JP2007026686A - Battery pack and charge control method for it - Google Patents
Battery pack and charge control method for it Download PDFInfo
- Publication number
- JP2007026686A JP2007026686A JP2005202647A JP2005202647A JP2007026686A JP 2007026686 A JP2007026686 A JP 2007026686A JP 2005202647 A JP2005202647 A JP 2005202647A JP 2005202647 A JP2005202647 A JP 2005202647A JP 2007026686 A JP2007026686 A JP 2007026686A
- Authority
- JP
- Japan
- Prior art keywords
- salt concentration
- voltage value
- battery
- charging
- predetermined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は直列に接続された複数の二次電池からなる組電池の充電制御方法及び充電制御システムに関する。さらに、かかる充電制御方法及び充電制御システムによって充電が制御可能な組電池に関する。 The present invention relates to a charge control method and a charge control system for an assembled battery including a plurality of secondary batteries connected in series. Furthermore, the present invention relates to an assembled battery whose charging can be controlled by the charging control method and the charging control system.
複数の二次電池が直列接続された組電池は、高出力が得られる電源として、車両搭載用電源、或いはパソコン及び携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池を複数直列に接続した組電池は、高出力電源として好ましく用いられている。
ところで、前述したような装置に搭載される組電池は、直列接続されたそのままの状態で充電されることが多い。しかし、組電池を構成する個々の電池(以下「単電池」という。)には、電池製造時の僅かな条件の違いや使用時に生じる僅かな変化によって電池性能に多少のバラツキがある。このため、単電池間の充電容量に個体差が生じる場合がある。
充電容量の異なる複数の単電池が直列状態のままで充電処理されると、充電容量の少ない特定の電池が先に充電されて過充電状態になる。そして、該特定の電池の性能が過充電によって選択的に低下する。特定の電池の電池性能が低下すると、その電池を包含した組電池自体の性能が低下し、該組電池の寿命が短くなりやすくなる。
種々の装置(電気自動車やハイブリッド自動車等の車両、或いはパソコン等の携帯端末)の電源として組電池を使用する場合、安全性確保やコスト低減のための長寿命化は重要であり、個々の単電池を過充電から保護することは一つの大きな課題である。
An assembled battery in which a plurality of secondary batteries are connected in series is increasing in importance as a power source for mounting on a vehicle or a power source for a personal computer and a portable terminal as a power source for obtaining a high output. In particular, an assembled battery in which a plurality of lithium secondary batteries that are lightweight and have a high energy density are connected in series is preferably used as a high-output power source.
By the way, an assembled battery mounted on an apparatus as described above is often charged as it is connected in series. However, individual batteries constituting the assembled battery (hereinafter referred to as “single cells”) have some variations in battery performance due to slight differences in conditions during battery manufacture and slight changes that occur during use. For this reason, an individual difference may arise in the charge capacity between single cells.
When a plurality of single cells having different charge capacities are charged in a serial state, a specific battery having a small charge capacity is charged first to be overcharged. And the performance of this specific battery selectively falls by overcharge. When the battery performance of a specific battery is lowered, the performance of the assembled battery itself including the battery is lowered, and the life of the assembled battery tends to be shortened.
When using an assembled battery as a power source for various devices (vehicles such as electric vehicles and hybrid vehicles, or portable terminals such as personal computers), it is important to ensure safety and extend the life for cost reduction. Protecting the battery from overcharging is a major challenge.
この課題に対し、特許文献1には、充電に際して、組電池を構成する電池のそれぞれに端子電圧を測定するモニターを接続し、個々の電池毎に満充電状態を見極めて充電を停止する制御方法が記載されている。かかる制御方法では、各電池毎に電圧モニターや充電停止等の切り替えに必要なスイッチを備える必要があり、充電制御に必要な回路が複雑化してコストが高くなる問題がある。 In response to this problem, Patent Document 1 discloses a control method in which a monitor for measuring a terminal voltage is connected to each of the batteries constituting the assembled battery, and the charging is stopped by checking the full charge state for each battery. Is described. In such a control method, each battery needs to be provided with a switch necessary for switching, such as voltage monitoring and charging stop, and there is a problem that a circuit necessary for charge control becomes complicated and cost increases.
そこで、本発明は上記課題に鑑みてなされたものであり、その目的は、直列に接続された複数の単電池からなる組電池を充電する際に、特定の電池が選択的に過充電されないように制御する充電制御方法と、該制御方法を効果的に実現し得るシステムと、前記方法及びシステムに適用し得る組電池を提供することである。 Therefore, the present invention has been made in view of the above problems, and its purpose is to prevent a specific battery from being selectively overcharged when charging an assembled battery composed of a plurality of unit cells connected in series. The present invention provides a charge control method for controlling the control method, a system that can effectively realize the control method, and a battery pack that can be applied to the method and system.
本発明者は、電解質に含まれる支持塩の濃度が低く設定された電池は、充電時における電圧上昇が早いことを見出し、本発明を完成するに至った。
本発明によって提供される組電池の充電制御方法は、充放電可能な二次電池を単電池とし、該単電池を複数個直列に接続してなる組電池の充電制御方法である。
この方法では、前記組電池として電解質中の塩濃度が所定レベルである単電池のほかに該所定レベルの塩濃度よりも低いレベルの塩濃度に設定された充電制御用単電池が少なくとも一つ含まれた組電池を用い、その充電制御用単電池の電圧値をモニタリングする。
そして、該モニタリングにより、前記充電制御用単電池の電圧値が所定の電圧値よりも低いときには充電処理を行い、該充電制御用単電池の電圧値が所定の電圧値に達したときには充電処理を停止することを特徴とする。
The present inventor has found that a battery in which the concentration of the supporting salt contained in the electrolyte is set low has a rapid voltage increase during charging, and has completed the present invention.
The battery pack charge control method provided by the present invention is a battery pack charge control method in which a chargeable / dischargeable secondary battery is a single battery and a plurality of the single batteries are connected in series.
In this method, the assembled battery includes at least one unit cell for charge control set to a salt concentration lower than the predetermined salt concentration in addition to the unit cell having a predetermined salt concentration in the electrolyte. Using the assembled battery, the voltage value of the charging control cell is monitored.
Then, according to the monitoring, a charging process is performed when the voltage value of the charging control cell is lower than a predetermined voltage value, and the charging process is performed when the voltage value of the charging control cell reaches a predetermined voltage value. It is characterized by stopping.
なお、本明細書中において「二次電池」とは、繰り返し充電可能な電池一般をいい、リチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池等のいわゆる蓄電池を包含する。
また、組電池に含まれる複数の単電池は、典型的には、実質的に同一の構成要素(例えば、正極、負極及び電解質の材料や配合比等)からなる同規格の単電池である。なお、充電制御用単電池として用いられる単電池は、電解質の塩濃度が低く設定されている点で他の単電池と異なるが、その他の要素については同規格で構成された単電池であり得る。
かかる構成の充電制御方法は、充電の際、低塩濃度の電池(本発明に係る充電制御用単電池)の電圧上昇が他の単電池よりも早いことを利用した方法である。事前に低塩濃度の充電制御用単電池を組み込んだ組電池は、電位上昇の早い充電制御用単電池の電圧値が所定の電圧値に達したときに充電を停止することで、他の単電池が所定の電圧以上になることを防止することができる。従って、従来のように、組電池に含まれるすべての単電池の電圧値を監視しなくても各単電池の過充電が防止され、単電池の劣化が防止され得る。これにより、個々の単電池の寿命が長くなり、結果として組電池全体の長寿命化が実現される。
In this specification, “secondary battery” refers to a battery that can be repeatedly charged, and includes so-called storage batteries such as lithium secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, and lead-acid batteries.
In addition, the plurality of single cells included in the assembled battery are typically single cells of the same standard made up of substantially the same constituent elements (for example, positive electrode, negative electrode, electrolyte material, blending ratio, etc.). In addition, the unit cell used as the unit cell for charge control is different from other unit cells in that the salt concentration of the electrolyte is set low, but the other components may be unit cells configured according to the same standard. .
The charge control method having such a configuration is a method using the fact that the voltage increase of the low salt concentration battery (charge control cell according to the present invention) is faster than that of the other cells when charging. An assembled battery in which a low-salt concentration cell for charging control is incorporated in advance, stops charging when the voltage value of the charging control cell having a fast potential rise reaches a predetermined voltage value, so that other cells It is possible to prevent the battery from exceeding a predetermined voltage. Therefore, overcharging of each unit cell can be prevented and deterioration of the unit cell can be prevented without monitoring the voltage values of all the unit cells included in the assembled battery as in the prior art. As a result, the life of each individual cell is increased, and as a result, the life of the entire assembled battery is extended.
本発明はまた、組電池の充電制御システムを提供する。
ここで開示される充電制御システムは、充放電可能な二次電池を単電池とし、該単電池を複数個直列に接続してなる組電池の充電制御システムであり、前述した充電制御方法を好適に実施し得るシステムである。
本システムに適用される組電池は、電解質中の塩濃度が所定レベルである単電池のほかに該所定レベルの塩濃度よりも低いレベルの塩濃度に設定された充電制御用単電池が少なくとも一つ含まれた組電池である。
このシステムは、組電池に充電電力を印加する充電装置と、前記充電制御用単電池の電圧値を測定し得る電圧測定手段とを備える。また、前記充電装置及び前記電圧測定手段に接続された制御部であって、前記電圧測定手段により測定された電圧値が所定の電圧値よりも低いときには組電池を充電し、該電圧値が所定の電圧値に達したときには充電を停止するように充電処理を制御する制御部を備える。即ち、ここで開示されるシステムは、制御部によって前記組電池の充電を制御し得るように構成されている。
かかる構成のシステムによると、充電制御用単電池の電圧値を監視することによって、組電池全体の充電処理を適切に行なうことができる。
The present invention also provides an assembled battery charging control system.
The charge control system disclosed here is a battery pack charge control system in which a chargeable / dischargeable secondary battery is a single battery and a plurality of the single batteries are connected in series, and the charge control method described above is suitable. It is a system that can be implemented.
In the assembled battery applied to the present system, in addition to the unit cell having a predetermined salt concentration in the electrolyte, at least one unit cell for charge control set to a salt concentration lower than the predetermined salt concentration is used. One assembled battery.
This system includes a charging device that applies charging power to the assembled battery, and voltage measuring means that can measure the voltage value of the charging control cell. And a control unit connected to the charging device and the voltage measuring unit, wherein the battery pack is charged when the voltage value measured by the voltage measuring unit is lower than a predetermined voltage value, and the voltage value is A control unit that controls the charging process so as to stop the charging when the voltage value reaches the above value. That is, the system disclosed here is configured so that charging of the assembled battery can be controlled by the control unit.
According to the system having such a configuration, it is possible to appropriately charge the entire assembled battery by monitoring the voltage value of the charging control cell.
前記制御部には充電停止後の経過時間をカウントするカウンターを更に備えることができる。かかる制御部を備えたシステムは、前記カウンターが所定の経過時間をカウントしたときに前記電圧測定手段によって前記充電制御用単電池の電圧値が測定されるように設定される。そして、該電圧値が所定の電圧値よりも低いときには充電処理が行われ、該電圧値が所定の電圧値又はそれ以上であるときには経過時間のカウントがリセットされるように構成される。
かかる構成のシステムによると、組電池の使用の如何を問わず、所定の期間が経過した組電池の充電状態を確認することができる。また、充電制御用単電池の電圧値を定期的に測定することで組電池の充電の必要性が確認できるため、不要な充電処理による組電池の劣化を防止することができる。
The control unit may further include a counter that counts an elapsed time after stopping charging. The system including such a control unit is set so that the voltage value of the charging control cell is measured by the voltage measuring means when the counter counts a predetermined elapsed time. The charging process is performed when the voltage value is lower than the predetermined voltage value, and the elapsed time count is reset when the voltage value is equal to or higher than the predetermined voltage value.
According to the system having such a configuration, the state of charge of the assembled battery after a predetermined period can be confirmed regardless of whether the assembled battery is used. Moreover, since the necessity of charge of an assembled battery can be confirmed by measuring the voltage value of the cell for charge control regularly, deterioration of an assembled battery by unnecessary charge processing can be prevented.
また、本発明は、本発明に係る充電制御方法及び充電制御システムに適用し得る組電池を提供する。
ここで開示される組電池には、充放電可能な二次電池である単電池が複数個直列に接続されており、前記複数の単電池には電解質中の塩濃度が所定レベルである単電池のほかに該所定レベルの塩濃度よりも低いレベルの塩濃度(低塩濃度)に設定された単電池が少なくとも一つ含まれている。
かかる構成の組電池によれば、上述した充電制御方法や充電制御システムを好適に実施することができる。
The present invention also provides an assembled battery that can be applied to the charge control method and the charge control system according to the present invention.
In the assembled battery disclosed herein, a plurality of single cells, which are chargeable / dischargeable secondary batteries, are connected in series, and the plurality of single cells have a single concentration of salt in the electrolyte. In addition to the above, at least one unit cell set to a salt concentration (low salt concentration) lower than the predetermined salt concentration is included.
According to the assembled battery having such a configuration, the above-described charge control method and charge control system can be suitably implemented.
ここで開示される発明は、特にリチウム二次電池に好適に適用することができる。即ち本発明により提供される充電制御方法、充電制御システム及び組電池においての好適な一態様では、前記単電池がリチウムイオンを吸蔵及び放出し得る正極活物質を含む正極と、リチウムイオンを吸蔵及び放出し得る負極活物質を含む負極と、リチウム塩を含む非水系電解質とを備えるリチウム二次電池である。好ましくは、前記リチウム塩が六フッ化リン酸リチウム(LiPF6)である。また、特に好ましくは、前記所定レベルの塩濃度が1.0〜1.5mol/Lであり、前記低いレベルの塩濃度が該所定レベルの50〜80%の塩濃度である。前記低いレベルの塩濃度が0.8mol/L以下であることが更に好適である。
リチウム二次電池は、エネルギー密度が高く高出力である。このため、単電池としてリチウム二次電池を用いた組電池は、少ない単電池の数で高エネルギー密度、高出力の組電池を構成することができる。このため、組電池自体を小型軽量化することができ、好ましい。
また、LiPF6をリチウム塩として用いた電解質を備えたリチウム二次電池から成る組電池は、上述した充電制御方法及び充電制御システムにを特に好適に実施することができる。
The invention disclosed herein can be suitably applied particularly to a lithium secondary battery. That is, in a preferred aspect of the charge control method, the charge control system and the assembled battery provided by the present invention, the unit cell includes a positive electrode containing a positive electrode active material capable of occluding and releasing lithium ions, and occluding and absorbing lithium ions. A lithium secondary battery comprising a negative electrode containing a negative electrode active material that can be released and a non-aqueous electrolyte containing a lithium salt. Preferably, the lithium salt is lithium hexafluorophosphate (LiPF 6 ). Particularly preferably, the salt concentration at the predetermined level is 1.0 to 1.5 mol / L, and the salt concentration at the low level is 50 to 80% of the predetermined level. More preferably, the low level salt concentration is 0.8 mol / L or less.
Lithium secondary batteries have high energy density and high output. For this reason, the assembled battery using a lithium secondary battery as a single battery can constitute a high energy density and high output assembled battery with a small number of single batteries. For this reason, the assembled battery itself can be reduced in size and weight, which is preferable.
Also, the battery pack comprising a LiPF 6 lithium secondary battery including an electrolyte used as the lithium salt can be particularly suitably carried out in the charge control method and charge control system described above.
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、充電制御用単電池の電解質の塩濃度)以外の事柄であって本発明の実施に必要な事柄(例えば、充電装置における電源の種類)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than the matters specifically mentioned in the present specification (for example, the salt concentration of the electrolyte of the battery for charge control) and matters necessary for the implementation of the present invention (for example, the type of power source in the charging device) Can be understood as a design matter of those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
本発明に係る組電池は、充放電可能な二次電池を単電池とし、該単電池を複数個直列に接続してなる組電池であって、充電制御用単電池として他の単電池の電解質の塩濃度よりも低い塩濃度に設定された電解質を含む単電池が備えられていることを特徴とする。従って、本発明に係る組電池は、上述した特徴を有するものである限り、他の構成要素や製造プロセスの内容に特に制限はない。
ここで開示される組電池に搭載される二次電池(単電池)は、充放電可能な蓄電池であれば特に限定されない。例えば、リチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池等が挙げられる。特に、リチウム二次電池は高エネルギー密度で高出力電圧であるため、構成する単電池の数が少なくても高性能な組電池を実現することができる。
A battery pack according to the present invention is a battery pack in which a chargeable / dischargeable secondary battery is a single battery and a plurality of the single batteries are connected in series, and the electrolyte of another single battery is used as a charge control single battery. A unit cell including an electrolyte set to a salt concentration lower than the salt concentration is provided. Therefore, as long as the assembled battery according to the present invention has the above-described characteristics, there is no particular limitation on the contents of other components and manufacturing processes.
The secondary battery (unit cell) mounted on the assembled battery disclosed herein is not particularly limited as long as it is a chargeable / dischargeable storage battery. For example, a lithium secondary battery, a nickel hydride battery, a nickel cadmium battery, a lead storage battery, and the like can be given. In particular, since the lithium secondary battery has a high energy density and a high output voltage, a high-performance assembled battery can be realized even if the number of unit cells is small.
充電制御用単電池の塩濃度の設定は、適用される二次電池、その電解質に含まれる電解質塩の種類等によって異なり得る。例えば、リチウム二次電池を単電池として用いた組電池の充電制御を行う場合(例えば電解質塩がLiPF6である場合)、組電池の主な単電池の塩濃度は1.0〜1.5mol/Lの範囲で、充電制御用単電池は塩濃度が前記主な単電池の塩濃度の50〜80%の濃度であり(好ましくは更に0.8mol/L以下)であるものが好ましい。
なお、塩濃度の差が少なすぎると充電制御用単電池と他の単電池との間で充電電圧の上昇する早さに差が生じ難く本発明の効果を奏し難くなる。また、充電制御用単電池の塩濃度が低すぎる場合には、電解質の電気伝導率が過度に低下する虞があるため好ましくない。
充電制御用単電池は、組電池内に一つあれば十分その効果を発揮することができるが、複数個含まれていてもよい。また、組電池内での充電制御用単電池の接続部位は特に限定されず、他の単電池に挟まれる態様でもよいし、接続端部に配置される形態であってもよい
The setting of the salt concentration of the cell for charge control may vary depending on the applied secondary battery, the type of electrolyte salt contained in the electrolyte, and the like. For example, when charge control of an assembled battery using a lithium secondary battery as a single battery is performed (for example, when the electrolyte salt is LiPF 6 ), the salt concentration of the main single battery of the assembled battery is 1.0 to 1.5 mol. In the range of / L, the charge control cell preferably has a salt concentration of 50 to 80% of the salt concentration of the main cell (preferably further 0.8 mol / L or less).
If the difference in salt concentration is too small, it is difficult to produce a difference in the rate at which the charging voltage rises between the charge control cell and another cell, making it difficult to achieve the effects of the present invention. Moreover, when the salt concentration of the cell for charge control is too low, the electric conductivity of the electrolyte may be excessively lowered, which is not preferable.
The effect of the charge control cell can be sufficiently achieved if one cell is included in the assembled battery, but a plurality of cells may be included. Moreover, the connection site | part of the cell for charge control in an assembled battery is not specifically limited, The aspect pinched | interposed into another cell may be sufficient, and the form arrange | positioned at a connection end part may be sufficient.
また、ここで開示される組電池の充電制御方法及びシステムでは、前述した態様の充電制御用単電池の電圧値が所定の電圧値よりも低い場合に充電処理が行われ、所定の電圧値に達した場合に充電を停止することを特徴とする。
なお、「所定の電圧値」は、該組電池を構成する二次電池(即ち単電池)の種類によって適宜異なり得る。また、好ましくは、「所定の電圧値」は、その組電池を構成する単電池(二次電池)について想定される通常の電圧(許容電圧)の範囲内にある電圧値に設定することができる。通常は、前記許容電圧の下限以下の場合には充電処理を行い、該許容電圧の上限の電圧値に達したときに充電を停止される。なお、充電制御用単電池の電圧値の測定は、例えば、デジタルマルチテスター等の公知の測定装置を用いて計測することができる。
Further, in the battery pack charge control method and system disclosed herein, the charging process is performed when the voltage value of the charge control cell in the above-described aspect is lower than the predetermined voltage value, and the predetermined voltage value is obtained. Charging is stopped when it reaches it.
Note that the “predetermined voltage value” may vary as appropriate depending on the type of secondary battery (that is, a single battery) constituting the assembled battery. Preferably, the “predetermined voltage value” can be set to a voltage value within a range of a normal voltage (allowable voltage) assumed for a single battery (secondary battery) constituting the assembled battery. . Normally, charging is performed when the voltage is below the lower limit of the allowable voltage, and charging is stopped when the voltage value reaches the upper limit of the allowable voltage. The voltage value of the charging control cell can be measured using a known measuring device such as a digital multi-tester, for example.
また、ここで開示される好ましい形態の充電制御システムでは、更に、充電停止時からの経過時間を測定するカウンターを制御部に備える。
二次電池から成る組電池では、使用の如何にかかわらず自己放電等による電圧低下が生じやすい。ここで開示される好適な形態のシステムでは、カウンターにより充電処理停止時からの経過時間が計測され、所定の期間が経過したときの当該組電池の充電状態に応じた充電処理が施される。その結果、該組電池の出力やエネルギー密度が常時高水準に保たれる。
所定の期間が経過したときの充電状態は、組電池に含まれる充電制御用単電池の電圧値によって判断され、所定の電圧値よりも低い場合に充電処理が行われる。また、所定の電圧値よりも高い場合には、経過時間のカウントがリセットされ、再び経過時間が計測される。なお、「所定の期間」は、該組電池を構成する二次電池(即ち単電池)の種類や用途等によって異なり得る。
Moreover, in the charge control system of the preferable form disclosed here, the control part is further provided with a counter that measures the elapsed time from when charging is stopped.
In a battery pack composed of secondary batteries, voltage drop due to self-discharge tends to occur regardless of use. In the system of the preferred form disclosed here, the elapsed time from the stop of the charging process is measured by a counter, and the charging process is performed according to the state of charge of the assembled battery when a predetermined period has elapsed. As a result, the output and energy density of the assembled battery are always kept at a high level.
The state of charge when the predetermined period has elapsed is determined based on the voltage value of the charging control cell included in the assembled battery, and the charging process is performed when the voltage is lower than the predetermined voltage value. When the voltage is higher than the predetermined voltage value, the elapsed time count is reset and the elapsed time is measured again. Note that the “predetermined period” may vary depending on the type and application of the secondary battery (that is, the single battery) constituting the assembled battery.
ここで開示される組電池の充電制御方法及びシステムは、低塩濃度の電解質を有する充電制御用単電池が他の単電池よりも充電時の電圧上昇が早いことで実施し得るものである。電解質が低塩濃度であることによる効果の機構は必ずしも明らかではないが、例えば、電解質中の溶媒−イオン(支持塩の解離イオン)、イオン−イオンといった物質及び/又はイオン同士の衝突や会合等の相互作用が低塩濃度の電解質では少ないため、速やかな電圧上昇が実現されるものと考えられる。 The charge control method and system for an assembled battery disclosed herein can be implemented by a charge control unit cell having an electrolyte with a low salt concentration having a faster voltage rise during charging than other unit cells. Although the mechanism of the effect due to the low salt concentration of the electrolyte is not necessarily clear, for example, a substance such as a solvent-ion (dissociation ion of a supporting salt) or an ion-ion in the electrolyte, and / or collision or association of ions. It is considered that a rapid increase in voltage is realized because there is little interaction in the electrolyte with a low salt concentration.
なお、組電池の用途は特に限定されず、例えば、電気自動車やハイブリッド自動車に搭載される車両搭載用バッテリー、携帯電話やノート型パソコンといった携帯端末電源、又は、非常電源用バッテリー等が挙げられる。
組電池は、複数個の単電池が直列に接続されてなる構成で、前述した態様の充電制御に用いられる単電池(充電制御用単電池)が少なくとも一つ含まれればよい。
組電池を構成する単電池の個数や形状は、組電池の用途(例えば、搭載する装置に必要な電力や必要な容量)に合わせて決定すればよく、特に限定されない。単電池の形状としては、例えば、角型、コイン型、円筒型及びフィルム外装型が挙げられる。
The use of the assembled battery is not particularly limited, and examples thereof include a vehicle-mounted battery mounted in an electric vehicle or a hybrid vehicle, a portable terminal power supply such as a mobile phone or a notebook personal computer, or an emergency power supply battery.
The assembled battery has a configuration in which a plurality of single cells are connected in series, and it is sufficient that at least one single cell (charge control single cell) used for the charge control of the above-described aspect is included.
The number and shape of the single cells constituting the assembled battery may be determined in accordance with the use of the assembled battery (for example, power required for the device to be mounted and required capacity), and is not particularly limited. Examples of the shape of the unit cell include a square shape, a coin shape, a cylindrical shape, and a film exterior shape.
本発明の組電池の充電制御方法を効果的に実施し得るシステムの一例について、図1を参照しつつ説明する。
図1に示すように、組電池の充電制御システム1は、大まかにいって、複数の単電池3と一つの充電制御用単電池5が直列接続されてなる組電池10と、充電制御用単電池5の電圧値を測定する電圧測定手段12と組電池10に対して充電処理を行うための充電用電源18と、その充電処理を制御する制御手段としての電子制御ユニット(ECU)14とから構成されている。
なお、図1中の破線で示すように、電装品20と組電池10とが充電時に取り外されない形態(例えば、組電池10が電気自動車に搭載されたバッテリーで電装品20がモータである形態、或いは、組電池10が携帯電話用電池パックで電装品20が携帯電話本体である形態)の場合には、充電時でも電装品20が接続されたままで構成される。
また、本発明に係る組電池の充電制御システムは、電装品20と充電用電源18が共通化された形態にも適用することができる。電装品20と充電用電源18が共通化された形態の場合、充電用の電源を別途設ける必要がない。電装品20と充電用電源18が共通化された形態として、例えば、ハイブリッド自動車のシステムが挙げられる。ハイブリッド自動車のシステムでは、モータがバッテリー(組電池10)から電力が供給される電装品20の機能と、バッテリー(組電池10)に電力を供給する電源18の機能を有している。モータ駆動を動力源としてハイブリッド自動車が作動するとき、モータは、バッテリー(組電池10)から電力の供給を受ける電装品20として機能する。ハイブリッド自動車が減速或いは制動するとき、モータは、車両の運動エネルギーを電気エネルギーに変換する発電機として作動し、バッテリー(組電池10)に電力を供給する電源18として機能する。ハイブリッド自動車のシステムに本発明に係る充電制御システムを適用する場合、モータが電装品20と電源18を兼ねるため、充電用の電源を別途備えなくてもよい。
An example of a system that can effectively implement the battery pack charge control method of the present invention will be described with reference to FIG.
As shown in FIG. 1, an assembled battery charge control system 1 roughly includes an assembled
In addition, as shown with the broken line in FIG. 1, the
The assembled battery charging control system according to the present invention can also be applied to a configuration in which the
ECU14は、組電池10、充電用電源20及び充電制御用単電池50の電圧測定手段12のそれぞれに電気的に接続されている。このECU14は電圧測定手段12により得られた電圧値に応じて適切な充電処理の是非を選択し、ECU14による制御の下で組電池10に対して処理が行われるようにシステム1を構成することができる。
また、ECU14は、組電池10の前回の充電処理が停止されてからの期間を測定するカウンター16を備えることができる。
The
Further, the
かかる構成のシステムの作動を、図2に示したフローチャートを参照しつつ説明する。
まず、電圧測定手段によって充電制御用単電池の電圧値を測定する(S1)。そして電圧値を判定し(S2)、電圧値(V)が所定の電圧値(V0)よりも低いとき(Yes判定)、充電用電源から電力を印加し充電処理を行う(S3)。そして電圧制御用単電池の電圧値をモニタリング(S4)し、電圧値が所定の電圧値に達したときに(S5、Yes判定)、充電を停止する(S6)。
次に、制御部に備えられたカウンターを用いて、充電処理を停止したときからの経過時間をカウントし、所定の経過時間(例えば1日)まで進んだところで再び充電制御用単電池の電圧値を測定する(S7)。電圧測定値が所定の電圧値以下の場合には(S8、Yes判定)、前述と同様の手順で充電処理を行う。電圧測定値が所定電圧値に到達している場合には(S8、No判定)、充電停止後の経過時間のカウントをリセットし(S9)、所定の時間まで再び経過時間をカウントする(S7)。
上述の処理を繰り返すことによって、組電池の充電状態は好適に制御される。
The operation of the system having such a configuration will be described with reference to the flowchart shown in FIG.
First, the voltage value of the charging control cell is measured by the voltage measuring means (S1). Then, the voltage value is determined (S2), and when the voltage value (V) is lower than the predetermined voltage value (V 0 ) (Yes determination), the charging process is performed by applying power from the charging power source (S3). Then, the voltage value of the voltage control cell is monitored (S4), and when the voltage value reaches a predetermined voltage value (S5, Yes determination), charging is stopped (S6).
Next, using the counter provided in the control unit, the elapsed time from when the charging process was stopped is counted, and the voltage value of the charging control unit cell is again reached when it has reached a predetermined elapsed time (for example, one day). Is measured (S7). When the voltage measurement value is equal to or lower than the predetermined voltage value (S8, Yes determination), the charging process is performed in the same procedure as described above. When the voltage measurement value has reached the predetermined voltage value (S8, No determination), the count of the elapsed time after the charging is stopped is reset (S9), and the elapsed time is counted again until the predetermined time (S7). .
By repeating the above process, the state of charge of the assembled battery is suitably controlled.
次に、異なる塩濃度からなる電解質を備えたリチウム二次電池(単電池)をいくつか作製し、定電力充電による充電特性の違いを評価した。 Next, several lithium secondary batteries (unit cells) equipped with electrolytes having different salt concentrations were produced, and the difference in charging characteristics due to constant power charging was evaluated.
<リチウム二次電池の作製>
試験例に使用したリチウム二次電池(18650型)は以下のようにして作製した。即ち、負極活物質としての炭素材料(ここでは、平均粒径約10μmの人造黒鉛粉末を使用した。)を、カルボキシメチルセルロース(CMC)及びスチレンブタジエンゴム(SBR)とともにイオン交換水と混合して、ペースト状の負極用組成物を調製した。この組成物に含まれる各材料(水以外)の凡その質量比は、前記炭素材料が98質量%、CMCが1質量%、SBRが1質量%である。この負極用組成物を、負極集電体としての長尺状銅箔の両面に塗布して、負極集電体の両面に負極活物質含有層を備えるシート状の負極(負極シート)を作製した。
<Production of lithium secondary battery>
The lithium secondary battery (18650 type) used in the test examples was produced as follows. That is, a carbon material as an anode active material (here, artificial graphite powder having an average particle size of about 10 μm was used) was mixed with carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) with ion-exchanged water, A paste-like negative electrode composition was prepared. The approximate mass ratio of each material (other than water) contained in this composition is 98% by mass for the carbon material, 1% by mass for CMC, and 1% by mass for SBR. This negative electrode composition was applied to both sides of a long copper foil as a negative electrode current collector to prepare a sheet-like negative electrode (negative electrode sheet) having negative electrode active material-containing layers on both sides of the negative electrode current collector. .
一方、正極活物質としてのニッケル酸リチウム(LiNiO2)と、導電材としてのアセチレンブラックとを、ポリテトラフルオロエチレン(PTFE)及びCMCとともにイオン交換水と混合してペースト状の正極用組成物を調製した。この組成物に含まれる各材料(水以外)の凡その質量比は、正極活物質(LiNiO2)が95質量%、アセチレンブラックが3質量%、PTFEが1質量%、CMCが1質量%である。この正極用組成物を、正極集電体としての長尺状アルミニウム箔の両面に塗布して、正極集電体の両面に正極活物質含有層を備えるシート状の正極(正極シート)を作製した。 On the other hand, lithium nickel oxide (LiNiO 2 ) as a positive electrode active material and acetylene black as a conductive material are mixed with polytetrafluoroethylene (PTFE) and CMC with ion-exchanged water to obtain a paste-like positive electrode composition. Prepared. The approximate mass ratio of each material (other than water) contained in this composition is 95% by mass of the positive electrode active material (LiNiO 2 ), 3% by mass of acetylene black, 1% by mass of PTFE, and 1% by mass of CMC. is there. This positive electrode composition was applied to both sides of a long aluminum foil serving as a positive electrode current collector to prepare a sheet-like positive electrode (positive electrode sheet) having a positive electrode active material-containing layer on both sides of the positive electrode current collector. .
セパレータとしては、厚さ約25μmの長尺状の多孔質ポリエチレンシートを用いた。このセパレータシートを介して正極シートと負極シートとが対向するように重ね合わせ、これを長尺方向に捲回して捲回型電極体を作製した。得られた電極体を有底円筒状のアルミニウム容器に収容した後、該容器の開口端にアルミニウム製の電池蓋を溶接した。ここで、電極体を構成する正極シートは、アルミニウム製の正極集電タブを介して、電池蓋から突出する正極端子と電気的に接続されている。また、電極体を構成する負極シートは、銅製の集電タブを介して、電池蓋から突出する負極端子と電気的に接続されている。 As the separator, a long porous polyethylene sheet having a thickness of about 25 μm was used. The positive electrode sheet and the negative electrode sheet were stacked so as to face each other through this separator sheet, and this was wound in the longitudinal direction to produce a wound electrode body. After the obtained electrode body was housed in a bottomed cylindrical aluminum container, an aluminum battery lid was welded to the open end of the container. Here, the positive electrode sheet which comprises an electrode body is electrically connected with the positive electrode terminal which protrudes from a battery cover through the positive electrode current collection tab made from aluminum. Moreover, the negative electrode sheet which comprises an electrode body is electrically connected with the negative electrode terminal which protrudes from a battery cover through the copper current collection tabs.
電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との3:7(体積比)混合溶媒にLiPF6(支持塩)を溶解させたものを用いた。
なお、本実施例に係る電池の支持塩の濃度は、それぞれ、0.75mol/L(サンプルNo.1)、1.0mol/L(サンプルNo.2)、1.25mol/L(サンプルNo.3)となるように調整した。
この電解液を、前記電池蓋に設けられた貫通孔(注液孔)から電池容器に注液した後、該容器を密閉した。このようにして組み立てたリチウム二次電池を数日間エージングした後、数サイクル充放電させた。かかるエージング及び充放電を行った後の電池を、試験用のリチウム二次電池(サンプルNo.1〜3)として使用した。
而して作製した試験用リチウム二次電池を用い、下記の試験例に示す充電特性評価試験を行った。
As the electrolytic solution, a solution obtained by dissolving LiPF 6 (supporting salt) in a 3: 7 (volume ratio) mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used.
In addition, the density | concentration of the support salt of the battery which concerns on a present Example is 0.75 mol / L (sample No. 1), 1.0 mol / L (sample No. 2), and 1.25 mol / L (sample No. 1), respectively. It adjusted so that it might become 3).
The electrolyte was poured into a battery container from a through hole (a liquid injection hole) provided in the battery lid, and then the container was sealed. The lithium secondary battery thus assembled was aged for several days and then charged and discharged for several cycles. The battery after performing such aging and charging / discharging was used as a lithium secondary battery for testing (sample Nos. 1 to 3).
Using the test lithium secondary battery thus produced, a charge characteristic evaluation test shown in the following test example was performed.
<試験例1:25℃、600W定電力充電における充電特性評価>
異なる塩濃度からなる前記試験用リチウム二次電池(サンプルNo.1〜3)をそれぞれ25℃の条件下で60%の充電状態(SOC)にした後、600Wの定電力充電を実施し、4.2Vの電圧値に到達するまでの時間を測定した。結果を図3に示す。
図3に示すように、塩濃度が0.75mol/Lと最も低いサンプルNo.1の電池では、4.2Vまでの電圧到達時間が20秒であり、サンプルNo.2及び3の電池よりも5秒程度早く到達した。
<Test Example 1: Charging characteristic evaluation in 25 ° C., 600 W constant power charging>
Each of the test lithium secondary batteries (samples Nos. 1 to 3) having different salt concentrations was charged to 60% charge (SOC) under the condition of 25 ° C., and then subjected to 600 W constant power charging. The time to reach a voltage value of 2 V was measured. The results are shown in FIG.
As shown in FIG. 3, the sample No. 1 having the lowest salt concentration of 0.75 mol / L. In the battery No. 1, the voltage arrival time up to 4.2 V is 20 seconds. It reached about 5 seconds earlier than the batteries of 2 and 3.
<試験例2:25℃、200W定電力充電における充電特性評価>
前記試験用リチウム二次電池(サンプルNo.1〜3)をそれぞれ25℃の条件下で60%の充電状態(SOC)にした後、200Wの定電力充電を実施し、4.2Vの電圧値に到達するまでの時間を測定した。結果を図3に示す。
図3に示すように、サンプルNo.1〜3の電池は、4.2Vまでの電圧到達時間がいずれも200秒程度であり、個々の電池の充電特性に大きな変化はみられなかった。
<Test Example 2: Charging characteristic evaluation in 25 ° C., 200 W constant power charging>
The test lithium secondary batteries (Sample Nos. 1 to 3) were each charged to 60% charge (SOC) under the condition of 25 ° C. and then charged with 200 W constant power, and a voltage value of 4.2 V The time to reach was measured. The results are shown in FIG.
As shown in FIG. In each of the batteries 1 to 3, the voltage arrival time up to 4.2 V was about 200 seconds, and no significant change was observed in the charge characteristics of the individual batteries.
<試験例3:0℃、200W定電力充電における、充電特性評価>
前記試験用リチウム二次電池(サンプルNo.1〜3)をそれぞれ0℃の条件下で60%の充電状態(SOC)にした後、200Wの定電力充電を実施し、4.2Vの電圧値に到達するまでの時間を測定した。結果を図4に示す。
図4に示すように、サンプルNo.1〜3の電池は、塩濃度が0.75mol/Lと最も低いサンプルNo.1の電池では、4.2Vまでの電圧到達時間が27秒であり、サンプルNo.2及び3の電池よりも10秒〜1.5秒程度早く到達した。
<Test Example 3: Charging characteristic evaluation in 0 ° C., 200 W constant power charging>
Each of the test lithium secondary batteries (Sample Nos. 1 to 3) was charged to 60% (SOC) under the condition of 0 ° C., and then charged with 200 W constant power, and a voltage value of 4.2V. The time to reach was measured. The results are shown in FIG.
As shown in FIG. The batteries Nos. 1 to 3 have the lowest sample number of 0.75 mol / L. In the battery No. 1, the voltage arrival time up to 4.2 V is 27 seconds. It reached about 10 to 1.5 seconds earlier than the batteries of 2 and 3.
<試験例4:0℃、150W定電力充電における、充電特性評価>
前記試験用リチウム二次電池(サンプルNo.1〜3)をそれぞれ0℃の条件下で60%の充電状態(SOC)にした後、150Wの定電力充電を実施し、4.2Vの電圧値に到達するまでの時間を測定した。結果を図4に示す。
図4に示すように、サンプルNo.1〜3の電池は、4.2Vまでの電圧到達時間がいずれも200秒程度であり、個々の電池の充電特性に大きな変化はみられなかった。
<Test Example 4: Charging characteristic evaluation in 0 ° C., 150 W constant power charging>
Each of the test lithium secondary batteries (Sample Nos. 1 to 3) was charged to 60% charge (SOC) under the condition of 0 ° C., and then was charged with 150 W constant power and a voltage value of 4.2 V The time to reach was measured. The results are shown in FIG.
As shown in FIG. In each of the batteries 1 to 3, the voltage arrival time up to 4.2 V was about 200 seconds, and no significant change was observed in the charge characteristics of the individual batteries.
上記試験例1〜4の結果から、LiPF6濃度が1.0mol/L及び1.25mol/Lである電解質を備えたサンプルNo.2及び3は、4.2Vまでの電圧到達時間に違いが生じなかった。
一方、いずれの温度条件下でも、充電電力値が大きい(25℃では600W、0℃では200W)場合には、濃度が0.75mol/Lの電解質を備えたサンプルNo.1の4.2Vまでの電圧到達時間が他のサンプルよりも早く、充電制御用単電池として用いることができることがわかった。
従って、複数の単電池が直列に接続された組電池の充電を制御するには、予め他の単電池よりも低いレベル塩濃度の電解質を含む単電池を組電池に組み込み、低塩濃度の電池を充電制御用単電池として用いることが有効であることが確認された。
From the results of the above Test Examples 1 to 4, sample Nos. Provided with electrolytes having LiPF 6 concentrations of 1.0 mol / L and 1.25 mol / L. 2 and 3 did not differ in voltage arrival time up to 4.2V.
On the other hand, under any temperature condition, when the charging power value is large (600 W at 25 ° C., 200 W at 0 ° C.), the sample No. provided with the electrolyte having a concentration of 0.75 mol / L. It was found that the voltage arrival time up to 4.2 V of 1 was faster than the other samples and could be used as a charge control cell.
Therefore, in order to control charging of a battery pack in which a plurality of battery cells are connected in series, a battery cell containing an electrolyte having a lower level of salt concentration than other battery cells is incorporated in the battery pack in advance. It has been confirmed that it is effective to use as a cell for charge control.
1 組電池の充電制御システム
3 単電池
5 充電制御用単電池
10 組電池
12 電圧測定手段
DESCRIPTION OF SYMBOLS 1 Charge control system of assembled
Claims (10)
前記組電池として電解質中の塩濃度が所定レベルである単電池のほかに該所定レベルの塩濃度よりも低いレベルの塩濃度に設定された充電制御用単電池が少なくとも一つ含まれた組電池を用意し、
前記充電制御用単電池の電圧値をモニタリングし、
ここで該モニタリングにより、前記充電制御用単電池の電圧値が所定の電圧値よりも低いときには充電処理を行い、該充電制御用単電池の電圧値が所定の電圧値に達したときには充電処理を停止することを特徴とする、組電池の充電制御方法。 A method for controlling charging of an assembled battery formed by connecting a plurality of the single cells in series, wherein the rechargeable secondary battery is a single cell,
The assembled battery includes at least one charge control unit cell set to a salt concentration lower than the predetermined salt concentration in addition to the unit cell having a predetermined salt concentration in the electrolyte. Prepare
Monitoring the voltage value of the charge control cell,
Here, according to the monitoring, when the voltage value of the charging control cell is lower than a predetermined voltage value, a charging process is performed. When the voltage value of the charging control cell reaches a predetermined voltage value, the charging process is performed. A charge control method for an assembled battery, characterized by stopping.
前記低いレベルの塩濃度が該所定レベルの塩濃度の50〜80%の濃度であり、且つ、0.8mol/L以下の塩濃度である、請求項2に記載の方法。 The predetermined level of salt concentration is 1.0 to 1.5 mol / L,
The method according to claim 2, wherein the low level salt concentration is a concentration of 50 to 80% of the predetermined level of salt concentration and a salt concentration of 0.8 mol / L or less.
前記組電池として電解質中の塩濃度が所定レベルである単電池のほかに該所定レベルの塩濃度よりも低いレベルの塩濃度に設定された充電制御用単電池が少なくとも一つ含まれた組電池が用意され、
該組電池に充電電力を印加する充電装置と、
前記充電制御用単電池単独の電圧値を測定し得る電圧測定手段と、
前記電圧測定手段により測定された電圧値が所定の電圧値よりも低いときには組電池を充電し、該電圧値が所定の電圧値に達したときには充電を停止するように充電処理を制御する制御部と、
を備えた充電制御システム。 A system for controlling charging of an assembled battery formed by connecting a plurality of unit cells in series, wherein the rechargeable secondary battery is a unit cell,
The assembled battery includes at least one charge control unit cell set to a salt concentration lower than the predetermined salt concentration in addition to the unit cell having a predetermined salt concentration in the electrolyte. Is prepared,
A charging device for applying charging power to the assembled battery;
Voltage measuring means capable of measuring the voltage value of the single cell for charge control alone;
A control unit that controls the charging process so as to charge the assembled battery when the voltage value measured by the voltage measuring means is lower than the predetermined voltage value, and to stop charging when the voltage value reaches the predetermined voltage value. When,
With charge control system.
前記カウンターが所定の経過時間をカウントしたときに前記電圧測定手段によって前記充電制御用単電池の電圧値が測定され、該電圧値が所定の電圧値よりも低いときには充電処理が行われ、該電圧値が所定の電圧値又はそれ以上であるときには経過時間のカウントがリセットされるように構成されている、請求項4に記載のシステム。 The control unit is equipped with a counter that counts the elapsed time after charging is stopped,
When the counter counts a predetermined elapsed time, the voltage measuring unit measures the voltage value of the charging control cell, and when the voltage value is lower than the predetermined voltage value, a charging process is performed. The system of claim 4, wherein the elapsed time count is reset when the value is greater than or equal to a predetermined voltage value.
前記低いレベルの塩濃度が該所定レベルの塩濃度の50〜80%の濃度であり、且つ、0.8mol/L以下の塩濃度である、請求項6に記載のシステム。 The predetermined level of salt concentration is 1.0-1.5 mol / L,
The system according to claim 6, wherein the low level salt concentration is a concentration of 50 to 80% of the predetermined level of salt concentration and a salt concentration of 0.8 mol / L or less.
前記複数の単電池には電解質中の塩濃度が所定レベルである単電池のほかに該所定レベルの塩濃度よりも低いレベルの塩濃度に設定された単電池が少なくとも一つ含まれている、組電池。 A rechargeable secondary battery is a single battery, and a plurality of the single batteries are connected in series.
In addition to the unit cell whose salt concentration in the electrolyte is a predetermined level, the plurality of unit cells includes at least one unit cell set to a salt concentration at a level lower than the predetermined salt concentration. Assembled battery.
前記低いレベルの塩濃度が該所定のレベルの塩濃度の50〜80%の濃度であり、且つ、0.8mol/L以下の塩濃度である、請求項9に記載の組電池。 The predetermined level of salt concentration is 1.0-1.5 mol / L,
The assembled battery according to claim 9, wherein the low level salt concentration is a concentration of 50 to 80% of the predetermined level of salt concentration and a salt concentration of 0.8 mol / L or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005202647A JP4618025B2 (en) | 2005-07-12 | 2005-07-12 | Battery pack and charge control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005202647A JP4618025B2 (en) | 2005-07-12 | 2005-07-12 | Battery pack and charge control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007026686A true JP2007026686A (en) | 2007-02-01 |
JP4618025B2 JP4618025B2 (en) | 2011-01-26 |
Family
ID=37787228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005202647A Expired - Fee Related JP4618025B2 (en) | 2005-07-12 | 2005-07-12 | Battery pack and charge control method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4618025B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014164812A (en) * | 2013-02-21 | 2014-09-08 | Toyota Industries Corp | Power storage device module |
JP2020153979A (en) * | 2019-03-22 | 2020-09-24 | ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス | Electronic timepiece with motion sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11307123A (en) * | 1998-02-20 | 1999-11-05 | Hitachi Ltd | Lithium secondary battery and electrolyte thereof and electric equipment |
JP2000152515A (en) * | 1998-11-10 | 2000-05-30 | Central Res Inst Of Electric Power Ind | Charging/discharging control of multistage connecting secondary battery and device therefor |
JP2001202990A (en) * | 2000-01-14 | 2001-07-27 | Japan Storage Battery Co Ltd | Nonaqueous electrolytic battery and charging method therefor |
JP2003208922A (en) * | 2002-01-10 | 2003-07-25 | Hitachi Ltd | Lithium ion secondary battery |
JP2003309931A (en) * | 2002-04-12 | 2003-10-31 | Nissan Motor Co Ltd | Charging/discharging controller |
JP2005055214A (en) * | 2003-08-07 | 2005-03-03 | Ntt Power & Building Facilities Inc | Storage battery automatic managing device and control method thereof |
JP2005176520A (en) * | 2003-12-11 | 2005-06-30 | Sanyo Electric Co Ltd | Charging method for battery |
-
2005
- 2005-07-12 JP JP2005202647A patent/JP4618025B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11307123A (en) * | 1998-02-20 | 1999-11-05 | Hitachi Ltd | Lithium secondary battery and electrolyte thereof and electric equipment |
JP2000152515A (en) * | 1998-11-10 | 2000-05-30 | Central Res Inst Of Electric Power Ind | Charging/discharging control of multistage connecting secondary battery and device therefor |
JP2001202990A (en) * | 2000-01-14 | 2001-07-27 | Japan Storage Battery Co Ltd | Nonaqueous electrolytic battery and charging method therefor |
JP2003208922A (en) * | 2002-01-10 | 2003-07-25 | Hitachi Ltd | Lithium ion secondary battery |
JP2003309931A (en) * | 2002-04-12 | 2003-10-31 | Nissan Motor Co Ltd | Charging/discharging controller |
JP2005055214A (en) * | 2003-08-07 | 2005-03-03 | Ntt Power & Building Facilities Inc | Storage battery automatic managing device and control method thereof |
JP2005176520A (en) * | 2003-12-11 | 2005-06-30 | Sanyo Electric Co Ltd | Charging method for battery |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014164812A (en) * | 2013-02-21 | 2014-09-08 | Toyota Industries Corp | Power storage device module |
JP2020153979A (en) * | 2019-03-22 | 2020-09-24 | ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス | Electronic timepiece with motion sensor |
Also Published As
Publication number | Publication date |
---|---|
JP4618025B2 (en) | 2011-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6377030B1 (en) | Method of charging secondary battery by varying current or voltage at an inflection point in a storage region before full charge and device therefor | |
JP5057156B2 (en) | Lithium ion secondary battery charging method and charging system | |
KR101049331B1 (en) | Lithium secondary battery | |
US20170104347A1 (en) | Secondary battery apparatus | |
US10539627B2 (en) | Method of restoring secondary battery and method of reusing secondary battery | |
US20090066295A1 (en) | Method for charging non-aqueous electrolyte secondary battery | |
KR101674289B1 (en) | Method for manufacturing non-aqueous electrolyte secondary battery | |
JP2011257314A (en) | Method for determining deterioration of secondary battery and control system for secondary battery | |
JP2949705B2 (en) | Method for recovering discharge capacity of non-aqueous electrolyte secondary battery and circuit therefor | |
CN114665169A (en) | Method for recovering activity of lithium ion battery and lithium ion battery | |
JP2011086530A (en) | Battery pack, and power supply device | |
US20160111727A1 (en) | Metal-Ion Battery with Offset Potential Material | |
JP5705046B2 (en) | Power system | |
JP2014035963A (en) | Positive electrode material, lithium ion power storage device, and method of manufacturing the same | |
JP2015090806A (en) | Method of manufacturing nonaqueous electrolyte secondary battery | |
JP2014127283A (en) | Method for recovering capacity of lithium ion secondary battery | |
JP4618025B2 (en) | Battery pack and charge control method thereof | |
CN107980099A (en) | Determine the method in the potential of battery cell Anodic and/or the potential of cathode | |
EP2544293B1 (en) | Electric power storage system | |
CN107636884B (en) | Method for operating rechargeable battery cells and battery control device | |
US20210257679A1 (en) | Systems and methods of detecting li dendrites | |
JP4478856B2 (en) | Secondary battery protection control system and secondary battery protection control method | |
JP2013120680A (en) | Water electrolysis hybrid storage battery | |
JP7537839B2 (en) | Method for determining a battery charging profile and battery charging system using the same | |
JP4517273B2 (en) | Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |