JP2007027370A - Electromagnetic manipulation mechanism, power switch using the same, and power switching apparatus - Google Patents

Electromagnetic manipulation mechanism, power switch using the same, and power switching apparatus Download PDF

Info

Publication number
JP2007027370A
JP2007027370A JP2005206714A JP2005206714A JP2007027370A JP 2007027370 A JP2007027370 A JP 2007027370A JP 2005206714 A JP2005206714 A JP 2005206714A JP 2005206714 A JP2005206714 A JP 2005206714A JP 2007027370 A JP2007027370 A JP 2007027370A
Authority
JP
Japan
Prior art keywords
mover
yoke
drive coil
permanent magnet
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005206714A
Other languages
Japanese (ja)
Other versions
JP4722601B2 (en
Inventor
Mitsuru Tsukima
満 月間
Toshie Takeuchi
敏恵 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005206714A priority Critical patent/JP4722601B2/en
Publication of JP2007027370A publication Critical patent/JP2007027370A/en
Application granted granted Critical
Publication of JP4722601B2 publication Critical patent/JP4722601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electromagnets (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic manipulating mechanism for delaying start of operation not considering limitation on application environment, and also to provide a power switching apparatus using the same mechanism. <P>SOLUTION: The electromagnetic manipulation mechanism comprises a rotor having an axis to make reciprocative movement in the axial direction, a yoke including a surface facing to the side surface of the rotor in parallel to the axial direction and both end surfaces of the rotor in the axial direction, a permanent magnet allocated between the yoke and rotor, two or more drive coils allocated in the internal side of yoke and in the periphery of the rotor, and a power source for applying an excitation current to the drive coils. Moreover, this mechanism also comprises a first magnetic circuit which is extended to the rotor via the yoke and one end surface of the rotor from the permanent magnet, and a second magnetic circuit extended to the rotor via the yoke and the other end surface of the rotor from the permanent magnet. In this electromagnetic manipulating mechanism, the drive coil is provided with a forward drive coil excited for forward movement of the rotor, and a backward drive coil connected electrically in both terminals to induce an induction current when the forward drive coil is excited. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、2つの位置で可動子を安定に保持することのできる電磁操作機構およびこれを使用する電力用開閉器と電力用開閉装置に関する。   The present invention relates to an electromagnetic operation mechanism capable of stably holding a mover at two positions, a power switch and a power switch using the same.

従来の電力用開閉装置の電磁操作機構は、収容部を囲んだ額縁状の縁を有する継鉄と、継鉄の縁から収容部に向かって突出し、隙間を配して相対する磁極と、収容部に収容し、直線運動可能に支持され、相対する磁極の間に配設された直方体状の可動子と、磁極との間にわずかな隙間を配して可動子に固着された永久磁石と、可動子の移動方向に向かった可動子の両端部にそれぞれ同軸状に略外接する角形の内周部を有する2個の角形環状の励磁コイルと、可動子の移動方向に向かった両端部に連結され、継鉄に備えられた軸受により直線移動可能に支持された可動軸と、を備える。   A conventional electromagnetic operation mechanism of a power switchgear includes a yoke having a frame-shaped edge surrounding the housing portion, a magnetic pole projecting from the edge of the yoke toward the housing portion, facing the housing portion, and a housing. A rectangular parallelepiped movable element that is housed in a part, supported so as to be linearly movable, and disposed between opposing magnetic poles, and a permanent magnet fixed to the movable element with a slight gap between the magnetic poles , Two square annular excitation coils each having a rectangular inner periphery substantially circumscribed coaxially at both ends of the mover facing the moving direction of the mover, and both ends facing the moving direction of the mover And a movable shaft connected and supported by a bearing provided in the yoke so as to be linearly movable.

永久磁石は、可動子の移動方向に垂直な方向に磁界を有している。永久磁石の起磁力により、可動子は、可動子の移動方向の一方の端部が継鉄に近接した第1の安定点と、可動子の他方の端部が継鉄に近接した第2の安定点と、において安定した状態で保持される。このようにして、可動子は2つの安定な位置間を往復駆動され、可動子に連結された可動軸を介して連結された電力用開閉装置内の可動接点が往復駆動され、電力を開閉する。   The permanent magnet has a magnetic field in a direction perpendicular to the moving direction of the mover. Due to the magnetomotive force of the permanent magnet, the mover has a first stable point where one end in the moving direction of the mover is close to the yoke and a second stable point where the other end of the mover is close to the yoke. It is held in a stable state at the stable point. Thus, the mover is reciprocated between two stable positions, and the movable contact in the power switch connected via the movable shaft connected to the mover is reciprocated to open and close the power. .

いま、可動子が第1の安定点において安定した状態で保持されているとき、近接している可動子の一方の端部と継鉄との間を通過する永久磁石が発生する磁束を打ち消す方向に励磁コイルに励磁電流が流されると、近接している可動子の一方の端部と継鉄との間を通過する磁束が減少し、近接している可動子の一方の端部と継鉄とを互いに引き寄せる力が減少する。逆に、離れている可動子の他方の端部と継鉄との間を通過する磁束が増加し、離れている可動子の他方の端部と継鉄とを互いに引き寄せる力が増加する。そして、離れている可動子の他方の端部と継鉄とを引き寄せる力が近接している可動子の一方の端部と継鉄とを引き寄せる力より大きくなったとき、近接している可動子の一方の端部と継鉄との隙間が広くなるように可動子は移動して可動子が第2の安定点において停止する(例えば、特許文献1参照)。   Now, when the mover is held in a stable state at the first stable point, the direction to cancel the magnetic flux generated by the permanent magnet passing between one end of the mover and the yoke When an exciting current is passed through the exciting coil, the magnetic flux passing between one end of the mover close to the yoke decreases, and one end of the mover close to the yoke The power to draw each other is reduced. Conversely, the magnetic flux passing between the other end of the mover and the yoke is increased, and the force that pulls the other end of the mover and the yoke together increases. When the force that attracts the other end of the mover and the yoke is greater than the force that attracts the one end of the mover and the yoke, the mover that is adjacent The mover moves so that the gap between the one end of the coil and the yoke becomes wide, and the mover stops at the second stable point (see, for example, Patent Document 1).

ところで、交流電力系統に短絡事故が発生したとき、短絡事故発生直後の電流は大きな直流成分を含んでいるため、電流波形は電流零に対して非対称になっている。その後、次第に直流成分が減衰し、電流波形は電流零に対して対称に戻っていく。このように、短絡事故発生直後では電流値が大きいため、接点対を開極すると接点が著しく損耗してしまう。
また、電力用開閉装置では、電流値が零となる点でしか電流を遮断することができないので、直流成分が非常に大きいと電流が電流零点を交差することがない場合も想定される。このようなときに敢えて接点対を開極しようとすると、半サイクルを経過しても電流が遮断されないので、接点間に1サイクル以上の長時間に亘ってアークが発生することになり、著しい接点消耗、電力用開閉装置の劣化、汚損、遮断不能を引き起こす可能性がある。
By the way, when a short circuit accident occurs in the AC power system, since the current immediately after the occurrence of the short circuit accident includes a large DC component, the current waveform is asymmetric with respect to zero current. Thereafter, the DC component gradually attenuates, and the current waveform returns symmetrically with respect to the current zero. As described above, since the current value is large immediately after the occurrence of the short circuit accident, when the contact pair is opened, the contact is significantly worn.
In addition, since the power switchgear can cut off the current only at the point where the current value becomes zero, it is also assumed that the current does not cross the current zero point if the DC component is very large. Attempting to open the contact pair in such a case does not interrupt the current even after half a cycle has elapsed, so an arc is generated between the contacts over a long period of one cycle or more. It may cause wear, deterioration of power switchgear, fouling and inability to shut off.

そのため、電力用開閉装置では、事故電流発生直後は動作せず、具体的には2サイクル程度待機してから開極動作が始められる。このため、電磁操作機構に対して次のような構成が提案されている。例えば、電子回路を備え、タイマーの設定を行うことが提案され、この場合、動作遅延を容易に設定することができる(例えば、特許文献2参照)。
また、安価に動作速度を低減させるために、可動鉄心、固定鉄心、駆動コイル、永久磁石からなる磁気回路の一部に、磁束と鎖交するように配置された逆起電流発生コイルを備え、可動鉄心の移動によって発生した磁束変化を逆起電流発生コイルに起電力として誘起させることで可動鉄心に対して制動力を作用させることが提案されている(例えば、特許文献3参照)。
また、電磁形過電流継電器に電磁コイルの他に短絡コイルを付加し、電磁コイルの入力電流が急に断となる場合、短絡コイルに発生する誘起電圧による電流により磁束が発生し、動作を短時間継続させることも提案されている(例えば、特許文献4参照)。
Therefore, the power switchgear does not operate immediately after the occurrence of the accident current, and specifically, the opening operation is started after waiting for about two cycles. For this reason, the following structure is proposed with respect to the electromagnetic operation mechanism. For example, it is proposed to provide an electronic circuit and set a timer. In this case, the operation delay can be easily set (see, for example, Patent Document 2).
In order to reduce the operation speed at a low cost, a part of the magnetic circuit composed of a movable iron core, a fixed iron core, a drive coil, and a permanent magnet is provided with a counter electromotive current generating coil arranged so as to be linked to the magnetic flux, It has been proposed to apply a braking force to a movable iron core by inducing a magnetic flux change generated by the movement of the movable iron core as an electromotive force in a counter electromotive current generating coil (see, for example, Patent Document 3).
Also, when a short-circuit coil is added to the electromagnetic overcurrent relay in addition to the electromagnetic coil, and the input current of the electromagnetic coil suddenly cuts off, magnetic flux is generated by the induced voltage generated in the short-circuit coil, shortening the operation. It has also been proposed to continue the time (see, for example, Patent Document 4).

国際公開第95/07542号パンフレットInternational Publication No. 95/07542 Pamphlet 国際公開第96/32734号パンフレット(Fig.3)International Publication No. 96/32734 (FIG. 3) 特開2001−256868号公報JP 2001-256868 A 特開平8−287814号公報JP-A-8-287814

しかし、電子回路を使用するに際して、電子回路は環境変化や外乱に対して影響を受け易いので、電子回路の信頼性を確保するため、使用環境が制限される。例えば、屋外向けの遮断器のように周囲環境が厳しい場合や廉価な遮断器のようにメンテナンスに費用を掛け難い場合には電子回路を使用することが難しいという問題がある。
また、短絡コイルや逆起電流コイルを駆動コイルとは別に追加配置し、動作開始時間を遅らせようとすると、電磁操作機構が大型化するため、高コスト、高重量であるという問題がある。
However, when the electronic circuit is used, the electronic circuit is easily affected by environmental changes and disturbances, so that the use environment is limited in order to ensure the reliability of the electronic circuit. For example, there is a problem that it is difficult to use an electronic circuit when the surrounding environment is severe, such as an outdoor circuit breaker, or when it is difficult to spend maintenance on an inexpensive circuit breaker.
In addition, if a short-circuit coil or a counter electromotive current coil is additionally arranged separately from the drive coil and the operation start time is delayed, the electromagnetic operation mechanism becomes large, resulting in a problem of high cost and high weight.

この発明の目的は、使用環境の制限を新たに考慮せずに、動作開始を遅らせる電磁操作機構およびこれを使用する電力用開閉装置を提供することである。   An object of the present invention is to provide an electromagnetic operation mechanism that delays the start of operation without newly considering restrictions on the use environment, and a power switchgear using the electromagnetic operation mechanism.

この発明に係わる電磁操作機構は、軸を有し、軸方向に往復運動可能な可動子と、上記軸方向に平行な上記可動子の側面および上記軸方向の上記可動子の両端面に相対する面を有する継鉄と、上記継鉄および上記可動子で構成される閉磁気回路中に配置される永久磁石と、上記継鉄または上記可動子の周囲に配置される2つ以上の駆動コイルと、上記駆動コイルに励磁電流を流す電源と、を備え、上記永久磁石から上記継鉄を介し、上記可動子の一方の端面を経由して上記可動子に至る第1の磁気回路および、上記永久磁石から上記継鉄を介し、上記可動子の他方の端面を経由して上記可動子に至る第2の磁気回路が構成される電磁操作機構において、上記駆動コイルは、上記可動子を往運動させるために励磁される少なくとも1つの往駆動コイルと、両端子が電気的に接続され、上記往駆動コイルが励磁されるとき誘導電流が誘導される少なくとも1つの復駆動コイルと、を備える。   An electromagnetic operating mechanism according to the present invention has a shaft and is movable in a reciprocating motion in the axial direction, and is opposed to a side surface of the movable member parallel to the axial direction and both end surfaces of the movable member in the axial direction. A yoke having a surface, a permanent magnet arranged in a closed magnetic circuit composed of the yoke and the mover, and two or more drive coils arranged around the yoke or the mover A first magnetic circuit extending from the permanent magnet to the mover via one end face of the mover through the yoke, and the permanent magnet. In an electromagnetic operation mechanism in which a second magnetic circuit is formed from a magnet to the mover via the yoke and the other end surface of the mover, the drive coil moves the mover forward. At least one forward drive excited for And yl, both terminals are electrically connected, and a least one backward drive coil induced current is induced when the forward driving coil is energized.

この発明に係る電磁操作機構の効果は、復駆動コイルの両端子が接続されているので、往駆動コイルに励磁電流を流すと復駆動コイルに近接している可動子と継鉄とを引き付ける誘導電流が流れ、可動子の移動開始を遅らせることができ、そのために特別な制御回路が不要であり、極めて簡単な構成で遅延時間を簡単に調整できる。   The effect of the electromagnetic operating mechanism according to the present invention is that the both terminals of the return drive coil are connected, so that when the exciting current is passed through the forward drive coil, induction that attracts the mover and the yoke close to the backward drive coil A current flows, and the start of movement of the mover can be delayed. Therefore, a special control circuit is unnecessary, and the delay time can be easily adjusted with a very simple configuration.

実施の形態1.
図1は、この発明の実施の形態1に係わる電磁操作機構の構成を示す図である。図2(a)、図2(b)は、実施の形態1の電磁操作機構を用いた電力用開閉装置の断面図を示す。図3は、実施の形態1の電磁操作機構の動作を説明するための説明図である。図1において、機構部分は断面図で示してある。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of an electromagnetic operating mechanism according to Embodiment 1 of the present invention. 2A and 2B are cross-sectional views of a power switchgear using the electromagnetic operation mechanism of the first embodiment. FIG. 3 is an explanatory diagram for explaining the operation of the electromagnetic operation mechanism according to the first embodiment. In FIG. 1, the mechanism portion is shown in a sectional view.

図1は、電磁操作機構1Aの可動子2が第1の安定位置に停止されている状態を示す図である。電磁操作機構1Aは、角柱状で、角柱の中心軸に沿った円筒状の中心孔を有した可動子2、可動子2の一対の相対する側面に貼り付けられた2個の永久磁石3、4、可動子2の中心孔に両側から挿入され、可動子2の端面が継鉄11に当接するように一部可動子2に螺合された可動軸5、6を有している。可動子2、永久磁石3、4、可動軸5、6は、可動子2の軸方向に一体として直線運動可能である。可動子2は、磁性体からなる。   FIG. 1 is a diagram illustrating a state in which the mover 2 of the electromagnetic operation mechanism 1A is stopped at the first stable position. The electromagnetic operation mechanism 1A has a prismatic shape, a movable element 2 having a cylindrical center hole along the central axis of the rectangular cylinder, two permanent magnets 3 attached to a pair of opposing side surfaces of the movable element 2, 4. It has movable shafts 5 and 6 that are inserted into the center hole of the mover 2 from both sides and are partially screwed to the mover 2 so that the end face of the mover 2 contacts the yoke 11. The mover 2, the permanent magnets 3 and 4, and the movable shafts 5 and 6 can move linearly as a unit in the axial direction of the mover 2. The mover 2 is made of a magnetic material.

電磁操作機構1Aは、さらに、可動子2の軸方向におおよそ可動子2の長さだけ離れ、可動子2の軸に対して同軸状に配置され、口の字状の断面を有する2個の往駆動コイル7および復駆動コイル8、永久磁石3、4に隙間を配して対向し、往駆動コイル7および復駆動コイル8の側面によって挟まれた磁極9、10を有している。さらに、磁極9、10から連続的に外側へと連なり、往駆動コイル7および復駆動コイル8の外側面をそれぞれ覆い、可動子2の軸方向の端面に相対するように延びた継鉄11を有している。可動子2の軸方向の端面に相対する継鉄11の面に設けられた孔に、可動軸5、6を回転自在に支持する軸受12が嵌入されている。これらにより、可動子2、永久磁石3、4、可動軸5、6が一体になって、磁極9、10の永久磁石3、4と対向する面に沿って可動子2の軸方向に往復運動可能に継鉄11に装着される。磁極9、10と継鉄11は、軟鉄板を積層して作製している。   The electromagnetic operation mechanism 1A is further separated by two lengths of the mover 2 in the axial direction of the mover 2 and is arranged coaxially with the axis of the mover 2 and has a mouth-shaped cross section. The forward drive coil 7, the backward drive coil 8, and the permanent magnets 3, 4 are opposed to each other with a gap, and the magnetic poles 9, 10 are sandwiched by the side surfaces of the forward drive coil 7 and the backward drive coil 8. Further, a yoke 11 is continuously connected to the outside from the magnetic poles 9 and 10, covers the outer surfaces of the forward drive coil 7 and the backward drive coil 8, and extends so as to face the end surface in the axial direction of the mover 2. Have. A bearing 12 that rotatably supports the movable shafts 5 and 6 is fitted into a hole provided in the surface of the yoke 11 that faces the end surface in the axial direction of the mover 2. As a result, the mover 2, the permanent magnets 3 and 4, and the movable shafts 5 and 6 are integrated, and reciprocates in the axial direction of the mover 2 along the surface of the magnetic poles 9 and 10 facing the permanent magnets 3 and 4. It is attached to the yoke 11 as possible. The magnetic poles 9 and 10 and the yoke 11 are produced by laminating soft iron plates.

電磁操作機構1Aは、さらに、復駆動コイル8の両端子間に接続された抵抗体14、往駆動コイル7および復駆動コイル8に励磁電流を流す駆動電源15を有する。駆動電源15は、往駆動コイル7および復駆動コイル8に往駆動コイル7および復駆動コイル8を貫通する永久磁石3、4により励磁された磁束の方向と同じ方向の磁束が励磁されるように励磁電流を流す。
なお、永久磁石3、4は、磁極9、10と可動子2との間に配置されているが、例えば可動子2の内部や継鉄11の内部に配置しても良いことは言うまでもない。また、往駆動コイル7と復駆動コイル8は、継鉄11の内側に配置されているが、例えば継鉄11の外側に配置しても良いことは言うまでもない。
The electromagnetic operation mechanism 1 </ b> A further includes a resistor 14 connected between both terminals of the backward driving coil 8, a forward driving coil 7, and a driving power supply 15 that causes an exciting current to flow through the backward driving coil 8. The drive power supply 15 is configured such that the forward drive coil 7 and the backward drive coil 8 are excited with a magnetic flux in the same direction as the magnetic flux excited by the permanent magnets 3 and 4 passing through the forward drive coil 7 and the backward drive coil 8. Apply excitation current.
In addition, although the permanent magnets 3 and 4 are arrange | positioned between the magnetic poles 9 and 10 and the needle | mover 2, it cannot be overemphasized that you may arrange | position inside the needle | mover 2 or the yoke 11, for example. Moreover, although the forward drive coil 7 and the reverse drive coil 8 are arrange | positioned inside the yoke 11, it cannot be overemphasized that you may arrange | position outside the yoke 11, for example.

図2(a)、図2(b)に電磁操作機構1Aを使用した電力用開閉装置20の断面図を示す。図2(a)は、電力用開閉装置20が開極している状態を示し、図2(b)は、閉極している状態を示す。電力用開閉装置20は、電磁操作機構1Aの可動軸6に連結され、回転中心軸21により回転自在に軸支されるレバー部22、レバー部22に接圧バネ23を介して連結された真空バルブ24の可動接点25、可動接点25に対向する固定接点26を有している。レバー部22は、スプリング30により回転中心軸21を中心にして図2上で反時計方向に回動するように付勢されている。可動接点25は、開極状態(図2(a))、閉極状態(図2(b))の間を移動して固定接点26との間で電力を開閉する。   2A and 2B are sectional views of the power switchgear 20 using the electromagnetic operation mechanism 1A. FIG. 2A shows a state where the power switchgear 20 is open, and FIG. 2B shows a state where the power switch 20 is closed. The power switchgear 20 is connected to the movable shaft 6 of the electromagnetic operation mechanism 1A, and is a lever portion 22 rotatably supported by the rotation center shaft 21, and a vacuum connected to the lever portion 22 via a contact pressure spring 23. A movable contact 25 of the valve 24 and a fixed contact 26 facing the movable contact 25 are provided. The lever portion 22 is biased by a spring 30 so as to rotate counterclockwise on the rotation center shaft 21 in FIG. The movable contact 25 moves between an open state (FIG. 2A) and a closed state (FIG. 2B) to open / close electric power with the fixed contact 26.

次に、図2(a)、図2(b)、図3を参照して電磁操作機構1Aの動作について説明する。なお、磁気回路は、可動子2の軸に対して対称に形成されている。   Next, the operation of the electromagnetic operation mechanism 1A will be described with reference to FIGS. 2 (a), 2 (b), and 3. FIG. The magnetic circuit is formed symmetrically with respect to the axis of the mover 2.

この電磁操作機構1Aは、永久磁石3、4、可動子2および磁極9、10を共通に含んだ2つの磁気回路S1と磁気回路S2とを有している。磁気回路S1において、永久磁石3、4、磁極9、10、継鉄胴部11a、継鉄下部11b、可動子2の一方の端面と継鉄11との間の第1の隙間27、可動子2が直列に接続されている。   The electromagnetic operation mechanism 1A has two magnetic circuits S1 and S2 that include the permanent magnets 3 and 4, the mover 2, and the magnetic poles 9 and 10 in common. In the magnetic circuit S1, the permanent magnets 3 and 4, the magnetic poles 9 and 10, the yoke body 11a, the yoke lower portion 11b, the first gap 27 between one end face of the mover 2 and the yoke 11, the mover 2 are connected in series.

また、磁気回路S2において、永久磁石3、4、磁極9、10、継鉄胴部11a、継鉄上部11c、可動子2の他方の端面と継鉄11との間の第2の隙間28、可動子2が直列に接続されている。   Further, in the magnetic circuit S2, the permanent magnets 3, 4, the magnetic poles 9, 10, the yoke body 11a, the yoke upper portion 11c, the second gap 28 between the other end surface of the mover 2 and the yoke 11, The mover 2 is connected in series.

可動子2は、隙間27側の継鉄11とほぼ当接し、その結果、第1の隙間27の長さが第2の隙間28の長さに対して十分に小さくなることにより、第1の安定点に位置する。また、可動子2は、隙間28側の継鉄11とほぼ当接し、第2の隙間28の長さが第1の隙間27の長さに対して十分に小さくなることにより、第2の安定点に位置する。
例えば、可動子2が継鉄下部11bに近接したとき、第1の隙間27の磁気抵抗は、第2の隙間28の磁気抵抗より非常に小さいので、磁気回路S1の磁束Φ1は、磁気回路S2の磁束Φ2より大きい。そのため、第1の隙間27に働く磁気吸引力は、第2の隙間28に働く磁気吸引力より大きいので、足し合わされた磁気吸引力は可動子2を継鉄下部11b方向に加圧する。
逆に、可動子2が継鉄上部11cに近接したとき、第2の隙間28の磁気抵抗は、第1の隙間27の磁気抵抗より非常に小さいので、磁気回路S2の磁束Φ2は、磁気回路S1の磁束Φ1より大きい。そのため、第2の隙間28に働く磁気吸引力は、第1の隙間27に働く磁気吸引力より大きいので、足し合わされた可動子2に働く磁気吸引力は可動子2を継鉄上部11c方向に加圧する。
The mover 2 substantially contacts the yoke 11 on the gap 27 side, and as a result, the length of the first gap 27 is sufficiently smaller than the length of the second gap 28, so that the first Located at a stable point. Further, the mover 2 substantially abuts with the yoke 11 on the gap 28 side, and the length of the second gap 28 is sufficiently smaller than the length of the first gap 27, so that the second stable Located at a point.
For example, when the mover 2 comes close to the yoke lower portion 11b, the magnetic resistance of the first gap 27 is much smaller than the magnetic resistance of the second gap 28, so that the magnetic flux Φ1 of the magnetic circuit S1 is equal to the magnetic circuit S2. Is larger than the magnetic flux Φ2. Therefore, since the magnetic attraction force acting on the first gap 27 is larger than the magnetic attraction force acting on the second gap 28, the added magnetic attraction force pressurizes the mover 2 toward the yoke lower portion 11b.
Conversely, when the mover 2 is close to the yoke upper portion 11c, the magnetic resistance of the second gap 28 is much smaller than the magnetic resistance of the first gap 27, so that the magnetic flux Φ2 of the magnetic circuit S2 is equal to the magnetic circuit. It is larger than the magnetic flux Φ1 of S1. Therefore, since the magnetic attraction force acting on the second gap 28 is larger than the magnetic attraction force acting on the first gap 27, the magnetic attraction force acting on the added mover 2 moves the mover 2 toward the yoke upper portion 11c. Pressurize.

次に、可動子2の移動について説明する。
可動子2を第1の安定点から第2の安定点に移動させるために、往駆動コイル7に励磁電流を流し、第1の隙間27の磁束と逆方向に磁束を発生させ保持状態にある可動子2の保持力を低下し、第2の隙間28の磁束を増加させて第1の隙間27の磁気吸引力より大きくなるようにする。
例えば、図3に示すように、可動子2が第1の安定点に保持されているとき、永久磁石3、4による磁束と同一方向の磁束を磁気回路T2に発生するように、駆動電源15により往駆動コイル7に電流を流すと、磁気回路U2に第1の隙間27における永久磁石3、4による磁束と反対方向の磁束を発生する。
しかし、抵抗体14を介して両端子が接続されている復駆動コイル8の閉回路に、往駆動コイル7の励磁により発生する磁束を打ち消すように、誘導電流が誘導され、その結果、磁気回路V2に第1の隙間27における永久磁石3、4による磁束と同一方向の磁束が発生するので、可動子2は移動を開始しない。
復駆動コイル8に誘導される誘導起電力Uの大きさは、式(1)によって与えられる。
Next, the movement of the mover 2 will be described.
In order to move the mover 2 from the first stable point to the second stable point, an exciting current is supplied to the forward drive coil 7 to generate a magnetic flux in a direction opposite to the magnetic flux in the first gap 27 and is in a holding state. The holding force of the mover 2 is reduced, and the magnetic flux of the second gap 28 is increased so as to be larger than the magnetic attractive force of the first gap 27.
For example, as shown in FIG. 3, when the mover 2 is held at the first stable point, the drive power supply 15 is generated so that a magnetic flux in the same direction as the magnetic flux by the permanent magnets 3 and 4 is generated in the magnetic circuit T2. When a current is passed through the forward drive coil 7, a magnetic flux in the opposite direction to the magnetic flux generated by the permanent magnets 3 and 4 in the first gap 27 is generated in the magnetic circuit U2.
However, an induced current is induced in the closed circuit of the return drive coil 8 to which both terminals are connected via the resistor 14 so as to cancel the magnetic flux generated by the excitation of the forward drive coil 7, and as a result, the magnetic circuit Since a magnetic flux in the same direction as the magnetic flux generated by the permanent magnets 3 and 4 in the first gap 27 is generated in V2, the mover 2 does not start moving.
The magnitude of the induced electromotive force U induced in the backward driving coil 8 is given by the equation (1).

U=−N×(dΦ/dt) (1)     U = −N × (dΦ / dt) (1)

ただし、Nは復駆動コイル8の巻数、dΦ/dtは、往駆動コイル7に励磁電流を流したときに発生する復駆動コイル8を貫通する磁束の時間変化を示す。
そして、復駆動コイル8に誘導される誘導電流は、誘導起電力U、抵抗体14および復駆動コイル8の抵抗分の和(R)およびインダクタンス(L)によって決まる回路定数から算出できる。誘導された誘導電流は、時定数τ=L/Rに従って減衰していく。
その結果、誘導電流がある値以下まで低下すると、第1の隙間27の磁気吸引力が減少し、第2の隙間28の磁気吸引力が大きくなるので、第2の隙間28の磁気吸引力が主に可動子2に働き、可動子2は、対向する磁極9、10の間を通過して、往駆動コイル7の角形の内周部内へ移動する。
つまり、抵抗体14の抵抗値を適当に選定することにより、遅延時間を自由に設定できることを意味している。
このように可動子2は移動し、移動後の可動子2は第2の安定点で保持される。
Here, N is the number of turns of the return drive coil 8, and dΦ / dt is the time change of the magnetic flux passing through the return drive coil 8 that is generated when an excitation current is passed through the forward drive coil 7.
The induced current induced in the return drive coil 8 can be calculated from circuit constants determined by the induced electromotive force U, the resistor 14 and the sum (R) and inductance (L) of the resistance of the return drive coil 8. The induced current is attenuated according to the time constant τ = L / R.
As a result, when the induced current decreases to a certain value or less, the magnetic attractive force of the first gap 27 decreases and the magnetic attractive force of the second gap 28 increases, so that the magnetic attractive force of the second gap 28 increases. Mainly acting on the mover 2, the mover 2 passes between the opposing magnetic poles 9, 10 and moves into the rectangular inner periphery of the forward drive coil 7.
That is, it means that the delay time can be freely set by appropriately selecting the resistance value of the resistor 14.
In this way, the mover 2 moves, and the moved mover 2 is held at the second stable point.

また、可動子2を第2の安定点から第1の安定点に移動させるために、復駆動コイル8に励磁電流を流し、保持状態にある可動子2と第2の隙間28の磁束と逆方向に磁束を発生させ保持力を低下し、第1の隙間27での磁束を増加させて第2の隙間28での磁気吸引力より大きくなるようにする。
例えば、図2(a)に示すように可動子2が第2の安定点に保持されているとき、永久磁石3、4による磁界と同一方向の磁界を磁気回路S1に発生するように、駆動電源15により復駆動コイル8に電流を流す。そうすると、可動子2は、第1の安定点、即ち図2(b)に示す位置まで移動し、保持される。
Further, in order to move the mover 2 from the second stable point to the first stable point, an exciting current is supplied to the backward driving coil 8 and is opposite to the magnetic flux of the mover 2 in the holding state and the second gap 28. The magnetic flux is generated in the direction to decrease the holding force, and the magnetic flux in the first gap 27 is increased so as to be larger than the magnetic attractive force in the second gap 28.
For example, as shown in FIG. 2A, when the mover 2 is held at the second stable point, the magnetic circuit S1 is driven so as to generate a magnetic field in the same direction as the magnetic field by the permanent magnets 3 and 4. A current is passed through the return drive coil 8 by the power supply 15. If it does so, the needle | mover 2 will move to the 1st stable point, ie, the position shown in FIG.2 (b), and will be hold | maintained.

なお、復方向に可動子2を移動させる場合、駆動電源15から供給される電流は、復駆動コイル8に流れる電流と抵抗体14に流れる電流に分流されるが、抵抗体14の抵抗値が復駆動コイル8の抵抗値よりも桁違いに大きくなるように設定しておけば、ほとんどの電流は復駆動コイル8に流れるため、可動子2を復方向に移動することを阻害することはない。   When the mover 2 is moved in the backward direction, the current supplied from the drive power supply 15 is divided into the current flowing through the backward drive coil 8 and the current flowing through the resistor 14, but the resistance value of the resistor 14 is If it is set so as to be an order of magnitude larger than the resistance value of the backward driving coil 8, most of the current flows through the backward driving coil 8, so that it does not hinder the mover 2 from moving in the backward direction. .

このようにして、可動子2は2つの安定な位置間を往復し、図2(a)、図2(b)に示すように可動子2は可動軸6を介して連結した真空バルブ24内の可動接点25を往復駆動し、電力を開閉する。   In this way, the mover 2 reciprocates between two stable positions, and the mover 2 is inside the vacuum valve 24 connected via the movable shaft 6 as shown in FIGS. 2 (a) and 2 (b). The movable contact 25 is reciprocated to open and close the power.

このような電磁操作機構1Aは、復駆動コイル8の両端子に駆動電源15と並列に抵抗体14が接続され、往駆動コイル7に励磁電流を流すと復駆動コイル8に近接している可動子2と継鉄11とを引き付ける誘導電流が流れ、可動子2の移動開始を遅らせることができ、そのために特別な制御回路が不要であり、抵抗体14の抵抗値を変えるだけで電力用開閉装置20の遅延時間を簡単に調整できる。
また、既存の復駆動コイル8も抵抗体を追加するだけでそのまま利用することができる。
In such an electromagnetic operating mechanism 1A, a resistor 14 is connected in parallel with the drive power supply 15 to both terminals of the return drive coil 8, and when an excitation current is passed through the forward drive coil 7, the movable drive coil 8 is in proximity to the return drive coil 8. An induction current that attracts the child 2 and the yoke 11 flows, so that the start of movement of the mover 2 can be delayed. Therefore, a special control circuit is not required, and power switching can be performed simply by changing the resistance value of the resistor 14. The delay time of the device 20 can be easily adjusted.
Further, the existing return drive coil 8 can be used as it is simply by adding a resistor.

なお、実施の形態1において、永久磁石3、4は可動子2に貼り付けているが、電磁操作機構1の永久磁石3、4を磁極9、10に固着しても同様な効果が得られる。
また、継鉄11、永久磁石3、4、往駆動コイル7および復駆動コイル8から構成される電磁操作機構であれば、その形状に関わりなく適用することができる。
また、実施の形態1において電磁操作機構1Aを電力用開閉装置に使用する例について説明したが、電力用開閉器にも同様に電磁操作機構1Aを適用することができる。
In the first embodiment, the permanent magnets 3 and 4 are attached to the mover 2. However, the same effect can be obtained even if the permanent magnets 3 and 4 of the electromagnetic operation mechanism 1 are fixed to the magnetic poles 9 and 10. .
Further, any electromagnetic operation mechanism composed of the yoke 11, the permanent magnets 3, 4, the forward drive coil 7 and the reverse drive coil 8 can be applied regardless of its shape.
Moreover, although the example which uses 1 A of electromagnetic operation mechanisms for power switchgears in Embodiment 1 was demonstrated, 1 A of electromagnetic control mechanisms can be applied similarly to a power switch.

実施の形態2.
図4は、この発明の実施の形態2に係わる電磁操作機構の断面図である。
この発明の実施の形態2に係わる電磁操作機構1Bは、図4に示すように、実施の形態1に係わる電磁操作機構1Aと往駆動コイル7が配設されている位置が異なっており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
実施の形態2に係わる往駆動コイル7は、復駆動コイル8と磁極9、10との可動子2の移動方向の隙間に配設されている。
そして、駆動電源15は、永久磁石3、4により励磁され、復駆動コイル8を貫通する磁束を打ち消すように、往駆動コイル7に励磁電流を流す。往駆動コイル7に励磁電流が流されると、可動子2の端面と継鉄11との隙間27を貫通する磁束は減少するが、逆に、この磁束の減少により抵抗体14に形成されている復駆動コイル8の閉回路にこの隙間を貫通する磁束を増加する電流が流れるので、磁束の減少する速度は遅くなる。そして、可動子2と継鉄11とを第1の隙間27の間隔を小さくする方向に吸引する吸引力がスプリングにより付勢されている可動子2への押圧力以下に達するまでの時間が、閉回路が形成されていないときと比べて長くなる。
Embodiment 2. FIG.
4 is a cross-sectional view of an electromagnetic operating mechanism according to Embodiment 2 of the present invention.
As shown in FIG. 4, the electromagnetic operating mechanism 1B according to the second embodiment of the present invention is different from the electromagnetic operating mechanism 1A according to the first embodiment in the position where the forward drive coil 7 is disposed. Since the other parts are the same, the same parts are denoted by the same reference numerals and the description thereof is omitted.
The forward drive coil 7 according to the second embodiment is disposed in a gap in the moving direction of the mover 2 between the backward drive coil 8 and the magnetic poles 9 and 10.
The drive power supply 15 is excited by the permanent magnets 3 and 4 and passes an excitation current to the forward drive coil 7 so as to cancel the magnetic flux penetrating the backward drive coil 8. When an excitation current is passed through the forward drive coil 7, the magnetic flux passing through the gap 27 between the end face of the mover 2 and the yoke 11 decreases, but conversely, the resistance 14 is formed in the resistor 14 due to the reduction of the magnetic flux. Since a current that increases the magnetic flux penetrating this gap flows in the closed circuit of the return driving coil 8, the speed at which the magnetic flux decreases is reduced. Then, the time until the suction force for sucking the mover 2 and the yoke 11 in the direction of reducing the interval between the first gaps 27 reaches below the pressing force to the mover 2 biased by the spring, This is longer than when no closed circuit is formed.

可動子2を復方向に移動させるときは、実施の形態1のときと同様に、復駆動コイル8に駆動電源15から励磁電流が流されることにより、第2の安定点にある可動子2の継鉄11に近接している端部を貫通する永久磁石3、4による磁束が打ち消され、可動子2の他の端部を貫通する復駆動コイル8による磁束が増加するので、第2の安定点から第1の安定点まで可動子2が移動する。   When moving the mover 2 in the backward direction, as in the case of the first embodiment, the exciting current is passed from the drive power supply 15 to the return drive coil 8, so that the mover 2 at the second stable point is moved. Since the magnetic flux by the permanent magnets 3 and 4 penetrating the end portion close to the yoke 11 is canceled and the magnetic flux by the return driving coil 8 penetrating the other end portion of the mover 2 is increased, the second stable The mover 2 moves from the point to the first stable point.

このような電磁操作機構1Bは、磁極9、10と復駆動コイル8との間に往駆動コイル7を配置しても、抵抗体14により閉回路が形成された復駆動コイル8に磁束の減少の速度を遅らせる電流が閉回路に流れるので、復駆動コイル8を抵抗体14により接続するだけで簡単に可動子2の往方向への移動開始を遅らせることができる。   In such an electromagnetic operation mechanism 1B, even if the forward drive coil 7 is disposed between the magnetic poles 9 and 10 and the backward drive coil 8, the magnetic flux is reduced in the backward drive coil 8 in which a closed circuit is formed by the resistor 14. Since the current that slows the speed of the current flows in the closed circuit, the start of movement of the mover 2 in the forward direction can be easily delayed by simply connecting the reverse drive coil 8 with the resistor 14.

実施の形態3.
図5は、この発明の実施の形態3に係わる電磁操作機構の断面図である。
この発明の実施の形態3に係わる電磁操作機構1Cは、図5に示すように、実施の形態1に係わる電磁操作機構1Aと閉回路が抵抗体14とダイオード33とを介して復駆動コイル8の両端子が接続されていることが異なっており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
実施の形態3に係わる復駆動コイル8の両端子は、直列に接続された抵抗体14とダイオード33とを介して接続されている。
このような電磁操作機構1Cは、ダイオード33を抵抗体14に対して直列に挿入されているので、抵抗体14の抵抗値を、復駆動コイル8の抵抗値よりも小さくする必要がなくなり、設計自由度が増大できる。
なお、図6に示すように、電磁操作機構1Dの復駆動コイル8の抵抗値を大きくすることにより、抵抗体14を省略することも可能である。
Embodiment 3 FIG.
FIG. 5 is a sectional view of an electromagnetic operating mechanism according to Embodiment 3 of the present invention.
As shown in FIG. 5, the electromagnetic operating mechanism 1 </ b> C according to the third embodiment of the present invention includes an electromagnetic operating mechanism 1 </ b> A according to the first embodiment and a closed circuit via a resistor 14 and a diode 33. The two terminals are different from each other and are the same except for the above. Therefore, the same reference numerals are given to the same parts and the description thereof is omitted.
Both terminals of the reverse drive coil 8 according to the third embodiment are connected via a resistor 14 and a diode 33 connected in series.
In such an electromagnetic operating mechanism 1C, since the diode 33 is inserted in series with the resistor 14, it is not necessary to make the resistance value of the resistor 14 smaller than the resistance value of the backward driving coil 8. The degree of freedom can be increased.
As shown in FIG. 6, the resistor 14 can be omitted by increasing the resistance value of the backward driving coil 8 of the electromagnetic operation mechanism 1D.

実施の形態4.
図7は、この発明の実施の形態4に係わる電磁操作機構の断面図である。
この発明の実施の形態4に係わる電磁操作機構1Eは、実施の形態3に係わる電磁操作機構1Cと閉回路が抵抗体14、ダイオード33および抵抗変化素子としてのツェナーダイオード35を介して復駆動コイル8の両端子が接続されていることが異なっており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
実施の形態4に係わる復駆動コイル8の両端子は、直列に接続された抵抗体14、ダイオード33およびツェナーダイオード35を介して接続されている。
Embodiment 4 FIG.
FIG. 7 is a sectional view of an electromagnetic operating mechanism according to Embodiment 4 of the present invention.
The electromagnetic operating mechanism 1E according to the fourth embodiment of the present invention is the same as the electromagnetic operating mechanism 1C according to the third embodiment except that the closed circuit is connected via the resistor 14, the diode 33, and the Zener diode 35 as a variable resistance element. 8 are different from each other in the connection, and the other parts are the same. Therefore, the same parts are denoted by the same reference numerals and the description thereof is omitted.
Both terminals of the return drive coil 8 according to the fourth embodiment are connected via a resistor 14, a diode 33, and a Zener diode 35 connected in series.

このような電磁操作機構1Eでは、電源は変動する場合が想定され、このとき、誘導電流を発生して遅延させたい場合と、そうでない場合がある。ツェナーダイオード35の動作電圧を調整することで、実施の形態1乃至3に示す効果に加えて、遅延を有効/無効に調整することができる。   In such an electromagnetic operation mechanism 1E, it is assumed that the power source fluctuates. At this time, there is a case where an induced current is generated and delayed and a case where it is not desired. By adjusting the operating voltage of the Zener diode 35, the delay can be adjusted to be valid / invalid in addition to the effects shown in the first to third embodiments.

実施の形態5.
図8は、この発明の実施の形態5に係わる電磁操作機構の断面図である。
実施の形態5に係わる電磁操作機構1Fは、実施の形態1に係わる電磁操作機構1Aと復駆動コイル8に抵抗体が接続されていないことと往駆動コイル7に流される励磁電流の方向が逆であることとが異なっており、これ以外は同様であるので同様な部分に同じ符号を付記して説明は省略する。
Embodiment 5. FIG.
FIG. 8 is a sectional view of an electromagnetic operation mechanism according to Embodiment 5 of the present invention.
In the electromagnetic operating mechanism 1F according to the fifth embodiment, the resistance is not connected to the electromagnetic operating mechanism 1A according to the first embodiment and the backward driving coil 8, and the direction of the excitation current flowing through the forward driving coil 7 is reversed. Since the other parts are the same, the same parts are denoted by the same reference numerals and the description thereof is omitted.

実施の形態5に係わる電磁操作機構1Fにおいて、永久磁石3、4により励磁される第1の磁気回路S1の磁束Φ1の向きは、図8に示すように、永久磁石3、4から磁極9、10へ向き、継鉄胴部11a、継鉄下部11b、第1の隙間27を順次経由して可動子2に向いている。また、永久磁石3、4により励磁される第2の磁気回路S2の磁束Φ2の向きは、図8に示すように、永久磁石3、4から磁極9、10へ向き、継鉄胴部11a、継鉄上部11c、第2の隙間28を順次経由して可動子2に向いている。
そして、実施の形態5に係わる往駆動コイル7により励磁される磁気回路は、図8に示すように、第3の磁気回路と第4の磁気回路からなる。第3の磁気回路T2の磁束Φ3の向きは、第2の隙間28において可動子2から継鉄上部11cに向いている。また、第4の磁気回路U2の磁束Φ4の向きは、第1の隙間27において継鉄下部11bから可動子2に向いている。
In the electromagnetic operating mechanism 1F according to the fifth embodiment, the direction of the magnetic flux Φ1 of the first magnetic circuit S1 excited by the permanent magnets 3 and 4 is changed from the permanent magnets 3 and 4 to the magnetic poles 9 and 9, as shown in FIG. 10 toward the mover 2 through the yoke body 11a, the yoke lower portion 11b, and the first gap 27 sequentially. Further, the direction of the magnetic flux Φ2 of the second magnetic circuit S2 excited by the permanent magnets 3 and 4 is directed from the permanent magnets 3 and 4 to the magnetic poles 9 and 10, as shown in FIG. It is directed to the mover 2 via the yoke upper part 11c and the second gap 28 in order.
And the magnetic circuit excited by the forward drive coil 7 concerning Embodiment 5 consists of a 3rd magnetic circuit and a 4th magnetic circuit, as shown in FIG. The direction of the magnetic flux Φ3 of the third magnetic circuit T2 is directed from the mover 2 to the yoke upper portion 11c in the second gap 28. Further, the direction of the magnetic flux Φ4 of the fourth magnetic circuit U2 is directed from the yoke lower portion 11b to the mover 2 in the first gap 27.

次に、往駆動コイル7に励磁電流を増加するときの電磁操作機構1Fの動作について説明する。励磁電流を流し始めると、磁束Φ3と磁束Φ4が増加する。このとき、第1の隙間27における磁束Φ4と磁束Φ1は同じ方向を向いているので、可動子2を継鉄下部11bに吸引する磁気吸引力は増大する。また、第2の隙間28における磁束Φ2と磁束Φ3および磁束Φ4とは逆向きであるので、可動子2を継鉄上部11cに吸引する磁気吸引力は減少する。このように励磁電流が小さい段階では、可動子2を継鉄下部11bにより強い力で押さえ付ける。   Next, the operation of the electromagnetic operation mechanism 1F when increasing the exciting current to the forward drive coil 7 will be described. When the excitation current starts to flow, the magnetic flux Φ3 and the magnetic flux Φ4 increase. At this time, since the magnetic flux Φ4 and the magnetic flux Φ1 in the first gap 27 are directed in the same direction, the magnetic attractive force for attracting the mover 2 to the yoke lower portion 11b increases. Further, since the magnetic flux Φ2, the magnetic flux Φ3, and the magnetic flux Φ4 in the second gap 28 are in opposite directions, the magnetic attractive force that attracts the mover 2 to the yoke upper portion 11c decreases. In this way, when the exciting current is small, the mover 2 is pressed by the yoke lower portion 11b with a strong force.

次に、励磁電流を増加すると、継鉄下部11bを通過する磁束Φ1と磁束Φ4との和が継鉄下部11bの飽和磁束を超えるので、第1の隙間27を通過する磁束は増加しない。一方、磁束Φ3が増加して磁束Φ2を超えるようになるので、可動子2を継鉄上部11cに吸引する磁気吸引力が増加しだす。   Next, when the excitation current is increased, the sum of the magnetic flux Φ1 and the magnetic flux Φ4 passing through the yoke lower portion 11b exceeds the saturation magnetic flux of the yoke lower portion 11b, and therefore the magnetic flux passing through the first gap 27 does not increase. On the other hand, since the magnetic flux Φ3 increases and exceeds the magnetic flux Φ2, the magnetic attractive force for attracting the mover 2 to the yoke upper portion 11c starts to increase.

そして、励磁電流を更に増加すると、第1の隙間27を通過する磁束は増加せずに第2の隙間28を通過する磁束が増加して、所定の励磁電流に達すると、可動子2を継鉄下部11bに引き寄せる磁気吸引力よりも継鉄上部11cに引き寄せる磁気吸引力が大きくなり、可動子2が継鉄下部11bから離れて、継鉄上部11cに移動を開始する。   When the exciting current is further increased, the magnetic flux passing through the first gap 27 does not increase, but the magnetic flux passing through the second gap 28 increases, and when the predetermined exciting current is reached, the mover 2 is connected. The magnetic attraction force attracted to the yoke upper portion 11c becomes larger than the magnetic attraction force attracted to the iron lower portion 11b, and the mover 2 moves away from the yoke lower portion 11b and starts moving to the yoke upper portion 11c.

このように永久磁石3、4により励磁された継鉄下部11bを通過する磁束と往駆動コイル7に流される励磁電流により励磁される永久磁石3、4と同じ向きの継鉄下部11bを通過する磁束との和が継鉄下部11bの飽和磁束を超えるように往駆動コイル7に励磁電流を流すことにより、上述の磁束の和が飽和磁束を超えるまで可動子2の動作の開始が遅らせられ、動作速度を上昇することができる。   In this way, the magnetic flux passing through the yoke lower portion 11 b excited by the permanent magnets 3 and 4 and the yoke lower portion 11 b in the same direction as the permanent magnets 3 and 4 excited by the exciting current flowing in the forward drive coil 7 are passed. By passing an exciting current through the forward drive coil 7 so that the sum of the magnetic flux exceeds the saturation magnetic flux of the yoke lower portion 11b, the start of the operation of the mover 2 is delayed until the sum of the magnetic fluxes exceeds the saturation magnetic flux, The operating speed can be increased.

この発明の実施の形態1に係わる電磁操作機構の構成を示す図である。It is a figure which shows the structure of the electromagnetic operating mechanism concerning Embodiment 1 of this invention. 実施の形態1の電磁操作機構を用いた電力用開閉装置の断面図を示す。Sectional drawing of the switchgear for electric power using the electromagnetic operation mechanism of Embodiment 1 is shown. 実施の形態1の電磁操作機構の動作を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining the operation of the electromagnetic operation mechanism according to the first embodiment. この発明の実施の形態2に係わる電磁操作機構の構成を示す図である。It is a figure which shows the structure of the electromagnetic operating mechanism concerning Embodiment 2 of this invention. この発明の実施の形態3に係わる電磁操作機構の構成を示す図である。It is a figure which shows the structure of the electromagnetic operating mechanism concerning Embodiment 3 of this invention. この発明の実施の形態3に係わる他の電磁操作機構の構成を示す図である。It is a figure which shows the structure of the other electromagnetic operating mechanism concerning Embodiment 3 of this invention. この発明の実施の形態4に係わる電磁操作機構の構成を示す図である。It is a figure which shows the structure of the electromagnetic operating mechanism concerning Embodiment 4 of this invention. この発明の実施の形態5に係わる電磁操作機構の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the electromagnetic operating mechanism concerning Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 電磁操作機構、2 可動子、3、4 永久磁石、5、6 可動軸、7 往駆動コイル、8 復駆動コイル、9、10 磁極、11 継鉄、11a 継鉄胴部、11b 継鉄下部、11c 継鉄上部、12 軸受、13 ハウジング、14 抵抗体、15 駆動電源、20 電力用開閉装置、21 回転中心軸、22 レバー部、23 接圧バネ、24 真空バルブ、25 可動接点、26 固定接点、27、28 隙間、30 スプリング、33 ダイオード、35 ツェナーダイオード。   DESCRIPTION OF SYMBOLS 1 Electromagnetic operation mechanism, 2 Movable element, 3, 4 Permanent magnet 5, 6 Movable shaft, 7 Forward drive coil, 8 Reverse drive coil, 9, 10 Magnetic pole, 11 yoke, 11a yoke body, 11b lower part of yoke , 11c Upper yoke, 12 Bearing, 13 Housing, 14 Resistor, 15 Drive power source, 20 Power switchgear, 21 Rotation center shaft, 22 Lever part, 23 Contact spring, 24 Vacuum valve, 25 Movable contact, 26 Fixed Contact, 27, 28 Clearance, 30 Spring, 33 Diode, 35 Zener diode.

Claims (6)

軸を有し、軸方向に往復運動可能な可動子と、
上記軸方向に平行な上記可動子の側面および上記軸方向の上記可動子の両端面に相対する面を有する継鉄と、
上記継鉄および上記可動子で構成される閉磁気回路中に配置される永久磁石と、
上記継鉄または上記可動子の周囲に配置される2つ以上の駆動コイルと、
上記駆動コイルに励磁電流を流す電源と、
を備え、
上記永久磁石から上記継鉄を介し、上記可動子の一方の端面を経由して上記可動子に至る第1の磁気回路および、上記永久磁石から上記継鉄を介し、上記可動子の他方の端面を経由して上記可動子に至る第2の磁気回路が構成される電磁操作機構において、
上記駆動コイルは、
上記可動子を往運動させるために励磁される少なくとも1つの往駆動コイルと、
両端子が電気的に接続され、上記往駆動コイルが励磁されるとき誘導電流が誘導される少なくとも1つの復駆動コイルと、を備えることを特徴とする電磁操作機構。
A mover having an axis and capable of reciprocating in the axial direction;
A yoke having side surfaces of the mover parallel to the axial direction and surfaces facing both end surfaces of the mover in the axial direction;
A permanent magnet disposed in a closed magnetic circuit composed of the yoke and the mover;
Two or more drive coils arranged around the yoke or the mover;
A power supply for passing an excitation current through the drive coil;
With
A first magnetic circuit from the permanent magnet via the yoke to the mover via one end face of the mover, and the other end face of the mover from the permanent magnet via the yoke In the electromagnetic operating mechanism in which the second magnetic circuit reaching the mover via
The drive coil is
At least one forward drive coil that is excited to move the mover forward;
An electromagnetic operating mechanism comprising: at least one reverse drive coil in which both terminals are electrically connected and an induced current is induced when the forward drive coil is excited.
上記復駆動コイルの両端子が抵抗体またはダイオードの少なくとも1つを介して接続されていることを特徴とする請求項1に記載する電磁操作機構。   2. The electromagnetic operating mechanism according to claim 1, wherein both terminals of the return driving coil are connected via at least one of a resistor and a diode. 上記復駆動コイルの両端子がツェナーダイオードを介して接続されていることを特徴とする請求項1または2に記載する電磁操作機構。   3. The electromagnetic operating mechanism according to claim 1, wherein both terminals of the return driving coil are connected via a Zener diode. 上記復駆動コイルの両端子が抵抗変化素子を介して接続されていることを特徴とする請求項1または2に記載する電磁操作機構。   3. The electromagnetic operating mechanism according to claim 1, wherein both terminals of the return driving coil are connected via a resistance change element. 軸を有し、軸方向に往復運動可能な可動子と、
上記軸方向に平行な上記可動子の側面および上記軸方向の上記可動子の両端面に相対する面を有する継鉄と、
上記継鉄および上記可動子の間に配置される永久磁石と、
上記可動子の側面に相対し、上記永久磁石の上記軸方向の両側に位置する上記継鉄の面に固着される往駆動コイルおよび復駆動コイルと、
上記往駆動コイルまたは上記復駆動コイルの一方に励磁電流を流す電源と、
を備え、
上記永久磁石から上記継鉄を介し、上記可動子の一方の端面を経由して上記復駆動コイルの中心を通過して上記可動子に至る第1の磁気回路および上記永久磁石から上記継鉄を介し、上記可動子の他方の端面を経由して上記往駆動コイルの中心を通過して上記可動子に至る第2の磁気回路が構成される電磁操作機構において、
上記永久磁石により上記第2の磁気回路に発生する磁束と反対向きの磁束で、且つ上記永久磁石により上記第1の磁気回路に発生する磁束と同じ向きの磁束を発生させると共に、上記第1の磁気回路での磁束の和が上記継鉄の飽和磁束を超える磁束となるように上記復駆動コイルの励磁電流を制御することを特徴とする電磁操作機構。
A mover having an axis and capable of reciprocating in the axial direction;
A yoke having side surfaces of the mover parallel to the axial direction and surfaces facing both end surfaces of the mover in the axial direction;
A permanent magnet disposed between the yoke and the mover;
A forward drive coil and a backward drive coil fixed to the surface of the yoke located on both sides of the axial direction of the permanent magnet, relative to the side surface of the mover;
A power source for supplying an exciting current to one of the forward drive coil or the backward drive coil;
With
The first magnetic circuit from the permanent magnet through the yoke, through one end face of the mover, through the center of the return drive coil to the mover, and the yoke from the permanent magnet. Through an electromagnetic operating mechanism in which a second magnetic circuit that passes through the center of the forward drive coil via the other end face of the mover and reaches the mover is configured,
The permanent magnet generates a magnetic flux in a direction opposite to the magnetic flux generated in the second magnetic circuit, and the permanent magnet generates a magnetic flux in the same direction as the magnetic flux generated in the first magnetic circuit. An electromagnetic operating mechanism for controlling an exciting current of the return drive coil so that a sum of magnetic fluxes in a magnetic circuit becomes a magnetic flux exceeding a saturation magnetic flux of the yoke.
請求項1乃至5のいずれか一項に記載する電磁操作機構を使用することを特徴とする電力用開閉器または電力用開閉装置。   A power switch or a power switch using the electromagnetic operating mechanism according to any one of claims 1 to 5.
JP2005206714A 2005-07-15 2005-07-15 Electromagnetic operation mechanism, power switch using the same, and power switch Active JP4722601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206714A JP4722601B2 (en) 2005-07-15 2005-07-15 Electromagnetic operation mechanism, power switch using the same, and power switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206714A JP4722601B2 (en) 2005-07-15 2005-07-15 Electromagnetic operation mechanism, power switch using the same, and power switch

Publications (2)

Publication Number Publication Date
JP2007027370A true JP2007027370A (en) 2007-02-01
JP4722601B2 JP4722601B2 (en) 2011-07-13

Family

ID=37787756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206714A Active JP4722601B2 (en) 2005-07-15 2005-07-15 Electromagnetic operation mechanism, power switch using the same, and power switch

Country Status (1)

Country Link
JP (1) JP4722601B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068409B1 (en) 2010-05-06 2011-09-30 성기영 Electro-magnetic force draving actuator maximized speed control performance and a circuit breaker with the same
JP2013229247A (en) * 2012-04-26 2013-11-07 Toshiba Corp Switchgear for electric power and operation mechanism thereof
KR101328587B1 (en) * 2013-04-30 2013-11-13 재단법인차세대융합기술연구원 Permanent magnet actuator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193314A (en) * 1985-02-22 1986-08-27 株式会社三英社製作所 Relay circuit for overcurrent lock of automatic switch
JPH0737461A (en) * 1993-07-27 1995-02-07 Fuji Electric Co Ltd Solenoid actuator
JPH07335434A (en) * 1994-06-07 1995-12-22 Fuji Electric Co Ltd Solenoid plunger actuator
JP2002124157A (en) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp Switch device
JP2003016887A (en) * 2001-06-29 2003-01-17 Mitsubishi Electric Corp Operating device for power switchgear
JP2003031088A (en) * 2001-07-12 2003-01-31 Mitsubishi Electric Corp Magnetic drive mechanism for switch device
JP2004146333A (en) * 2002-08-27 2004-05-20 Mitsubishi Electric Corp Operating device and switch using operating device
JP2004165075A (en) * 2002-11-15 2004-06-10 Mitsubishi Electric Corp Operating device, its manufacturing method, and switching device equipped with it
JP2005078971A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Switching device for electromagnetic repelling drive power
JP2006004902A (en) * 2003-09-01 2006-01-05 Mitsubishi Electric Corp Electromagnetic operation mechanism and power switch using the same
JP2007012500A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Operating device, and switching device equipped with it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193314A (en) * 1985-02-22 1986-08-27 株式会社三英社製作所 Relay circuit for overcurrent lock of automatic switch
JPH0737461A (en) * 1993-07-27 1995-02-07 Fuji Electric Co Ltd Solenoid actuator
JPH07335434A (en) * 1994-06-07 1995-12-22 Fuji Electric Co Ltd Solenoid plunger actuator
JP2002124157A (en) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp Switch device
JP2003016887A (en) * 2001-06-29 2003-01-17 Mitsubishi Electric Corp Operating device for power switchgear
JP2003031088A (en) * 2001-07-12 2003-01-31 Mitsubishi Electric Corp Magnetic drive mechanism for switch device
JP2004146333A (en) * 2002-08-27 2004-05-20 Mitsubishi Electric Corp Operating device and switch using operating device
JP2004165075A (en) * 2002-11-15 2004-06-10 Mitsubishi Electric Corp Operating device, its manufacturing method, and switching device equipped with it
JP2005078971A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Switching device for electromagnetic repelling drive power
JP2006004902A (en) * 2003-09-01 2006-01-05 Mitsubishi Electric Corp Electromagnetic operation mechanism and power switch using the same
JP2007012500A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Operating device, and switching device equipped with it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068409B1 (en) 2010-05-06 2011-09-30 성기영 Electro-magnetic force draving actuator maximized speed control performance and a circuit breaker with the same
JP2013229247A (en) * 2012-04-26 2013-11-07 Toshiba Corp Switchgear for electric power and operation mechanism thereof
KR101328587B1 (en) * 2013-04-30 2013-11-13 재단법인차세대융합기술연구원 Permanent magnet actuator
WO2014178470A1 (en) * 2013-04-30 2014-11-06 재단법인차세대융합기술연구원 Permanent magnet operating device
US9966215B2 (en) 2013-04-30 2018-05-08 Entec Electric And Electronic Co., Ltd. Permanent magnet operating device

Also Published As

Publication number Publication date
JP4722601B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US6667677B2 (en) Magnet movable electromagnetic actuator
US20170236630A1 (en) Magnetically Latching Flux-Shifting Electromechanical Actuator
DE69415819T2 (en) BISTABLE MAGNETIC ACTUATOR
JP4667664B2 (en) Power switchgear
JP2002319504A (en) Electromagnetic linear actuator and remote controller of circuit breaker
JP4722601B2 (en) Electromagnetic operation mechanism, power switch using the same, and power switch
JPH0344010A (en) Electromagnetically operating actuator
JP3820860B2 (en) Remote operation device for electromagnetic linear actuator and circuit breaker
JP4158876B2 (en) Power switchgear operating device
JP2003016888A (en) Operating device for power switchgear
JP2002335662A (en) Tristable self-holding magnet
JP2017157493A (en) Electromagnetic actuator and electromagnetic relay using the same
JP2009016514A (en) Electromagnetic actuator, and switching apparatus using the same
KR20000056768A (en) A permant magnet excited linear actuator
JP5895171B2 (en) Polarized electromagnetic relay
JPH0379854B2 (en)
JP2003016882A (en) Operating device for power switchgear
JP2005353321A (en) Delay-type electromagnet device
RU2234789C2 (en) Reversible pulse-controlled electromagnetic drive
JP4483416B2 (en) Electromagnetic actuator, switch and switch using the same
JP2005150412A (en) Electromagnet apparatus and electromagnetic contactor
JP2007221049A (en) Electromagnetic actuator
JP2023028684A (en) Electromagnetic valve device with self-holding plunger
JP2022509688A (en) Force adjustable device
JP2004095257A (en) Operation device and switchgear using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4722601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250