削速度は100m/min.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:150m/min.、
送り:0.25mm/rev、
穴深さ:16mm、
の条件での高マンガン鋼の湿式高速穴あけ切削加工試験(通常の切削速度は90m/min.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:120m/min.、
送り:0.3mm/rev、
穴深さ:28mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度は80m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 160 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 8mm,
About the wet high speed drilling cutting test (normal cutting speed is 100 m / min.) Of the mild steel under the conditions of the present invention, the coated drills 4 to 6 and the conventional coated drills 4 to 6
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 150 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 16mm,
For the high-manganese steel wet high speed drilling test under the conditions (normal cutting speed is 90 m / min.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 120 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 28mm,
Each of the high-speed wet drilling test (normal cutting speed is 80 m / min.) Of stainless steel under the above conditions is performed, and any wet high-speed drilling test (using water-soluble cutting oil) The number of drilling processes until the flank wear width reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2007038377
Figure 2007038377

Figure 2007038377
Figure 2007038377

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層をそれぞれ構成する組成変化(Al,Ti,Si)N層のAl最低含有点およびAl最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成のAl最低含有点およびAl最高含有点と実質的に同じ組成を示した。
さらに、本発明被覆超硬工具の硬質被覆層を構成するV分散VO層(上部層)の組成を同じく透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、素地に分散する金属Vは目標含有割合と実質的に同じ含有割合を示し、さらに、VOの素地は、組成式で、VOを主体とし、これにV、V、およびVOなどが含有する混合組織を示した。
As a result, the coated chips 1 to 16 of the present invention as the coated carbide tool of the present invention, the hard coated layers of the coated end mills 1 to 8 and the coated drills 1 to 8 of the present invention, and the conventional coated carbide tool Al minimum content point and Al maximum content point of composition change (Al, Ti, Si) N layer constituting hard coating layer of conventional coated chips 1-16, conventional coated end mills 1-8, and conventional coated drills 1-8, respectively. When the composition was measured by energy dispersive X-ray analysis using a transmission electron microscope, the composition showed substantially the same composition as the lowest Al content and the highest Al content of the target composition.
Moreover, as measured by the present invention V dispersed VO M layer constituting the hard coating layer of the coated cemented carbide tools energy dispersive X-ray analysis of the composition of (upper layer) likewise with a transmission electron microscope, dispersed in the matrix metal V represents substantially the same content as the target content to be further matrix of VO M is a composition formula, as a main component VO, this V 2 O 3, V 2 O 5, and VO 2, etc. Shows the mixed structure contained.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a scanning electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜12に示される結果から、本発明被覆超硬工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削加工でも、硬質被覆層の下部層である組成変化(Al,Ti,Si)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層によって前記下部層に強固に密着したV分散VO層によって、前記被削材および切粉との間にすぐれた表面滑り性が確保されることから、切刃部にチッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が組成変化(Al,Ti,Si)N層で構成された従来被覆超硬工具においては、いずれも前記難削材の高速切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなり、これが原因で切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 12, all of the coated carbide tools of the present invention are particularly high-speed cutting accompanied by high heat generation of difficult-to-cut materials such as highly viscous and sticky stainless steel, high manganese steel, and mild steel. Even in processing, the composition change (Al, Ti, Si) N layer, which is the lower layer of the hard coating layer, has excellent high-temperature hardness and heat resistance, excellent high-temperature strength, and the VN layer as an interlayer adhesion layer. the V dispersion VO M layer firmly adhered to the lower layer, wherein since the superior surface slipperiness between the workpiece and chips is ensured, without the occurrence of chipping in the cutting edge, over a long period In the conventional coated carbide tool in which the hard coating layer is composed of a composition change (Al, Ti, Si) N layer, while exhibiting excellent wear resistance, all of the above difficult-to-cut materials are cut at high speed. In machining, work material (hard-to-cut material) and cutting It is clear that the adhesiveness and reactivity between the powder and the hard coating layer are further increased, and this causes chipping at the cutting edge, leading to a service life in a relatively short time.

上述のように、この発明の被覆超硬工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に上記の難削材の高い発熱を伴なう高速切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention has excellent chipping resistance not only in cutting of general steel and ordinary cast iron, but also in high-speed cutting with high heat generation of the above difficult-to-cut materials. Since the cutting performance is excellent and exhibits excellent cutting performance over a long period of time, it is possible to satisfactorily respond to the FA of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used in forming the hard coating layer which comprises this invention coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises a conventional coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-(X+Y)TiXSi)N(ただし、原子比で、Xは0.10〜0.35、Yは0.01〜0.1を示す)、
上記Al最低含有点が、組成式:(Al1-(A+B)TiSi)N(ただし、原子比で、Aは0.40〜0.65、Bは0.01〜0.1を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであるAlとTiとSiの複合窒化物層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有する窒化バナジウム層からなる層間密着層、
(c)1〜5μmの平均層厚を有し、かつ酸化バナジウムの素地に、前記酸化バナジウムとの合量に占める割合で、0.5〜7原子%の金属バナジウムが分散分布した組織を有する金属バナジウム分散酸化バナジウム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) It has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al maximum content points and Al minimum content points are alternately present at predetermined intervals, and the Al maximum content A component concentration distribution structure in which the Al and Ti contents continuously change from the point to the Al minimum content point, from the Al minimum content point to the Al maximum content point,
Furthermore, the Al highest content point, the composition formula: (Al 1- (X + Y ) Ti X Si Y) N ( provided that an atomic ratio, X is 0.10 to 0.35, Y is from 0.01 to 0. 1)
The Al minimum content point is the composition formula: (Al 1− (A + B) Ti A Si B ) N (where A is 0.40 to 0.65 and B is 0.01 to 0.1 in atomic ratio). Show),
A lower layer composed of a composite nitride layer of Al, Ti, and Si, wherein the distance between the Al highest content point and the Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
(B) an interlayer adhesion layer comprising a vanadium nitride layer having an average layer thickness of 0.1 to 1.5 μm;
(C) having an average layer thickness of 1 to 5 μm, and having a structure in which 0.5 to 7 atomic% of metal vanadium is dispersed and distributed in the vanadium oxide base in a proportion of the total amount with the vanadium oxide. An upper layer comprising a metal vanadium dispersed vanadium oxide layer,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials, which is formed by forming the hard coating layer configured as described above in (a) to (c).
JP2005227912A 2005-08-05 2005-08-05 Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material Withdrawn JP2007038377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227912A JP2007038377A (en) 2005-08-05 2005-08-05 Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227912A JP2007038377A (en) 2005-08-05 2005-08-05 Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material

Publications (1)

Publication Number Publication Date
JP2007038377A true JP2007038377A (en) 2007-02-15

Family

ID=37796818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227912A Withdrawn JP2007038377A (en) 2005-08-05 2005-08-05 Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material

Country Status (1)

Country Link
JP (1) JP2007038377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988917A (en) * 2022-05-05 2022-09-02 滁州用朴新材料科技有限公司 Nano composite high-hardness ceramic cutter material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988917A (en) * 2022-05-05 2022-09-02 滁州用朴新材料科技有限公司 Nano composite high-hardness ceramic cutter material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007038378A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2007038379A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP4747719B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4747718B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007290090A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2007030098A (en) Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2007038377A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP2007021649A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material
JP4682827B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP4682826B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007144595A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007038386A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of hard-to-cut-material
JP2007038374A (en) Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material
JP2007038383A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007038376A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP4747710B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007030067A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut
JP4747709B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4682825B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2007021665A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2007021639A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting work of hard-to-cut material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007