JP2007030066A - Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut - Google Patents

Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut Download PDF

Info

Publication number
JP2007030066A
JP2007030066A JP2005213909A JP2005213909A JP2007030066A JP 2007030066 A JP2007030066 A JP 2007030066A JP 2005213909 A JP2005213909 A JP 2005213909A JP 2005213909 A JP2005213909 A JP 2005213909A JP 2007030066 A JP2007030066 A JP 2007030066A
Authority
JP
Japan
Prior art keywords
layer
cutting
hard
carbide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213909A
Other languages
Japanese (ja)
Other versions
JP4747710B2 (en
Inventor
Tsutomu Ogami
強 大上
Yusuke Tanaka
裕介 田中
Akihiro Kondou
暁裕 近藤
Kazunori Sato
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005213909A priority Critical patent/JP4747710B2/en
Publication of JP2007030066A publication Critical patent/JP2007030066A/en
Application granted granted Critical
Publication of JP4747710B2 publication Critical patent/JP4747710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide having a hard coarted layer exhibiting excellent chipping resistance in cutting a material hard to cut. <P>SOLUTION: In the cutting tool made of surface coated cemented carbide, a hard coated layer formed of following layers (a) to (c) is formed on the surface of a tungsten carbide-base body or a titanium carbide nitride-base cermet base body: (a) a lower layer formed of (Ti, Al, Si)N layer having an average layer thickness ranging from 1 to 5 μm and satisfying the composition formula: (Ti<SB>1-(X+y)</SB>Al<SB>X</SB>Si<SB>Y</SB>)N (wherein X is 0.30 to 0.70 and Y is 0.01 to 0.10 in an atomic ratio ); (b) an inter-layer contact layer formed of a vanadium nitride layer having an average layer thickness ranging from 0.1 to 1.5 μm; and (c) an upper layer formed of a vanadium oxide layer having an average layer thickness ranging from 1 to 5 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention is a cutting tool made of a surface-coated cemented carbide alloy (hereinafter referred to as coated carbide) that exhibits excellent chipping resistance with a hard coating layer, especially when machining difficult-to-cut materials such as stainless steel, high manganese steel, and even mild steel. Tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-(X+Y)AlSi)N(ただし、原子比で、Xは0.30〜0.70、Yは0.01〜0.10を示す)、
を満足するTiとAlとSiの複合窒化物[以下、(Ti,Al,Si)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の硬質被覆層である(Ti,Al,Si)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらにSiの含有によって一段と耐熱性の向上したものになっていることから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Ti 1- (X + Y) Al X Si Y ) N (however, in atomic ratio, X is 0.30 to 0.70, Y is 0.01 to 0.10),
Coated carbide tool formed by physical vapor deposition of a hard coating layer composed of a composite nitride of Ti, Al, and Si [hereinafter referred to as (Ti, Al, Si) N] layer satisfying the following conditions with an average layer thickness of 1 to 15 μm And (Ti, Al, Si) N layer, which is a hard coating layer of the coated carbide tool, has high-temperature hardness and heat resistance due to Al as a component, and high-temperature strength due to the Ti, Furthermore, since it has been further improved in heat resistance due to the inclusion of Si, it can also exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of various general steels and ordinary cast iron. Are known.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Si合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Si)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793773号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti—Al—Si alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 500 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied to the surface of the carbide substrate under a condition that a bias voltage of, for example, −100 V is applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al, Si) N layer.
Japanese Patent No. 2793773

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆超硬工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材(被削材)の切削加工を行った場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性度が一段と増大し、これに伴なって硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. As a result, cutting tools are affected as much as possible by the type of work material. There is a tendency to demand cutting tools that can cut as many grades as possible, but in the above-mentioned conventional coated carbide tools, this is applied to general steels such as low alloy steels and carbon steels. There is no problem when used for cutting of ordinary cast iron such as ductile cast iron and gray cast iron. When cutting difficult-to-cut materials (work materials), the work material and chips are heated to a high temperature due to heat generated during cutting, and the viscosity further increases. Viscosity to the surface Sex and reactivity become increasingly more, as a result chipping in the cutting edge (small chipping) it increases rapidly, which is at present, leading to a relatively short time service life due.

そこで、本発明者等は、上述のような観点から、特に難削材の切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Ti,Al,Si)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(以下、VOで示す。ただし、Mは酸素のバナジウム(V)に対する相対含有割合の変化値を示し、原子比で、VO、V、V、およびVOなどを示す)層を同じく1〜5μmの平均層厚で形成すると、前記VO層は表面滑り性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間には常にすぐれた滑り性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減し、前記下部層である(Ti,Al,Si)N層を十分に保護することから、(Ti,Al,Si)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the inventors of the present invention have developed the above-mentioned conventional coated super-hard tool in order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer, particularly in cutting difficult-to-cut materials. As a result of conducting research with a focus on hard tools,
(A) A (Ti, Al, Si) N layer, which is a hard coating layer of the above conventional coated carbide tool, is formed with an average layer thickness of 1 to 5 μm as a lower layer, and vanadium oxide (hereinafter referred to as an upper layer) thereon. , VO M, where M represents a change value of the relative content ratio of oxygen to vanadium (V), and represents VO, V 2 O 3 , V 2 O 5 , VO 2, etc. in terms of atomic ratio) When the same is formed with an average layer thickness of 1 to 5 [mu] m, the VO M layer is excellent surface slipperiness, even when this result workpiece by heat generated during cutting (difficult-to-cut materials) and its cutting scraps is high temperature heating Excellent slipperiness is always ensured between the cutting edge (the rake face and the flank face, and the cutting edge ridge line where these two surfaces intersect) and the work material and chips. The adhesiveness and reactivity to the blade surface are significantly reduced. That (Ti, Al, Si) N-layer because it sufficiently protect, (Ti, Al, Si) having excellent characteristics N layer may become to be sufficiently exhibited for a long time.

(b)一方、上部層であるVO層と下部層である(Ti,Al,Si)N層との密着性は十分でなく、特に断続切削を行った場合に前記の層間の密着性不足が原因でチッピングが発生し易いが、前記VO層と(Ti,Al,Si)N層との間に窒化バナジウム(以下、VNで示す)層を0.1〜1.5μmの平均層厚で介在させると、前記VN層は前記VO層および(Ti,Al,Si)N層のいずれとも強固に密着することから、これら両層間にはすぐれた密着性が確保されるようになること。 (B) On the other hand, a VO M layer and the lower layer is an upper layer (Ti, Al, Si) adhesion to the N layer is not sufficient, the lack adhesion between the layers of especially when subjected to intermittent cutting There is easy chipping caused by the VO M layer and (Ti, Al, Si) vanadium nitride between the N layer (hereinafter, indicated by VN) layer average thickness of 0.1~1.5μm the in the interposing, the VN layer the VO M layer and (Ti, Al, Si) from that than either strongly adhered of N layers, it comes to be ensured good adhesion to both of these layers .

(c)上記(a)および(b)で構成される硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にカソード電極(蒸発源)として所定の組成を有するTi−Al−Si合金、他方側に同じくカソード電極(蒸発源)として金属V(バナジウム)を配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al−Si合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に、下部層として(Ti,Al,Si)N層を1〜5μmの平均層厚で蒸着し、ついで前記Ti−Al−Si合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、同じく装置内雰囲気を窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、層間密着層としてVN層を0.1〜1.5μmの平均層厚で蒸着した後、前記金属Vとアノード電極との間のアーク放電を停止し、前記蒸着装置内の雰囲気を酸素雰囲気に切り替えた時点で、再びカソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、前記VN層に重ねて上部層として1〜5μmの平均層厚でVO層を蒸着することにより形成することができること。 (C) The hard coating layer constituted by the above (a) and (b) is, for example, an arc ion plating apparatus having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. That is, a rotating table for mounting a carbide substrate is provided in the center of the apparatus, and a Ti—Al—Si alloy having a predetermined composition as a cathode electrode (evaporation source) on one side with the rotating table interposed therebetween, and a cathode on the other side as well. An arc ion plating apparatus in which metal V (vanadium) is arranged as an electrode (evaporation source) is used, and a plurality of super-ions are formed along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. A hard substrate is mounted in a ring shape, and in this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the thickness of the hard coating layer formed by vapor deposition is made uniform. While the body itself rotates, basically, first, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al—Si alloy, and the lower layer is formed on the surface of the carbide substrate. (Ti, Al, Si) N layer is deposited with an average layer thickness of 1 to 5 μm, and then the arc discharge between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al—Si alloy is stopped, Similarly, an arc discharge is generated between the metal V as the cathode electrode (evaporation source) and the anode electrode while maintaining the atmosphere in the apparatus in a nitrogen atmosphere, so that the VN layer is 0.1 to 1.. After vapor deposition with an average layer thickness of 5 μm, the arc discharge between the metal V and the anode electrode is stopped, and when the atmosphere in the vapor deposition apparatus is switched to an oxygen atmosphere, it is again a cathode electrode (evaporation source). Metal V and anode By generating arc discharge between the poles, the average layer thickness 1~5μm as the upper layer overlaid on the VN layer can be formed by depositing VO M layer.

(d)上記の下部層、層間密着層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工で、下部層である(Ti,Al,Si)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層の介在によって前記下部層との間にすぐれた密着接合性が確保されたVO層の作用で、前記難削材からなる被削材およびその切粉との間にすぐれた表面滑り性が確保され、前記難削材および切粉の切刃部表面に対する粘着性および反応性は著しく低減された状態で切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The coated carbide tool formed by vapor-depositing the hard coating layer composed of the lower layer, the interlayer adhesion layer, and the upper layer is a stainless steel, a high manganese steel, and a mild steel that are particularly highly viscous and sticky. When cutting difficult-to-cut materials such as (Ti, Al, Si) N layer, the lower layer (Ti, Al, Si) N layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and the VN layer as an interlayer adhesion layer by the action of VO M layer adhesion bonding properties is secured for excellent between the lower layer by an intervening, excellent surface slipperiness between the workpiece and the chips made from the flame-cut materials is ensured Since the cutting and cutting of the difficult-to-cut material and the chips to the surface of the cutting edge portion are significantly reduced, chipping does not occur in the cutting edge portion, and it can be performed over a long period of time. Excellent wear resistance To become.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Y)AlXSi)N(ただし、原子比で、Xは0.30〜0.70、Yは0.01〜0.10を示す)を満足する(Ti,Al,Si)N層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有するVN層からなる層間密着層、
(c)1〜5μmの平均層厚を有するVO層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) having an average layer thickness of 1 to 5 μm and a composition formula: (Ti 1− (X + Y) Al X Si Y ) N (wherein X is 0.30 to 0.70, Y in terms of atomic ratio) Is a lower layer composed of a (Ti, Al, Si) N layer satisfying 0.01 to 0.10),
(B) an interlayer adhesion layer comprising a VN layer having an average layer thickness of 0.1 to 1.5 μm;
(C) an upper layer composed of VO M layer having an average layer thickness of 1 to 5 [mu] m,
It is characterized by a coated cemented carbide tool that forms a hard coating layer composed of the above (a) to (c) and exhibits excellent chipping resistance in cutting of difficult-to-cut materials. is there.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成および平均層厚
下部層を構成する(Ti,Al,Si)N層におけるAl成分には高温硬さと耐熱性、同Ti成分には高温強度を向上させ、さらにSi成分には耐熱性を一段と向上させる作用があるが、Alの割合を示すX値がTiとSiの合量に占める割合(原子比、以下同じ)で0.30未満になると、相対的にTiの割合が多くなり過ぎて、所定の高温硬さと耐熱性を確保することができなくなり、この結果摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピングなどが発生し易くなることから、X値を0.30〜0.70と定めたものであり、さらにSiの割合を示すY値がAlとTiの合量に占める割合で0.01未満では所望の耐熱性向上効果が得られず、一方同Y値が0.10を超えると、高温強度が急激に低下するようになることから、Y値を0.01〜0.10と定めた。
また、その平均層厚が1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の粘性の高い難削材の切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Lower layer composition and average layer thickness The (Ti, Al, Si) N layer constituting the lower layer has high-temperature hardness and heat resistance for the Al component, high-temperature strength for the Ti component, and further Si component Has the effect of further improving heat resistance, but when the X value indicating the proportion of Al is less than 0.30 in terms of the proportion of the total amount of Ti and Si (atomic ratio, hereinafter the same), relatively Ti The ratio becomes too high to ensure the predetermined high temperature hardness and heat resistance. As a result, the progress of wear is accelerated rapidly, while the X value indicating the Al ratio exceeds 0.70. Then, the ratio of Ti is relatively decreased, and the high temperature strength is sharply decreased. As a result, chipping or the like is likely to occur in the cutting edge portion. Therefore, the X value is set to 0.30 to 0.70. Further, the Y value indicating the proportion of Si is A If the ratio of the total amount of l and Ti is less than 0.01, the desired heat resistance improvement effect cannot be obtained. On the other hand, if the Y value exceeds 0.10, the high-temperature strength suddenly decreases. The Y value was determined to be 0.01 to 0.10.
Further, if the average layer thickness is less than 1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, whereas if the average layer thickness exceeds 5 μm, the above-mentioned high viscosity is difficult. In the cutting of the cutting material, chipping is likely to occur at the cutting edge, so the average layer thickness was set to 1 to 5 μm.

(c)層間密着層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が1.5μmを越えると、硬質被覆層の強度が層間密着層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜1.5μmと定めた。
(C) Average layer thickness of interlayer adhesion layer If the average layer thickness is less than 0.1 μm, it is not possible to ensure a strong bonding strength between the upper layer and the lower layer, while the average layer thickness is 1.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases at the interlayer adhesion layer portion, which causes the occurrence of chipping. Therefore, the average layer thickness was determined to be 0.1 to 1.5 μm.

(d)上部層の平均層厚
上部層を構成するVO層は、すぐれた表面滑り性を有し、上記の通り被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Ti,Al,Si)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が1μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) VO M layer constituting the average layer thickness top layer of the upper layer is excellent has surface slip characteristics were, as described above workpiece tack and reactivity to (difficult-to-cut materials) and chips are very This is low, and since the work material remains unchanged even when it is heated at the time of cutting, the lower layer (Ti, Al, Si) N layer is formed of the work material and cutting material heated at the high temperature. Protects from powder and exerts an action of suppressing the occurrence of chipping. However, if the average layer thickness is less than 1 μm, a desired effect cannot be obtained in the above action, while the average layer thickness exceeds 5 μm. If it is too much, chipping is likely to occur, so the average layer thickness was determined to be 1 to 5 μm.

この発明の被覆超硬工具は、硬質被覆層を構成する下部層の(Ti,Al,Si)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同層間密着層としてのVN層によって強固に密着接合した上部層としてのVO層によって、被削材(難削材)および切粉との間にすぐれた表面滑り性が確保されることから、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated carbide tool of the present invention, the lower layer (Ti, Al, Si) N layer constituting the hard coating layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and has the same interlayer adhesion. by VO M layer as an upper layer was firmly adhered joined by VN layer as a layer, since the superior surface slipperiness between the workpiece (difficult-to-cut materials) and chips is ensured, in particular viscosity and Even when cutting difficult-to-cut materials such as highly sticky stainless steel, high manganese steel, and mild steel, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / TiCN-based cemented carbide substrates B-1 to B-6 having a chip shape of CNMG120408 were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで、一方側にカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al−Si合金、他方側に同じくカソード電極(蒸発源)として層間密着層および上部層形成用金属Vを配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記下部層形成用Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Si合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用Ti−Al−Si合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じく4Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧も同じく−100Vとした条件で、カソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3に示される目標層厚のVN層を硬質被覆層の層間密着層として蒸着形成し、
(e)上記金属Vとアノード電極とのアーク放電を停止し、前記蒸着装置内の雰囲気を0.2Paの酸素雰囲気に切り替えた時点で、再びカソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、同じく表3に示される目標層厚のVO層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer periphery at a position that is a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, and has a predetermined composition as a cathode electrode (evaporation source) on one side across the rotary table An interlayer adhesion layer and an upper layer forming metal V are arranged as a cathode electrode (evaporation source) on the other side as well as a Ti—Al—Si alloy for lower layer formation,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And a current of 100 A is passed between the lower layer forming Ti-Al-Si alloy of the cathode electrode and the anode electrode to generate an arc discharge, and thereby the surface of the carbide substrate is made to the Ti substrate surface. -Bombard cleaning with Al-Si alloy;
(C) Introducing nitrogen gas as a reaction gas into the apparatus to form a 4 Pa reaction atmosphere, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and a cathode electrode A current of 120 A is passed between the Ti-Al-Si alloy and the anode electrode to generate an arc discharge, so that the surface of the cemented carbide substrate has a target composition and target layer thickness (Ti) shown in Table 3. , Al, Si) N layer is deposited as a lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the Ti-Al-Si alloy for forming the lower layer described above is stopped, and the atmosphere in the apparatus is similarly maintained at a 4 Pa nitrogen atmosphere, and to the carbide substrate. The DC bias voltage of -100V was also set to -100V, and a current of 120A was passed between the metal V of the cathode electrode and the anode electrode to generate an arc discharge. Forming a layer as an interlayer adhesion layer of a hard coating layer,
(E) When the arc discharge between the metal V and the anode electrode is stopped and the atmosphere in the vapor deposition apparatus is switched to an oxygen atmosphere of 0.2 Pa, it is again between the metal V and the anode electrode of the cathode electrode. by flowing a 120A current to generate arc discharge, also by the VO M layer of the target layer thicknesses shown in Table 3 is deposited formed as an upper layer of the hard coating layer, the present invention the surface of the present invention coated cemented carbide Coated carbide throw-away tips (hereinafter referred to as the present invention-coated tips) 1 to 16 were produced.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al−Si合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Si合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. The Ti-Al-Si alloy having various component compositions as the cathode electrode (evaporation source) is mounted, and the apparatus is first evacuated and kept at a vacuum of 0.1 Pa or less. After heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V is applied to the cemented carbide substrate, and a current of 100 A is passed between the Ti—Al—Si alloy of the cathode electrode and the anode electrode. Then, arc discharge is generated, and the surface of the carbide substrate is bombarded with the Ti—Al—Si alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 3 Pa. The bias voltage applied to the substrate is lowered to −100 V, and arc discharge is generated between the cathode electrode and the anode electrode of the Ti—Al—Si alloy, so that the carbide substrates A-1 to A-10 and B As a conventional coated carbide tool, a (Ti, Al, Si) N layer having a target composition and target layer thickness shown in Table 4 is vapor-deposited on each surface of -1 to B-6 as a hard coating layer. Conventional surface-coated carbide throwaway tips (hereinafter referred to as conventional coated tips) 1 to 16 were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:2mm、
送り:0.25mm/rev.、
切削時間:8分、
の条件(切削条件A)でのステンレス鋼の乾式断続切削加工試験、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:180m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件B)での軟鋼の乾式断続切削加工試験、
被削材:JIS・SCMnH1の丸棒、
切削速度:180m/min.、
切り込み:2mm、
送り:0.3mm/rev.、
切削時間:8分、
の条件(切削条件C)での高マンガン鋼の乾式連続切削加工試験、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 16 and the conventional coated chips 1 to 16 are as follows.
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 2mm,
Feed: 0.25 mm / rev. ,
Cutting time: 8 minutes
Dry interrupted cutting test of stainless steel under the above conditions (cutting condition A),
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 180 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted cutting test of mild steel under the above conditions (cutting condition B),
Work material: JIS / SCMnH1 round bar,
Cutting speed: 180 m / min. ,
Cutting depth: 2mm,
Feed: 0.3 mm / rev. ,
Cutting time: 8 minutes
The dry continuous cutting test of high manganese steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.

Figure 2007030066
Figure 2007030066

Figure 2007030066
Figure 2007030066

Figure 2007030066
Figure 2007030066

Figure 2007030066
Figure 2007030066

Figure 2007030066
Figure 2007030066

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three kinds of sintered rods for round bar were ground and shown in Table 6. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる下部層と、同じく表7に示される目標層厚のVN層からなる層間密着層およびVO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, a lower layer composed of a (Ti, Al, Si) N layer having a target composition and a target layer thickness shown in Table 7 and a VN layer having a target layer thickness also shown in Table 7 by depositing form a hard coating layer composed of a top layer made of interlayer adhesion layer and VO M layer, the present invention cover the present invention the surface coating cemented carbide end mill as carbide tools (hereinafter, referred to as the present invention coated end mill ) 1-8 were produced respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. The hard coating layer comprising the (Ti, Al, Si) N layer having the target composition and the target layer thickness shown in Table 7 is deposited under the same conditions as in Example 1 above. Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 as hard tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:55m/min.、
溝深さ(切り込み):3mm、
テーブル送り:200mm/分、
の条件での軟鋼の乾式溝切削加工試験、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:50m/min.、
溝深さ(切り込み):6mm、
テーブル送り:150mm/分、
の条件でのステンレス鋼の湿式(水溶性切削油使用)溝切削加工試験、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:35m/min.、
溝深さ(切り込み):10mm、
テーブル送り:140mm/分、
の条件での高マンガン鋼の乾式溝切削加工試験をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and conventional coated end mills 1-8, the present invention coated end mills 1-3 and conventional coated end mills 1-3 are as follows:
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 55 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 200 mm / min,
About the dry grooving cutting test of mild steel under the conditions of the present invention, the coated end mills 4-6 of the present invention and the conventional coated end mills 4-6,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 6 mm
Table feed: 150 mm / min,
For the stainless steel wet (using water-soluble cutting oil) grooving test, the present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 35 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 140 mm / min,
The dry grooving test of high manganese steel under the above conditions was conducted, and in each grooving test, the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is the standard for the service life. The cutting groove length was measured. The measurement results are shown in Table 7, respectively.

Figure 2007030066
Figure 2007030066

Figure 2007030066
Figure 2007030066

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる下部層と、同じく表8に示される目標層厚のVN層からなる層間密着層およびVO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. And under the same conditions as in Example 1 above, the lower layer composed of the (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8 and the target layer also shown in Table 8 by depositing form a hard coating layer composed of a top layer having a thickness interlayer adhesion layer and VO M layer made of VN layer of the present invention present invention surface coating cemented carbide drills of the coated cemented carbide (hereinafter, (Referred to as the present invention coated drills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al,Si)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. A hard coating layer composed of a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8 is also formed by vapor deposition under the same conditions as in Example 1 above. Thus, conventional surface coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated carbide tools were manufactured, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:120m/min.、
送り:0.2mm/rev、
穴深さ:10mm、
の条件でのステンレス鋼の湿式穴あけ切削加工試験、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:100m/min.、
送り:0.25mm/rev、
穴深さ:20mm、
の条件での高マンガン鋼の湿式穴あけ切削加工試験、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:90m/min.、
送り:0.3mm/rev、
穴深さ:32mm、
の条件での軟鋼の湿式穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 120 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 10mm,
For the wet drilling cutting test of stainless steel under the conditions of the present invention, the present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 100 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 20mm,
For the wet drilling cutting test of high manganese steel under the conditions of the present invention, the present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 90 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 32mm,
Welding drilling test of mild steel under the above conditions, and drilling until the flank wear width of the cutting edge surface reaches 0.3mm in any wet high-speed drilling test (using water-soluble cutting oil) The number of processes was measured. The measurement results are shown in Table 8, respectively.

Figure 2007030066
Figure 2007030066

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Ti,Al,Si)N層(下部層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Ti,Al,Si)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
さらに、本発明被覆超硬工具の硬質被覆層を構成するVO層(上部層)の組成を同じく測定したところ、原子比で、VOを主体とし、これにVO、V、V、およびVOなどが含有する混合組織を示した。
The hard coating layers of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tools obtained as a result (Ti, Al, Si) ) From the composition of the N layer (lower layer) and the conventional coated chips 1-16 as a conventional coated carbide tool, the conventional coated end mills 1-8, and the (Ti, Al, Si) N layer of the conventional coated drills 1-8 The composition of the resulting hard coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, and showed a composition substantially the same as the target composition.
Furthermore, when VO M layer constituting the hard layer of the present invention coated cemented carbide composition of (upper layer) was also measured, by atomic ratio, mainly the VO, this VO, V 2 O 3, V 2 A mixed structure containing O 5 , VO 2 and the like was shown.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a scanning electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜8に示される結果から、本発明被覆超硬工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工でも、硬質被覆層の下部層である(Ti,Al,Si)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層によって前記下部層に強固に密着したVO層によって、前記被削材および切粉との間にすぐれた表面滑り性が確保されることから、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Ti,Al,Si)N層で構成された従来被覆超硬工具においては、いずれも前記難削材の切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなり、これが原因で切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, all of the coated carbide tools of the present invention have a hard coating layer even when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel, which are particularly highly viscous and sticky. The lower layer (Ti, Al, Si) N layer has excellent high-temperature hardness and heat resistance, excellent high-temperature strength, and is firmly adhered to the lower layer by the VN layer as an interlayer adhesion layer. The M layer ensures excellent surface slippage between the work material and the chips, so that it exhibits excellent wear resistance over a long period of time without occurrence of chipping. In the conventional coated cemented carbide tool in which the coating layer is composed of a (Ti, Al, Si) N layer, all of the difficult-to-cut material is cut by the work material (hard-cutting material), chips and the hard coating layer. The tackiness and reactivity with It is clear that chipping occurs at the cutting edge due to this, and the service life is reached in a relatively short time.

上述のように、この発明の被覆超硬工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に上記の難削材の切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention exhibits excellent chipping resistance not only for cutting of general steel and ordinary cast iron, but particularly for cutting of the above difficult-to-cut materials, and for a long time. Since it shows excellent cutting performance, it can fully satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Y)AlXSi)N(ただし、原子比で、Xは0.30〜0.70、Yは0.01〜0.10を示す)を満足するTiとAlとSiの複合窒化物層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有する窒化バナジウム層からなる層間密着層、
(c)1〜5μmの平均層厚を有する酸化バナジウム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 1 to 5 μm and a composition formula: (Ti 1− (X + Y) Al X Si Y ) N (wherein X is 0.30 to 0.70, Y in terms of atomic ratio) Is a lower layer made of a composite nitride layer of Ti, Al, and Si that satisfies 0.01 to 0.10),
(B) an interlayer adhesion layer comprising a vanadium nitride layer having an average layer thickness of 0.1 to 1.5 μm;
(C) an upper layer comprising a vanadium oxide layer having an average layer thickness of 1 to 5 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance when a difficult-to-cut material is cut by forming a hard coating layer composed of (a) to (c) above.
JP2005213909A 2005-07-25 2005-07-25 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials Expired - Fee Related JP4747710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213909A JP4747710B2 (en) 2005-07-25 2005-07-25 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213909A JP4747710B2 (en) 2005-07-25 2005-07-25 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials

Publications (2)

Publication Number Publication Date
JP2007030066A true JP2007030066A (en) 2007-02-08
JP4747710B2 JP4747710B2 (en) 2011-08-17

Family

ID=37789938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213909A Expired - Fee Related JP4747710B2 (en) 2005-07-25 2005-07-25 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials

Country Status (1)

Country Link
JP (1) JP4747710B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310174A (en) * 1994-05-13 1995-11-28 Kobe Steel Ltd Hard film, hard film coated tool and hard film coated member excellent in wear resistance
JPH10158861A (en) * 1996-12-04 1998-06-16 Sumitomo Electric Ind Ltd Coated cutting tool and its production
JP2000061708A (en) * 1998-08-18 2000-02-29 Hitachi Tool Engineering Ltd Coated hard tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310174A (en) * 1994-05-13 1995-11-28 Kobe Steel Ltd Hard film, hard film coated tool and hard film coated member excellent in wear resistance
JPH10158861A (en) * 1996-12-04 1998-06-16 Sumitomo Electric Ind Ltd Coated cutting tool and its production
JP2000061708A (en) * 1998-08-18 2000-02-29 Hitachi Tool Engineering Ltd Coated hard tool

Also Published As

Publication number Publication date
JP4747710B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2007038378A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP4747719B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4747718B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007038379A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007030098A (en) Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4682826B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP2007021649A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material
JP4747710B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007030067A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut
JP2007144595A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4747709B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007038374A (en) Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material
JP4682825B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2007021639A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting work of hard-to-cut material
JP2007038386A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of hard-to-cut-material
JP2007021665A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2008188735A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007038377A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP2007038383A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of difficult-to-cut material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees