JP2002319504A - Electromagnetic linear actuator and remote controller of circuit breaker - Google Patents

Electromagnetic linear actuator and remote controller of circuit breaker

Info

Publication number
JP2002319504A
JP2002319504A JP2002014215A JP2002014215A JP2002319504A JP 2002319504 A JP2002319504 A JP 2002319504A JP 2002014215 A JP2002014215 A JP 2002014215A JP 2002014215 A JP2002014215 A JP 2002014215A JP 2002319504 A JP2002319504 A JP 2002319504A
Authority
JP
Japan
Prior art keywords
mover
linear actuator
magnetic pole
electromagnetic linear
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002014215A
Other languages
Japanese (ja)
Other versions
JP3899941B2 (en
Inventor
Kiyoshi Tanigawa
清 谷川
Noriyuki Hirayama
則行 平山
Hideki Isurugi
秀樹 石動
Kenji Suzuki
健司 鈴木
Nobuo Asahi
信夫 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002014215A priority Critical patent/JP3899941B2/en
Publication of JP2002319504A publication Critical patent/JP2002319504A/en
Application granted granted Critical
Publication of JP3899941B2 publication Critical patent/JP3899941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/66Power reset mechanisms
    • H01H2071/665Power reset mechanisms the reset mechanism operating directly on the normal manual operator, e.g. electromagnet pushes manual release lever back into "ON" position

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic linear actuator which is effective in operation and handleability as an actuator of a remote operation device for turning on and off a switch by remote operation. SOLUTION: The electromagnetic linear actuator is constituted by combining a removing unit 2 wherein permanent magnets 3 are arranged in parallel on right and left surfaces with a pair of right and left electromagnets constituted of E-shaped magnetic cores 4, 5. The electromagnets sandwich the moving unit 2 and are arranged facing each other on both sides of the moving unit 2 and an exciting coil 6 wound around center legs 4a, 5a of the cores 4, 5. The distance between the central magnetic legs of the E-shaped magnetic cores and one outside magnetic pole is set to be smaller than the distance between the central legs and the other outside magnetic poles. By switching over the direction of an exciting current applied to the exciting coil, the moving unit is turned over between two operating positions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回路しゃ断器(配
電用回路しゃ断器)の開閉操作用として好適な電磁式リ
ニアアクチュエータ、および該電磁式リニアアクチュエ
ータでしゃ断器の操作ハンドルを駆動する回路しゃ断器
のリモート操作装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic linear actuator suitable for opening and closing a circuit breaker (distribution circuit breaker), and a circuit breaker for driving an operation handle of the circuit breaker with the electromagnetic linear actuator. The present invention relates to a remote operation device for a vessel.

【0002】[0002]

【従来の技術】頭記した回路しゃ断器のリモート操作装
置として、駆動モータに減速歯車,送りねじ機構,ある
いはラック/ピニオン機構を組合せ、モータの回転を直
線運動に変換して回路しゃ断器の操作ハンドルをON,
OFF位置に切換えるようにした方式のものが従来より
製品として実用化されている。
2. Description of the Related Art As a remote operating device of a circuit breaker described above, a drive motor is combined with a reduction gear, a feed screw mechanism, or a rack / pinion mechanism, and the operation of the circuit breaker is converted by converting the rotation of the motor into a linear motion. Turn on the handle,
A system that switches to the OFF position has been put to practical use as a product.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記した従
来の回路しゃ断器用リモート操作装置は、製作コスト,
および取扱い面で次記のような難点がある。すなわち、 (1)ギヤードモータとねじ式,あるいはラック・ピニオ
ン式の伝動機構を用いているために構造が複雑で大形化
し、かつ製品価格も高い。
By the way, the above-mentioned conventional remote operation device for a circuit breaker requires a manufacturing cost,
And there are the following difficulties in handling. (1) Since the geared motor and the screw-type or rack-pinion-type transmission mechanism are used, the structure is complicated and large, and the product price is high.

【0004】(2)また、ハンドル操作により回路しゃ断
器をON,OFF,リセット操作するにはかなり大きな
力を要することから、リモート操作装置に使用するギヤ
ードモータは減速比が大きく、このために停電時などに
回路しゃ断器をOFFに切換えるには、リモート操作装
置を組付けたまま手動で回路しゃ断器をOFF位置に操
作することが困難である。
(2) Further, since a considerably large force is required to turn on, off, and reset the circuit breaker by operating the steering wheel, the geared motor used in the remote operation device has a large reduction ratio, which causes a power failure. In order to switch off the circuit breaker at times, it is difficult to manually operate the circuit breaker to the OFF position with the remote operation device attached.

【0005】本発明は上記の点に鑑みなされたものであ
り、その目的は遠隔制御で回路しゃ断器をON,OF
F,リセット操作するリモート操作装置などの用途に好
適な電磁式リニアアクチュエータ、および該電磁式リニ
アアクチュエータを採用した回路しゃ断器のリモート操
作装置を提供することにある。
The present invention has been made in view of the above points, and has as its object to turn on and off a circuit breaker by remote control.
F. An object of the present invention is to provide an electromagnetic linear actuator suitable for applications such as a remote operating device for performing a reset operation, and a remote operating device for a circuit breaker employing the electromagnetic linear actuator.

【0006】[0006]

【課題を解決するための手段】配線用回路しゃ断器など
では、その操作ハンドルと連繋する接点開閉機構はトグ
ルリンク機構,開閉ばね,ラッチ機構を組合せた構成に
なる。ここで、リモート操作装置を用いて回路しゃ断器
のハンドルをON,OFF,リセット位置に駆動する際
に要する操作力(=操作ハンドルの反力)は、前記した
接点開閉機構との関連からOFF操作<ON操作<リセ
ット操作の関係となり、特に回路しゃ断器がトリップ動
作した後にハンドルをトリップ位置からリセット位置に
操作して接点開閉機構のラッチをリセットさせる際に
は、ストロークの後半で大きな反力が加わるようになる
(なお、ハンドルの反力−変位特性については図7(b)
で後述する)。
In a circuit breaker for wiring or the like, a contact opening / closing mechanism linked to an operation handle has a configuration in which a toggle link mechanism, an opening / closing spring, and a latch mechanism are combined. Here, the operating force required to drive the handle of the circuit breaker to the ON / OFF and reset positions using the remote operating device (= reaction force of the operating handle) is determined by the OFF operation in relation to the contact opening / closing mechanism described above. <ON operation <Reset operation. In particular, when the circuit breaker trips and the handle is operated from the trip position to the reset position to reset the latch of the contact opening / closing mechanism, a large reaction force is generated in the latter half of the stroke. (Note that the reaction force-displacement characteristics of the handle are shown in FIG. 7 (b)
Will be described later).

【0007】そこで、本発明では、前記したリモート操
作装置に採用する電磁式リニアアクチュエータについ
て、回路しゃ断器をON,OFF,リセット操作する際
にハンドルを介してリニアアクチュエータに作用する反
力−変位特性に対応して、OFF側のストローク後半で
推力が増加する推力−変位特性を持たせるようにするも
のとし、具体的には、上記目的を達成するために、本発
明の電磁式リニアアクチュエータを次記のように構成す
るものとする。
In the present invention, a reaction force-displacement characteristic acting on a linear actuator via a handle when the circuit breaker is turned on, off, or reset, with respect to the electromagnetic linear actuator employed in the remote operation device described above. In response to the above, a thrust-displacement characteristic in which the thrust increases in the latter half of the stroke on the OFF side is provided. Specifically, in order to achieve the above object, the electromagnetic linear actuator of the present invention is It shall be configured as described.

【0008】(1)左右側面に永久磁石を付設した可動子
と、該可動子を挟んでその両側に対向配置したE字形磁
性コア,および該磁性コアの中央脚に巻装した励磁コイ
ルからなる左右一対の電磁石との組合せからなり、前記
E字形磁性コアの中央磁極と一方の外側磁極との間の距
離を、中央磁極と他方の外側磁極との間の距離よりも小
さく設定し、前記励磁コイルに流す励磁電流の方向を切
換えて可動子を二つの動作位置の間で反転動作させるよ
うに構成する(請求項1)。
(1) A mover having permanent magnets attached to the left and right sides, an E-shaped magnetic core disposed opposite to both sides of the mover, and an exciting coil wound around the center leg of the magnetic core. The distance between the central magnetic pole of the E-shaped magnetic core and one of the outer magnetic poles is set to be smaller than the distance between the central magnetic pole and the other outer magnetic pole. The direction of the exciting current flowing through the coil is switched so that the mover is reversed between the two operating positions.

【0009】(2)前項(1)において、E字形磁性コアの外
側磁極に、その終端から突き出して可動子の端面と対峙
する突起状磁極を設ける(請求項2)。 (3)左右側面に永久磁石を付設した可動子と、該可動子
を挟んでその両側に対向配置したE字形磁性コア,およ
び該磁性コアの中央脚に巻装した励磁コイルからなる左
右一対の電磁石との組合せからなり、前記励磁コイルに
流す励磁電流の方向を切換えて可動子を二つの動作位置
の間で反転動作させるようにした電磁式リニアアクチュ
エータにおいて、前記E字形磁性コアの外側磁極と該磁
極に対峙する可動子磁極の磁極面、もしくはE字形磁性
コアの外側磁極面のみを可動子の移動方向に対して傾斜
させるように構成する(請求項3)。
(2) In the above (1), the outer magnetic pole of the E-shaped magnetic core is provided with a protruding magnetic pole protruding from the end thereof and facing the end face of the mover (claim 2). (3) A pair of left and right exciters each comprising a mover provided with permanent magnets on the left and right side surfaces, an E-shaped magnetic core disposed opposite to both sides of the mover, and an exciting coil wound around the center leg of the magnetic core. An electromagnetic linear actuator comprising a combination with an electromagnet, in which the direction of an exciting current flowing through the exciting coil is switched so that the mover is reversed between two operating positions, the outer magnetic pole of the E-shaped magnetic core and Only the magnetic pole surface of the mover magnetic pole facing the magnetic pole or the outer magnetic pole surface of the E-shaped magnetic core is inclined with respect to the moving direction of the mover (claim 3).

【0010】(4)左右側面に二組の永久磁石を付設した
可動子と、該可動子を挟んでその両側に対向配置したE
字形磁性コア,および該磁性コアの中央脚に巻装した励
磁コイルからなる左右一対の電磁石との組合せからな
り、前記励磁コイルに流す励磁電流の方向を切換えて可
動子を二つの動作位置の間で反転動作させるようにした
電磁式リニアアクチュエータにおいて、前記可動子の一
方の外側磁極側に付設した永久磁石の磁極強さを、他方
の外側磁極側に付設した永久磁石よりも大に設定する
(請求項4)。
(4) A mover having two sets of permanent magnets attached to the left and right side surfaces, and an E arranged oppositely on both sides of the mover.
And a pair of left and right electromagnets comprising an exciting coil wound around a central leg of the magnetic core, and switching the direction of an exciting current flowing through the exciting coil to move the mover between two operating positions. In the electromagnetic linear actuator, the magnetic pole strength of the permanent magnet provided on one outer magnetic pole side of the mover is set to be larger than that of the permanent magnet provided on the other outer magnetic pole side ( Claim 4).

【0011】(5)前項(4)において、可動子を挟んで向か
い合う永久磁石の磁極を異極性に設定する(請求項
5)。
(5) In the above item (4), the magnetic poles of the permanent magnets facing each other across the mover are set to different polarities.

【0012】上記構成の電磁リニアアクチュエータにお
いて、電磁石の励磁コイルに流す電流の方向を切換える
と、電磁石と可動子の磁極間に働く磁気推力の向きが反
転して可動子が一方の動作位置から反対側の動作位置に
移動するように反転動作する。ここで、可動子を挟んで
その両側に電磁石を配置した構成により電磁石2基分に
相応した大きな駆動力が確保できるとともに、動作時に
は左右の電磁石と可動子との間でその移動方向と直角方
向に働く磁気吸引力が互いに相殺し合うので、これによ
り可動子を移動方向に案内支持するガイド機構に加わる
摩擦力が低減する。また、可動子の継鉄を挟んで向かい
合う永久磁石の一方をN極,他方をS極に設定すること
で、継鉄は断面積が小さくても磁気飽和することがな
く、これによりアクチュエータの小型化が図れる。
In the electromagnetic linear actuator having the above configuration, when the direction of the current flowing through the exciting coil of the electromagnet is switched, the direction of the magnetic thrust acting between the electromagnet and the magnetic pole of the mover is reversed, and the mover is moved from one operating position to the opposite position. Reverse operation to move to the side operation position. Here, a large driving force corresponding to two electromagnets can be secured by the configuration in which the electromagnets are arranged on both sides of the mover with the mover interposed therebetween, and at the time of operation, a direction perpendicular to the moving direction between the left and right electromagnets and the mover. The magnetic attraction forces acting on the movable member cancel each other, thereby reducing the frictional force applied to the guide mechanism for guiding and supporting the mover in the moving direction. Further, by setting one of the permanent magnets facing each other across the yoke of the mover to the N-pole and the other to the S-pole, the yoke does not become magnetically saturated even if the cross-sectional area is small. Can be achieved.

【0013】また、本発明による回路しゃ断器のリモー
ト操作装置は、前記の電磁式リニアアクチュエータの可
動子を回路しゃ断器の操作ハンドルに連繋させ、励磁コ
イルの通電制御によるリニアアクチュエータの反転動作
で回路しゃ断器をON,OFF,リセット位置に切換え
操作する(請求項6)ものとする。
Further, in the remote control device for a circuit breaker according to the present invention, the movable element of the electromagnetic linear actuator is connected to the operation handle of the circuit breaker, and the circuit is operated by reversing the linear actuator by controlling the energizing coil. It is assumed that the circuit breaker is switched to ON, OFF and reset positions (claim 6).

【0014】かかる構成で、電磁式リニアアクチュエー
タに外部から回路しゃ断器のON,OFF,リセット指
令を与えると、その信号に対応してリニアアクチュエー
タの可動子が移動動作し、回路しゃ断器の操作ハンドル
をON,OFF,リセット位置に切換える。また、この
リモート操作装置はギヤードモータとねじ式,ラック・
ピニオン式伝動機構を組み合わせた従来装置に比べて部
品点数も少なく、かつ構造も単純で安価に製作できる。
しかも、回転を直線運動に変換する歯車機構などを用い
ないので、停電中でもリモート操作装置を回路しゃ断器
に組付けたまま、手動で回路しゃ断器のハンドルをOF
F位置に切換え操作できる。
In this configuration, when an ON / OFF / reset command of the circuit breaker is externally given to the electromagnetic linear actuator, the mover of the linear actuator moves in response to the command, and the operation handle of the circuit breaker is operated. To ON, OFF, and reset positions. In addition, this remote operation device is geared motor and screw type, rack and
The number of parts is smaller, the structure is simpler, and the device can be manufactured at low cost as compared with a conventional device in which a pinion type transmission mechanism is combined.
In addition, since a gear mechanism that converts rotation to linear motion is not used, the handle of the circuit breaker must be manually turned OFF while the remote operation device is still attached to the circuit breaker during a power failure.
The operation can be switched to the F position.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図示
の実施例に基づいて説明する。 〔実施例1〕まず、本発明の電磁式リニアアクチュエー
タの構成を図1に示す。この実施例では、電磁式リニア
アクチュエータ1が、可動子2と、その左右側面に取付
けた永久磁石3と、可動子2を挟んでその左右両側の対
称位置に配した左右一対の電磁石とから構成されてい
る。ここで、電磁石はE字形磁性コア4,5と各磁性コ
ア4,5の中央脚4a,5aにボビン6aを介して巻装
した励磁コイル6とからなる。また、永久磁石3はその
長手方向に着磁されたものであり、図示例では左側の永
久磁石と右側の永久磁石とで磁極の極性(N,S極)を
逆極性に設定し、かつ可動子2に付設した永久磁石3の
N−S磁極間の距離(可動子2の全長)をA、電磁石の
E字形磁性コア4,5における中央磁極(中央脚4a,
5a)と外側の磁極(外脚4b,4c,および反対側の
外脚5b,5c)との間の距離をBとして、B<Aとな
るように設定されている。なお、図示してないが、可動
子2はガイド棒,レールなどのガイド機構を介して動作
方向(図示の上下方向)へスライド可能に案内支持され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the illustrated embodiments. Embodiment 1 First, the configuration of an electromagnetic linear actuator according to the present invention is shown in FIG. In this embodiment, an electromagnetic linear actuator 1 comprises a mover 2, a permanent magnet 3 attached to the left and right side surfaces thereof, and a pair of left and right electromagnets arranged at symmetrical positions on both left and right sides of the mover 2 therebetween. Have been. Here, the electromagnet includes E-shaped magnetic cores 4 and 5, and an exciting coil 6 wound around central legs 4a and 5a of the magnetic cores 4 and 5 via a bobbin 6a. The permanent magnet 3 is magnetized in the longitudinal direction. In the illustrated example, the polarity of the magnetic pole (N, S pole) is set to the opposite polarity between the left permanent magnet and the right permanent magnet, and the permanent magnet 3 is movable. The distance between the NS poles of the permanent magnet 3 attached to the armature 2 (total length of the mover 2) is A, and the center magnetic poles (center legs 4a,
B <A where B is the distance between the outer magnetic poles (outer legs 4b and 4c and the outer legs 5b and 5c on the opposite side). Although not shown, the mover 2 is guided and supported so as to be slidable in the operation direction (up and down direction in the figure) through a guide mechanism such as a guide rod and a rail.

【0016】かかる構成において、可動子2が図示の実
線位置にあって励磁コイル6が非励磁の状態では、永久
磁石3とE字形磁性コア4,5との間に働く磁気力によ
り可動子2はこの位置に吸引保持されている。この状態
から励磁コイル6に直流電流を流すと、E字形磁性コア
4,5の中央脚4a,5a,および外脚4b,4cおよ
び5b,5cの磁極面には励磁コイル6の電流方向に対
応した起磁力によってN,S極が現れ、永久磁石3の
N,S極との間で磁気反発力,吸引力が作用するように
なる。
In this configuration, when the mover 2 is at the position indicated by the solid line in the drawing and the exciting coil 6 is not excited, the mover 2 is moved by the magnetic force acting between the permanent magnet 3 and the E-shaped magnetic cores 4 and 5. Is held at this position by suction. When a DC current is applied to the exciting coil 6 from this state, the magnetic pole surfaces of the center legs 4a, 5a and the outer legs 4b, 4c and 5b, 5c of the E-shaped magnetic cores 4, 5 correspond to the current direction of the exciting coil 6. The N and S poles appear due to the generated magnetomotive force, and a magnetic repulsive force and an attractive force act on the N and S poles of the permanent magnet 3.

【0017】ここで、左側の磁性コア4はその中央極4
aがN極,外脚4b,4cがS極となるように、また右
側の磁性コア5はその中央極5aがS極、外脚5b,5
cがN極となるように各磁性コア4,5に巻装した励磁
コイル6の電流方向を制御すると、永久磁石3との間に
働く磁気反発力,吸引力により可動子2が図示実線の動
作位置から上方に駆動されて鎖線で示す動作位置に移動
する。また、この状態から励磁コイル6に流す電流の向
きを切換えて磁極の極性を反転させると、可動子2は鎖
線位置から元の実線位置に戻るように反転動作する。つ
まり、励磁コイル6に流す電流の向きが反転するたび
に、可動子2が反転動作して一方の動作位置から他方の
動作位置に移動する。
Here, the left magnetic core 4 has a central pole 4
The right magnetic core 5 has a central pole 5a having an S pole and outer legs 5b and 5a so that a has an N pole and outer legs 4b and 4c have S poles.
When the current direction of the exciting coil 6 wound around each of the magnetic cores 4 and 5 is controlled so that c becomes the N pole, the movable element 2 is moved by the magnetic repulsive force and the attractive force acting between the exciting coil 6 and the permanent magnet 3 as indicated by the solid line in FIG. It is driven upward from the operating position and moves to the operating position indicated by the chain line. When the polarity of the magnetic pole is reversed by switching the direction of the current flowing through the exciting coil 6 from this state, the mover 2 performs a reversing operation so as to return to the original solid line position from the chain line position. That is, each time the direction of the current flowing through the exciting coil 6 is reversed, the mover 2 performs a reversing operation and moves from one operation position to the other operation position.

【0018】この場合に、図示構成のように可動子2を
挟んで電磁石の磁気コア4,5を左右対称位置に対向さ
せたことにより、励磁コイル6の通電により可動子2に
働く駆動力は個々の磁性コアとの間に作用する磁気推力
の2倍となる。しかも、磁気コア4,5と可動子2の永
久磁石3との間に働く可動子移動方向と直角方向の磁力
は互いに打ち消し合って相殺されるので、これにより可
動子2はガイド棒,ガイドレールなどの案内機構との間
に大きな摩擦抵抗を受けずにスムーズに移動させること
ができる。
In this case, since the magnetic cores 4 and 5 of the electromagnets are opposed to the left-right symmetric position with the mover 2 interposed therebetween as shown in the drawing, the driving force acting on the mover 2 by energizing the exciting coil 6 is This is twice the magnetic thrust acting between each magnetic core. In addition, the magnetic forces acting between the magnetic cores 4 and 5 and the permanent magnet 3 of the mover 2 in the direction perpendicular to the moving direction of the mover cancel each other and cancel each other out. It can be moved smoothly without receiving a large frictional resistance between the guide mechanism and the like.

【0019】〔実施例2〕図2は本発明の応用実施例を
示すものである。この実施例においては、可動子2が継
鉄(磁性体)2aに対して、その左右側面に図示のよう
にN,S極を厚さ方向に着磁した2枚の永久磁石3a,
3bが上下端に振り分けて互いに逆極性となるように取
付けてある。また、可動子2の両側に配した電磁石のE
字形磁性コア4,5および励磁コイル6は図1と同様な
構成になる。なお、この実施例では可動子2の上端側で
は永久磁石3aのN極が、下端側では永久磁石3bのS
極が磁性コア4,5にそれぞれ対向しており、この極性
に合わせて操作時には磁性コア4,5の励磁コイル6に
流す電流の向きを制御するようにしている。
[Embodiment 2] FIG. 2 shows an application embodiment of the present invention. In this embodiment, the mover 2 is provided with two permanent magnets 3a, 3a, 3b, 4c and 4c, which are magnetized on the left and right sides of the yoke (magnetic body) 2a in the thickness direction as shown in FIG.
3b are attached to the upper and lower ends so that they have opposite polarities. In addition, E of the electromagnet arranged on both sides of the mover 2
The U-shaped magnetic cores 4 and 5 and the exciting coil 6 have the same configuration as in FIG. In this embodiment, the N pole of the permanent magnet 3a is located at the upper end of the mover 2 and the S pole of the permanent magnet 3b is located at the lower end.
The poles are opposed to the magnetic cores 4 and 5, respectively, and the direction of the current flowing through the excitation coil 6 of the magnetic cores 4 and 5 during operation is controlled in accordance with the polarity.

【0020】この構成では、可動子2の継鉄2aが永久
磁石3aと3bに跨がる磁路を形成しており、磁性コア
4,5の励磁コイル6に流す電流の向きを切り換えるこ
とにより、可動子2との間に働く磁気推力の向きが反転
して可動子2が一方から他方の動作位置に移動する。な
お、図3はこの実施例で励磁コイル6を励磁した状態で
の磁力線分布を表している。
In this configuration, the yoke 2a of the mover 2 forms a magnetic path extending over the permanent magnets 3a and 3b, and the direction of the current flowing through the exciting coil 6 of the magnetic cores 4 and 5 is switched. The direction of the magnetic thrust acting between the movable element 2 and the movable element 2 is reversed, and the movable element 2 moves from one operation position to the other operation position. FIG. 3 shows a magnetic field line distribution when the exciting coil 6 is excited in this embodiment.

【0021】〔実施例3〕次に、前記実施例2を改良し
た本発明の他の実施例を図4に示す。この実施例は、先
記実施例2と比べて可動子2の左右側面に付設した永久
磁石3a,3bの極性が次のように設定されている。す
なわち、可動子継鉄2aの右側に付設した上下の永久磁
石3a,3bは図2と同じ極性であるが、左側に付設し
た永久磁石は右側の永久磁石と逆極性となるように設定
されており、継鉄2aを挟んで左右の永久磁石のN極と
S極が対面している。
[Embodiment 3] FIG. 4 shows another embodiment of the present invention which is an improvement of the embodiment 2 described above. In this embodiment, the polarities of the permanent magnets 3a and 3b attached to the left and right side surfaces of the mover 2 are set as follows, as compared with the second embodiment. That is, the upper and lower permanent magnets 3a and 3b provided on the right side of the mover yoke 2a have the same polarity as in FIG. 2, but the permanent magnets provided on the left side are set to have the opposite polarity to the right side permanent magnet. The north pole and the south pole of the left and right permanent magnets face each other with the yoke 2a therebetween.

【0022】この構成によれば、継鉄2aを磁路として
その左側の上下に配した永久磁石の間の磁束と、右側の
上下に配した永久磁石の間の磁束とは逆向きで相殺し合
うため、継鉄2aの断面積を縮小しても磁気飽和の影響
を受けることがなく、アクチュエータを小型化するのに
有利となる。 〔実施例4〕図5は本発明の電磁式リニアアクチュエー
タの他の実施例を示すものである。この実施例において
は、可動子2の継鉄2aを断面I字形としてその上下端
を磁極部2cとし、継鉄2aの中央部分には永久磁石に
代えて励磁コイル7を巻装した構成になり、この可動子
2を挟んでその左右両側には先記の各実施例と同様にE
字形磁性コア4,5の中央脚4a,5aに励磁コイル6
を巻装した電磁石を配置してリニアアクチュエータを構
成している。
According to this configuration, the magnetic flux between the permanent magnets arranged vertically on the left side of the yoke 2a as a magnetic path and the magnetic flux between the permanent magnets arranged vertically on the right side cancel each other in opposite directions. Therefore, even if the cross-sectional area of the yoke 2a is reduced, it is not affected by magnetic saturation, which is advantageous for miniaturizing the actuator. [Embodiment 4] FIG. 5 shows another embodiment of the electromagnetic linear actuator of the present invention. In this embodiment, the yoke 2a of the mover 2 has an I-shaped cross section, and the upper and lower ends thereof are magnetic pole portions 2c. The excitation coil 7 is wound around the center of the yoke 2a instead of a permanent magnet. On the left and right sides of the mover 2 as in the above-described embodiments, E
The excitation coils 6 are attached to the central legs 4a and 5a of the V-shaped magnetic cores 4 and 5, respectively.
The linear actuator is configured by arranging electromagnets wound with.

【0023】かかる構成で可動子2の励磁コイル7に電
流を流すと、その電流の向きに応じて可動子2の上下磁
極2bにN,S極が現れ、電磁石の磁性コア4,5との
間で電磁吸引力,反発力が作用する。これにより前記実
施例1,2と同様に可動子2に上方,あるいは下方の電
磁推力が作用して可動子2が二つの動作位置間で移動動
作する。
When a current flows through the exciting coil 7 of the mover 2 in such a configuration, N and S poles appear at the upper and lower magnetic poles 2b of the mover 2 according to the direction of the current, and the magnetic poles 4 and 5 of the electromagnet communicate with each other. Electromagnetic attraction and repulsion act between them. As a result, the upper or lower electromagnetic thrust acts on the mover 2 as in the first and second embodiments, and the mover 2 moves between the two operating positions.

【0024】なお、この実施例では、励磁コイル6およ
び7の通電を絶つとコイル起磁力が零となって可動子2
はコイルによる磁力の影響を受けない状態となる。した
がって、後記のように当該リニアアクチュエータを回路
しゃ断器のリモート操作装置に適用すれば、停電でリモ
ート操作装置が動作しない状況下でも、磁気的な拘束力
は小さいため回路しゃ断器のハンドルを手動操作で楽に
切り換えることができる。
In this embodiment, when energization of the exciting coils 6 and 7 is stopped, the coil magnetomotive force becomes zero and the movable element 2
Are not affected by the magnetic force of the coil. Therefore, if the linear actuator is applied to the remote operation device of the circuit breaker as described later, even if the remote operation device does not operate due to a power failure, the magnetic binding force is small and the handle of the circuit breaker is manually operated. Can be switched easily.

【0025】〔実施例5〕次に、前記した電磁式リニア
アクチュエータを採用して構成した本発明の回路しゃ断
器のリモート操作装置,およびその遠隔操作制御回路の
原理的な構成を図6(a),(b)に示す。図6(a)において、
8は回路しゃ断器、9は回路しゃ断器のリモート操作装
置である。該リモート操作装置9は、電磁式リニアアク
チュエータ1、および該リニアアクチュエータの永久磁
石付き可動子2に結合した凹形のアタッチメント10と
の組立体からなり、しゃ断器ケースに装着した状態でア
タッチメント10を回路しゃ断器8のハンドル8aの頭
に係合させている。なお、リニアアクチュエータ1の可
動子2はガイド棒1aでスライド可能に案内支持されて
いる。また、リモート操作装置9におけるアクチュエー
タの励磁コイル6には、直流電源11と切換スイッチ1
2を組合せたリモート制御回路13が配線14を介して
接続されている。なお、図6(b)は操作ハンドル8aの
ON,OFF,トリップ,リセットの各位置を表した図
である。
[Embodiment 5] Next, FIG. 6 (a) shows the principle of the remote control device for a circuit breaker of the present invention, which is constructed by employing the above-mentioned electromagnetic linear actuator, and the remote control circuit thereof. ) and (b). In FIG. 6 (a),
8 is a circuit breaker, and 9 is a remote operation device of the circuit breaker. The remote operation device 9 is composed of an assembly of an electromagnetic linear actuator 1 and a concave attachment 10 coupled to a mover 2 with a permanent magnet of the linear actuator. The attachment 10 is mounted on a circuit breaker case. It is engaged with the head of the handle 8a of the circuit breaker 8. The mover 2 of the linear actuator 1 is slidably guided and supported by a guide rod 1a. The excitation coil 6 of the actuator in the remote operation device 9 includes a DC power supply 11 and a changeover switch 1.
2 are connected via a wiring 14. FIG. 6B is a diagram showing ON, OFF, trip, and reset positions of the operation handle 8a.

【0026】かかる構成において、リモート制御回路1
3側で切換スイッチ12を介して回路しゃ断器8のリモ
ート操作装置9に操作指令を与えると、リモート操作装
置9に組み込んだリニアアクチュエータ1の励磁コイル
6が励磁され、その励磁電流の向きに対応して可動子2
が反対側の動作位置に駆動されるとともに、この可動子
2の動きに操作ハンドル8aが従動して回路しゃ断器8
がON,OFF,リセット操作される。
In such a configuration, the remote control circuit 1
When an operation command is given to the remote operation device 9 of the circuit breaker 8 via the changeover switch 12 on the side 3, the excitation coil 6 of the linear actuator 1 incorporated in the remote operation device 9 is excited and corresponds to the direction of the excitation current. And mover 2
Is driven to the opposite operation position, and the operation handle 8a follows the movement of the mover 2 so that the circuit breaker 8
Are turned ON, OFF and reset.

【0027】次に、リモート操作装置9のリニアアクチ
ュエータに図2の電磁式リニアアクチュエータを採用
し、このリモート操作装置9を使って回路しゃ断器8を
ON,OFF,リセット操作する場合を例に、そのON
側,OFF側の操作行程でリニアアクチュエータに発生
する電磁推力を図7(a)の推力−変位特性で表し、また
図7(b) には回路しゃ断器8をON,OFF,リセット
する際にハンドルに加わる反力−変位特性を表す。各図
において、横軸は電磁式リニアアクチュエータにおける
電磁石のE字形磁性コアの中心を基点とした可動子の移
動(ON,OFF方向)の相対位置(distance)を、縦
軸には力 (force)と方向(ON側:+,OFF側:−)
を表している。なお、この推力−変位特性,および反力
−変位特性は発明者等がシミュレーション手法で求めた
ものである。
Next, an example in which the electromagnetic linear actuator shown in FIG. 2 is employed as the linear actuator of the remote operation device 9 and the circuit breaker 8 is turned on, off and reset using the remote operation device 9 will be described. Its ON
The electromagnetic thrust generated in the linear actuator in the operation strokes on the side and the OFF side is represented by the thrust-displacement characteristic in FIG. 7 (a). In FIG. 7 (b), when the circuit breaker 8 is turned on, off and reset, It shows the reaction force-displacement characteristics applied to the handle. In each figure, the horizontal axis represents the relative position (distance) of the mover (ON, OFF direction) with respect to the center of the E-shaped magnetic core of the electromagnet in the electromagnetic linear actuator, and the vertical axis represents the force (force). And direction (ON side: +, OFF side:-)
Is represented. The thrust-displacement characteristics and the reaction force-displacement characteristics were obtained by the inventors by a simulation method.

【0028】ここで、図7(a)の特性線Aは電磁石を励
磁して可動子をON方向に駆動する際に発生する推力
を、特性線Bは電磁石を逆方向に励磁して可動子をOF
F,リセット方向に駆動する際に発生する推力を、特性
線Cは電磁石が非励磁状態での永久磁石の磁力による推
力を表しており、電磁石を励磁した場合の推力はON,
OFF方向とも相対位置0,つまり可動子が電磁石の磁
性コアの中心に相対位置している場合に最大となってい
る。
Here, the characteristic line A in FIG. 7A indicates the thrust generated when the electromagnet is excited to drive the mover in the ON direction, and the characteristic line B indicates the thrust generated when the electromagnet is excited in the reverse direction. OF
F, the thrust generated when driving in the reset direction, and the characteristic line C represents the thrust due to the magnetic force of the permanent magnet when the electromagnet is not excited. The thrust when the electromagnet is excited is ON,
The relative position is zero in the OFF direction, that is, when the mover is relatively positioned at the center of the magnetic core of the electromagnet, it is maximum.

【0029】一方、図7(b)において、特性線Dは回路
しゃ断器のハンドルをON操作する際にハンドルを介し
てリモート操作装置の電磁式リニアアクチュエータに加
わる反力を、特性線EはOFF操作する際の反力を、ま
た特性線Fは回路しゃ断器がトリップ動作した後にハン
ドルをトリップ位置からリセット位置に向けてOFF側
に移動する際に加わる反力を表している。この特性図か
ら判るように、回路しゃ断器をON,OFF,リセット
操作する際に加わる反力の大きさは、OFF操作<ON
操作<リセット操作の関係にある。また、ON操作,O
FF操作時の反力は相対位置のほぼ中央に集中している
のに対し、リセット操作時の反力は中央から外れたOF
F操作ストロークの後半に集中している。これは、ハン
ドルをトリップ位置からリセット位置に移動して接点開
閉機構のラッチをラッチ受けに係合させる際に、ばね力
がOFF位置を過ぎるあたりから反力として加わるため
である。
On the other hand, in FIG. 7B, a characteristic line D represents a reaction force applied to the electromagnetic linear actuator of the remote operation device via the handle when the handle of the circuit breaker is turned ON, and a characteristic line E is OFF. The reaction force at the time of the operation, and the characteristic line F represents the reaction force applied when the handle is moved from the trip position to the reset position after the circuit breaker trips to the OFF position. As can be seen from this characteristic diagram, the magnitude of the reaction force applied when the circuit breaker is turned ON, OFF, and reset is OFF operation <ON
Operation <reset operation. Also, ON operation, O
The reaction force at the time of the FF operation is concentrated almost at the center of the relative position, whereas the reaction force at the time of the reset operation is off-center from the center.
It is concentrated in the latter half of the F operation stroke. This is because when the handle is moved from the trip position to the reset position and the latch of the contact opening / closing mechanism is engaged with the latch receiver, a spring force is applied as a reaction force after passing the OFF position.

【0030】上記した反力−変位特性は回路しゃ断器に
特有なものであり、このような負荷条件の下でリモート
操作装置を使って回路しゃ断器のハンドルをON,OF
F,リセット位置に操作するには、この反力−変位特性
を上回るリモート操作装置の推力(機械的な出力)が必
要となる。ところで、図7(a)で表した推力−変位特性
と図7(b)の反力−変位特性を比べた場合に、推力はO
N,OFF操作行程のいずれでもピークが相対位置0付
近にあるのに対して、反力はOFF操作行程での後半に
ピークがあり、推力−変位特性と反力−変位特性との間
の整合性が低い。したがって、このままでリセット操作
の反力を上回る大きな推力をリモート操作装置で発生さ
せるには、電磁式リニアアクチュエータの電磁石に大き
な電流を供給してその起磁力を高める必要がある。しか
しながら、アクチュエータの電磁石に大きな電流を流す
にはその電流容量が増して鉄心,コイルの大形化を招く
ほか、図7(b)のON,OFF位置への操作に対応する
反力(特性線D,E)に対してはアクチュエータの推力
(特性線A,B)が過剰となって電力の利用効率が低下
する。
The above-described reaction force-displacement characteristic is peculiar to a circuit breaker. Under such a load condition, the handle of the circuit breaker is turned ON and OFF using a remote operation device.
F, to operate the reset position, a thrust (mechanical output) of the remote operation device that exceeds this reaction force-displacement characteristic is required. By the way, comparing the thrust-displacement characteristic shown in FIG. 7 (a) with the reaction force-displacement characteristic shown in FIG. 7 (b), the thrust is O
In both the N and OFF operation strokes, the peak is near the relative position 0, whereas the reaction force has a peak in the latter half of the OFF operation stroke, and the matching between the thrust-displacement characteristic and the reaction force-displacement characteristic. Poor. Therefore, in order to generate a large thrust exceeding the reaction force of the reset operation with the remote operation device as it is, it is necessary to supply a large current to the electromagnet of the electromagnetic linear actuator to increase its magnetomotive force. However, when a large current is applied to the electromagnet of the actuator, the current capacity increases and the size of the iron core and the coil increases, and the reaction force corresponding to the operation to the ON / OFF position shown in FIG. D, E), the thrust of the actuator (characteristic lines A, B) becomes excessive, and the power use efficiency decreases.

【0031】かかる点、次に述べる本発明の実施例によ
れば、図6のリモート操作装置9に採用する電磁式リニ
アアクチュエータ1について、その推力−変位特性と反
力−変位特性との整合化を図り、OFF側に操作するス
トローク後半で推力を増加させることができ、これによ
り先記のように電流容量の大きな電磁石を使わずに、小
型,小容量の電磁式リニアアクチュエータでも回路しゃ
断器のON,OFF,リセット操作に十分対応させるこ
とができる。
In this regard, according to the embodiment of the present invention described below, the thrust-displacement characteristic and the reaction force-displacement characteristic of the electromagnetic linear actuator 1 employed in the remote operation device 9 shown in FIG. And the thrust can be increased in the latter half of the stroke when the switch is operated to the OFF side. As a result, a small, small-capacity electromagnetic linear actuator can be used without using an electromagnet with a large current capacity as described above. ON, OFF, and reset operations can be sufficiently supported.

【0032】〔実施例6〕図8(a),(b)は本発明の電磁
式リニアアクチュエータの他の実施例を示すものであ
る。この実施例においては、その基本構成は図2,ある
いは図3に示したものと同様であるが、電磁石のE字形
磁性コア4,5に関しては、その中央脚4a,5aと一
方の外側脚4b,5bとの間の間隔d1に対して、他方
の外側脚4c,5cとの間の間隔d2 が小(d1>d2)
に設定されている。なお、図示は可動子2が磁性コア
4,5の中心に相対位置した状態を表しており、図6と
の対応で回路しゃ断器のON操作時には可動子2を左側
に駆動し、OFF操作,リセット操作時には可動子2を
右側に駆動するものとする。また、これに合わせて磁性
コア4,5の中央脚4a,5aを中央磁極、左側脚4
b,5bをON側磁極、右側脚4c,5cをOFF側磁
極と定義する。
Embodiment 6 FIGS. 8A and 8B show another embodiment of the electromagnetic linear actuator of the present invention. In this embodiment, the basic structure is the same as that shown in FIG. 2 or FIG. 3, but with respect to the E-shaped magnetic cores 4 and 5 of the electromagnet, central legs 4a and 5a and one outer leg 4b are provided. , 5b is smaller than the distance d1 between the other outer legs 4c, 5c (d1> d2).
Is set to The drawing shows a state in which the mover 2 is relatively positioned at the center of the magnetic cores 4 and 5. When the circuit breaker is turned ON, the mover 2 is driven to the left, and the OFF operation is performed in correspondence with FIG. It is assumed that the mover 2 is driven rightward during the reset operation. In accordance with this, the center legs 4a, 5a of the magnetic cores 4, 5 are connected to the center pole and the left leg 4a.
b and 5b are defined as ON-side magnetic poles, and the right legs 4c and 5c are defined as OFF-side magnetic poles.

【0033】かかる構成により、磁性コア4,5の各磁
極と可動子2に付設した永久磁石3a,3bとの相対位
置の関係から、図8(b)の特性図で表すように電磁石励
磁コイル6の非励磁状態での永久磁石3a,3bによる
推力−変位特性は特性線Cで表すように推力の反転する
位置が中心位置0よりOFF側に変位している。これに
より、永久磁石による推力がバイアス推力として作用
し、励磁コイル6を励磁した状態での推力−変位特性線
A,Bは、先に述べた図7(b)の特性線のパターンと比
べて推力のピークが左右に移るようになる。特に、OF
F側に操作する行程では、その特性線Bのピークが中心
位置よりもストロークの後半側に移行しており、これに
よりストローク全域でも推力が回路しゃ断器をOFFお
よびリセット操作する際に加わるハンドルの反力特性線
E,Fを上回るようになる。
With such a configuration, based on the relationship between the relative positions of the magnetic poles of the magnetic cores 4 and 5 and the permanent magnets 3a and 3b attached to the mover 2, as shown in the characteristic diagram of FIG. In the thrust-displacement characteristic of the permanent magnets 3a and 3b in the non-excited state of No. 6, the position where the thrust reverses is displaced from the center position 0 to the OFF side as indicated by the characteristic line C. As a result, the thrust by the permanent magnet acts as a bias thrust, and the thrust-displacement characteristic lines A and B in a state where the excitation coil 6 is excited are compared with the characteristic line pattern of FIG. The thrust peak shifts right and left. In particular, OF
In the stroke to be operated on the F side, the peak of the characteristic line B shifts to the latter half of the stroke from the center position, so that the thrust is applied to the OFF and reset operations of the circuit breaker even in the entire stroke. It exceeds the reaction force characteristic lines E and F.

【0034】したがって、リモート操作装置に組み込ん
だ電磁式リニアアクチュエータとして、その電磁石の励
磁コイル6に供給する電流を必要以上に大きくすること
なしに、回路しゃ断器を確実にON,OFF,リセット
操作でき、これによりリモート操作装置の小型化,およ
び消費電力の軽減化が図れる。 〔実施例7〕図9(a),(b)は本発明の他の実施例を示す
ものである。この実施例においては、図9(a)で示すよ
うにリモート操作装置として必要な可動子2の移動スト
ロークを確保した上で、電磁石のE字形磁性コア4,5
において、OFF側磁極に対応する右側脚4c,5cに
はその終端から可動子2の移動側に突き出して可動子の
端面と対峙するように突起4d,5dが形成されてい
る。
Therefore, as an electromagnetic linear actuator incorporated in the remote control device, the circuit breaker can be reliably turned ON, OFF and reset without increasing the current supplied to the exciting coil 6 of the electromagnet more than necessary. Thus, the size of the remote control device and the power consumption can be reduced. Embodiment 7 FIGS. 9 (a) and 9 (b) show another embodiment of the present invention. In this embodiment, as shown in FIG. 9 (a), the moving stroke of the mover 2 required as a remote operation device is secured, and then the E-shaped magnetic cores 4, 5
In the right leg 4c, 5c corresponding to the OFF-side magnetic pole, projections 4d, 5d are formed so as to protrude from the end thereof toward the moving side of the mover 2 and face the end face of the mover.

【0035】これにより、可動子2をOFF側に駆動す
るストローク行程で、可動子2の先端が前記突起4d,
5dに近づくと突起との間に磁気吸引力が働き、図9
(b)の特性線Bで表すようにOFF操作行程でのストロ
ーク後半で推力が大きくなり、特性線Fで表すリセット
操作の反力を上回るようになる。 〔実施例8〕図10(a),(b)は本発明の他の実施例を示
すものである。この実施例においては、図10(a)で示
すように可動子2の継鉄2aには、右側端に先細りとな
る角度θのテーパー部2cを形成してここに永久磁石3
aが取付けてある。また、前記テーパー部2cに対向し
て磁性コア4,5のOFF側脚4c,5cには内側に角
度θのテーパー状磁極面4e,5eが形成されている。
Thus, during the stroke of driving the mover 2 to the OFF side, the tip of the mover 2 is
When the distance approaches 5d, magnetic attraction acts between the protrusion and the protrusion, and FIG.
As shown by the characteristic line B in (b), the thrust increases in the latter half of the stroke in the OFF operation stroke, and exceeds the reaction force of the reset operation represented by the characteristic line F. [Embodiment 8] FIGS. 10A and 10B show another embodiment of the present invention. In this embodiment, as shown in FIG. 10 (a), the yoke 2a of the mover 2 is formed with a tapered portion 2c having a taper angle .theta.
a is attached. Further, the OFF-side legs 4c, 5c of the magnetic cores 4, 5 are formed with tapered magnetic pole surfaces 4e, 5e having an angle θ inside the magnetic cores 4, 5 so as to face the tapered portion 2c.

【0036】これにより、可動子2をOFF側に駆動す
るストローク行程で、可動子2の永久磁石3aと磁性コ
ア4,5のテーパー状磁極面4e,5eとの間に作用す
る磁吸引力のうち、可動子移動方向と平行なベクトル成
分が大きくなってその分だけ有効推力が増大する。この
結果、図10(b)の特性線Bで表すようにOFF操作行
程でのストロークの後半で推力が大きくなり、特性線F
で表すリセット操作の反力を上回るようになる。
Thus, during the stroke of driving the mover 2 to the OFF side, the magnetic attraction force acting between the permanent magnet 3a of the mover 2 and the tapered magnetic pole surfaces 4e, 5e of the magnetic cores 4, 5 is reduced. Of these, the vector component parallel to the moving direction of the mover increases, and the effective thrust increases accordingly. As a result, the thrust increases in the latter half of the stroke in the OFF operation stroke as indicated by the characteristic line B in FIG.
It exceeds the reaction force of the reset operation represented by.

【0037】〔実施例9〕図11は前記実施例8の応用
実施例を示すものであり、この実施例では磁性コア4,
5のOFF側脚4c,5cにのみ内側に角度θのテーパ
ー状磁極面4e,5eが形成され、可動子2側にはテー
パー部が形成されてない。この実施例でも、可動子2を
OFF側に駆動するストローク行程で、可動子2の永久
磁石3aと磁性コア4,5のテーパー状磁極面4e,5
eとの間に作用する磁吸引力の可動子移動方向と平行な
ベクトル成分が大きくなって有効推力が増大し、実施例
8と同様な効果を奏する。 〔実施例10〕図12は本発明の他の実施例を示すもの
である。この実施例においては、可動子2の左右両端に
付設した2組の永久磁石3a,3bについて、OFF側
の永久磁石3aの長さをL1,ON側の永久磁石3bの長
さをL2 としてL1 >L2 に設定し、OFF側に付設し
た永久磁石3aの磁極強さを、ON側に付設した永久磁
石3bよりも大にしている。この構成により、可動子2
をOFF側に駆動する行程で発生する推力がストローク
の後半で増加し、先記の各実施例と同等な効果を奏する
ことが確認されている。
Ninth Embodiment FIG. 11 shows an application of the eighth embodiment. In this embodiment, the magnetic cores 4 and 9 are used.
The tapered magnetic pole surfaces 4e, 5e having an angle θ are formed only inside the OFF-side legs 4c, 5c of No. 5 and no taper portion is formed on the mover 2 side. Also in this embodiment, the permanent magnet 3a of the mover 2 and the tapered magnetic pole surfaces 4e, 5e of the magnetic cores 4, 5 are used in the stroke process of driving the mover 2 to the OFF side.
e, the vector component of the magnetic attractive force acting in parallel with the moving direction of the mover increases, and the effective thrust increases, and the same effect as in the eighth embodiment can be obtained. Embodiment 10 FIG. 12 shows another embodiment of the present invention. In this embodiment, with respect to the two permanent magnets 3a and 3b attached to the left and right ends of the mover 2, the length of the OFF-side permanent magnet 3a is L1 and the length of the ON-side permanent magnet 3b is L2. > L2, and the magnetic pole strength of the permanent magnet 3a attached to the OFF side is larger than that of the permanent magnet 3b attached to the ON side. With this configuration, the mover 2
It is confirmed that the thrust generated in the stroke of driving the motor to the OFF side increases in the latter half of the stroke, and the same effect as in the above-described embodiments is obtained.

【0038】なお、前記した実施例6〜10は単独で用
いても回路しゃ断器のリモート操作装置としての操作機
能に効果を発揮するが、特に図8に示した実施例6の構
成に図9〜図12に示した構成のいずれかを併用するこ
とにより、より一層の機能向上が期待できる。
Although the above-described Embodiments 6 to 10 can be used alone to exert an effect on the operation function of the circuit breaker as a remote operation device, the configuration of Embodiment 6 shown in FIG. 12 can be expected to further improve the function.

【0039】[0039]

【発明の効果】以上述べたように、本発明の電磁式リニ
アアクチュエータでは、永久磁石を付設した可動子を挟
んで、その左右両側に固定子として励磁コイルを巻装し
た一対のE字形磁性コアを対称に配置して構成したこと
により、磁性コアとの間で可動子の移動方向と直角方向
に作用する磁力を互いに打ち消し合いつつ、移動方向に
は大きな磁気推力で可動子を駆動することができるとと
もに、回路しゃ断器に特有な反力−変位特性とリニアア
クチュエータの推力−変位特性とを整合性を高めてリモ
ート操作装置の小型化,消費電力の低減化が図れる。
As described above, according to the electromagnetic linear actuator of the present invention, a pair of E-shaped magnetic cores are provided with an exciting coil wound as a stator on both left and right sides of a movable element provided with a permanent magnet. Are arranged symmetrically so that the magnetic force acting in the direction perpendicular to the moving direction of the mover between the magnetic core and each other can be canceled out, and the mover can be driven with a large magnetic thrust in the moving direction. In addition, it is possible to improve the consistency between the reaction force-displacement characteristic peculiar to the circuit breaker and the thrust-displacement characteristic of the linear actuator, so that the remote control device can be downsized and the power consumption can be reduced.

【0040】また、当該リニアアクチュエータを採用し
て構成した回路しゃ断器リモート操作装置によれば、ギ
ヤードモータ,送りねじ機構などで構成した従来装置と
比べて部品点数も少なく,かつ構造も単純で安価に製作
でき、また停電などで回路しゃ断器を手動で切換え操作
する必要がある場合でも、リモート操作装置を組付けた
まま手動で回路しゃ断器のハンドルを操作することがで
きる。
Further, according to the circuit breaker remote operation device constituted by employing the linear actuator, the number of parts is smaller than that of the conventional device constituted by a geared motor, a feed screw mechanism and the like, and the structure is simple and inexpensive. Even if it is necessary to manually switch the circuit breaker due to a power failure or the like, the handle of the circuit breaker can be manually operated with the remote operation device attached.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る電磁式リニアアクチュ
エータの構成斜視図
FIG. 1 is a configuration perspective view of an electromagnetic linear actuator according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る電磁式リニアアクチュ
エータの構成斜視図
FIG. 2 is a configuration perspective view of an electromagnetic linear actuator according to a second embodiment of the present invention.

【図3】図2の構成による電磁石の励磁状態の磁力線分
布図
FIG. 3 is a magnetic force line distribution diagram in an excited state of the electromagnet according to the configuration of FIG. 2;

【図4】本発明の実施例3に係る電磁式リニアアクチュ
エータの構成斜視図
FIG. 4 is a configuration perspective view of an electromagnetic linear actuator according to a third embodiment of the present invention.

【図5】本発明の実施例4に係る電磁式リニアアクチュ
エータの構成斜視図
FIG. 5 is a configuration perspective view of an electromagnetic linear actuator according to a fourth embodiment of the present invention.

【図6】本発明の実施例5に係る回路しゃ断器のリモー
ト操作装置の構成図であり、(a) はリモート操作装置,
およびそのリモート制御回路図、(b) は回路しゃ断器の
ハンドルの各操作位置を表す図
FIG. 6 is a configuration diagram of a remote operation device of a circuit breaker according to a fifth embodiment of the present invention.
And its remote control circuit diagram. (B) is a diagram showing each operation position of the handle of the circuit breaker.

【図7】図6のリモート操作装置に対する動作特性図で
あり、(a) は図2の電磁式リニアアクチュエータの推力
−変位特性図、(b) は回路しゃ断器のON,OFF,リ
セット操作に伴う反力−変位特性図
7A and 7B are operating characteristic diagrams of the remote operation device of FIG. 6, wherein FIG. 7A is a thrust-displacement characteristic diagram of the electromagnetic linear actuator of FIG. 2 and FIG. 7B is a diagram showing ON / OFF and reset operations of the circuit breaker; Accompanying reaction force-displacement characteristic diagram

【図8】本発明の実施例6に係る電磁式リニアアクチュ
エータの説明図であり、(a) は構成図、(b) は動作特性
8A and 8B are explanatory diagrams of an electromagnetic linear actuator according to a sixth embodiment of the present invention, where FIG. 8A is a configuration diagram and FIG.

【図9】本発明の実施例7に係る電磁式リニアアクチュ
エータの説明図であり、(a) は構成図、(b) は動作特性
9A and 9B are explanatory diagrams of an electromagnetic linear actuator according to a seventh embodiment of the present invention, wherein FIG. 9A is a configuration diagram and FIG. 9B is an operation characteristic diagram.

【図10】本発明の実施例8に係る電磁式リニアアクチ
ュエータの説明図であり、(a) は構成図、(b) は動作特
性図
10A and 10B are explanatory diagrams of an electromagnetic linear actuator according to Embodiment 8 of the present invention, wherein FIG. 10A is a configuration diagram, and FIG. 10B is an operation characteristic diagram.

【図11】本発明の実施例9に係る電磁式リニアアクチ
ュエータの構成図
FIG. 11 is a configuration diagram of an electromagnetic linear actuator according to a ninth embodiment of the present invention.

【図12】本発明の実施例10に係る電磁式リニアアク
チュエータの構成図
FIG. 12 is a configuration diagram of an electromagnetic linear actuator according to Embodiment 10 of the present invention.

【符号の説明】[Explanation of symbols]

1 電磁式リニアアクチュエータ 2 可動子 2a 継鉄 2b 磁極部 2c テーパー部 3,3a,3b 永久磁石 4,5 E字形磁性コア 4a,5a 中央脚 4b,5b 外側脚(ON側) 4c,5c 外側脚(OFF側) 4d,5d 突起 4e,5e テーパー磁極面 6,7 励磁コイル 8 回路しゃ断器 8a 操作ハンドル 9 リモート操作装置 13 リモート制御回路 Reference Signs List 1 electromagnetic linear actuator 2 mover 2a yoke 2b magnetic pole 2c taper 3,3a, 3b permanent magnet 4,5 E-shaped magnetic core 4a, 5a center leg 4b, 5b outer leg (ON side) 4c, 5c outer leg (OFF side) 4d, 5d Projection 4e, 5e Tapered magnetic pole surface 6, 7 Excitation coil 8 Circuit breaker 8a Operation handle 9 Remote operation device 13 Remote control circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石動 秀樹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 鈴木 健司 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 朝日 信夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5E048 AB04 AC05 AC06 AD02 CA01 5G030 AB01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideki Ishido 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Kenji Suzuki 1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 Inside Fuji Electric Co., Ltd. (72) Nobuo Asahi 1-1, Tanabe-Nita, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term inside Fuji Electric Co., Ltd. 5E048 AB04 AC05 AC06 AD02 CA01 5G030 AB01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】左右側面に永久磁石を付設した可動子と、
該可動子を挟んでその両側に対向配置したE字形磁性コ
ア,および該磁性コアの中央脚に巻装した励磁コイルか
らなる左右一対の電磁石との組合せからなり、前記E字
形磁性コアの中央磁極と一方の外側磁極との間の距離
を、中央磁極と他方の外側磁極との間の距離よりも小さ
く設定し、前記励磁コイルに流す励磁電流の方向を切換
えて可動子を二つの動作位置の間で反転動作させるよう
にしたことを特徴とする電磁式リニアアクチュエータ。
1. A mover having permanent magnets attached to left and right side surfaces,
A central magnetic pole of the E-shaped magnetic core, comprising a combination of an E-shaped magnetic core disposed on both sides thereof with the mover interposed therebetween, and a pair of left and right electromagnets including an exciting coil wound around a central leg of the magnetic core; The distance between the outer magnetic pole and one of the outer magnetic poles is set smaller than the distance between the center magnetic pole and the other outer magnetic pole, and the direction of the exciting current flowing through the exciting coil is switched to move the mover between the two operating positions. An electromagnetic linear actuator characterized in that a reversal operation is performed between the actuators.
【請求項2】請求項1記載の電磁式リニアアクチュエー
タにおいて、E字形磁性コアの外側磁極に、その終端か
ら突き出して可動子の端面と対峙する突起状磁極を設け
たことを特徴とする電磁式リニアアクチュエータ。
2. An electromagnetic linear actuator according to claim 1, wherein said outer magnetic pole of said E-shaped magnetic core is provided with a protruding magnetic pole protruding from its end and facing the end face of said mover. Linear actuator.
【請求項3】左右側面に永久磁石を付設した可動子と、
該可動子を挟んでその両側に対向配置したE字形磁性コ
ア,および該磁性コアの中央脚に巻装した励磁コイルか
らなる左右一対の電磁石との組合せからなり、前記励磁
コイルに流す励磁電流の方向を切換えて可動子を二つの
動作位置の間で反転動作させるようにした電磁式リニア
アクチュエータにおいて、前記E字形磁性コアの外側磁
極と該磁極に対峙する可動子磁極の磁極面、もしくはE
字形磁性コアの外側磁極面のみを可動子の移動方向に対
して傾斜させたことを特徴とする電磁式リニアアクチュ
エータ。
3. A mover having permanent magnets attached to left and right side surfaces,
It consists of a combination of an E-shaped magnetic core disposed on both sides thereof with the movable element interposed therebetween and a pair of left and right electromagnets composed of an excitation coil wound around a center leg of the magnetic core. In an electromagnetic linear actuator in which the direction is switched to reverse the mover between two operation positions, an outer magnetic pole of the E-shaped magnetic core and a magnetic pole surface of a mover magnetic pole facing the magnetic pole, or E
An electromagnetic linear actuator characterized in that only the outer magnetic pole surface of the letter-shaped magnetic core is inclined with respect to the moving direction of the mover.
【請求項4】左右側面に二組の永久磁石を付設した可動
子と、該可動子を挟んでその両側に対向配置したE字形
磁性コア,および該磁性コアの中央脚に巻装した励磁コ
イルからなる左右一対の電磁石との組合せからなり、前
記励磁コイルに流す励磁電流の方向を切換えて可動子を
二つの動作位置の間で反転動作させるようにした電磁式
リニアアクチュエータにおいて、前記可動子の一方の外
側磁極側に付設した永久磁石の磁極強さを、他方の外側
磁極側に付設した永久磁石よりも大に設定したことを特
徴とする電磁式リニアアクチュエータ。
4. A mover having two sets of permanent magnets attached to the left and right sides, an E-shaped magnetic core disposed opposite to both sides of the mover, and an exciting coil wound around a center leg of the magnetic core. An electromagnetic linear actuator comprising a combination of a pair of left and right electromagnets, wherein the direction of an exciting current flowing through the exciting coil is switched so that the mover is reversed between two operation positions. An electromagnetic linear actuator, wherein the magnetic pole strength of a permanent magnet provided on one outer magnetic pole side is set to be larger than that of a permanent magnet provided on the other outer magnetic pole side.
【請求項5】請求項4記載の電磁式リニアアクチュエー
タにおいて、可動子を挟んで向かい合う永久磁石の磁極
を異極性としたことを特徴とする電磁式リニアアクチュ
エータ。
5. The electromagnetic linear actuator according to claim 4, wherein the magnetic poles of the permanent magnets facing each other across the mover have different polarities.
【請求項6】請求項1ないし5のいずれかに記載の電磁
式リニアアクチュエータの可動子を回路しゃ断器の操作
ハンドルに連繋させ、励磁コイルの通電制御によるリニ
アアクチュエータの反転動作で回路しゃ断器をON,O
FF,リセット位置に切換え操作することを特徴とする
回路しゃ断器のリモート操作装置。
6. The circuit breaker according to claim 1, wherein the movable member of the electromagnetic linear actuator is connected to an operation handle of the circuit breaker, and the circuit breaker is inverted by a reversal operation of the linear actuator by controlling the excitation coil. ON, O
A remote operation device for a circuit breaker, which is operated to switch to a flip-flop or reset position.
JP2002014215A 2000-07-28 2002-01-23 Remote operation device for electromagnetic linear actuator and circuit breaker Expired - Fee Related JP3899941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014215A JP3899941B2 (en) 2000-07-28 2002-01-23 Remote operation device for electromagnetic linear actuator and circuit breaker

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-228247 2000-07-28
JP2000228247 2000-07-28
JP2002014215A JP3899941B2 (en) 2000-07-28 2002-01-23 Remote operation device for electromagnetic linear actuator and circuit breaker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000273107A Division JP3820860B2 (en) 2000-07-28 2000-09-08 Remote operation device for electromagnetic linear actuator and circuit breaker

Publications (2)

Publication Number Publication Date
JP2002319504A true JP2002319504A (en) 2002-10-31
JP3899941B2 JP3899941B2 (en) 2007-03-28

Family

ID=26596880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014215A Expired - Fee Related JP3899941B2 (en) 2000-07-28 2002-01-23 Remote operation device for electromagnetic linear actuator and circuit breaker

Country Status (1)

Country Link
JP (1) JP3899941B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049920A1 (en) * 2005-10-25 2007-05-03 Ematech Inc. Electro-magnetic force driving actuator and circuit breaker using the same
KR100718927B1 (en) 2005-05-19 2007-05-17 (주)에마텍 Electro-Magnetic Force Driving Actuator and Circuit Breaker Using the Same
FR2916572A1 (en) * 2007-03-13 2008-11-28 Fuji Elec Fa Components & Sys DEVICE FOR REMOTELY ACTUATING A CIRCUIT CIRCUIT BREAKER
US7482902B2 (en) 2003-02-26 2009-01-27 Siemens Aktiengesellschaft Linear magnetic drive
CN101521130A (en) * 2008-02-25 2009-09-02 富士电机机器制御株式会社 Remote operation unit of breaker
US7671711B2 (en) 2006-10-31 2010-03-02 Fuji Electric Fa Components & Systems Co., Ltd. Linear actuator for circuit breaker remote operation device
JP2013229247A (en) * 2012-04-26 2013-11-07 Toshiba Corp Switchgear for electric power and operation mechanism thereof
KR101389384B1 (en) 2011-02-22 2014-04-25 에이에스엠엘 네델란즈 비.브이. Electromagnetic actuator, stage apparatus and lithographic apparatus
WO2014199454A1 (en) * 2013-06-12 2014-12-18 株式会社 日立製作所 Gas circuit breaker
CN106357045A (en) * 2012-10-17 2017-01-25 上海交通大学 Displacement-based multi-axis operating motion platform formed by combining driving devices
US9746665B1 (en) * 2013-07-01 2017-08-29 Ball Aerospace & Technologies Corp. High acceleration actuator
CN114999765A (en) * 2022-04-29 2022-09-02 同济大学 Permanent magnet and electromagnetic combined multimode magnetic treatment equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390314A (en) * 2015-10-20 2016-03-09 张浩杰 Novel circuit breaker provided with circuit detection device
CN108807097B (en) * 2018-05-24 2020-04-10 平高集团有限公司 Operating mechanism control method, opening and closing drive device and circuit breaker

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482902B2 (en) 2003-02-26 2009-01-27 Siemens Aktiengesellschaft Linear magnetic drive
KR100718927B1 (en) 2005-05-19 2007-05-17 (주)에마텍 Electro-Magnetic Force Driving Actuator and Circuit Breaker Using the Same
WO2007049920A1 (en) * 2005-10-25 2007-05-03 Ematech Inc. Electro-magnetic force driving actuator and circuit breaker using the same
US7671711B2 (en) 2006-10-31 2010-03-02 Fuji Electric Fa Components & Systems Co., Ltd. Linear actuator for circuit breaker remote operation device
FR2916572A1 (en) * 2007-03-13 2008-11-28 Fuji Elec Fa Components & Sys DEVICE FOR REMOTELY ACTUATING A CIRCUIT CIRCUIT BREAKER
CN101521130B (en) * 2008-02-25 2013-06-12 富士电机机器制御株式会社 Remote operation unit of breaker
CN101521130A (en) * 2008-02-25 2009-09-02 富士电机机器制御株式会社 Remote operation unit of breaker
KR101389384B1 (en) 2011-02-22 2014-04-25 에이에스엠엘 네델란즈 비.브이. Electromagnetic actuator, stage apparatus and lithographic apparatus
JP2013229247A (en) * 2012-04-26 2013-11-07 Toshiba Corp Switchgear for electric power and operation mechanism thereof
CN106357045A (en) * 2012-10-17 2017-01-25 上海交通大学 Displacement-based multi-axis operating motion platform formed by combining driving devices
WO2014199454A1 (en) * 2013-06-12 2014-12-18 株式会社 日立製作所 Gas circuit breaker
JPWO2014199454A1 (en) * 2013-06-12 2017-02-23 株式会社日立製作所 Gas circuit breaker
US9746665B1 (en) * 2013-07-01 2017-08-29 Ball Aerospace & Technologies Corp. High acceleration actuator
CN114999765A (en) * 2022-04-29 2022-09-02 同济大学 Permanent magnet and electromagnetic combined multimode magnetic treatment equipment

Also Published As

Publication number Publication date
JP3899941B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
TW526629B (en) Magnet movable electromagnetic actuator
JP2002319504A (en) Electromagnetic linear actuator and remote controller of circuit breaker
KR101362009B1 (en) Hybrid electromagnetic actuator
WO2000060626A8 (en) Latching magnetic relay assembly with linear motor
KR101287005B1 (en) Linear actuator for circuit breaker remote operation device
JP2007089382A (en) Cylinder type linear actuator
JP3820860B2 (en) Remote operation device for electromagnetic linear actuator and circuit breaker
JP4722601B2 (en) Electromagnetic operation mechanism, power switch using the same, and power switch
JP2005245047A (en) Linear actuator
JP2009016514A (en) Electromagnetic actuator, and switching apparatus using the same
JP2009199978A (en) Remote operation device for circuit breaker
WO2010050135A1 (en) Magnetic force intensifying electromagnetic driving device
KR20000056768A (en) A permant magnet excited linear actuator
KR100231067B1 (en) Electronic switch using push-pull solenoid
US6819207B2 (en) Rotary electromagnet
RU2234789C2 (en) Reversible pulse-controlled electromagnetic drive
JP3577994B2 (en) Actuator
JP2006325298A (en) Rotary actuator, control circuit for rotary actuator, and switch using rotary actuator
JP2003059384A (en) Remote control device for circuit breaker
WO1984004198A1 (en) Electromagnetic actuator apparatus
JPS6017856Y2 (en) electromagnet
JPH0481843B2 (en)
JPS6191818A (en) Switch gear
JPH02312205A (en) Monostable electromagnet
JP2007095605A (en) Electromagnet device and electromagnetic relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees