JP4158876B2 - Power switchgear operating device - Google Patents

Power switchgear operating device Download PDF

Info

Publication number
JP4158876B2
JP4158876B2 JP2001199059A JP2001199059A JP4158876B2 JP 4158876 B2 JP4158876 B2 JP 4158876B2 JP 2001199059 A JP2001199059 A JP 2001199059A JP 2001199059 A JP2001199059 A JP 2001199059A JP 4158876 B2 JP4158876 B2 JP 4158876B2
Authority
JP
Japan
Prior art keywords
movable
iron core
contact
movable iron
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001199059A
Other languages
Japanese (ja)
Other versions
JP2003016887A (en
Inventor
敏惠 竹内
満 月間
伸治 佐藤
崇夫 釣本
健一 小山
隆文 中川
俊二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001199059A priority Critical patent/JP4158876B2/en
Publication of JP2003016887A publication Critical patent/JP2003016887A/en
Application granted granted Critical
Publication of JP4158876B2 publication Critical patent/JP4158876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators

Description

【0001】
【発明の属する技術分野】
この発明は、電力用開閉装置の操作装置に関し、特にその遮断器もしくは断路器を構成する真空バルブの操作装置に関するものである。
【0002】
【従来の技術】
図12は例えば特開2000−268683号公報に記載された従来の電力用開閉装置の操作装置を示す模式断面図であり、図12の(a)は真空バルブの投入状態を示し、図12の(b)は真空バルブの開放状態を示している。図13は図12に示される従来の電力用開閉装置の操作装置の開放動作説明図、図14は図12に示される従来の電力用開閉装置の操作装置の投入動作説明図である。
【0003】
図12において、操作装置1は、可動接触子2aと固定接触子2bとが真空容器2c内に接離可能に配設されて構成された真空バルブ2、例えば真空遮断器を操作するものであり、操作ロッド3が可動接触子2aに固着され、可動接触子2aを固定接触子2bに対して接離させる方向(図中の上下方向)に移動可能に保持されている。
【0004】
可動部材4は、断面ハット型に形成され、操作ロッド3に相対移動可能に接続され、かつ、断面カップ型の固定部材5に図中上下方向に移動可能に保持されている。第1の弾性部材6は操作ロッド3と可動部材4との間に介装され、可動部材4に対して稼動接触子2aを固定接触子2bに押し付ける方向に、操作ロッド3を付勢している。可動部材4を固定部材5に対して吸引駆動するための円盤状の永久磁石7が固定されている。この永久磁石7は、軸方向の対向する端面にそいれぞれN極、S極が着磁されたものである。
【0005】
ここで、可動接触子2aが固定接触子2bに当接して真空バルブ2が投入している状態では、図12の(a)に示されるように、固定部材5に対して、可動接触子2aを固定接触子2bに押し付ける方向に永久磁石7のNS二極の磁路の往来8a、8bで吸引する投入側磁気回路8が形成されている。一方、可動接触子2aが固定接触子2bから離れて真空バルブ2が開放している状態では、図12の(b)に示されるように、固定部材5に対して、可動接触子2aを固定接触子2bから離す方向に永久磁石7のNS二極のうちいずれか一極側9aで吸引する開放側磁気回路9が形成されている。
【0006】
また、操作電磁石巻線10が可動部材4に固定され、可動部材4と操作電磁石巻線10とにより構成される操作電磁石が、投入側磁気回路8および開放側磁気回路9の磁束を増減するようになっている。さらに、可動部材4を固定部材5に対して可動接触子2aを固定接触子2bから離す方向に付勢するために、第2の弾性部材11が配設されている。
【0007】
つぎに、このように構成された従来の操作装置1による真空バルブ2の開放動作について図13を参照しつつ説明する。
真空バルブ2が投入状態にあるときに、操作電磁石巻線10に電流を流し、図13の(a)に点線で示されるように、投入側磁気回路8を流れる永久磁石7の磁束に反発させる磁束を発生させる。これにより、投入側磁気回路8を流れる永久磁石7の磁束が操作電磁石巻線10により発生された磁束により相殺され、永久磁石7の磁力が減少する。そこで、第1および第2の弾性部材6、11が可動部材4を固定部材5に対して可動接触子2aを固定接触子2bから切り離す方向に付勢し、可動部材4が図13の(a)中下方向に移動する。この可動部材4が固定部材5の下部側に到達すると、図13の(b)に示されるように、開放側磁気回路9が形成され、開放側磁気回路9を流れる永久磁石7の磁束に操作電磁石巻線10により発生された磁束が加わる。これにより、可動部材4を磁気吸引した状態となり、可動接触子2aが固定接触子2bから切り離された開放状態となる。
【0008】
ついで、この従来の操作装置1による真空バルブ2の投入動作について図14を参照しつつ説明する。
真空バルブ2が開放状態にあるときに、操作電磁石巻線10に電流を流し、図14の(a)に点線で示されるように、開放側磁気回路9を流れる永久磁石7の磁束に反発させる磁束を発生させる。この時の電磁反発力により、可動部材4を固定部材5に対して可動接触子2aを固定接触子2bに押し付ける方向に付勢し、可動部材4が図14の(b)に示される位置に到達すると、投入側磁気回路8が形成され、投入側磁気回路8を流れる永久磁石7の磁束に操作電磁石巻線10により発生された磁束が加わる。これにより、第1および第2の弾性部材6、11の力に抗して可動部材4を磁気吸引した状態となり、可動接触子2aが固定接触子2bに当接された投入状態となる。
【0009】
【発明が解決しようとする課題】
従来の操作装置は、以上のように構成されているので、投入・遮断操作の際に、操作電磁石巻線10により発生される磁界が永久磁石7にとって反磁界となる状態が生じてしまい、永久磁石7の減磁をもたらし、開閉動作の信頼性が低下してしまうという課題があった。
また、従来の操作装置は、1つの真空バルブ2の投入・遮断操作に適用されるように構成されているので、三相の電力用開閉装置を構成する場合には、図12に示される構成を3列に配列させる必要があり、部品点数が増大してしまうという課題もあった。
【0010】
この発明は、上記の課題を解消するためになされたもので、3本の可動鉄心を1つの固定鉄心に組み込み、さらに各可動鉄心対して開閉用のコイル巻線および永久磁石を2個づつ配置して、永久磁石の減磁をなくすとともに、三相分の真空バルブに対応できるようにし、開閉動作の信頼性を高めるとともに、部品点数を削減できる電力用開閉装置の操作装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
この発明に係る電力用開閉装置の操作装置は、真空容器内に接離可能に設けられた可動接触子と固定接触子とを有する真空バルブが3列に並設されている電力用開閉装置の操作装置であって、
上記可動接触子のそれぞれに固定された3つの絶縁ロッドと、
上記絶縁ロッドのそれぞれに相対的に接続され、軸方向の両端面を電磁力発生面とする磁性体からなる3つの可動鉄心と、
上記3つの可動鉄心が、該可動鉄心の軸方向を平行にして、該可動鉄心の軸方向に移動可能に、かつ、該可動鉄心の軸方向と直交する方向に1列に並んで収納された磁性体からなる1つの固定鉄心と、
上記絶縁ロッドと上記可動鉄心との間にそれぞれ介装されて上記可動接触子を上記固定接触子に押し付ける方向に付勢する3つの弾性部材と、
上記可動鉄心のそれぞれを挟んで対向して上記固定鉄心に配設され、上記可動接触子が上記固定接触子に当接した上記真空バルブの投入状態では、上記固定鉄心に対して該可動鉄心を該可動接触子を該固定接触子に押し付ける方向に磁気吸引する投入側磁気回路を構成し、上記可動接触子が上記固定接触子から切り離された上記真空バルブの開放状態では、上記固定鉄心に対して該可動鉄心を該可動接触子を該固定接触子から切り離す方向に磁気吸引する開放側磁気回路を構成する3対の永久磁石と、
上記可動鉄心のそれぞれの上記可動接触子を上記固定接触子に押し付ける側に巻装され、通電時に該可動鉄心を該可動接触子を該固定接触子に押し付ける方向に磁気吸引する3つの投入用コイルと、
上記可動鉄心のそれぞれの上記可動接触子を上記固定接触子から切り離す側に巻装され、通電時に該可動鉄心を該可動接触子を該固定接触子から切り離す方向に磁気吸引する3つの開放用コイルとを備え、
上記投入用コイルおよび開放用コイルの通電時に発生する磁束が上記永久磁石を上記永久磁石の磁化方向に流れるように構成されているものである。
【0012】
また、上記可動鉄心の配列方向が上記真空バルブの配列方向に一致し、該真空バルブのそれぞれに対して、上記可動鉄心、上記弾性部材および上記絶縁ロッドが直線的に配置されているものである。
【0013】
また、上記可動鉄心は、上記両電磁力発生面が軸心に直交する平坦面に形成されたI型鉄心である。
【0014】
また、上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成されているものである。
【0015】
また、上記可動鉄心は、投入側の上記電磁力発生面が軸心に直交する平坦面に形成され、かつ、開放側の上記電磁発生面が軸心に直交する平坦面と該平坦面の縁部に形成された軸心に対して所定角度を有するテーパ面とを有する凸状の面形状に形成されたI型鉄心である。
【0016】
まや、上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成され、かつ、上記固定鉄心の開放側の上記電磁発生面に対向する面が開放側の上記電磁発生面の外形形状に略一致する内形形状の凹状の面形状に形成されているものである。
【0017】
また、上記永久磁石の各対が、上記可動鉄心の軸心と直交する方向で該可動鉄心を挟んで配置されているものである。
【0018】
また、上記永久磁石の各対が、上記可動鉄心の軸心方向で該可動鉄心を挟んで配置されているものである。
【0019】
また、上記可動鉄心は上記両電磁力発生面が軸心に直交する平坦面に形成され平板状の鉄心であり、上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成され、上記固定鉄心の上記可動鉄心の側面に対向する部位が平坦面に形成され、かつ、上記永久磁石の各対が該可動鉄心の軸心と直交する方向で該可動鉄心を挟んで上記固定鉄心の平坦面に貼り付け固定されているものである。
【0020】
また、3組の上記投入用および開放用コイルの個別駆動および同時駆動を任意に組み合わせることができる制御回路電源を備えているものである。
【0021】
【発明の実施の形態】
以下、この発明の実施の形態を図について説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る電力用開閉装置の操作装置の全体構成を示す断面図であり、図において、図12に示される従来の操作装置と同一または相当部分には同一符号を付し、その説明を省略する。
【0022】
図1において、真空バルブ2は、真空容器2c内に可動接触子2aと固定接触子2bとを接離可能に配設して構成され、例えば真空遮断器として機能する。そして、3つの真空バルブ2が、可動接触子2aと固定接触子2bとの接離方向を平行として並列に配設されている。
【0023】
操作装置100の電磁操作部20は、矩形平板状の薄板を多数枚積層して直方体に作製され、3つの可動鉄心収納空間21aが所定ピッチで1列に並んで形成され、可動軸貫通穴21bが穴中心軸を可動鉄心収納空間21aの配列方向に直交させて各可動鉄心収納空間21aと外部とを連通するように形成されている固定鉄心21と、軸方向の両端面(電磁力発生面)を軸方向と直交する平坦面とするI状(棒状)に成形され、各可動子収納空間21a内に軸方向に移動可能に収納された可動鉄心22と、各可動軸貫通穴21bに挿通され、可動鉄心22の一端面に固着された可動軸23と、導線を環状に所定回巻回して構成され、可動鉄心22の一端側を囲繞するように各可動鉄心収納空間21a内に配設された投入用コイル24と、導線を環状に所定回巻回して構成され、可動鉄心22の他端側を囲繞するように各可動鉄心収納空間21a内に配設された開放用コイル25と、投入用コイル24と開放用コイル25との間の位置で可動鉄心22を挟んで対向するように各可動鉄心収納空間21a内に配設された3対の永久磁石26とから構成されている。
【0024】
ここで、固定鉄心21、可動鉄心22および可動軸23は強磁性材料で作製されている。そして、可動鉄心22と可動軸23とは同軸に直線的に連結されている。
また、永久磁石26は、可動鉄心収納空間21aの側壁面に突設された凸部21cの先端面に貼り付け固定され、磁気回路を構成できるように可動鉄心22の側面との間に所定の隙間をもつように配設されている。さらに、永久磁石26は、図1中矢印Aで示す方向に着磁されており、各対の永久磁石26は、磁化方向Aが互いに逆向きとなるように配置されている。
【0025】
このように構成された電磁操作部20は、各可動軸23の可動軸貫通穴21bからの延出端が弾性部材としてのワイプバネ28を介して絶縁ロッド27に連結されている。そして、可動鉄心22、可動軸23、絶縁ロッド27および可動接触子2aとが直線的に連結されている。この絶縁ロッド27は、セラミックなどの電気絶縁材料で作製され、真空バルブ2と電磁操作部20との間を電気的に絶縁するとともに、電磁操作部20の駆動力を真空バルブ2に伝達する機能を有している。
【0026】
ここで、可動接触子2aが固定接触子2bに当接して真空バルブ2が投入している状態(図1の左右の真空バルブ2)では、可動鉄心22が可動鉄心収納空間21a内で図1中上方(投入位置)に位置している。そして、可動鉄心22の軸方向の一端面(真空バルブ2側)と可動鉄心収納空間21aの上壁面(真空バルブ側の内壁面)との空隙が狭く、可動鉄心22の軸方向の他端面と可動鉄心収納空間21aの下壁面(反真空バルブ側の内壁面)との空隙が大きくなっているので、投入用コイル24を1周する永久磁石26による投入側磁気回路30が形成されている。そして、磁束が図1に矢印で示されるように投入側磁気回路30に流れ、可動鉄心22が固定鉄心21に磁気吸引されて投入位置に保持される、そこで、ワイプバネ28の蓄勢力が絶縁ロッド27を介して可動接触子2aに加わり、可動接触子2aと固定接触子2bとの接触圧が確保される。
【0027】
一方、可動接触子2aが固定接触子2bから離れて真空バルブ2が開放している状態(図1の中央の真空バルブ2)では、可動鉄心22が可動鉄心収納空間21a内で図1中下方(開放位置)に位置している。そして、可動鉄心22の軸方向の他端面と可動鉄心収納空間21aの下壁面との空隙が狭く、可動鉄心22の軸方向の一端面と可動鉄心収納空間21aの上壁面との空隙が大きくなっているので、開放用コイル25を1周する永久磁石26による開放側磁気回路31が形成されている。そして、磁束が図1に矢印で示されるように開放側磁気回路31に流れ、可動鉄心22が固定鉄心21に磁気吸引されて開放位置に保持され、可動接触子2aが固定接触子2bから離反した状態が確保される。
【0028】
つぎに、このように構成された操作装置100による真空バルブ2の開放動作について図2を参照しつつ説明する。
真空バルブ2が投入状態にあるときに、開放用コイル25に通電し、図2の(a)に一点鎖線で示されるように、開放用コイル25を1周する磁気回路32を形成する。この時、磁気回路32を流れる磁束の向きが、図1中矢印で示されるように、永久磁石26の着磁方向Aに一致している。これにより、可動鉄心22の他端面と可動鉄心収納空間21aの下壁面との間に磁気吸引力が発生し、この磁気吸引力とワイプバネ28の蓄勢力とが、投入側磁気回路30による可動鉄心22の保持力に打ち勝ち、可動鉄心22が図2の(a)中下方に移動する。そして、ワイプバネ28の蓄勢力が放勢されると、可動鉄心22の移動に連動して可動接触子2aが固定接触子2bからの離反を開始する。この可動鉄心22が開放位置に到達すると、図2の(b)に示されるように、開放側磁気回路31が形成される。そこで、開放用コイル25への通電が停止され、可動鉄心22が開放側磁気回路31により開放位置に保持され、可動接触子2aが固定接触子2bから切り離された開放状態となる。
【0029】
ついで、この操作装置100による真空バルブ2の投入動作について図3を参照しつつ説明する。
真空バルブ2が開放状態にあるときに、投入用コイル24に通電し、図3の(a)に一点鎖線で示されるように、投入用コイル24を1周する磁気回路33を形成する。この時、磁気回路33を流れる磁束の向きが、図1中矢印で示されるように、永久磁石26の着磁方向Aに一致している。これにより、可動鉄心22の一端面と可動鉄心収納空間21aの上壁面との間に磁気吸引力が発生し、この磁気吸引力が、開放側磁気回路31による可動鉄心22の保持力に打ち勝ち、可動鉄心22が図3の(a)中上方に移動する。そして、可動鉄心22の移動に連動して可動接触子2aが固定接触子2bへの接近を開始する。ワイプバネ28は、可動接触子2aが固定接触子2bに接した後、蓄勢される。この可動鉄心22が投入位置に到達すると、図3の(b)に示されるように、投入側磁気回路30が形成される。そこで、投入用コイル24への通電が停止され、可動鉄心22が投入側磁気回路30により投入位置に保持され、可動接触子2aが固定接触子2bに当接した投入状態となる。また、可動接触子2aと固定接触子2bとの接触圧がワイプバネ28の蓄勢力により確保される。
【0030】
このように、この実施の形態1によれば、投入・遮断操作の際に、開放用コイル25および投入用コイル24により発生される磁界が永久磁石26にとって反磁界とならないので、永久磁石26の減磁がなく、開閉動作の信頼性が向上される。
また、3つの可動鉄心22を1つの固定鉄心21に収納して電磁操作部20を構成しているので、部品点数が削減され、3相電力の電力用開閉装置に適用できる低コスト化の操作装置が得られる。
また、可動鉄心22、可動軸23、絶縁ロッド27および可動接触子2aとが直線的に連結されているので、操作装置の駆動力がリンク機構を用いることなく真空バルブ2に直接伝達され、開閉動作の信頼性および耐久性が向上されるとともに、部品点数の削減による低コスト化が図られる。
また、可動鉄心22が軸方向の両端面を平坦面とするI型鉄心で構成されているので、可動鉄心22が単純な形状となり、3つの可動鉄心22間の動作ばらつきが抑制され、開閉動作の信頼性が向上される。
【0031】
ここで、この操作装置100の制御回路電源について図4を参照しつつ説明する。なお、図4では説明の便宜上1相分の制御回路電源を示している。
この制御回路電源50は、DC電源51と、開放用電力貯蔵器としてのコンデンサ52aと、投入用電力貯蔵器としてのコンデンサ52bと、開放用放電スイッチ53aと、投入用放電スイッチ53bと、開放用および投入用放電スイッチを開閉制御する制御装置34等を備えている。
そして、制御装置34により開放用放電スイッチ53aを閉成することで、開放用コイル25に通電され、開放動作が行われる。また、制御装置34により投入用放電スイッチ53bを閉成することで、投入用コイル24に通電され、投入動作が行われる。
このように構成された制御回路電源50は、開放用コイル25と投入用コイル24との対毎に装備し、制御装置34により開放用および投入用放電スイッチ53a、53bの各対を個別に開閉制御することで、三相個別駆動が行われる。
また、開放用コイル25と投入用コイル24との3対がこのように構成された制御回路電源50に並列に接続され、制御装置34により開放用および投入用放電スイッチ53a、53bの3対を同時に開閉制御することで、三相同時駆動が行われる。
【0032】
なお、上記実施の形態1では、開放用および投入用電力貯蔵器としてのコンデンサ52a、52bを備えた制御回路電源50を用いているが、DC電源51のみを用いることもできる。この場合、図5に示されるように極めて簡単な回路構成となる。
また、上記実施の形態1では、各対の永久磁石26は磁化方向Aが互いに向き合うように相対して配置されているものとしているが、各対の永久磁石26は磁化方向Aが離反するように相対して配置されていてもよい。この場合、投入用および開放用コイル24、25への通電電流の向きを上記実施の形態1と逆にすればよい。
【0033】
実施の形態2.
図6はこの発明の実施の形態2に係る電力用開閉装置の操作装置を示す要部断面図、図7はこの発明の実施の形態2に係る電力用開閉装置の操作装置における効果を説明する図である。
【0034】
図6において、可動鉄心22Aは、軸方向の一端面が軸方向と直交する平坦面に形成され、他端面が軸方向と直交する平坦面と平坦面の外周部を面取して形成されたテーパ面35aとを有する凸面形状に形成されたI型鉄心であり、可動鉄心22Aの他端面の外形形状に略等しい内形形状の凹部36aが可動鉄心22Aの他端面に相対する可動鉄心収納空間21aの下壁面に形成されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
【0035】
ここで、上記実施の形態1では、可動鉄心22の他端面が平坦面に形成され、かつ、可動鉄心22の他端面に相対する可動鉄心収納空間21aの下壁面が平坦面に形成されているので、開放用コイル25に通電時に、磁束が、図5の(b)に示されるように、可動鉄心22の他端面と可動鉄心収納空間21aの下壁面との間に発生する。そして、可動鉄心22の他端外周部と可動鉄心収納空間21aの下壁面との間に発生する磁束が、外側に広がってしまい、この磁束の漏れ成分が発生する電磁力を減少させる要因となっている。
【0036】
この実施の形態2によれば、可動鉄心22Aの他端の外周部が面取りされたテーパ面35aに形成され、かつ、可動鉄心22Aの他端面の外形形状と同等の内形形状の凹部36aが可動鉄心収納空間21aの下壁面に、可動鉄心22Aの他端面に相対するように形成されているので、開放用コイル25に通電時に、磁束は、図5の(a)に示されるように、可動鉄心22Aの他端面と可動鉄心収納空間21aの凹部36aとの間に発生し、磁束の漏れ成分が低減されている。さらに、可動鉄心22Aと可動鉄心収納空間21aとの対向する面積が広くなっている。
そこで、開放用コイル25に通電時に、可動鉄心22Aの他端面と固定鉄心21との間に発生する電磁力が、上記実施の形態1に比べて大きくなり、開放速度を速めることができる。
【0037】
なお、上記実施の形態2では、可動鉄心22Aの他端面の外形形状と同等の内形形状の凹部36aが可動鉄心収納空間21aの下壁面に形成されているものとしているが、凹部36aを省略し、可動鉄心収納空間21aの下壁面を平坦面としてもよい。この場合、開放用コイル25に通電時に、可動鉄心22Aの他端面と可動鉄心収納空間21aの下壁面との間に発生する磁束の漏れ成分を上記実施の形態1に比べて低減できるので、上記実施の形態1に比べて開放速度を速めることができる。
【0038】
実施の形態3.
図8はこの発明の実施の形態3に係る電力用開閉装置の操作装置を示す要部断面図である。
図8において、可動鉄心22Bは、軸方向の両端面を軸方向に直交する平坦面とするI型鉄心に形成され、可動鉄心22Bの両端面に相対する可動鉄心収納空間21aの上下壁面を突出させて先端面を平坦面とする凸部37、38が形成されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
【0039】
この実施の形態3では、凸部37、38が可動鉄心22Bの両端面に相対する可動鉄心収納空間21aの上下壁面を突出させて形成されているので、可動鉄心収納空間21aの可動鉄心22Bの軸方向空隙が短くなる。その結果、可動鉄心22Bの軸方向長さがその分短くなり、可動鉄心22Bの軽量化が図られる。
ここで、可動鉄心の動作速度は、F=ma(m:可動部の質量、a:加速度、F:電磁吸引力)によって決まる。
従って、この実施の形態3によれば、磁気回路中の大きな抵抗となる空隙距離を変えることなく可動鉄心22Bの軽量化が図られるので、開閉動作の高速化が実現される。
【0040】
実施の形態4.
この実施の形態4では、図9に示されるように、可動鉄心22Cは、軸方向の一端面が軸方向と直交する平坦面に形成され、他端面が軸方向と直交する平坦面と平坦面の外周部を面取して形成されたテーパ面35bとを有する凸面形状に形成されたI型鉄心であり、可動鉄心22Cの他端面の外形形状に略等しい内形形状の凹部36bが凸部38aの先端面に形成されている。
なお、他の構成は上記実施の形態3と同様に構成されている。
【0041】
従って、この実施の形態4によれば、上記実施の形態3の効果に加えて、可動鉄心22Cの他端面にテーパ面35bを形成し、かつ、可動鉄心22cの他端面に相対する凸部38aの先端面に凹部36bを形成しているので、大きな電磁力を発生することができ、開放速度をさらに速めることができる。
【0042】
実施の形態5.
この実施の形態5では、図10に示されるように、永久磁石26が凸部37、38にそれぞれ配設されている。即ち、一対の永久磁石26が可動鉄心22Bを挟んで可動鉄心22Bの軸方向で対向して配置されている。また、磁気回路が構成されるように可動鉄心収納空間21aの側壁面の凸部21cを可動鉄心22Bの側面近傍まで延出させている。
なお、他の構成は上記実施の形態3と同様に構成されている。
【0043】
この実施の形態5では、各永久磁石26が図10に矢印で示されるように着磁されているので、可動鉄心22Bが投入位置にあるときには、凸部37に配設された永久磁石26により上記実施の形態1と同様に投入用コイル24を1周する投入側磁気回路が形成され、可動鉄心22Bが開放位置にあるときには、凸部38に配設された永久磁石26により上記実施の形態1と同様に開放用コイル25を1周する開放側磁気回路が形成される。そこで、上記実施の形態1と同様に開放用コイル25および投入用コイル24に通電することにより、真空バルブ2の開閉を行わせることができる。
従って、この実施の形態5においても、上記実施の形態3と同様の効果が得られる。
【0044】
なお、上記実施の形態5では、上記実施の形態3において、一対の永久磁石26が可動鉄心22Bを挟んで可動鉄心22Bの軸方向で対向して配置するものとしているが、上記実施の形態4において、一対の永久磁石26を可動鉄心22Cを挟んで可動鉄心22Cの軸方向で対向して配置するようにしてもよい。
【0045】
実施の形態6.
この実施の形態6では、図11に示されるように、可動鉄心収納空間21aの側壁面を平坦面とし、永久磁石26を可動鉄心収納空間21aの側壁面に貼り付け固定して相対するように配置し、平板状に作製された可動鉄心22Dが、永久磁石26に所定の間隙をもつように配設され、凸部37b、38bが可動鉄心22Dの軸方向両端面に所定の間隙をもつように可動鉄心収納空間21aの上下壁面に突設されている。
なお、他の構成は、上記実施の形態3と同様に構成されている。
【0046】
この実施の形態6においても、可動鉄心22Dの軽量化が図られるので、上記実施の形態3と同様の効果が得られる。
また、この実施の形態6によれば、永久磁石26の取付面が平坦面であるので、永久磁石26の取付が容易となる。
【0047】
【発明の効果】
この発明は、以上のように構成されているので、以下に記載されているような効果を奏する。
【0048】
この発明によれば、真空容器内に接離可能に設けられた可動接触子と固定接触子とを有する真空バルブが3列に並設されている電力用開閉装置の操作装置であって、
上記可動接触子のそれぞれに固定された3つの絶縁ロッドと、
上記絶縁ロッドのそれぞれに相対的に接続され、軸方向の両端面を電磁力発生面とする磁性体からなる3つの可動鉄心と、
上記3つの可動鉄心が、該可動鉄心の軸方向を平行にして、該可動鉄心の軸方向に移動可能に、かつ、該可動鉄心の軸方向と直交する方向に1列に並んで収納された磁性体からなる1つの固定鉄心と、
上記絶縁ロッドと上記可動鉄心との間にそれぞれ介装されて上記可動接触子を上記固定接触子に押し付ける方向に付勢する3つの弾性部材と、
上記可動鉄心のそれぞれを挟んで対向して上記固定鉄心に配設され、上記可動接触子が上記固定接触子に当接した上記真空バルブの投入状態では、上記固定鉄心に対して該可動鉄心を該可動接触子を該固定接触子に押し付ける方向に磁気吸引する投入側磁気回路を構成し、上記可動接触子が上記固定接触子から切り離された上記真空バルブの開放状態では、上記固定鉄心に対して該可動鉄心を該可動接触子を該固定接触子から切り離す方向に磁気吸引する開放側磁気回路を構成する3対の永久磁石と、
上記可動鉄心のそれぞれの上記可動接触子を上記固定接触子に押し付ける側に巻装され、通電時に該可動鉄心を該可動接触子を該固定接触子に押し付ける方向に磁気吸引する3つの投入用コイルと、
上記可動鉄心のそれぞれの上記可動接触子を上記固定接触子から切り離す側に巻装され、通電時に該可動鉄心を該可動接触子を該固定接触子から切り離す方向に磁気吸引する3つの開放用コイルとを備え、
上記投入用コイルおよび開放用コイルの通電時に発生する磁束が上記永久磁石を上記永久磁石の磁化方向に流れるように構成されているので、開放および投入用コイルの通電時における永久磁石の減磁がなく、かつ、1つの固定鉄心に組み込まれた3本の可動鉄心により三相分の真空バルブの開閉ができ、開閉動作の信頼性が高められるとともに、部品点数を削減できる電力用開閉装置の操作装置が得られる。
【0049】
また、上記可動鉄心の配列方向が上記真空バルブの配列方向に一致し、該真空バルブのそれぞれに対して、上記可動鉄心、上記弾性部材および上記絶縁ロッドが直線的に配置されているので、リンク機構が不要となり、部品点数の削減による信頼性・耐久性の向上および低コスト化が図られる。
【0050】
また、上記可動鉄心は、上記両電磁力発生面が軸心に直交する平坦面に形成されたI型鉄心であるので、可動鉄心の形状が単純となり、組み合わせ毎の動作のばらつきが抑えられ、信頼性が向上する。
【0051】
また、上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成されているので、可動鉄心の軽量化が図られ、開放・投入動作速度が速められる。
【0052】
また、上記可動鉄心は、投入側の上記電磁力発生面が軸心に直交する平坦面に形成され、かつ、開放側の上記電磁発生面が軸心に直交する平坦面と該平坦面の縁部に形成された軸心に対して所定角度を有するテーパ面とを有する凸状の面形状に形成されたI型鉄心であるので、開放用コイルに通電時に、大きな電磁力が発生でき、開放動作速度が速められる。
【0053】
まや、上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成され、かつ、上記固定鉄心の開放側の上記電磁発生面に対向する面が開放側の上記電磁発生面の外形形状に略一致する内形形状の凹状の面形状に形成されているので、可動鉄心の軽量化が図られ、開放・投入動作速度が速められるとともに、開放用コイルに通電時に大きな電磁力が発生でき、開放動作速度がさらに速められる。
【0054】
また、上記永久磁石の各対が、上記可動鉄心の軸心と直交する方向で該可動鉄心を挟んで配置されているので、開放側および投入側磁気回路を簡易に構成することができる。
【0055】
また、上記永久磁石の各対が、上記可動鉄心の軸心方向で該可動鉄心を挟んで配置されているので、開放側および投入側磁気回路を簡易に構成することができる。
【0056】
また、上記可動鉄心は上記両電磁力発生面が軸心に直交する平坦面に形成され平板状の鉄心であり、上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成され、上記固定鉄心の上記可動鉄心の側面に対向する部位が平坦面に形成され、かつ、上記永久磁石の各対が該可動鉄心の軸心と直交する方向で該可動鉄心を挟んで上記固定鉄心の平坦面に貼り付け固定されているので、可動鉄心の軽量化が図られ、開放・投入動作速度が速められるとともに、永久磁石の配置が簡易となる。
【0057】
また、3組の上記投入用および開放用コイルの個別駆動および同時駆動を任意に組み合わせることができる制御回路電源を備えているので、必要な駆動特性に応じた運転が可能となる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る電力用開閉装置の操作装置の全体構成を示す断面図である。
【図2】 この発明の実施の形態1に係る電力用開閉装置の操作装置による真空バルブの開放動作を説明する図である。
【図3】 この発明の実施の形態1に係る電力用開閉装置の操作装置による真空バルブの投入動作を説明する図である。
【図4】 この発明の実施の形態1に係る電力用開閉装置の操作装置の制御回路電源を示す回路図である。
【図5】 この発明の実施の形態1に係る電力用開閉装置の操作装置の制御回路電源の実施態様を示す回路図である。
【図6】 この発明の実施の形態2に係る電力用開閉装置の操作装置を示す要部断面図である。
【図7】 この発明の実施の形態2に係る電力用開閉装置の操作装置における効果を説明する図である。
【図8】 この発明の実施の形態3に係る電力用開閉装置の操作装置を示す要部断面図である。
【図9】 この発明の実施の形態4に係る電力用開閉装置の操作装置を示す要部断面図である。
【図10】 この発明の実施の形態5に係る電力用開閉装置の操作装置を示す要部断面図である。
【図11】 この発明の実施の形態6に係る電力用開閉装置の操作装置を示す要部断面図である。
【図12】 従来の電力用開閉装置の操作装置を示す模式断面図である。
【図13】 従来の電力用開閉装置の操作装置の開放動作説明図である。
【図14】 従来の電力用開閉装置の操作装置の投入動作説明図である。
【符号の説明】
2 真空バルブ、2a 可動接触子、2b 固定接触子、2c 真空容器、20 電磁操作部、21 固定鉄心、22、22A、22B、22C、22D 可動鉄心、24 投入側コイル、25 開放側コイル、26 永久磁石、27 絶縁ロッド、28 ワイプバネ(弾性部材)、30 投入側磁気回路、31 開放側磁気回路、35a、35b テーパ面、36a、36b 凹部、37、37b、38、38a、38b 凸部、50 制御回路電源、100 開閉装置、A 磁化方向。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operating device for a power switchgear, and more particularly to an operating device for a vacuum valve constituting the circuit breaker or disconnector.
[0002]
[Prior art]
FIG. 12 is a schematic cross-sectional view showing an operation device for a conventional power switchgear described in, for example, Japanese Patent Laid-Open No. 2000-268683. FIG. 12 (a) shows a state in which a vacuum valve is turned on. (B) has shown the open state of the vacuum valve. FIG. 13 is an explanatory view of the opening operation of the operating device of the conventional power switch shown in FIG. 12, and FIG. 14 is an explanatory diagram of the closing operation of the operating device of the conventional power switch shown in FIG.
[0003]
In FIG. 12, an operating device 1 operates a vacuum valve 2, for example, a vacuum circuit breaker, which is configured such that a movable contact 2a and a fixed contact 2b are detachably disposed in a vacuum vessel 2c. The operating rod 3 is fixed to the movable contact 2a, and is held so as to be movable in a direction (vertical direction in the drawing) in which the movable contact 2a is brought into and out of contact with the fixed contact 2b.
[0004]
The movable member 4 is formed in a hat shape in cross section, is connected to the operation rod 3 so as to be relatively movable, and is held by a cross-sectional cup type fixing member 5 so as to be movable in the vertical direction in the figure. The first elastic member 6 is interposed between the operating rod 3 and the movable member 4, and biases the operating rod 3 in a direction to press the operating contact 2 a against the fixed contact 2 b against the movable member 4. Yes. A disk-shaped permanent magnet 7 for attracting and driving the movable member 4 with respect to the fixed member 5 is fixed. The permanent magnet 7 has N poles and S poles magnetized on opposite end faces in the axial direction.
[0005]
Here, in a state in which the movable contact 2a is in contact with the fixed contact 2b and the vacuum valve 2 is turned on, as shown in FIG. Is inserted in the direction in which the magnet is pressed against the stationary contact 2b, and a closing-side magnetic circuit 8 is formed which attracts the magnetic poles 8a and 8b of the NS two-pole magnetic path of the permanent magnet 7. On the other hand, when the movable contact 2a is separated from the fixed contact 2b and the vacuum valve 2 is opened, the movable contact 2a is fixed to the fixed member 5 as shown in FIG. An open-side magnetic circuit 9 that attracts at one of the NS two poles of the permanent magnet 7 in the direction away from the contact 2b is formed.
[0006]
Further, the operation electromagnet winding 10 is fixed to the movable member 4, and the operation electromagnet constituted by the movable member 4 and the operation electromagnet winding 10 increases or decreases the magnetic flux of the closing side magnetic circuit 8 and the opening side magnetic circuit 9. It has become. Further, a second elastic member 11 is provided to bias the movable member 4 toward the fixed member 5 in a direction in which the movable contact 2a is separated from the fixed contact 2b.
[0007]
Next, the opening operation of the vacuum valve 2 by the conventional operating device 1 configured as described above will be described with reference to FIG.
When the vacuum valve 2 is in the closing state, a current is passed through the operation electromagnet winding 10 to repel the magnetic flux of the permanent magnet 7 flowing through the closing side magnetic circuit 8 as shown by the dotted line in FIG. Generate magnetic flux. As a result, the magnetic flux of the permanent magnet 7 flowing through the closing-side magnetic circuit 8 is offset by the magnetic flux generated by the operation electromagnet winding 10, and the magnetic force of the permanent magnet 7 is reduced. Therefore, the first and second elastic members 6 and 11 urge the movable member 4 in the direction of separating the movable contact 2a from the fixed contact 2b with respect to the fixed member 5, and the movable member 4 is shown in FIG. ) Move in the middle down direction. When the movable member 4 reaches the lower side of the fixed member 5, an open-side magnetic circuit 9 is formed as shown in FIG. 13B, and the magnetic flux of the permanent magnet 7 flowing through the open-side magnetic circuit 9 is manipulated. Magnetic flux generated by the electromagnet winding 10 is applied. As a result, the movable member 4 is magnetically attracted, and the movable contact 2a is released from the fixed contact 2b.
[0008]
Next, the operation of turning on the vacuum valve 2 by the conventional operating device 1 will be described with reference to FIG.
When the vacuum valve 2 is in the open state, a current is passed through the operation electromagnet winding 10 to repel the magnetic flux of the permanent magnet 7 flowing through the open-side magnetic circuit 9 as shown by the dotted line in FIG. Generate magnetic flux. Due to the electromagnetic repulsion force at this time, the movable member 4 is urged against the fixed member 5 in the direction in which the movable contact 2a is pressed against the fixed contact 2b, and the movable member 4 is moved to the position shown in FIG. When it reaches, the making side magnetic circuit 8 is formed, and the magnetic flux generated by the operation electromagnet winding 10 is added to the magnetic flux of the permanent magnet 7 flowing through the making side magnetic circuit 8. As a result, the movable member 4 is magnetically attracted against the forces of the first and second elastic members 6 and 11, and the movable contact 2a is brought into contact with the fixed contact 2b.
[0009]
[Problems to be solved by the invention]
Since the conventional operating device is configured as described above, a state in which the magnetic field generated by the operating electromagnet winding 10 becomes a demagnetizing field for the permanent magnet 7 at the time of turning-on / off operation occurs. There was a problem that the demagnetization of the magnet 7 was brought about and the reliability of the opening / closing operation was lowered.
Further, since the conventional operating device is configured to be applied to the operation of turning on / off the single vacuum valve 2, when configuring a three-phase power switchgear, the configuration shown in FIG. There is also a problem that the number of parts increases.
[0010]
The present invention has been made in order to solve the above-described problems, and incorporates three movable iron cores into one fixed iron core, and further arranges two coil windings and two permanent magnets for each movable iron core. The present invention provides an operating device for a power switchgear that eliminates the demagnetization of the permanent magnets, supports a three-phase vacuum valve, improves the reliability of the switching operation, and reduces the number of parts. Objective.
[0011]
[Means for Solving the Problems]
An operating device for a power switchgear according to the present invention is a power switchgear in which vacuum valves having movable contacts and fixed contacts provided in a vacuum container so as to be able to contact and separate are arranged in three rows. An operating device,
Three insulating rods fixed to each of the movable contacts;
Three movable iron cores that are relatively connected to each of the insulating rods and made of a magnetic material having both end faces in the axial direction as electromagnetic force generation surfaces;
The three movable iron cores are accommodated in a line in a direction perpendicular to the axial direction of the movable iron core so that the axial direction of the movable iron core is parallel and movable in the axial direction of the movable iron core. One fixed iron core made of magnetic material,
Three elastic members interposed between the insulating rod and the movable iron core to urge the movable contact in a direction of pressing the movable contact against the fixed contact;
In a state where the vacuum valve is placed in a state where the movable core is opposed to the fixed core and the movable contact is in contact with the fixed contact, the movable core is placed against the fixed core. A closing-side magnetic circuit that magnetically attracts the movable contact in a direction in which the movable contact is pressed against the fixed contact is configured, and when the vacuum valve is in an open state in which the movable contact is separated from the fixed contact, Three pairs of permanent magnets constituting an open-side magnetic circuit for magnetically attracting the movable iron core in a direction to separate the movable contact from the fixed contact;
Three throwing coils that are wound around the side of the movable core that presses the movable contact against the fixed contact, and that magnetically attracts the movable core in the direction of pressing the movable contact against the fixed contact when energized. When,
Three open coils that are wound on the side of the movable core that is separated from the fixed contact and that magnetically attracts the movable core in the direction of separating the movable contact from the fixed contact when energized. And
The magnetic flux generated when the energizing coil and the opening coil are energized flows through the permanent magnet in the magnetization direction of the permanent magnet.
[0012]
The arrangement direction of the movable iron cores coincides with the arrangement direction of the vacuum valves, and the movable iron cores, the elastic members, and the insulating rods are linearly arranged for the respective vacuum valves. .
[0013]
The movable iron core is an I-type iron core in which both electromagnetic force generation surfaces are formed on a flat surface orthogonal to the axis.
[0014]
Moreover, the site | part which opposes both said electromagnetic force generation surfaces of the said fixed iron core is formed in convex shape.
[0015]
The movable iron core is formed such that the electromagnetic force generation surface on the input side is a flat surface orthogonal to the axis, and the flat surface in which the electromagnetic generation surface on the open side is orthogonal to the axis and the edge of the flat surface It is an I type iron core formed in the convex surface shape which has a taper surface which has a predetermined angle with respect to the axial center formed in the part.
[0016]
The portion of the fixed core facing the two electromagnetic force generation surfaces is formed in a convex shape, and the surface facing the electromagnetic generation surface on the open side of the fixed iron core is the outer shape of the electromagnetic generation surface on the open side. It is formed in a concave surface shape of an inner shape that substantially matches the shape.
[0017]
Further, each pair of the permanent magnets is disposed with the movable iron core sandwiched in a direction orthogonal to the axis of the movable iron core.
[0018]
Each pair of the permanent magnets is disposed with the movable iron core sandwiched in the axial direction of the movable iron core.
[0019]
The movable iron core is a flat iron core in which both electromagnetic force generating surfaces are formed on a flat surface orthogonal to the axis, and a portion of the fixed core facing the both electromagnetic force generating surfaces is formed in a convex shape. The portion of the fixed iron core that faces the side surface of the movable iron core is formed as a flat surface, and each pair of the permanent magnets sandwiches the movable iron core in a direction perpendicular to the axis of the movable iron core. It is affixed and fixed on the flat surface.
[0020]
In addition, a control circuit power supply is provided which can arbitrarily combine the three sets of the above-mentioned input and release coils with individual driving and simultaneous driving.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a cross-sectional view showing the overall configuration of an operating device for a power switchgear according to Embodiment 1 of the present invention. In the figure, the same or corresponding parts as those of the conventional operating device shown in FIG. The description is omitted.
[0022]
In FIG. 1, a vacuum valve 2 is configured by disposing a movable contact 2a and a fixed contact 2b in a vacuum vessel 2c so as to be able to contact and separate, and functions as a vacuum circuit breaker, for example. Three vacuum valves 2 are arranged in parallel with the contact / separation direction of the movable contact 2a and the fixed contact 2b being parallel.
[0023]
The electromagnetic operating unit 20 of the operating device 100 is formed in a rectangular parallelepiped by laminating a large number of rectangular flat thin plates, and three movable core storage spaces 21a are formed in a line at a predetermined pitch, and a movable shaft through hole 21b. Are fixed iron cores 21 that are formed so that the center axis of the hole is perpendicular to the arrangement direction of the movable iron core storage spaces 21a so that the movable iron core storage spaces 21a communicate with the outside, and both end surfaces in the axial direction (electromagnetic force generation surfaces). ) Is formed in an I shape (rod shape) having a flat surface orthogonal to the axial direction, and is inserted into each movable element storage space 21a so as to be movable in the axial direction, and inserted into each movable shaft through hole 21b. The movable shaft 23 is fixed to one end surface of the movable core 22 and the conductive wire is annularly wound a predetermined number of times, and is disposed in each movable core storage space 21 a so as to surround one end side of the movable core 22. Input coil 24 and conducting wire An opening coil 25, a closing coil 25, and an opening coil 25, each of which is configured by winding a predetermined number of times in an annular shape and is disposed in each movable core housing space 21a so as to surround the other end side of the movable core 22. It is comprised from the 3 pairs of permanent magnet 26 arrange | positioned in each movable iron core storage space 21a so that it may oppose on both sides of the movable iron core 22 in the position of between.
[0024]
Here, the fixed iron core 21, the movable iron core 22, and the movable shaft 23 are made of a ferromagnetic material. The movable iron core 22 and the movable shaft 23 are linearly connected coaxially.
In addition, the permanent magnet 26 is affixed to and fixed to the distal end surface of the convex portion 21c projecting from the side wall surface of the movable iron core storage space 21a, and a predetermined gap is provided between the permanent magnet 26 and the side surface of the movable iron core 22 so that a magnetic circuit can be formed. It arrange | positions with a clearance gap. Further, the permanent magnets 26 are magnetized in the direction indicated by the arrow A in FIG. 1, and each pair of permanent magnets 26 is arranged so that the magnetization directions A are opposite to each other.
[0025]
In the electromagnetic operation unit 20 configured as described above, the extending end of each movable shaft 23 from the movable shaft through hole 21b is connected to the insulating rod 27 via a wipe spring 28 as an elastic member. The movable iron core 22, the movable shaft 23, the insulating rod 27, and the movable contact 2a are linearly connected. The insulating rod 27 is made of an electrically insulating material such as ceramic, and electrically insulates the vacuum valve 2 from the electromagnetic operating unit 20 and transmits the driving force of the electromagnetic operating unit 20 to the vacuum valve 2. have.
[0026]
Here, in a state where the movable contact 2a is in contact with the fixed contact 2b and the vacuum valve 2 is turned on (the left and right vacuum valves 2 in FIG. 1), the movable iron core 22 is in the movable iron core storage space 21a as shown in FIG. It is located in the middle-upper (loading position). And the space | gap of the axial direction one end surface (vacuum valve 2 side) of the movable iron core 22 and the upper wall surface (inner wall surface by the side of a vacuum valve) of the movable iron core accommodation space 21a is narrow, and the other end surface of the movable iron core 22 in the axial direction Since the gap with the lower wall surface (the inner wall surface on the anti-vacuum valve side) of the movable iron core storage space 21a is large, the closing-side magnetic circuit 30 is formed by the permanent magnet 26 that goes around the closing coil 24 once. Then, the magnetic flux flows to the closing side magnetic circuit 30 as indicated by an arrow in FIG. 1, and the movable iron core 22 is magnetically attracted to the fixed iron core 21 and is held at the closing position. The contact is applied to the movable contact 2a via the rod 27, and the contact pressure between the movable contact 2a and the fixed contact 2b is secured.
[0027]
On the other hand, in a state where the movable contact 2a is separated from the fixed contact 2b and the vacuum valve 2 is open (the central vacuum valve 2 in FIG. 1), the movable core 22 is located in the movable core housing space 21a and is located in the lower part of FIG. (Open position). The gap between the other end surface in the axial direction of the movable core 22 and the lower wall surface of the movable core housing space 21a is narrow, and the gap between the one end surface in the axial direction of the movable core 22 and the upper wall surface of the movable core housing space 21a is increased. Therefore, the open-side magnetic circuit 31 is formed by the permanent magnet 26 that goes around the open coil 25 once. Then, the magnetic flux flows to the open-side magnetic circuit 31 as indicated by an arrow in FIG. 1, the movable iron core 22 is magnetically attracted to the fixed iron core 21 and held in the open position, and the movable contact 2a is separated from the fixed contact 2b. This is ensured.
[0028]
Next, the opening operation of the vacuum valve 2 by the operating device 100 configured as described above will be described with reference to FIG.
When the vacuum valve 2 is in the on state, the opening coil 25 is energized to form a magnetic circuit 32 that goes around the opening coil 25 as indicated by a one-dot chain line in FIG. At this time, the direction of the magnetic flux flowing through the magnetic circuit 32 coincides with the magnetization direction A of the permanent magnet 26 as indicated by an arrow in FIG. As a result, a magnetic attractive force is generated between the other end surface of the movable iron core 22 and the lower wall surface of the movable iron core storage space 21a, and this magnetic attractive force and the stored force of the wipe spring 28 are movable by the closing side magnetic circuit 30. The holding force of the iron core 22 is overcome, and the movable iron core 22 moves downward in FIG. When the stored force of the wipe spring 28 is released, the movable contact 2a starts to move away from the fixed contact 2b in conjunction with the movement of the movable iron core 22. When the movable iron core 22 reaches the open position, an open-side magnetic circuit 31 is formed as shown in FIG. Therefore, energization to the opening coil 25 is stopped, the movable iron core 22 is held in the open position by the open-side magnetic circuit 31, and the movable contact 2a is separated from the fixed contact 2b.
[0029]
Next, the closing operation of the vacuum valve 2 by the operating device 100 will be described with reference to FIG.
When the vacuum valve 2 is in the open state, the energizing coil 24 is energized to form a magnetic circuit 33 that makes one cycle of the energizing coil 24 as shown by a one-dot chain line in FIG. At this time, the direction of the magnetic flux flowing through the magnetic circuit 33 coincides with the magnetization direction A of the permanent magnet 26 as indicated by an arrow in FIG. Thereby, a magnetic attraction force is generated between one end surface of the movable iron core 22 and the upper wall surface of the movable iron core storage space 21a, and this magnetic attraction force overcomes the holding force of the movable iron core 22 by the open-side magnetic circuit 31, The movable iron core 22 moves upward in FIG. Then, in conjunction with the movement of the movable iron core 22, the movable contact 2a starts to approach the fixed contact 2b. The wipe spring 28 is stored after the movable contact 2a comes into contact with the fixed contact 2b. When the movable iron core 22 reaches the closing position, a closing side magnetic circuit 30 is formed as shown in FIG. Therefore, the energization of the making coil 24 is stopped, the movable iron core 22 is held at the making position by the making side magnetic circuit 30, and the moving contact 2a comes into contact with the fixed contact 2b. Further, the contact pressure between the movable contact 2 a and the fixed contact 2 b is ensured by the stored force of the wipe spring 28.
[0030]
Thus, according to the first embodiment, the magnetic field generated by the opening coil 25 and the closing coil 24 does not become a demagnetizing field for the permanent magnet 26 during the closing / cutting operation. There is no demagnetization and the reliability of the opening and closing operation is improved.
In addition, since the electromagnetic operating unit 20 is configured by housing the three movable iron cores 22 in one fixed iron core 21, the number of parts is reduced, and the operation can be reduced in cost and can be applied to a three-phase power switchgear. A device is obtained.
Further, since the movable iron core 22, the movable shaft 23, the insulating rod 27, and the movable contact 2a are linearly connected, the driving force of the operating device is directly transmitted to the vacuum valve 2 without using a link mechanism, and is opened and closed. The reliability and durability of the operation are improved, and the cost is reduced by reducing the number of parts.
Further, since the movable iron core 22 is composed of an I-type iron core having flat end surfaces in the axial direction, the movable iron core 22 has a simple shape, and operation variation among the three movable iron cores 22 is suppressed, and the opening / closing operation is performed. Reliability is improved.
[0031]
Here, the control circuit power supply of the operating device 100 will be described with reference to FIG. FIG. 4 shows a control circuit power supply for one phase for convenience of explanation.
The control circuit power supply 50 includes a DC power supply 51, a capacitor 52a as an opening power storage, a capacitor 52b as an input power storage, an opening discharge switch 53a, an input discharge switch 53b, and an opening And a control device 34 for controlling opening and closing of the charging discharge switch.
Then, by closing the opening discharge switch 53a by the control device 34, the opening coil 25 is energized and the opening operation is performed. Further, by closing the charging switch 53b by the control device 34, the charging coil 24 is energized and a charging operation is performed.
The control circuit power supply 50 configured as described above is provided for each pair of the opening coil 25 and the closing coil 24, and each pair of the opening and closing discharge switches 53 a and 53 b is individually opened and closed by the control device 34. By controlling, three-phase individual driving is performed.
Further, three pairs of the opening coil 25 and the closing coil 24 are connected in parallel to the control circuit power supply 50 thus configured, and the control device 34 connects the three pairs of the opening and closing discharge switches 53a and 53b. Simultaneous opening and closing control enables simultaneous three-phase driving.
[0032]
In the first embodiment, the control circuit power supply 50 including the capacitors 52a and 52b as the open and input power storages is used, but only the DC power supply 51 can be used. In this case, the circuit configuration is extremely simple as shown in FIG.
In the first embodiment, each pair of permanent magnets 26 is disposed so as to face each other so that the magnetization directions A face each other. However, the magnetization directions A of the pairs of permanent magnets 26 are separated from each other. It may be arranged relative to. In this case, the direction of the energization current to the closing and opening coils 24 and 25 may be reversed from that in the first embodiment.
[0033]
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view of a main part showing an operating device for a power switchgear according to Embodiment 2 of the present invention, and FIG. 7 explains the effect of the operating device for the power switchgear according to Embodiment 2 of the present invention. FIG.
[0034]
In FIG. 6, the movable iron core 22 </ b> A is formed such that one end surface in the axial direction is formed as a flat surface orthogonal to the axial direction, and the other end surface is formed by chamfering the outer periphery of the flat surface orthogonal to the axial direction and the flat surface. A movable iron core storage space is an I-shaped iron core formed in a convex shape having a tapered surface 35a, and an inner shape-shaped recess 36a substantially equal to the outer shape of the other end surface of the movable iron core 22A is opposed to the other end surface of the movable iron core 22A. It is formed on the lower wall surface of 21a.
Other configurations are the same as those in the first embodiment.
[0035]
Here, in the first embodiment, the other end surface of the movable iron core 22 is formed into a flat surface, and the lower wall surface of the movable iron core storage space 21a facing the other end surface of the movable iron core 22 is formed into a flat surface. Therefore, when the opening coil 25 is energized, a magnetic flux is generated between the other end surface of the movable core 22 and the lower wall surface of the movable core storage space 21a, as shown in FIG. And the magnetic flux which generate | occur | produces between the outer peripheral part of the other end of the movable iron core 22 and the lower wall surface of the movable iron core accommodation space 21a spreads outside, and becomes a factor which reduces the electromagnetic force which the leakage component of this magnetic flux generate | occur | produces. ing.
[0036]
According to the second embodiment, the outer peripheral portion of the other end of the movable iron core 22A is formed on the chamfered tapered surface 35a, and the concave portion 36a having an inner shape equivalent to the outer shape of the other end surface of the movable iron core 22A is provided. Since it is formed on the lower wall surface of the movable iron core storage space 21a so as to face the other end surface of the movable iron core 22A, when energizing the opening coil 25, the magnetic flux is as shown in FIG. A leakage component of magnetic flux is generated between the other end surface of the movable iron core 22A and the recess 36a of the movable iron core storage space 21a. Furthermore, the opposing area of the movable iron core 22A and the movable iron core storage space 21a is widened.
Therefore, when the opening coil 25 is energized, the electromagnetic force generated between the other end surface of the movable iron core 22A and the fixed iron core 21 becomes larger than that in the first embodiment, and the opening speed can be increased.
[0037]
In the second embodiment, the recess 36a having an inner shape equivalent to the outer shape of the other end surface of the movable core 22A is formed on the lower wall surface of the movable core storage space 21a, but the recess 36a is omitted. The lower wall surface of the movable iron core storage space 21a may be a flat surface. In this case, when the opening coil 25 is energized, a leakage component of magnetic flux generated between the other end surface of the movable iron core 22A and the lower wall surface of the movable iron core storage space 21a can be reduced as compared with the first embodiment. The opening speed can be increased as compared with the first embodiment.
[0038]
Embodiment 3 FIG.
FIG. 8 is a cross-sectional view of a principal part showing an operating device for a power switchgear according to Embodiment 3 of the present invention.
In FIG. 8, the movable iron core 22B is formed in an I-type iron core having both axial end surfaces as flat surfaces orthogonal to the axial direction, and protrudes from the upper and lower wall surfaces of the movable iron core storage space 21a opposite to the both end surfaces of the movable iron core 22B. Thus, convex portions 37 and 38 having a flat tip surface are formed.
Other configurations are the same as those in the first embodiment.
[0039]
In the third embodiment, since the convex portions 37 and 38 are formed by projecting the upper and lower wall surfaces of the movable core storage space 21a opposite to both end faces of the movable core 22B, the movable core 22B of the movable core storage space 21a The axial gap is shortened. As a result, the axial length of the movable iron core 22B is shortened accordingly, and the weight of the movable iron core 22B can be reduced.
Here, the operation speed of the movable iron core is determined by F = ma (m: mass of the movable part, a: acceleration, F: electromagnetic attraction force).
Therefore, according to the third embodiment, the movable iron core 22B can be reduced in weight without changing the gap distance that becomes a large resistance in the magnetic circuit, so that the opening / closing operation can be speeded up.
[0040]
Embodiment 4 FIG.
In the fourth embodiment, as shown in FIG. 9, the movable iron core 22C is formed such that one end surface in the axial direction is a flat surface orthogonal to the axial direction and the other end surface is a flat surface and flat surface orthogonal to the axial direction. The I-shaped iron core is formed in a convex shape having a tapered surface 35b formed by chamfering the outer peripheral portion of the inner peripheral portion, and the concave portion 36b having an inner shape substantially equal to the outer shape of the other end surface of the movable core 22C is a convex portion. It is formed on the tip surface of 38a.
Other configurations are the same as those in the third embodiment.
[0041]
Therefore, according to the fourth embodiment, in addition to the effects of the third embodiment, the tapered surface 35b is formed on the other end surface of the movable core 22C, and the convex portion 38a is opposed to the other end surface of the movable core 22c. Since the concave portion 36b is formed on the front end surface, a large electromagnetic force can be generated, and the opening speed can be further increased.
[0042]
Embodiment 5. FIG.
In the fifth embodiment, as shown in FIG. 10, the permanent magnet 26 is disposed on the convex portions 37 and 38, respectively. In other words, the pair of permanent magnets 26 are arranged to face each other in the axial direction of the movable iron core 22B with the movable iron core 22B interposed therebetween. Moreover, the convex part 21c of the side wall surface of the movable iron core storage space 21a is extended to the vicinity of the side surface of the movable iron core 22B so as to constitute a magnetic circuit.
Other configurations are the same as those in the third embodiment.
[0043]
In the fifth embodiment, each permanent magnet 26 is magnetized as indicated by an arrow in FIG. 10, so when the movable iron core 22 </ b> B is in the closing position, the permanent magnet 26 disposed on the convex portion 37 is used. As in the first embodiment, a closing-side magnetic circuit that makes one turn of the closing coil 24 is formed, and when the movable iron core 22B is in the open position, the above-described embodiment is achieved by the permanent magnet 26 disposed on the convex portion 38. In the same manner as in FIG. 1, an open-side magnetic circuit that goes around the open coil 25 is formed. Therefore, the vacuum valve 2 can be opened and closed by energizing the opening coil 25 and the closing coil 24 as in the first embodiment.
Therefore, also in the fifth embodiment, the same effect as in the third embodiment can be obtained.
[0044]
In the fifth embodiment, in the third embodiment, the pair of permanent magnets 26 are arranged to face each other in the axial direction of the movable iron core 22B with the movable iron core 22B interposed therebetween. The pair of permanent magnets 26 may be arranged to face each other in the axial direction of the movable iron core 22C with the movable iron core 22C interposed therebetween.
[0045]
Embodiment 6 FIG.
In the sixth embodiment, as shown in FIG. 11, the side wall surface of the movable iron core storage space 21a is a flat surface, and the permanent magnet 26 is attached and fixed to the side wall surface of the movable iron core storage space 21a so as to face each other. The movable iron core 22D, which is arranged and formed in a flat plate shape, is arranged so as to have a predetermined gap in the permanent magnet 26, and the convex portions 37b and 38b have a predetermined gap on both end surfaces in the axial direction of the movable iron core 22D. Projecting from the upper and lower wall surfaces of the movable iron core storage space 21a.
Other configurations are the same as those in the third embodiment.
[0046]
Also in the sixth embodiment, since the weight of the movable iron core 22D can be reduced, the same effect as in the third embodiment can be obtained.
Further, according to the sixth embodiment, since the attachment surface of the permanent magnet 26 is a flat surface, the attachment of the permanent magnet 26 is facilitated.
[0047]
【The invention's effect】
Since this invention is comprised as mentioned above, there exists an effect as described below.
[0048]
According to the present invention, there is provided an operating device for a power switchgear in which vacuum valves having movable contacts and fixed contacts provided in a vacuum container so as to be able to contact and separate are arranged in three rows,
Three insulating rods fixed to each of the movable contacts;
Three movable iron cores that are relatively connected to each of the insulating rods and made of a magnetic material having both end faces in the axial direction as electromagnetic force generation surfaces;
The three movable iron cores are accommodated in a line in a direction perpendicular to the axial direction of the movable iron core so that the axial direction of the movable iron core is parallel and movable in the axial direction of the movable iron core. One fixed iron core made of magnetic material,
Three elastic members interposed between the insulating rod and the movable iron core to urge the movable contact in a direction of pressing the movable contact against the fixed contact;
In a state where the vacuum valve is placed in a state where the movable core is opposed to the fixed core and the movable contact is in contact with the fixed contact, the movable core is placed against the fixed core. A closing-side magnetic circuit that magnetically attracts the movable contact in a direction in which the movable contact is pressed against the fixed contact is configured, and when the vacuum valve is in an open state in which the movable contact is separated from the fixed contact, Three pairs of permanent magnets constituting an open-side magnetic circuit for magnetically attracting the movable iron core in a direction to separate the movable contact from the fixed contact;
Three throwing coils that are wound around the side of the movable core that presses the movable contact against the fixed contact, and that magnetically attracts the movable core in the direction of pressing the movable contact against the fixed contact when energized. When,
Three open coils that are wound on the side of the movable core that is separated from the fixed contact and that magnetically attracts the movable core in the direction of separating the movable contact from the fixed contact when energized. And
Since the magnetic flux generated when the energizing coil and the opening coil are energized flows through the permanent magnet in the magnetization direction of the permanent magnet, the demagnetization of the permanent magnet during energization of the opening and closing coils is reduced. Operation of the power switchgear that can open and close the vacuum valve for three phases by three movable iron cores incorporated in one fixed iron core, increase the reliability of the opening and closing operation, and reduce the number of parts A device is obtained.
[0049]
Further, the arrangement direction of the movable iron cores coincides with the arrangement direction of the vacuum valves, and the movable iron cores, the elastic members, and the insulating rods are linearly arranged for the respective vacuum valves. No mechanism is required, and reliability and durability can be improved and costs can be reduced by reducing the number of parts.
[0050]
Further, since the movable iron core is an I-type iron core in which both electromagnetic force generation surfaces are formed on a flat surface perpendicular to the axis, the shape of the movable iron core is simplified, and variations in operation for each combination are suppressed. Reliability is improved.
[0051]
Further, since the portion of the fixed iron core facing the both electromagnetic force generation surfaces is formed in a convex shape, the movable iron core is reduced in weight, and the opening / closing operation speed is increased.
[0052]
The movable iron core is formed such that the electromagnetic force generation surface on the input side is a flat surface orthogonal to the axis, and the flat surface in which the electromagnetic generation surface on the open side is orthogonal to the axis and the edge of the flat surface Since it is an I-type iron core formed in a convex surface shape having a taper surface having a predetermined angle with respect to the shaft center formed in the part, a large electromagnetic force can be generated when the opening coil is energized, and the coil is opened. The operation speed is increased.
[0053]
The portion of the fixed core facing the two electromagnetic force generation surfaces is formed in a convex shape, and the surface facing the electromagnetic generation surface on the open side of the fixed iron core is the outer shape of the electromagnetic generation surface on the open side. Because it is formed in the concave surface shape of the inner shape that roughly matches the shape, the weight of the movable iron core is reduced, the opening and closing operation speed is increased, and a large electromagnetic force is generated when the opening coil is energized The opening operation speed can be further increased.
[0054]
Further, since each pair of the permanent magnets is disposed with the movable iron core sandwiched in a direction orthogonal to the axis of the movable iron core, the open side and closing side magnetic circuits can be easily configured.
[0055]
Further, since each pair of the permanent magnets is disposed with the movable iron core sandwiched in the axial direction of the movable iron core, the open side and closing side magnetic circuits can be configured easily.
[0056]
The movable iron core is a flat iron core in which both electromagnetic force generating surfaces are formed on a flat surface perpendicular to the axis, and a portion of the fixed iron core facing the both electromagnetic force generating surfaces is formed in a convex shape. The portion of the fixed iron core that faces the side surface of the movable iron core is formed as a flat surface, and each pair of the permanent magnets sandwiches the movable iron core in a direction perpendicular to the axis of the movable iron core. Since the movable iron core is lightened, the opening / closing operation speed is increased, and the arrangement of the permanent magnets is simplified.
[0057]
In addition, since the control circuit power supply that can arbitrarily combine the individual driving and simultaneous driving of the three sets of the input and release coils is provided, the operation according to the required drive characteristics is possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an overall configuration of an operating device for a power switchgear according to Embodiment 1 of the present invention;
FIG. 2 is a view for explaining the opening operation of the vacuum valve by the operating device for the power switch according to the first embodiment of the present invention.
FIG. 3 is a view for explaining the operation of turning on the vacuum valve by the operating device for the power switchgear according to Embodiment 1 of the present invention;
FIG. 4 is a circuit diagram showing a control circuit power supply of the operating device for the power switchgear according to Embodiment 1 of the present invention;
FIG. 5 is a circuit diagram showing an embodiment of a control circuit power supply of the operating device for the power switchgear according to Embodiment 1 of the present invention;
FIG. 6 is a cross-sectional view of a main part showing an operating device for a power switchgear according to Embodiment 2 of the present invention;
FIG. 7 is a diagram illustrating an effect in the operating device of the power switchgear according to Embodiment 2 of the present invention.
FIG. 8 is a cross-sectional view of a main part showing an operating device for a power switchgear according to Embodiment 3 of the present invention;
FIG. 9 is a cross-sectional view of a principal part showing an operating device for a power switchgear according to Embodiment 4 of the present invention;
FIG. 10 is a cross-sectional view of a main part showing an operating device for a power switchgear according to Embodiment 5 of the present invention;
FIG. 11 is a cross-sectional view of a main part showing an operating device for a power switchgear according to Embodiment 6 of the present invention;
FIG. 12 is a schematic cross-sectional view showing a conventional operating device for a power switchgear.
FIG. 13 is an explanatory diagram of an opening operation of an operation device of a conventional power switchgear.
FIG. 14 is an explanatory diagram of a closing operation of an operation device for a conventional power switchgear.
[Explanation of symbols]
2 Vacuum valve, 2a Movable contact, 2b Fixed contact, 2c Vacuum container, 20 Electromagnetic operation part, 21 Fixed iron core, 22, 22A, 22B, 22C, 22D Movable iron core, 24 Input side coil, 25 Open side coil, 26 Permanent magnet, 27 Insulating rod, 28 Wipe spring (elastic member), 30 Input side magnetic circuit, 31 Open side magnetic circuit, 35a, 35b Tapered surface, 36a, 36b Concavity, 37, 37b, 38, 38a, 38b Convex, 50 Control circuit power supply, 100 switchgear, A magnetization direction.

Claims (10)

真空容器内に接離可能に設けられた可動接触子と固定接触子とを有する真空バルブが3列に並設されている電力用開閉装置の操作装置であって、
上記可動接触子のそれぞれに固定された3つの絶縁ロッドと、
上記絶縁ロッドのそれぞれに相対的に接続され、軸方向の両端面を電磁力発生面とする磁性体からなる3つの可動鉄心と、
上記3つの可動鉄心が、該可動鉄心の軸方向を平行にして、該可動鉄心の軸方向に移動可能に、かつ、該可動鉄心の軸方向と直交する方向に1列に並んで収納された磁性体からなる1つの固定鉄心と、
上記絶縁ロッドと上記可動鉄心との間にそれぞれ介装されて上記可動接触子を上記固定接触子に押し付ける方向に付勢する3つの弾性部材と、
上記可動鉄心のそれぞれを挟んで対向して上記固定鉄心に配設され、上記可動接触子が上記固定接触子に当接した上記真空バルブの投入状態では、上記固定鉄心に対して該可動鉄心を該可動接触子を該固定接触子に押し付ける方向に磁気吸引する投入側磁気回路を構成し、上記可動接触子が上記固定接触子から切り離された上記真空バルブの開放状態では、上記固定鉄心に対して該可動鉄心を該可動接触子を該固定接触子から切り離す方向に磁気吸引する開放側磁気回路を構成する3対の永久磁石と、
上記可動鉄心のそれぞれの上記可動接触子を上記固定接触子に押し付ける側に巻装され、通電時に該可動鉄心を該可動接触子を該固定接触子に押し付ける方向に磁気吸引する3つの投入用コイルと、
上記可動鉄心のそれぞれの上記可動接触子を上記固定接触子から切り離す側に巻装され、通電時に該可動鉄心を該可動接触子を該固定接触子から切り離す方向に磁気吸引する3つの開放用コイルとを備え、
上記投入用コイルおよび開放用コイルの通電時に発生する磁束が上記永久磁石を上記永久磁石の磁化方向に流れるように構成されていることを特徴とする電力用開閉装置の操作装置。
An operating device for a power switching device in which vacuum valves having a movable contact and a fixed contact provided in a vacuum vessel so as to be able to contact and separate are arranged in three rows,
Three insulating rods fixed to each of the movable contacts;
Three movable iron cores that are relatively connected to each of the insulating rods and made of a magnetic material having both end faces in the axial direction as electromagnetic force generation surfaces;
The three movable iron cores are accommodated in a line in a direction perpendicular to the axial direction of the movable iron core so that the axial direction of the movable iron core is parallel and movable in the axial direction of the movable iron core. One fixed iron core made of magnetic material,
Three elastic members interposed between the insulating rod and the movable iron core to urge the movable contact in a direction of pressing the movable contact against the fixed contact;
In a state where the vacuum valve is placed in a state where the movable core is opposed to the fixed core and the movable contact is in contact with the fixed contact, the movable core is placed against the fixed core. A closing-side magnetic circuit that magnetically attracts the movable contact in a direction in which the movable contact is pressed against the fixed contact is configured, and when the vacuum valve is in an open state in which the movable contact is separated from the fixed contact, Three pairs of permanent magnets constituting an open-side magnetic circuit for magnetically attracting the movable iron core in a direction to separate the movable contact from the fixed contact;
Three throwing coils that are wound around the side of the movable core that presses the movable contact against the fixed contact, and that magnetically attracts the movable core in the direction of pressing the movable contact against the fixed contact when energized. When,
Three open coils that are wound on the side of the movable core that is separated from the fixed contact and that magnetically attracts the movable core in the direction of separating the movable contact from the fixed contact when energized. And
An operating device for a power switchgear, characterized in that a magnetic flux generated upon energization of the closing coil and the opening coil flows through the permanent magnet in the magnetization direction of the permanent magnet.
上記可動鉄心の配列方向が上記真空バルブの配列方向に一致し、該真空バルブのそれぞれに対して、上記可動鉄心、上記弾性部材および上記絶縁ロッドが直線的に配置されていることを特徴とする請求項1記載の電力用開閉装置の操作装置。The arrangement direction of the movable iron cores coincides with the arrangement direction of the vacuum valves, and the movable iron cores, the elastic members, and the insulating rods are linearly arranged for the respective vacuum valves. The operating device of the power switchgear according to claim 1. 上記可動鉄心は、上記両電磁力発生面が軸心に直交する平坦面に形成されたI型鉄心であることを特徴とする請求項1または請求項2記載の電力用開閉装置の操作装置。3. An operating device for a power switchgear according to claim 1, wherein the movable iron core is an I-type iron core in which both electromagnetic force generation surfaces are formed on a flat surface orthogonal to the axis. 上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成されていることを特徴とする請求項3記載の電力用開閉装置の操作装置。4. A power switch operating device according to claim 3, wherein a portion of the fixed iron core facing the both electromagnetic force generation surfaces is formed in a convex shape. 上記可動鉄心は、投入側の上記電磁力発生面が軸心に直交する平坦面に形成され、かつ、開放側の上記電磁発生面が軸心に直交する平坦面と該平坦面の縁部に形成された軸心に対して所定角度を有するテーパ面とを有する凸状の面形状に形成されたI型鉄心であることを特徴とする請求項1または請求項2記載の電力用開閉装置の操作装置。The movable iron core is formed on a flat surface in which the electromagnetic force generating surface on the input side is orthogonal to the axial center, and the flat surface in which the electromagnetic generating surface on the open side is orthogonal to the axial center and the edge of the flat surface. The power switchgear according to claim 1 or 2, wherein the power switchgear is an I-type iron core formed in a convex surface shape having a tapered surface having a predetermined angle with respect to the formed shaft center. Operating device. 上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成され、かつ、上記固定鉄心の開放側の上記電磁発生面に対向する面が開放側の上記電磁発生面の外形形状に略一致する内形形状の凹状の面形状に形成されていることを特徴とする請求項5記載の電力用開閉装置の操作装置。The portion of the fixed iron core that faces both the electromagnetic force generation surfaces is formed in a convex shape, and the surface that faces the electromagnetic generation surface on the open side of the fixed iron core is the outer shape of the electromagnetic generation surface on the open side. 6. The operating device for an electric power switch according to claim 5, wherein the operating device is formed in a concave surface shape having an inner shape substantially coincident. 上記永久磁石の各対が、上記可動鉄心の軸心と直交する方向で該可動鉄心を挟んで配置されていることを特徴とする請求項1乃至請求項6のいずれかに記載の電力用開閉装置の操作装置。7. The electric power opening and closing according to claim 1, wherein each pair of the permanent magnets is disposed so as to sandwich the movable iron core in a direction orthogonal to the axis of the movable iron core. Device operating device. 上記永久磁石の各対が、上記可動鉄心の軸心方向で該可動鉄心を挟んで配置されていることを特徴とする請求項1乃至請求項6のいずれかに記載の電力用開閉装置の操作装置。The operation of the power switchgear according to any one of claims 1 to 6, wherein each pair of the permanent magnets is disposed so as to sandwich the movable iron core in the axial direction of the movable iron core. apparatus. 上記可動鉄心は上記両電磁力発生面が軸心に直交する平坦面に形成され平板状の鉄心であり、上記固定鉄心の上記両電磁力発生面に対向する部位が凸形状に形成され、上記固定鉄心の上記可動鉄心の側面に対向する部位が平坦面に形成され、かつ、上記永久磁石の各対が該可動鉄心の軸心と直交する方向で該可動鉄心を挟んで上記固定鉄心の平坦面に貼り付け固定されていることを特徴とする請求項1又は請求項2記載の電力用開閉装置の操作装置。The movable iron core is a flat iron core in which both electromagnetic force generating surfaces are formed on a flat surface orthogonal to the axis, and a portion of the fixed iron core facing the both electromagnetic force generating surfaces is formed in a convex shape. A portion of the fixed iron core facing the side surface of the movable iron core is formed on a flat surface, and each pair of the permanent magnets is flat with the movable iron core sandwiched in a direction perpendicular to the axis of the movable iron core. The operating device for a power switchgear according to claim 1 or 2, wherein the operation device is fixed on a surface. 3組の上記投入用および開放用コイルの個別駆動および同時駆動を任意に組み合わせることができる制御回路電源を備えていることを特徴とする請求項1乃至請求項9のいずれかに記載の電力用開閉装置の操作装置。10. The power circuit according to claim 1, further comprising a control circuit power source capable of arbitrarily combining three sets of the input and release coils individually and simultaneously. Switch operating device.
JP2001199059A 2001-06-29 2001-06-29 Power switchgear operating device Expired - Lifetime JP4158876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001199059A JP4158876B2 (en) 2001-06-29 2001-06-29 Power switchgear operating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001199059A JP4158876B2 (en) 2001-06-29 2001-06-29 Power switchgear operating device

Publications (2)

Publication Number Publication Date
JP2003016887A JP2003016887A (en) 2003-01-17
JP4158876B2 true JP4158876B2 (en) 2008-10-01

Family

ID=19036402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001199059A Expired - Lifetime JP4158876B2 (en) 2001-06-29 2001-06-29 Power switchgear operating device

Country Status (1)

Country Link
JP (1) JP4158876B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483416B2 (en) * 2004-06-04 2010-06-16 三菱電機株式会社 Electromagnetic actuator, switch and switch using the same
JP4686155B2 (en) * 2004-09-17 2011-05-18 株式会社東芝 Switch operating power supply
JP4722601B2 (en) * 2005-07-15 2011-07-13 三菱電機株式会社 Electromagnetic operation mechanism, power switch using the same, and power switch
JP4975319B2 (en) * 2005-12-27 2012-07-11 株式会社東芝 Vacuum circuit breaker
JP5130248B2 (en) 2009-04-02 2013-01-30 三菱電機株式会社 Switch operating device and three-phase switch
JP5295858B2 (en) * 2009-05-08 2013-09-18 三菱電機株式会社 Electromagnetic actuator, electromagnetically operated switchgear using the same, and control method thereof
CN101877289B (en) * 2010-05-18 2011-07-06 湖北网安科技有限公司 Seal vacuum circuit breaker of outdoor high-voltage permanent-magnetic mechanism

Also Published As

Publication number Publication date
JP2003016887A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
US9275815B2 (en) Relay having two switches that can be actuated in opposite directions
US9190234B2 (en) Electromagnetic actuator, in particular for a medium voltage switch
JP5351982B2 (en) Electromagnetic relay assembly
KR100899432B1 (en) An economy in power consumption type electromagnetic contactor
JP4066040B2 (en) Electromagnet and operation mechanism of switchgear using the same
RU2012119507A (en) ELECTROMAGNETIC DRIVE WITH TWO STABLE STATES FOR MEDIUM-VOLTAGE AUTOMATIC CIRCUIT BREAKER
JP4667664B2 (en) Power switchgear
JP4158876B2 (en) Power switchgear operating device
WO2019181359A1 (en) Electromagnetic relay
JP2003151826A (en) Electromagnet and open/close device
JP2006222438A (en) Electromagnet and operating mechanism of switching device using the same
JP2006511047A (en) Electromagnetic drive device
JP4629271B2 (en) Operation device for power switchgear
JPH02170601A (en) Microwave c type changer and s type changer
US6906605B2 (en) Electromagnet system for a switch
JP4515664B2 (en) Power switchgear operating device
JP2002217026A (en) Electromagnet and operating mechanism of switchgear using the electromagnet
CA2874724C (en) Electrical switching apparatus and relay including a ferromagnetic or magnetic armature having a tapered portion
JPH0428134A (en) Remote control relay
RU121642U1 (en) BISTABLE ELECTROMAGNET OF THE DRIVE OF THE SWITCHING DEVICE
JP3004284B2 (en) Horizontal needle control device for Jacquard machine
JP2003031088A (en) Magnetic drive mechanism for switch device
JP4483416B2 (en) Electromagnetic actuator, switch and switch using the same
RU2411600C2 (en) Two-position electromagnet
RU121641U1 (en) BISTABLE ELECTROMAGNET OF THE DRIVE OF THE SWITCHING DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

R150 Certificate of patent or registration of utility model

Ref document number: 4158876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term