JP3820860B2 - Remote operation device for electromagnetic linear actuator and circuit breaker - Google Patents

Remote operation device for electromagnetic linear actuator and circuit breaker Download PDF

Info

Publication number
JP3820860B2
JP3820860B2 JP2000273107A JP2000273107A JP3820860B2 JP 3820860 B2 JP3820860 B2 JP 3820860B2 JP 2000273107 A JP2000273107 A JP 2000273107A JP 2000273107 A JP2000273107 A JP 2000273107A JP 3820860 B2 JP3820860 B2 JP 3820860B2
Authority
JP
Japan
Prior art keywords
mover
linear actuator
circuit breaker
electromagnetic linear
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000273107A
Other languages
Japanese (ja)
Other versions
JP2002112518A (en
Inventor
清 谷川
則行 平山
秀樹 石動
健司 鈴木
信夫 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2000273107A priority Critical patent/JP3820860B2/en
Publication of JP2002112518A publication Critical patent/JP2002112518A/en
Application granted granted Critical
Publication of JP3820860B2 publication Critical patent/JP3820860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/66Power reset mechanisms
    • H01H2071/665Power reset mechanisms the reset mechanism operating directly on the normal manual operator, e.g. electromagnet pushes manual release lever back into "ON" position

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Breakers (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回路しゃ断器(配電用回路しゃ断器)の開閉操作用として好適な電磁式リニアアクチュエータ、および該電磁式リニアアクチュエータでしゃ断器の操作ハンドルを駆動する回路しゃ断器のリモート操作装置に関する。
【0002】
【従来の技術】
頭記した回路しゃ断器のリモート操作装置として、駆動モータに減速歯車,送りねじ機構,あるいはラック/ピニオン機構を組合せ、モータの回転を直線運動に変換して回路しゃ断器の操作ハンドルをON,OFF位置に切換えるようにした方式のものが従来より製品として実用化されている。
【0003】
【発明が解決しようとする課題】
ところで、前記した従来の回路しゃ断器用リモート操作装置は、製作コスト,および取扱い面で次記のような難点がある。すなわち、
(1) ギヤードモータとねじ式,あるいはラック・ピニオン式の伝動機構を用いているために構造が複雑で大形化し、かつ製品価格も高い。
【0004】
(2) また、ハンドル操作により回路しゃ断器をON,OFF,リセット操作するにはかなり大きな力を要することから、リモート操作装置に使用するギヤードモータは減速比が大きく、このために停電時などに回路しゃ断器をOFFに切換えるには、リモート操作装置を組付けたまま手動で回路しゃ断器をOFF位置に操作することが困難である。
【0005】
本発明は上記の点に鑑みなされたものであり、その目的は遠隔制御で回路しゃ断器をON,OFF,リセット操作するリモート操作装置などの用途に好適な電磁式リニアアクチュエータ、および該電磁式リニアアクチュエータを採用した回路しゃ断器のリニア操作装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明では電磁式リニアアクチュエータを次記のように構成するものとする。
(1)左右側面に永久磁石を付設した可動子と、該可動子を挟んでその両側に対向配置したE字形磁性コア,および該磁性コアの中央脚に巻装した励磁コイルからなる左右一対の電磁石との組合せからなり、かつ前記可動子の全長をA、前記E字形磁性コアの中央磁極と両端の磁極との間の距離をBとしてB<A<2Bに設定し、前記励磁コイルに流す励磁電流の方向を切換えて前記可動子を二つの動作位置の間で反転動作させるように構成する(請求項1)。
【0007】
(2)前項(1)において、可動子が継鉄と該継鉄を挟んでその左右側面に付設した2組の永久磁石とからなり、かつ各組の永久磁石をそれぞれ2個の永久磁石に分けて継鉄の両端側面に取付ける(請求項2)。
(3)前項(2)において、継鉄を挟んで向かい合う永久磁石の磁極を同極性に設定する(請求項3)。
【0008】
(4)両端部を磁極とする継鉄に励磁コイルを巻装した可動子と、該可動子を挟んでその両側に対向配置した一対のE字形磁性コア,および各磁性コアの中央脚に巻装した励磁コイルとからなる左右一対の電磁石との組合せからなり、かつ前記可動子の全長をA、前記E字形磁性コアの中央磁極と両端の磁極との間の距離をBとしてB<A<2Bに設定し、前記の各励磁コイルに流す励磁電流の方向を切換えて前記可動子を二つの動作位置の間で反転動作させるように構成する(請求項4)。
【0009】
上記構成の電磁リニアアクチュエータにおいて、電磁石の励磁コイルに流す電流の方向を切換えると、電磁石と可動子の磁極間に働く磁気推力の向きが反転して可動子が一方の動作位置から反対側の動作位置に移動するように反転動作する。ここで、可動子を挟んでその両側に電磁石を配置した構成により電磁石2基分に相応した大きな駆動力が確保できるとともに、動作時には左右の電磁石と可動子との間でその移動方向と直角方向に働く磁気吸引力が互いに相殺し合うので、これにより可動子を移動方向に案内支持するガイド機構に加わる摩擦力が低減する。また、可動子の継鉄を挟んで向かい合う永久磁石の一方をN極,他方をS極に設定することで、継鉄は断面積が小さくても磁気飽和することがなく、これによりアクチュエータの小型化が図れる。
【0010】
また、本発明による回路しゃ断器のリモート操作装置は、前記の電磁式リニアアクチュエータの可動子を回路しゃ断器の操作ハンドルに連繋させ、励磁コイルの通電制御によるリニアアクチュエータの反転動作で回路しゃ断器をON,OFF,リセット位置に切換え操作する(請求項5)ものとする。
かかる構成で、電磁式リニアアクチュエータに外部から回路しゃ断器のON,OFF,リセット指令を与えると、その信号に対応してリニアアクチュエータの可動子が移動動作し、回路しゃ断器の操作ハンドルをON,OFF,リセット位置に切換える。また、このリモート操作装置はギヤードモータとねじ式,ラック・ピニオン式伝動機構を組み合わせた従来装置に比べて部品点数も少なく、かつ構造も単純で安価に製作できる。しかも、回転を直線運動に変換する歯車機構などを用いないので、停電中でもリモート操作装置を回路しゃ断器に組付けたまま、手動で回路しゃ断器のハンドルをOFF位置に切換え操作できる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図示の実施例に基づいて説明する。
〔実施例1〕
まず、本発明の請求項1に対応する電磁式リニアアクチュエータの構成を図1に示す。この実施例では、電磁式リニアアクチュエータ1が、可動子2と、その左右側面に取付けた永久磁石3と、可動子2を挟んでその左右両側の対称位置に配した左右一対の電磁石とから構成されている。ここで、電磁石はE字形磁性コア4,5と各磁性コア4,5の中央脚4a,5aにボビン6aを介して巻装した励磁コイル6とからなる。また、永久磁石3はその長手方向に着磁されたものであり、図示例では左側の永久磁石と右側の永久磁石とで磁極の極性(N,S極)を逆極性に設定し、かつ可動子2に付設した永久磁石3のN−S磁極間の距離(可動子2の全長)をA、電磁石のE字形磁性コア4,5における中央磁極(中央脚4a,5a)と外側の磁極(外脚4b,4c,および反対側の外脚5b,5c)との間の距離をBとして、B<A<2Bとなるように設定されている。なお、図示してないが、可動子2はガイド棒,レールなどのガイド機構を介して動作方向(図示の上下方向)へスライド可能に案内支持されている。
【0016】
かかる構成において、可動子2が図示の実線位置にあって励磁コイル6が非励磁の状態では、永久磁石3とE字形磁性コア4,5との間に働く磁気力により可動子2はこの位置に吸引保持されている。この状態から励磁コイル6に直流電流を流すと、E字形磁性コア4,5の中央脚4a,5a,および外脚4b,4cおよび5b,5cの磁極面には励磁コイル6の電流方向に対応した起磁力によってN,S極が現れ、永久磁石3のN,S極との間で磁気反発力,吸引力が作用するようになる。
【0017】
ここで、左側の磁性コア4はその中央極4aがN極,外脚4b.4cがS極となるように、また右側の磁性コア5はその中央極5aがS極、外脚5b,5cがN極となるように各磁性コア4,5に巻装した励磁コイル6の電流方向を制御すると、永久磁石3との間に働く磁気反発力,吸引力により可動子2が図示実線の動作位置から上方に駆動されて鎖線で示す動作位置に移動する。また、この状態から励磁コイル6に流す電流の向きを切換えて磁極の極性を反転させると、可動子2は鎖線位置から元の実線位置に戻るように反転動作する。つまり、励磁コイル6に流す電流の向きが反転するたびに、可動子2が反転動作して一方の動作位置から他方の動作位置に移動する。
【0018】
この場合に、図示構成のように可動子2を挟んで電磁石の磁気コア4,5を左右対称位置に対向させたことにより、励磁コイル6の通電により可動子2に働く駆動力は個々の磁性コアとの間に作用する磁気推力の2倍となる。しかも、磁気コア4,5と可動子2の永久磁石3との間に働く可動子移動方向と直角方向の磁力は互いに打ち消し合って相殺されるので、これにより可動子2はガイド棒,ガイドレールなどの案内機構との間に大きな摩擦抵抗を受けずにスムーズに移動させることができる。
【0019】
〔実施例2〕
図2は本発明の請求項2に対応する応用実施例を示すものである。この実施例においては、可動子2が継鉄(磁性体)2aに対して、その左右側面に図示のようにN,S極を厚さ方向に着磁した2枚の永久磁石3a,3bが上下端に振り分けて互いに逆極性となるように取付けてある。また、可動子2の両側に配した電磁石のE字形磁性コア4,5および励磁コイル6は図1と同様な構成になる。なお、この実施例では可動子2の上端側では永久磁石3aのN極が、下端側では永久磁石3bのS極が磁性コア4,5にそれぞれ対向しており、この極性に合わせて操作時には磁性コア4,5の励磁コイル6に流す電流の向きを制御するようにしている。
【0020】
この構成では、可動子2の継鉄2aが永久磁石3aと3bに跨がる磁路を形成しており、磁性コア4,5の励磁コイル6に流す電流の向きを切り換えることにより、可動子2との間に働く磁気推力の向きが反転して可動子2が一方から他方の動作位置に移動する。なお、図3はこの実施例で励磁コイル6を励磁した状態での磁力線分布を表している。
【0021】
〔実施例3〕
次に、前記実施例2を改良した本発明実施例を図4に示す。この実施例は、先記実施例2と比べて可動子2の左右側面に付設した永久磁石3a,3bの極性が次のように設定されている。すなわち、可動子継鉄2aの右側に付設した上下の永久磁石3a,3bは図2と同じ極性であるが、左側に付設した永久磁石は右側の永久磁石と逆極性となるように設定されており、継鉄2aを挟んで左右の永久磁石のN極とS極が対面している。
【0022】
この構成によれば、継鉄2aを磁路としてその左側の上下に配した永久磁石の間の磁束と、右側の上下に配した永久磁石の間の磁束とは逆向きで相殺し合うため、継鉄2aの断面積を縮小しても磁気飽和の影響を受けることがなく、アクチュエータを小型化するのに有利となる。
〔実施例4〕
図5は本発明の請求項4に対応する電磁式リニアアクチュエータの実施例を示すものである。この実施例においては、可動子2の継鉄2aを断面I字形としてその上下端を磁極部2cとし、継鉄2aの中央部分には永久磁石に代えて励磁コイル7を巻装した構成になり、この可動子2を挟んでその左右両側には先記の各実施例と同様にE字形磁性コア4,5の中央脚4a,5aに励磁コイル6を巻装した電磁石を配置してリニアアクチュエータを構成している。
【0023】
かかる構成で可動子2の励磁コイル7に電流を流すと、その電流の向きに応じて可動子2の上下磁極2bにN,S極が現れ、電磁石の磁性コア4,5との間で電磁吸引力,反発力が作用する。これにより前記実施例1,2と同様に可動子2に上方,あるいは下方の電磁推力が作用して可動子2が二つの動作位置間で移動動作する。
【0024】
なお、この実施例では、励磁コイル6および7の通電を絶つと起磁力が零となって可動子2は磁力の拘束を受けずにフリーの状態となる。したがって、後記のように当該リニアアクチュエータを回路しゃ断器のリモート操作装置に適用すれば、停電でリモート操作装置が動作しない状況下でも、磁気的な拘束力を受けずに回路しゃ断器のハンドルを手動操作で楽に切り換えることができる。
【0025】
〔実施例5〕
次に、前記した電磁式リニアアクチュエータを採用して構成した本発明の請求項5に対応する回路しゃ断器のリモート操作装置,およびその遠隔操作制御回路の原理的な構成を図6(a),(b) に示す。図6(a) において、8は回路しゃ断器、9は回路しゃ断器のリモート操作装置である。該リモート操作装置9は、電磁式リニアアクチュエータ1、および該リニアアクチュエータの永久磁石付き可動子2に結合した凹形のアタッチメント10との組立体からなり、しゃ断器ケースに装着した状態でアタッチメント10を回路しゃ断器8のハンドル8aの頭に係合させている。なお、リニアアクチュエータ1の可動子2はガイド棒1aでスライド可能に案内支持されている。また、リモート操作装置9におけるアクチュエータの励磁コイル6には、直流電源11と切換スイッチ12を組合せたリモート制御回路13が配線14を介して接続されている。なお、図6(b) は操作ハンドル8aのON,OFF,トリップ,リセットの各位置を表した図である。
【0026】
かかる構成において、リモート制御回路13側で切換スイッチ12を介して回路しゃ断器8のリモート操作装置9に操作指令を与えると、リモート操作装置9に組み込んだリニアアクチュエータ1の励磁コイル6が励磁され、その励磁電流の向きに対応して可動子2が反対側の動作位置に駆動されるとともに、この可動子2の動きに操作ハンドル8aが従動して回路しゃ断器8がON,OFF,リセット操作される。
【0027】
次に、リモート操作装置9のリニアアクチュエータに図2の電磁式リニアアクチュエータを採用し、このリモート操作装置9を使って回路しゃ断器8をON,OFF,リセット操作する場合を例に、そのON側,OFF側の操作行程でリニアアクチュエータに発生する電磁推力を図7(a) の推力−変位特性で表し、また図7(b) には回路しゃ断器8をON,OFF,リセットする際にハンドルに加わる反力−変位特性を表す。各図において、横軸は電磁式リニアアクチュエータにおける電磁石のE字形磁性コアの中心を基点とした可動子の移動(ON,OFF方向)の相対位置(distance) を、縦軸には力 (force)と方向(ON側:+,OFF側:−)を表している。なお、この推力−変位特性,および反力−変位特性は発明者等がシミュレーション手法で求めたものである。
【0028】
ここで、図7(a) の特性線Aは電磁石を励磁して可動子をON方向に駆動する際に発生する推力を、特性線Bは電磁石を逆方向に励磁して可動子をOFF,リセット方向に駆動する際に発生する推力を、特性線Cは電磁石が非励磁状態での永久磁石の磁力による推力を表しており、電磁石を励磁した場合の推力はON,OFF方向とも相対位置0,つまり可動子が電磁石の磁性コアの中心に相対位置している場合に最大となっている。
【0029】
一方、図7(b) において、特性線Dは回路しゃ断器のハンドルをON操作する際にハンドルを介してリモート操作装置の電磁式リニアアクチュエータに加わる反力を、特性線EはOFF操作する際の反力を、また特性線Fは回路しゃ断器がトリップ動作した後にハンドルをトリップ位置からリセット位置に向けてOFF側に移動する際に加わる反力を表している。この特性図から判るように、回路しゃ断器をON,OFF,リセット操作する際に加わる反力の大きさは、OFF操作<ON操作<リセット操作の関係にある。また、ON操作,OFF操作時の反力は相対位置のほぼ中央に集中しているのに対し、リセット操作時の反力は中央から外れたOFF操作ストロークの後半に集中している。これは、ハンドルをトリップ位置からリセット位置に移動して接点開閉機構のラッチをラッチ受けに係合させる際に、ばね力がOFF位置を過ぎるあたりから反力として加わるためである。
【0030】
上記した反力−変位特性は回路しゃ断器に特有なものであり、このような負荷条件の下でリモート操作装置を使って回路しゃ断器のハンドルをON,OFF,リセット位置に操作するには、この反力−変位特性を上回るリモート操作装置の推力(機械的な出力)が必要となる。
ところで、図7(a) で表した推力−変位特性と図7(b) の反力−変位特性を比べた場合に、推力はON,OFF操作行程のいずれでもピークが相対位置0付近にあるのに対して、反力はOFF操作行程での後半にピークがあり、推力−変位特性と反力−変位特性との間の整合性が低い。したがって、このままでリセット操作の反力を上回る大きな推力をリモート操作装置で発生させるには、電磁式リニアアクチュエータの電磁石に大きな電流を供給してその起磁力を高める必要がある。しかしながら、アクチュエータの電磁石に大きな電流を流すにはその電流容量が増して鉄心,コイルの大形化を招くほか、図7(b) のON,OFF位置への操作に対応する反力(特性線D,E)に対してはアクチュエータの推力(特性線A,B)が過剰となって電力の利用効率が低下する。
【0031】
かかる点、次に述べる本発明の実施例によれば、図6のリモート操作装置9に採用する電磁式リニアアクチュエータ1について、その推力−変位特性と反力−変位特性との整合化を図り、OFF側に操作するストローク後半で推力を増加させることができ、これにより先記のように電流容量の大きな電磁石を使わずに、小型,小容量の電磁式リニアアクチュエータでも回路しゃ断器のON,OFF,リセット操作に十分対応させることができる。
【0032】
〔実施例6〕
図8(a),(b)は本発明電磁式リニアアクチュエータの他の実施例を示すものである。この実施例においては、その基本構成は図2,あるいは図3に示したものと同様であるが、電磁石のE字形磁性コア4,5に関しては、その中央脚4a,5aと一方の外側脚4b,5bとの間の間隔d1に対して、他方の外側脚4c,5cとの間の間隔d2が小(d1>d2)に設定されている。なお、図示は可動子2が磁性コア4,5の中心に相対位置した状態を表しており、図6との対応で回路しゃ断器のON操作時には可動子2を左側に駆動し、OFF操作,リセット操作時には可動子2を右側に駆動するものとする。また、これに合わせて磁性コア4,5の中央脚4a,5aを中央磁極、左側脚4b,5bをON側磁極、右側脚4c,5cをOFF側磁極と定義する。
【0033】
かかる構成により、磁性コア4,5の各磁極と可動子2に付設した永久磁石3a,3bとの相対位置の関係から、図8(a) の特性図で表すように電磁石励磁コイル6の非励磁状態での永久磁石3a,3bによる推力−変位特性は特性線Cで表すように推力の反転する位置が中心位置0よりOFF側に変位している。これにより、永久磁石による推力がバイアス推力として作用し、励磁コイル6を励磁した状態での推力−変位特性線A,Bは、先に述べた図7(b) の特性線のパターンと比べて推力のピークが左右に移るようになる。特に、OFF側に操作する行程では、その特性線Bのピークが中心位置よりもストロークの後半側に移行しており、これによりストローク全域でも推力が回路しゃ断器をOFFおよびリセット操作する際に加わるハンドルの反力特性線E,Fを上回るようになる。
【0034】
したがって、リモート操作装置に組み込んだ電磁式リニアアクチュエータとして、その電磁石の励磁コイル6に供給する電流を必要以上に大きくすることなしに、回路しゃ断器を確実にON,OFF,リセット操作でき、これによりリモート操作装置の小型化,および消費電力の軽減化が図れる。
〔実施例7〕
図9(a),(b)は本発明の他の実施例を示すものである。この実施例においては、図9(a)で示すようにリモート操作装置として必要な可動子2の移動ストロークを確保した上で、電磁石のE字形磁性コア4,5において、OFF側磁極に対応する右側脚4c,5cにはその終端から可動子2の移動側に突き出して可動子の端面と対峙するように突起4d,5dが形成されている。
【0035】
これにより、可動子2をOFF側に駆動するストローク行程で、可動子2の先端が前記突起4d,5dに近づくと突起との間に磁気吸引力が働き、図9(b)の特性線Bで表すようにOFF操作行程でのストローク後半で推力が大きくなり、特性線Fで表すリセット操作の反力を上回るようになる。
〔実施例8〕
図10(a),(b)は本発明の他の実施例を示すものである。この実施例においては、図10(a)で示すように可動子2の継鉄2aには、右側端に先細りとなる角度θのテーパー部2cを形成してここに永久磁石3aが取付けてある。また、前記テーパー部2cに対向して磁性コア4,5のOFF側脚4c,5cには内側に角度θのテーパー状磁極面4e,5eが形成されている。
【0036】
これにより、可動子2をOFF側に駆動するストローク行程で、可動子2の永久磁石3aと磁性コア4,5のテーパー状磁極面4e,5eとの間に作用する磁吸引力のうち、可動子移動方向と平行なベクトル成分が大きくなってその分だけ有効推力が増大する。この結果、図10(b) の特性線Bで表すようにOFF操作行程でのストロークの後半で推力が大きくなり、特性線Fで表すリセット操作の反力を上回るようになる。
【0037】
〔実施例9〕
図11は前記実施例8の応用実施例を示すものであり、この実施例では磁性コア4,5のOFF側脚4c,5cにのみ内側に角度θのテーパー状磁極面4e,5eが形成され、可動子2側にはテーパー部が形成されてない。
この実施例でも、可動子2をOFF側に駆動するストローク行程で、可動子2の永久磁石3aと磁性コア4,5のテーパー状磁極面4e,5eとの間に作用する磁吸引力の可動子移動方向と平行なベクトル成分が大きくなって有効推力が増大し、実施例8と同様な効果を奏する
〔実施例10〕
図12は本発明の他の実施例を示すものである。この実施例においては、可動子2の左右両端に付設した2組の永久磁石3a,3bについて、OFF側の永久磁石3aの長さをL1,ON側の永久磁石3bの長さをL2としてL1>L2に設定し、OFF側に付設した永久磁石3aの磁極強さを、ON側に付設した永久磁石3bよりも大にしている。この構成により、可動子2をOFF側に駆動する行程で発生する推力がストロークの後半で増加し、先記の各実施例と同等な効果を奏することが確認されている。
【0038】
なお、前記した実施例6〜10は単独で用いても回路しゃ断器のリモート操作装置としての操作機能に効果を発揮するが、特に図8に示した実施例6の構成に図9〜図12に示した構成のいずれかを併用することにより、より一層の機能向上が期待できる。
【0039】
【発明の効果】
以上述べたように、本発明の電磁式リニアアクチュエータでは、永久磁石,ないし励磁コイルを付設した可動子を挟んで、その左右両側に固定子として励磁コイルを巻装した一対のE字形磁性コアを対称に配置して構成したことにより、磁性コアとの間で可動子の移動方向と直角方向に作用する磁力を互いに打ち消し合いつつ、移動方向には大きな磁気推力で可動子を駆動することができる。
【0040】
また、当該リニアアクチュエータを採用して構成した回路しゃ断器リモート操作装置によれば、ギヤードモータ,送りねじ機構などで構成した従来装置と比べて部品点数も少なく,かつ構造も単純で安価に製作でき、また停電などで回路しゃ断器を手動で切換え操作する必要がある場合でも、リモート操作装置を組付けたまま手動で回路しゃ断器のハンドルを操作することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る電磁式リニアアクチュエータの構成斜視図
【図2】本発明の実施例2に係る電磁式リニアアクチュエータの構成斜視図
【図3】図2の構成による電磁石の励磁状態の磁力線分布図
【図4】本発明の実施例3に係る電磁式リニアアクチュエータの構成斜視図
【図5】本発明の実施例4に係る電磁式リニアアクチュエータの構成斜視図
【図6】本発明の実施例5に係る回路しゃ断器のリモート操作装置の構成図であり、(a) はリモート操作装置,およびそのリモート制御回路図、(b) は回路しゃ断器のハンドルの各操作位置を表す図
【図7】図6のリモート操作装置に対する動作特性図であり、(a) は図2の電磁式リニアアクチュエータの推力−変位特性図、(b) は回路しゃ断器のON,OFF,リセット操作に伴う反力−変位特性図
【図8】本発明の実施例6に係る電磁式リニアアクチュエータの説明図であり、(a) は構成図、(b) は動作特性図
【図9】本発明の実施例7に係る電磁式リニアアクチュエータの説明図であり、(a) は構成図、(b) は動作特性図
【図10】本発明の実施例8に係る電磁式リニアアクチュエータの説明図であり、(a) は構成図、(b) は動作特性図
【図11】本発明の実施例9に係る電磁式リニアアクチュエータの構成図
【図12】本発明の実施例10に係る電磁式リニアアクチュエータの構成図
【符号の説明】
1 電磁式リニアアクチュエータ
2 可動子
2a 継鉄
2b 磁極部
2c テーパー部
3,3a,3b 永久磁石
4,5 E字形磁性コア
4a,5a 中央脚
4b,5b 外側脚(ON側)
4c,5c 外側脚(OFF側)
4d,5d 突起
4e,5e テーパー磁極面
6,7 励磁コイル
8 回路しゃ断器
8a 操作ハンドル
9 リモート操作装置
13 リモート制御回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic linear actuator suitable for opening and closing a circuit breaker (distribution circuit breaker), and a remote operation device for a circuit breaker that drives an operation handle of the breaker with the electromagnetic linear actuator.
[0002]
[Prior art]
As a remote operation device for the circuit breaker mentioned above, the drive motor is combined with a reduction gear, a feed screw mechanism, or a rack / pinion mechanism, and the rotation of the motor is converted into a linear motion to turn the operation handle of the circuit breaker ON / OFF A system that switches to a position has been put to practical use as a product.
[0003]
[Problems to be solved by the invention]
By the way, the above-described conventional remote operation device for a circuit breaker has the following disadvantages in terms of manufacturing cost and handling. That is,
(1) Since the geared motor and screw or rack and pinion type transmission mechanism are used, the structure is complicated and large, and the product price is high.
[0004]
(2) In addition, since a considerable amount of force is required to turn the circuit breaker ON / OFF / reset by operating the handle, the geared motor used in the remote control device has a large reduction ratio. In order to switch the circuit breaker to OFF, it is difficult to manually operate the circuit breaker to the OFF position with the remote operation device attached.
[0005]
The present invention has been made in view of the above points, and an object of the present invention is to provide an electromagnetic linear actuator suitable for applications such as a remote operation device for turning on / off and resetting a circuit breaker by remote control, and the electromagnetic linear An object of the present invention is to provide a linear operation device for a circuit breaker employing an actuator.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, an electromagnetic linear actuator is configured as follows.
(1) A pair of left and right comprising a mover provided with permanent magnets on the left and right sides, an E-shaped magnetic core disposed on both sides of the mover, and an excitation coil wound around the central leg of the magnetic core. It is composed of a combination with an electromagnet, and the length of the mover is set to A, the distance between the central magnetic pole of the E-shaped magnetic core and the magnetic poles at both ends is set to B <A <2B, and the current flows through the exciting coil. by switching the direction of the excitation current constituting to invert operating the movable element between two operating positions (claim 1).
[0007]
(2) In the preceding paragraph (1), the mover comprises a yoke and two sets of permanent magnets attached to the left and right sides of the yoke, and each set of permanent magnets is divided into two permanent magnets. Separately, attach to both sides of the yoke (claim 2).
(3) In the preceding item (2), the magnetic poles of the permanent magnets facing each other across the yoke are set to the same polarity (Claim 3).
[0008]
(4) A mover in which an exciting coil is wound around a yoke having magnetic poles at both ends, a pair of E-shaped magnetic cores arranged opposite to each other across the mover, and wound around the center leg of each magnetic core B <A <, where B is a combination of a pair of left and right electromagnets composed of mounted excitation coils, the total length of the mover is A, and the distance between the central magnetic pole of the E-shaped magnetic core and the magnetic poles at both ends is B set 2B, constituting the mover by switching the direction of the exciting current to be supplied to the respective exciting coils so as to invert the operation between two operating positions (claim 4).
[0009]
In the electromagnetic linear actuator with the above configuration, when the direction of the current flowing through the exciting coil of the electromagnet is switched, the direction of the magnetic thrust acting between the magnetic poles of the electromagnet and the mover is reversed, so that the mover operates in the opposite direction from one operating position. Reverse operation to move to the position. Here, the structure in which the electromagnets are arranged on both sides of the mover can secure a large driving force corresponding to the two electromagnets, and the right and left directions between the left and right electromagnets and the mover during operation. Thus, the frictional force applied to the guide mechanism that guides and supports the mover in the movement direction is reduced. In addition, by setting one of the permanent magnets facing each other across the yoke of the mover to the N pole and the other to the S pole, the yoke does not saturate even if the cross-sectional area is small, thereby reducing the size of the actuator. Can be achieved.
[0010]
Further, according to the remote operation device for a circuit breaker according to the present invention, the mover of the electromagnetic linear actuator is linked to the operation handle of the circuit breaker, and the circuit breaker is operated by reversing the linear actuator by energization control of the excitation coil. It is assumed that the operation is switched to ON, OFF, reset position (claim 5).
With this configuration, when an external circuit breaker ON / OFF or reset command is given to the electromagnetic linear actuator, the linear actuator mover moves in response to the signal, and the circuit breaker operation handle is turned ON, Switch to OFF, reset position. In addition, this remote operation device has fewer parts than the conventional device combining a geared motor and a screw-type, rack-and-pinion type transmission mechanism, and has a simple structure and can be manufactured at low cost. In addition, since a gear mechanism that converts rotation into linear motion is not used, the handle of the circuit breaker can be manually switched to the OFF position while the remote operation device is attached to the circuit breaker even during a power failure.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on the illustrated examples.
[Example 1]
First, FIG. 1 shows a configuration of an electromagnetic linear actuator corresponding to claim 1 of the present invention. In this embodiment, the electromagnetic linear actuator 1 is composed of a mover 2, permanent magnets 3 attached to the left and right side surfaces thereof, and a pair of left and right electromagnets arranged at symmetrical positions on both the left and right sides of the mover 2. Has been. Here, the electromagnet is composed of E-shaped magnetic cores 4 and 5 and exciting coils 6 wound around central legs 4a and 5a of the magnetic cores 4 and 5 via bobbins 6a. The permanent magnet 3 is magnetized in the longitudinal direction, and in the illustrated example, the left permanent magnet and the right permanent magnet set the polarities (N and S poles) to opposite polarities and are movable. The distance between the NS magnetic poles of the permanent magnet 3 attached to the child 2 (the total length of the mover 2) is A, the central magnetic poles (central legs 4a and 5a) in the E-shaped magnetic cores 4 and 5 of the electromagnet and the outer magnetic poles ( The distance between the outer legs 4b and 4c and the opposite outer legs 5b and 5c) is set to be B so that B <A <2B. Although not shown, the mover 2 is guided and supported so as to be slidable in the operation direction (vertical direction in the drawing) via a guide mechanism such as a guide bar or rail.
[0016]
In such a configuration, when the mover 2 is at the position indicated by the solid line and the excitation coil 6 is not excited, the mover 2 is moved to this position by the magnetic force acting between the permanent magnet 3 and the E-shaped magnetic cores 4 and 5. Is held by suction. When direct current is passed through the exciting coil 6 from this state, the magnetic pole surfaces of the center legs 4a and 5a and the outer legs 4b, 4c and 5b and 5c of the E-shaped magnetic cores 4 and 5 correspond to the current direction of the exciting coil 6. Due to the magnetomotive force, N and S poles appear, and magnetic repulsive force and attractive force act between the N and S poles of the permanent magnet 3.
[0017]
Here, the left magnetic core 4 has an N pole at its center pole 4a and outer legs 4b. The right magnetic core 5 has an exciting coil 6 wound around each of the magnetic cores 4 and 5 so that the central pole 5a is an S pole and the outer legs 5b and 5c are N poles. When the direction of the current is controlled, the mover 2 is driven upward from the operation position indicated by the solid line by the magnetic repulsive force and the attractive force acting between the permanent magnet 3 and moved to the operation position indicated by the chain line. Further, when the direction of the current flowing through the exciting coil 6 is switched from this state to reverse the polarity of the magnetic pole, the movable element 2 performs the reverse operation so as to return from the chain line position to the original solid line position. That is, each time the direction of the current flowing through the exciting coil 6 is reversed, the mover 2 is reversed to move from one operating position to the other operating position.
[0018]
In this case, the driving force acting on the mover 2 by energization of the exciting coil 6 is made by the magnetic force of the exciting coil 6 by causing the magnetic cores 4 and 5 of the electromagnets to face the left and right symmetrical positions with the mover 2 interposed therebetween as shown in the figure. This is twice the magnetic thrust acting between the core. In addition, since the magnetic force perpendicular to the moving direction of the mover acting between the magnetic cores 4 and 5 and the permanent magnet 3 of the mover 2 cancels each other and cancels out, the mover 2 becomes a guide rod and guide rail. It can be moved smoothly without receiving a large frictional resistance with the guide mechanism.
[0019]
[Example 2]
FIG. 2 shows an application embodiment corresponding to claim 2 of the present invention. In this embodiment, the mover 2 has two permanent magnets 3a and 3b having N and S poles magnetized in the thickness direction on the left and right side surfaces thereof as shown in FIG. They are attached to the upper and lower ends so that they have opposite polarities. The E-shaped magnetic cores 4 and 5 and the exciting coil 6 of the electromagnet arranged on both sides of the mover 2 have the same configuration as that shown in FIG. In this embodiment, the N pole of the permanent magnet 3a is opposed to the magnetic cores 4 and 5 on the upper end side of the mover 2 and the S pole of the permanent magnet 3b is opposed to the magnetic cores 4 and 5 on the lower end side. The direction of the current flowing through the exciting coil 6 of the magnetic cores 4 and 5 is controlled.
[0020]
In this configuration, the yoke 2a of the mover 2 forms a magnetic path straddling the permanent magnets 3a and 3b, and the mover is switched by switching the direction of the current flowing through the exciting coils 6 of the magnetic cores 4 and 5. The direction of the magnetic thrust acting between 2 and 2 is reversed, and the mover 2 moves from one to the other operating position. FIG. 3 shows the distribution of magnetic lines of force when the exciting coil 6 is excited in this embodiment.
[0021]
Example 3
Next, FIG. 4 shows an embodiment of the present invention obtained by improving the second embodiment. In this embodiment, the polarities of the permanent magnets 3a and 3b attached to the left and right side surfaces of the mover 2 are set as follows in comparison with the second embodiment. That is, the upper and lower permanent magnets 3a and 3b attached to the right side of the mover yoke 2a have the same polarity as in FIG. 2, but the permanent magnet attached to the left side is set to have a polarity opposite to that of the right permanent magnet. The N and S poles of the left and right permanent magnets face each other with the yoke 2a interposed therebetween.
[0022]
According to this configuration, the magnetic flux between the permanent magnets arranged above and below the left side of the yoke 2a as a magnetic path and the magnetic flux between the permanent magnets arranged above and below the right side cancel each other in opposite directions. Even if the cross-sectional area of the yoke 2a is reduced, it is not affected by magnetic saturation, which is advantageous for downsizing the actuator.
Example 4
FIG. 5 shows an embodiment of an electromagnetic linear actuator corresponding to claim 4 of the present invention. In this embodiment, the yoke 2a of the mover 2 has an I-shaped cross section, the upper and lower ends thereof are magnetic pole portions 2c, and an excitation coil 7 is wound around the central portion of the yoke 2a in place of the permanent magnet. As in the previous embodiments, electromagnets in which excitation coils 6 are wound around the central legs 4a and 5a of the E-shaped magnetic cores 4 and 5 are arranged on both the left and right sides of the mover 2 so as to be linear actuators. Is configured.
[0023]
When a current is passed through the exciting coil 7 of the mover 2 in such a configuration, N and S poles appear on the upper and lower magnetic poles 2b of the mover 2 according to the direction of the current, and electromagnetic waves are generated between the magnetic cores 4 and 5 of the electromagnet. Suction force and repulsive force are applied. As a result, as in the first and second embodiments, the upper or lower electromagnetic thrust acts on the mover 2 to move the mover 2 between two operating positions.
[0024]
In this embodiment, when the excitation coils 6 and 7 are de-energized, the magnetomotive force becomes zero, and the mover 2 is free without being restricted by the magnetic force. Therefore, if the linear actuator is applied to the circuit breaker remote operation device as described later, the handle of the circuit breaker can be manually operated without receiving magnetic restraint force even in a situation where the remote operation device does not operate due to a power failure. It can be switched easily by operation.
[0025]
Example 5
Next, the principle of the remote operation device of the circuit breaker and the remote operation control circuit corresponding to claim 5 of the present invention constructed by adopting the electromagnetic linear actuator described above is shown in FIG. Shown in (b). In FIG. 6 (a), 8 is a circuit breaker, and 9 is a remote operation device for the circuit breaker. The remote operation device 9 comprises an assembly of an electromagnetic linear actuator 1 and a concave attachment 10 coupled to a mover 2 having permanent magnets of the linear actuator, and the attachment 10 is mounted in a circuit breaker case. The circuit breaker 8 is engaged with the head of the handle 8a. The mover 2 of the linear actuator 1 is guided and supported by a guide bar 1a so as to be slidable. A remote control circuit 13 that is a combination of a DC power source 11 and a changeover switch 12 is connected to the exciting coil 6 of the actuator in the remote operation device 9 via a wiring 14. FIG. 6B is a diagram showing the ON, OFF, trip, and reset positions of the operation handle 8a.
[0026]
In such a configuration, when an operation command is given to the remote operation device 9 of the circuit breaker 8 via the changeover switch 12 on the remote control circuit 13 side, the excitation coil 6 of the linear actuator 1 incorporated in the remote operation device 9 is excited, Corresponding to the direction of the exciting current, the mover 2 is driven to the opposite operation position, and the operation handle 8a is driven by the movement of the mover 2, and the circuit breaker 8 is turned ON / OFF / reset. The
[0027]
Next, the electromagnetic linear actuator shown in FIG. 2 is adopted as the linear actuator of the remote operation device 9, and the circuit breaker 8 is turned ON / OFF / reset using this remote operation device 9 as an example. The electromagnetic thrust generated in the linear actuator during the operation stroke on the OFF side is represented by the thrust-displacement characteristics shown in FIG. 7 (a). FIG. 7 (b) shows the handle when the circuit breaker 8 is turned ON / OFF / reset. Represents a reaction force-displacement characteristic applied to. In each figure, the horizontal axis is the relative position (distance) of the mover movement (ON, OFF direction) from the center of the E-shaped magnetic core of the electromagnet in the electromagnetic linear actuator, and the vertical axis is the force (force) And the direction (ON side: +, OFF side:-). The thrust-displacement characteristic and the reaction force-displacement characteristic are obtained by the inventors using a simulation technique.
[0028]
Here, the characteristic line A in FIG. 7 (a) shows the thrust generated when the electromagnet is excited to drive the mover in the ON direction, and the characteristic line B shows the electromagnet being excited in the reverse direction to turn off the mover. The thrust generated when driving in the reset direction, the characteristic line C represents the thrust due to the magnetic force of the permanent magnet when the electromagnet is in the non-excited state, and the thrust when the electromagnet is excited is relative position 0 in both the ON and OFF directions. That is, the maximum is obtained when the mover is positioned relative to the center of the magnetic core of the electromagnet.
[0029]
On the other hand, in FIG. 7 (b), the characteristic line D is the reaction force applied to the electromagnetic linear actuator of the remote operation device via the handle when the circuit breaker handle is turned on, and the characteristic line E is turned off. The characteristic line F represents the reaction force applied when the handle is moved from the trip position to the reset position to the OFF side after the circuit breaker has tripped. As can be seen from this characteristic diagram, the magnitude of the reaction force applied when the circuit breaker is turned ON / OFF / reset has a relationship of OFF operation <ON operation <reset operation. In addition, the reaction force during the ON operation and the OFF operation is concentrated in the approximate center of the relative position, whereas the reaction force during the reset operation is concentrated in the second half of the OFF operation stroke that deviates from the center. This is because when the handle is moved from the trip position to the reset position and the latch of the contact opening / closing mechanism is engaged with the latch receiver, the spring force is applied as a reaction force from around the OFF position.
[0030]
The above reaction force-displacement characteristics are unique to circuit breakers. To operate the circuit breaker handle to the ON, OFF, reset position using a remote control device under such load conditions, The thrust (mechanical output) of the remote operation device that exceeds this reaction force-displacement characteristic is required.
By the way, when the thrust-displacement characteristic shown in FIG. 7 (a) is compared with the reaction force-displacement characteristic of FIG. 7 (b), the peak of the thrust is near the relative position 0 in both the ON and OFF operation strokes. On the other hand, the reaction force has a peak in the latter half of the OFF operation process, and the consistency between the thrust-displacement characteristic and the reaction force-displacement characteristic is low. Therefore, in order to generate a large thrust exceeding the reaction force of the reset operation with the remote operation device as it is, it is necessary to supply a large current to the electromagnet of the electromagnetic linear actuator to increase its magnetomotive force. However, in order to apply a large current to the electromagnet of the actuator, the current capacity increases, leading to an increase in the size of the iron core and coil, and a reaction force (characteristic line) corresponding to the operation to the ON and OFF positions in FIG. For D, E), the thrust (characteristic lines A, B) of the actuator becomes excessive, and the power use efficiency decreases.
[0031]
In this regard, according to the embodiment of the present invention described below, the electromagnetic linear actuator 1 employed in the remote operation device 9 shown in FIG. 6 is matched with its thrust-displacement characteristic and reaction force-displacement characteristic. The thrust can be increased in the second half of the stroke operated to the OFF side. This enables the circuit breaker to be turned ON / OFF even with a small, small-capacity electromagnetic linear actuator without using an electromagnet with a large current capacity as described above. , It can fully correspond to the reset operation.
[0032]
Example 6
FIGS. 8A and 8B show another embodiment of the electromagnetic linear actuator of the present invention. In this embodiment, the basic configuration is the same as that shown in FIG. 2 or FIG. 3, but the E-shaped magnetic cores 4 and 5 of the electromagnet have their center legs 4a and 5a and one outer leg 4b. , 5b, the distance d2 between the other outer legs 4c, 5c is set small (d1> d2). The illustration shows a state in which the mover 2 is positioned relative to the centers of the magnetic cores 4 and 5, and in correspondence with FIG. 6, when the circuit breaker is turned on, the mover 2 is driven to the left side, It is assumed that the mover 2 is driven to the right during the reset operation. In accordance with this, the center legs 4a and 5a of the magnetic cores 4 and 5 are defined as the center magnetic pole, the left legs 4b and 5b are defined as the ON side magnetic poles, and the right legs 4c and 5c are defined as the OFF side magnetic poles.
[0033]
With this configuration, the non-excitation of the electromagnet exciting coil 6 is represented by the relative position relationship between the magnetic poles of the magnetic cores 4 and 5 and the permanent magnets 3a and 3b attached to the mover 2, as shown in the characteristic diagram of FIG. The thrust-displacement characteristics of the permanent magnets 3a, 3b in the excited state are displaced from the center position 0 to the OFF side as indicated by the characteristic line C. Thereby, the thrust by the permanent magnet acts as a bias thrust, and the thrust-displacement characteristic lines A and B in the state where the exciting coil 6 is excited are compared with the characteristic line pattern of FIG. 7B described above. The thrust peak shifts to the left and right. In particular, in the stroke to be operated to the OFF side, the peak of the characteristic line B shifts to the second half side of the stroke from the center position, so that thrust is applied when the circuit breaker is turned OFF and reset even in the entire stroke. It exceeds the reaction force characteristic lines E and F of the handle.
[0034]
Therefore, as an electromagnetic linear actuator incorporated in a remote operation device, the circuit breaker can be reliably turned on, off, and reset without increasing the current supplied to the exciting coil 6 of the electromagnet more than necessary. The remote operation device can be reduced in size and power consumption can be reduced.
Example 7
9 (a) and 9 (b) show another embodiment of the present invention. In this embodiment, as shown in FIG. 9 (a), the moving stroke of the mover 2 necessary as a remote operation device is secured, and the E-shaped magnetic cores 4 and 5 of the electromagnet correspond to the OFF-side magnetic pole. Protrusions 4d and 5d are formed on the right legs 4c and 5c so as to protrude from the end of the right leg 4c and 5c toward the moving side of the mover 2 and to face the end face of the mover.
[0035]
As a result, in the stroke process for driving the mover 2 to the OFF side, when the tip of the mover 2 approaches the protrusions 4d and 5d, a magnetic attraction force acts between the protrusions, and the characteristic line B in FIG. As indicated by, the thrust increases in the second half of the stroke in the OFF operation stroke, and exceeds the reaction force of the reset operation indicated by the characteristic line F.
Example 8
10 (a) and 10 (b) show another embodiment of the present invention. In this embodiment, as shown in FIG. 10 (a), the yoke 2a of the mover 2 is formed with a tapered portion 2c having a taper angle θ at the right end, and a permanent magnet 3a is attached thereto. . Further, taper-shaped magnetic pole surfaces 4e and 5e having an angle θ are formed inside the OFF-side legs 4c and 5c of the magnetic cores 4 and 5 so as to face the taper portion 2c.
[0036]
As a result, in the stroke process for driving the mover 2 to the OFF side, the magnetic attraction force acting between the permanent magnet 3a of the mover 2 and the tapered magnetic pole surfaces 4e and 5e of the magnetic cores 4 and 5 is movable. The vector component parallel to the child movement direction increases, and the effective thrust increases accordingly. As a result, as indicated by the characteristic line B in FIG. 10B, the thrust increases in the second half of the stroke in the OFF operation stroke, and exceeds the reaction force of the reset operation indicated by the characteristic line F.
[0037]
Example 9
FIG. 11 shows an application example of the eighth embodiment. In this embodiment, tapered magnetic pole surfaces 4e and 5e having an angle θ are formed only on the OFF-side legs 4c and 5c of the magnetic cores 4 and 5, respectively. The tapered portion is not formed on the movable element 2 side.
Also in this embodiment, the magnetic attraction force acting between the permanent magnet 3a of the mover 2 and the tapered magnetic pole surfaces 4e and 5e of the magnetic cores 4 and 5 is moved in the stroke process for driving the mover 2 to the OFF side. The vector component parallel to the moving direction of the child is increased, the effective thrust is increased, and the same effect as in the eighth embodiment can be obtained [Embodiment 10].
FIG. 12 shows another embodiment of the present invention. In this embodiment, for two sets of permanent magnets 3a and 3b attached to the left and right ends of the mover 2, the length of the permanent magnet 3a on the OFF side is L1, and the length of the permanent magnet 3b on the ON side is L2. The magnetic pole strength of the permanent magnet 3a attached to the OFF side is set larger than that of the permanent magnet 3b attached to the ON side. With this configuration, it has been confirmed that the thrust generated in the stroke of driving the mover 2 to the OFF side increases in the second half of the stroke, and the same effects as those of the previous embodiments are achieved.
[0038]
Although the above-described Examples 6 to 10 are effective when used alone as a circuit breaker remote operation device, the configuration of Example 6 shown in FIG. Further improvement of the function can be expected by using one of the configurations shown in FIG.
[0039]
【The invention's effect】
As described above, in the electromagnetic linear actuator of the present invention, a pair of E-shaped magnetic cores having a permanent magnet or a mover provided with an excitation coil sandwiched between them and winding an excitation coil as a stator on both left and right sides thereof are provided. By arranging it symmetrically, it is possible to drive the mover with a large magnetic thrust in the moving direction while canceling out the magnetic forces acting on the magnetic core in the direction perpendicular to the moving direction of the mover. .
[0040]
In addition, the circuit breaker remote operation device constructed using the linear actuator has fewer parts than the conventional device constructed with a geared motor, feed screw mechanism, etc., and the structure is simple and inexpensive. Even when it is necessary to manually switch the circuit breaker due to a power failure or the like, the handle of the circuit breaker can be manually operated with the remote operation device attached.
[Brief description of the drawings]
1 is a configuration perspective view of an electromagnetic linear actuator according to a first embodiment of the present invention. FIG. 2 is a configuration perspective view of an electromagnetic linear actuator according to a second embodiment of the present invention. FIG. 4 is a perspective view of the configuration of an electromagnetic linear actuator according to Embodiment 3 of the present invention. FIG. 5 is a perspective view of the configuration of an electromagnetic linear actuator according to Embodiment 4 of the present invention. FIG. 10 is a configuration diagram of a remote operating device for a circuit breaker according to a fifth embodiment of the present invention, where (a) is a remote operating device and its remote control circuit diagram, and (b) is each operation position of a handle of the circuit breaker. FIG. 7 is an operational characteristic diagram for the remote operation device of FIG. 6, (a) is a thrust-displacement characteristic diagram of the electromagnetic linear actuator of FIG. 2, and (b) is an ON / OFF of the circuit breaker. Countermeasures associated with reset operation FIG. 8 is an explanatory diagram of an electromagnetic linear actuator according to Embodiment 6 of the present invention, (a) is a configuration diagram, and (b) is an operating characteristic diagram. FIG. 9 is an embodiment of the present invention. 7 is an explanatory diagram of an electromagnetic linear actuator according to FIG. 7, (a) is a configuration diagram, and (b) is an operation characteristic diagram. FIG. 10 is an explanatory diagram of an electromagnetic linear actuator according to an eighth embodiment of the present invention. FIG. 11 is a configuration diagram of an electromagnetic linear actuator according to a ninth embodiment of the present invention. FIG. 12 is a configuration diagram of an electromagnetic linear actuator according to a tenth embodiment of the present invention. Figure [Explanation of symbols]
1 electromagnetic linear actuator 2 mover 2a yoke 2b magnetic pole 2c taper 3, 3a, 3b permanent magnet 4, 5 E-shaped magnetic core 4a, 5a center leg 4b, 5b outer leg (ON side)
4c, 5c Outer leg (OFF side)
4d, 5d Protrusions 4e, 5e Tapered magnetic pole face 6, 7 Excitation coil 8 Circuit breaker 8a Operation handle 9 Remote operation device 13 Remote control circuit

Claims (5)

左右側面に永久磁石を付設した可動子と、該可動子を挟んでその両側に対向配置したE字形磁性コア,および該磁性コアの中央脚に巻装した励磁コイルからなる左右一対の電磁石との組合せからなり、かつ前記可動子の全長をA、前記E字形磁性コアの中央磁極と両端の磁極との間の距離をBとしてB<A<2Bに設定し、前記励磁コイルに流す励磁電流の方向を切換えて前記可動子を二つの動作位置の間で反転動作させるようにしたことを特徴とする電磁式リニアアクチュエータ。A mover having permanent magnets attached to the left and right side surfaces, an E-shaped magnetic core disposed opposite to both sides of the mover, and a pair of left and right electromagnets comprising an excitation coil wound around the central leg of the magnetic core The length of the movable element is A, the distance between the central magnetic pole of the E-shaped magnetic core and the magnetic poles at both ends is set as B <A <2B, and B <A <2B . electromagnetic linear actuator being characterized in that so as to invert the operation of the movable member between the two operating positions by switching the direction. 請求項1記載の電磁式リニアアクチュエータにおいて、可動子が継鉄と該継鉄を挟んでその左右側面に付設した2組の永久磁石とからなり、かつ各組の永久磁石をそれぞれ2個の永久磁石に分けて継鉄の両端側面に取付けたことを特徴とする電磁式リニアアクチュエータ。2. The electromagnetic linear actuator according to claim 1, wherein the mover includes a yoke and two sets of permanent magnets attached to the left and right sides of the yoke, and each set of permanent magnets includes two permanent magnets. An electromagnetic linear actuator characterized by being divided into magnets and attached to both sides of the yoke. 請求項2記載の電磁式リニアアクチュエータにおいて、継鉄を挟んで向かい合う永久磁石の磁極を同極性としたことを特徴とする電磁式リニアアクチュエータ。3. The electromagnetic linear actuator according to claim 2, wherein the magnetic poles of the permanent magnets facing each other across the yoke have the same polarity. 両端部を磁極とする継鉄に励磁コイルを巻装した可動子と、該可動子を挟んでその両側に対向配置した一対のE字形磁性コア,および各磁性コアの中央脚に巻装した励磁コイルとからなる左右一対の電磁石との組合せからなり、かつ前記可動子の全長をA、前記E字形磁性コアの中央磁極と両端の磁極との間の距離をBとしてB<A<2Bに設定し、前記の各励磁コイルに流す励磁電流の方向を切換えて前記可動子を二つの動作位置の間で反転動作させるようにしたことを特徴とする電磁式リニアアクチュエータ。A mover in which an excitation coil is wound around a yoke having magnetic poles at both ends, a pair of E-shaped magnetic cores arranged opposite to each other across the mover, and an excitation wound around the center leg of each magnetic core It is composed of a combination of a pair of left and right electromagnets consisting of coils, and the length of the mover is set to A, and the distance between the central magnetic pole of the E-shaped magnetic core and the magnetic poles at both ends is set to B <A <2B and, electromagnetic linear actuators, characterized in that so as to inversion operation between the two operating positions of the mover by switching the direction of the exciting current to be supplied to the respective exciting coils. 請求項1ないし4のいずれかに記載の電磁式リニアアクチュエータの可動子を回路しゃ断器の操作ハンドルに連繋させ、励磁コイルの通電制御によるリニアアクチュエータの反転動作で回路しゃ断器をON,OFF,リセット位置に切換え操作することを特徴とする回路しゃ断器のリモート操作装置。The electromagnetic linear actuator mover according to any one of claims 1 to 4 is linked to an operation handle of a circuit breaker, and the circuit breaker is turned ON / OFF / reset by reversing the linear actuator by energizing control of the excitation coil. A circuit breaker remote operation device characterized by switching to a position.
JP2000273107A 2000-07-28 2000-09-08 Remote operation device for electromagnetic linear actuator and circuit breaker Expired - Fee Related JP3820860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273107A JP3820860B2 (en) 2000-07-28 2000-09-08 Remote operation device for electromagnetic linear actuator and circuit breaker

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000228247 2000-07-28
JP2000-228247 2000-07-28
JP2000273107A JP3820860B2 (en) 2000-07-28 2000-09-08 Remote operation device for electromagnetic linear actuator and circuit breaker

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002014215A Division JP3899941B2 (en) 2000-07-28 2002-01-23 Remote operation device for electromagnetic linear actuator and circuit breaker

Publications (2)

Publication Number Publication Date
JP2002112518A JP2002112518A (en) 2002-04-12
JP3820860B2 true JP3820860B2 (en) 2006-09-13

Family

ID=26596879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273107A Expired - Fee Related JP3820860B2 (en) 2000-07-28 2000-09-08 Remote operation device for electromagnetic linear actuator and circuit breaker

Country Status (1)

Country Link
JP (1) JP3820860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020259639A1 (en) * 2019-06-25 2020-12-30 Fugna Mechatronics Co., Ltd. Brushless direct drive linear servo actuator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692713B2 (en) * 2004-06-24 2011-06-01 シンフォニアテクノロジー株式会社 Linear actuator
JP2006296127A (en) * 2005-04-13 2006-10-26 Alps Electric Co Ltd Electromagnetic actuator
JP2008256007A (en) * 2007-04-02 2008-10-23 Toyota Central R&D Labs Inc Dog clutch actuator
JP2009199978A (en) * 2008-02-25 2009-09-03 Fuji Electric Fa Components & Systems Co Ltd Remote operation device for circuit breaker
JP5537393B2 (en) * 2010-11-19 2014-07-02 株式会社日立産機システム Winding switching device and rotating electric machine using the same
JP6134237B2 (en) * 2013-09-09 2017-05-24 アズビル株式会社 Bistable moving device
JP6322055B2 (en) * 2014-06-06 2018-05-09 アズビル株式会社 Bistable moving device
KR101748230B1 (en) * 2015-07-22 2017-06-16 연세대학교 산학협력단 Magnetic Driven Micro-Actuator
CN105895446B (en) * 2016-05-12 2018-05-22 安徽尚途电力保护设备有限公司 A kind of mesohigh power grid direct current high-speed circuit breaker (HSCB) closing-opening device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020259639A1 (en) * 2019-06-25 2020-12-30 Fugna Mechatronics Co., Ltd. Brushless direct drive linear servo actuator
US11923744B2 (en) 2019-06-25 2024-03-05 Fugna Mechatronics Co., Ltd. Brushless direct drive linear servo actuator

Also Published As

Publication number Publication date
JP2002112518A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP3899941B2 (en) Remote operation device for electromagnetic linear actuator and circuit breaker
KR101287005B1 (en) Linear actuator for circuit breaker remote operation device
JP3820860B2 (en) Remote operation device for electromagnetic linear actuator and circuit breaker
KR100958978B1 (en) Remote Operation Device of a Circuit Breaker
KR101362009B1 (en) Hybrid electromagnetic actuator
US4797645A (en) Electromagnetic actuator
JPH08180785A (en) Electromagnetic relay
JP4722601B2 (en) Electromagnetic operation mechanism, power switch using the same, and power switch
JP2009199978A (en) Remote operation device for circuit breaker
US20200025307A1 (en) Valve with energy-saving electrodynamic actuator
JP2009016514A (en) Electromagnetic actuator, and switching apparatus using the same
JP2000331824A (en) Electromagnetic device
CN1412803A (en) Electromagnetic system for electromechanical switch and electromagnetic relay
JP2002335662A (en) Tristable self-holding magnet
KR20000056768A (en) A permant magnet excited linear actuator
JPH06260070A (en) Electromagnetic relay
US6819207B2 (en) Rotary electromagnet
RU2234789C2 (en) Reversible pulse-controlled electromagnetic drive
JPH0481843B2 (en)
JPS6191818A (en) Switch gear
JPH028353Y2 (en)
JPH039293Y2 (en)
JPH0446357Y2 (en)
JP2550334Y2 (en) Driving circuit for solenoid and solenoid valve using the same
JP2006054970A (en) Linear actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20061024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees