JP2007024651A - Non-destructive sugar content meter, and non-destructive sugar content measuring method - Google Patents

Non-destructive sugar content meter, and non-destructive sugar content measuring method Download PDF

Info

Publication number
JP2007024651A
JP2007024651A JP2005206216A JP2005206216A JP2007024651A JP 2007024651 A JP2007024651 A JP 2007024651A JP 2005206216 A JP2005206216 A JP 2005206216A JP 2005206216 A JP2005206216 A JP 2005206216A JP 2007024651 A JP2007024651 A JP 2007024651A
Authority
JP
Japan
Prior art keywords
sugar content
measured
light source
light
destructive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005206216A
Other languages
Japanese (ja)
Inventor
Kenjo Yamano
研城 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WIDE TECHNO KK
Original Assignee
WIDE TECHNO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WIDE TECHNO KK filed Critical WIDE TECHNO KK
Priority to JP2005206216A priority Critical patent/JP2007024651A/en
Publication of JP2007024651A publication Critical patent/JP2007024651A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-destructive sugar content meter and a non-destructive sugar content measuring method, capable of measuring precisely sugar content of the overall measured object, without affecting the measured object. <P>SOLUTION: This meter/method has a mounting block 11 for mounting the measured object 1. A rotating means 12 rotates a light source 13 relative to the measured object 1 on the mounting block 11, in the periphery thereof. The light source 13 emits near-infrared ray to the measured object 1, while rotated relative to the measured object 1 by the rotating means 12. Irradiation energy of the light source 13 is changed therein for the emission to find the sugar content ranging over from in the vicinity of a surface of the measured object 1, up to the center thereof. A transmitted light of the near-infrared beam, transmitted through the measured object 1, is received by a light-receiving part of a photoelectric conversion part 14. The sugar content of the measured object 1 is found by a calculation means of a control computation part 16, based on the absorbance of a specified wavelength of the transmitted light received by the light-receiving part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非破壊糖度計および非破壊糖度測定方法に関する。   The present invention relates to a non-destructive sugar content meter and a non-destructive sugar content measurement method.

従来、青果物の糖度の測定は、被測定青果物を切断して、搾汁し、得られた溶液の糖度を屈折糖度計で測定することにより行われていた。しかし、この測定方法は、サンプリングによる抜き取り検査に使用できても、市場に出荷する青果物の全数検査には使用することができない。このため、糖度について統計的な推測しかできず、ある確率で糖度の低い青果物を出荷することになり、市場からクレームが寄せられる可能性があるという問題があった。また、精度をあげるためにサンプリング個数を増やす方法が考えられるが、完全ではなく、破壊的に糖度を測定するため、経済的な負担も大きくなるという問題があった。別な方法として、サンプリングにより推測した糖度より多少低めの糖度として出荷することにより糖度の保証を行う方法も実施されているが、糖度が高い青果物でも糖度が低い製品の価格でしか販売できないという問題があった。   Conventionally, the sugar content of fruits and vegetables has been measured by cutting and squeezing the measured fruits and vegetables, and measuring the sugar content of the resulting solution with a refractometer. However, even though this measuring method can be used for sampling inspection by sampling, it cannot be used for 100% inspection of fruits and vegetables shipped to the market. For this reason, only a statistical estimate of sugar content can be made, and fruits and vegetables with low sugar content are shipped with a certain probability, and there is a possibility that a complaint may be received from the market. In order to improve accuracy, a method of increasing the number of samplings is conceivable, but there is a problem in that the sugar content is not completely measured and the sugar content is destructively measured, so that an economic burden increases. Another method is to guarantee the sugar content by shipping as a sugar content slightly lower than the sugar content estimated by sampling, but the problem is that even fruits and vegetables with high sugar content can only be sold at the price of products with low sugar content. was there.

これらの問題を解決するために、近年、近赤外分光分析による非破壊糖度測定方法の研究が盛んに行われている。その非破壊糖度測定方法として、例えば、被測定青果物の近傍もしくは接触した状態で近赤外線を照射して近赤外吸収スペクトルを得、得られた近赤外吸収スペクトルから被測定青果物の成分含量を算出するものがある(特許文献1参照)。   In order to solve these problems, research on nondestructive sugar content measurement methods by near infrared spectroscopy has been actively conducted in recent years. As a non-destructive sugar content measurement method, for example, near infrared absorption spectrum is obtained by irradiating near infrared rays in the vicinity of or in contact with the measured fruits and vegetables, and the component content of the measured fruits and vegetables is obtained from the obtained near infrared absorption spectra. There is what is calculated (see Patent Document 1).

ところで、図2に示すように、例えば、屈折糖度計で測定したメロンの断面の糖度分布から、青果物の糖度は、部位によりかなりばらつきがあることがわかる。図2のメロンの例では、表面付近では糖度が小さく、中心に向かって糖度が大きくなっており、中心付近の糖度が表面付近の糖度の2〜3倍程度になっている。また、表面付近での糖度も、場所によっては、2倍近く異なっている。   By the way, as shown in FIG. 2, for example, from the sugar content distribution of the cross section of melon measured with a refractometer, it can be seen that the sugar content of fruits and vegetables varies considerably depending on the part. In the example of the melon of FIG. 2, the sugar content is small near the surface and the sugar content increases toward the center, and the sugar content near the center is about 2 to 3 times the sugar content near the surface. In addition, the sugar content near the surface is almost twice different depending on the location.

特開平1−216265号公報JP-A-1-216265

特許文献1記載の方法では、被測定青果物への近赤外線の照射および被測定青果物からの反射光の受光に同軸グラスファイバーを用いているため、被測定青果物表面の微少面積にしか近赤外線を照射できず、被測定青果物の中心付近まで近赤外線を照射することもできない。このため、被測定青果物表面近傍の微少な特定部位からの反射光による情報で糖度の算出を行っており、被測定青果物全体の糖度を精度良く測定することはできないという課題があった。   In the method described in Patent Document 1, a coaxial glass fiber is used for irradiating near-infrared rays to the measured fruits and vegetables and receiving reflected light from the measured fruits and vegetables, so that only near-small areas on the surface of the measured fruits are irradiated with near-infrared rays. It is not possible to irradiate near infrared rays to the vicinity of the center of the measured fruit or vegetable. For this reason, the sugar content is calculated based on information by reflected light from a minute specific part near the surface of the measured fruit and vegetable, and there is a problem that the sugar content of the entire measured fruit and vegetable cannot be measured with high accuracy.

これに対し、被測定青果物の中心まで近赤外線を到達させて中心付近の情報を得るためには、近赤外線を照射する光源のエネルギーを大きくすればよい。しかし、特許文献1記載の方法では、光源のエネルギーを大きくして被測定青果物に照射した場合、被測定青果物表面が高温になり被測定青果物に影響を与えるという課題があった。   On the other hand, in order to obtain near-infrared information by reaching the center of the measured fruit and vegetable, the energy of the light source that irradiates the near-infrared light may be increased. However, the method described in Patent Document 1 has a problem in that when the energy of the light source is increased and the fruit or vegetable to be measured is irradiated, the surface of the fruit or vegetable to be measured becomes hot and affects the fruit or vegetable to be measured.

本発明は、このような課題に着目してなされたもので、被測定物に影響を与えることなく、被測定物全体の糖度を精度良く測定可能な非破壊糖度計および非破壊糖度測定方法を提供することを目的としている。   The present invention has been made paying attention to such a problem, and provides a non-destructive sugar content meter and a non-destructive sugar content measuring method capable of accurately measuring the sugar content of the entire measurement object without affecting the measurement object. It is intended to provide.

上記目的を達成するために、本発明に係る非破壊糖度計は、光源から被測定物に近赤外線を照射し、その被測定物を透過した近赤外線の透過光を受光部で受け、前記受光部で受けた透過光の特定波長の吸光度に基づき前記被測定物の糖度を求める非破壊糖度計であって、被測定物を載せるための台と、前記台の上の被測定物に対しその周囲で前記光源を相対的に回転させる回転手段とを、有することを特徴とする。   In order to achieve the above object, a nondestructive saccharimeter according to the present invention irradiates a measurement object from a light source with near infrared light, receives near infrared light transmitted through the measurement object at a light receiving unit, and receives the light. A non-destructive saccharimeter for determining the sugar content of the object to be measured based on the absorbance at a specific wavelength of the transmitted light received by the unit, the table for placing the object to be measured, and the object to be measured on the table And rotating means for relatively rotating the light source around.

本発明に係る非破壊糖度測定方法は、光源から被測定物に近赤外線を照射し、その被測定物を透過した近赤外線の透過光を受光部で受け、前記受光部で受けた透過光の特定波長の吸光度に基づき前記被測定物の糖度を求める非破壊糖度測定方法であって、被測定物に対しその周囲で前記光源を相対的に回転させることを特徴とする。   The non-destructive sugar content measuring method according to the present invention irradiates a measurement object from a light source with near infrared rays, receives near infrared transmission light transmitted through the measurement object by a light receiving unit, and transmits transmitted light received by the light receiving unit. A non-destructive sugar content measuring method for obtaining a sugar content of the object to be measured based on absorbance at a specific wavelength, characterized in that the light source is relatively rotated around the object to be measured.

本発明に係る非破壊糖度計および非破壊糖度測定方法は、被測定物に対しその周囲で光源を相対的に回転させるため、その回転に合わせて光源から被測定物に近赤外線を照射して測定を行うことにより、その回転範囲で被測定物の糖度を求めることができる。光源を相対的に回転させて被測定物の全周に対して近赤外線を照射して測定を行った場合には、被測定物の全周での糖度を求めることができる。   The non-destructive sugar content meter and the non-destructive sugar content measuring method according to the present invention rotate the light source relatively around the object to be measured, so that the object to be measured is irradiated with near infrared rays from the light source in accordance with the rotation. By performing the measurement, the sugar content of the object to be measured can be obtained within the rotation range. When the measurement is performed by rotating the light source relatively and irradiating near-infrared rays to the entire circumference of the object to be measured, the sugar content in the entire circumference of the object to be measured can be obtained.

また、被測定物に対しその周囲で光源を相対的に回転させるため、光源からの近赤外線の照射が被測定物の特定部位に集中せず、被測定物の表面温度の上昇を抑えることができる。このため、被測定物に影響を与えることなく、光源のエネルギーを大きくして照射することができ、被測定物の中心まで近赤外線を到達させることができる。光源の照射エネルギーを変化させた場合には、被測定物の表面近傍から中心までの糖度を求めることができる。   In addition, since the light source is rotated relative to the object to be measured, the near-infrared irradiation from the light source does not concentrate on a specific part of the object to be measured, and the rise in the surface temperature of the object to be measured can be suppressed. it can. For this reason, the energy of the light source can be increased and irradiated without affecting the object to be measured, and the near infrared ray can reach the center of the object to be measured. When the irradiation energy of the light source is changed, the sugar content from the vicinity of the surface of the object to be measured to the center can be obtained.

こうして、本発明に係る非破壊糖度計および非破壊糖度測定方法では、被測定物の表面近傍の特定部位の情報だけでなく、被測定物の全周および表面から中心までの情報が得られるため、被測定物全体の糖度を精度良く測定することができる。   Thus, in the non-destructive sugar content meter and the non-destructive sugar content measuring method according to the present invention, not only information on a specific part near the surface of the object to be measured but also information on the entire circumference and surface to the center of the object to be measured can be obtained. The sugar content of the entire object to be measured can be accurately measured.

なお、光源は被測定物への近赤外線の照射を、回転に合わせて連続的に行ってもよく、断続的に行ってもよい。この場合、光源の照射に対応して、受光部が被測定物を透過した近赤外線の透過光を、連続的または断続的に受光して、糖度を求めることができる。光源が断続的に照射する場合には、所定の回転角度毎に照射することが好ましい。   Note that the light source may irradiate the object to be measured with near-infrared rays continuously in accordance with the rotation or intermittently. In this case, the sugar content can be obtained by continuously or intermittently receiving near-infrared transmitted light transmitted through the object to be measured by the light receiving unit corresponding to the irradiation of the light source. When a light source irradiates intermittently, it is preferable to irradiate for every predetermined rotation angle.

本発明に係る非破壊糖度計で、前記光源は2つ以上から成り、各光源は被測定物に同一の強さの近赤外線を照射する構成を有し、前記台の上の被測定物の周囲を前記回転手段による回転方向に等角度で分割するよう配置されていてもよい。この場合、各光源の照射のタイミングをずらすことにより、各光源の回転範囲での被測定物の糖度を同時に求めることができる。このため、被測定物の全周での糖度を求める場合に、各光源の配置された角度間隔だけ回転させればよく、測定時間を短縮することができる。   In the non-destructive saccharimeter according to the present invention, the light source is composed of two or more, each light source is configured to irradiate the object to be measured with near infrared rays having the same intensity, You may arrange | position so that the circumference | surroundings may be divided | segmented at equal angles in the rotation direction by the said rotation means. In this case, the sugar content of the object to be measured in the rotation range of each light source can be determined simultaneously by shifting the irradiation timing of each light source. For this reason, when obtaining the sugar content in the entire circumference of the object to be measured, it is only necessary to rotate it by the angular interval at which each light source is arranged, and the measurement time can be shortened.

本発明に係る非破壊糖度計は、前記受光部で受けた透過光から特定波長の吸光度の平均値を求め、その平均値から前記被測定物の糖度を求める計算手段を有することが好ましい。この場合、被測定物全体の平均的な糖度を求めることができる。   The nondestructive sugar content meter according to the present invention preferably has a calculation means for obtaining an average value of absorbance at a specific wavelength from the transmitted light received by the light receiving unit and obtaining the sugar content of the object to be measured from the average value. In this case, the average sugar content of the entire object to be measured can be obtained.

本発明に係る非破壊糖度計は、前記回転手段が回転を開始するとき開始信号を送る開始信号送信部と、前記回転手段が回転を停止するとき停止信号を送る停止信号送信部と、前記開始信号送信部からの開始信号により前記光源の照射を開始し、前記停止信号送信部からの停止信号により前記光源の照射を停止する制御部を有することが好ましい。また、本発明に係る非破壊糖度計は、前記回転手段が回転を開始するとき開始信号を送る開始信号送信部と、前記回転手段が前記光源を被測定物に対し前記等角度だけ相対的に回転させたとき回転を停止するとき停止信号を送る停止信号送信部と、前記開始信号送信部からの開始信号により前記光源の照射を開始し、前記停止信号送信部からの停止信号により前記光源の照射を停止する制御部を有していてもよい。この場合、制御部により、回転手段の回転状況に合わせて光源の照射を自動的に制御することができ、自動的に糖度の測定を行うことができる。なお、本発明に係る非破壊糖度計は、台の上に載せられた被測定物を検出する検出部と、検出部が被測定物を検出したとき回転信号を送る回転信号送信部と、回転信号送信部からの回転信号により回転手段の回転を開始する回転制御部とを有していてもよい。この構成では、被測定物を台の上に載せるだけで、自動的に被測定物の糖度の測定を行うことができる。このため、全数検査などのときに、高精度で効率よく糖度の測定を行うことができる。   The non-destructive sugar content meter according to the present invention includes a start signal transmitting unit that transmits a start signal when the rotating unit starts rotating, a stop signal transmitting unit that transmits a stop signal when the rotating unit stops rotating, and the start It is preferable to have a control unit that starts irradiation of the light source by a start signal from the signal transmission unit and stops irradiation of the light source by a stop signal from the stop signal transmission unit. The nondestructive saccharimeter according to the present invention includes a start signal transmitting unit that transmits a start signal when the rotating unit starts rotating, and the rotating unit relatively positions the light source with respect to an object to be measured by the equal angle. A stop signal transmission unit that sends a stop signal when rotation is stopped when rotating, and starts irradiation of the light source by a start signal from the start signal transmission unit, and a stop signal from the stop signal transmission unit You may have the control part which stops irradiation. In this case, the control unit can automatically control the irradiation of the light source in accordance with the rotation state of the rotating means, and the sugar content can be automatically measured. The nondestructive saccharimeter according to the present invention includes a detection unit that detects a measurement object placed on a table, a rotation signal transmission unit that transmits a rotation signal when the detection unit detects the measurement object, and a rotation You may have a rotation control part which starts rotation of a rotation means by the rotation signal from a signal transmission part. In this configuration, the sugar content of the object to be measured can be automatically measured simply by placing the object to be measured on the table. For this reason, sugar content can be measured with high accuracy and efficiency at the time of 100% inspection or the like.

本発明によれば、被測定物に影響を与えることなく、被測定物全体の糖度を精度良く測定可能な非破壊糖度計および非破壊糖度測定方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nondestructive sugar content meter and the nondestructive sugar content measuring method which can measure the sugar content of the whole to-be-measured object accurately can be provided, without affecting to-be-measured object.

以下、図面に基づき、本発明の実施の形態について説明する。
図1は、本発明の実施の形態の非破壊糖度計を示している。
図1に示すように、非破壊糖度計10は、載置台11と回転手段12と2つの光源13と光電変換部14と増幅部15と制御演算部16と表示部17とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a nondestructive sugar content meter according to an embodiment of the present invention.
As shown in FIG. 1, the nondestructive sugar content meter 10 includes a mounting table 11, a rotating means 12, two light sources 13, a photoelectric conversion unit 14, an amplification unit 15, a control calculation unit 16, and a display unit 17. .

載置台11は、上に被測定物1を載せるようになっている。載置台11は、その被測定物1を透過した近赤外線の透過光を、下方に透過可能になっている。載置台11は、その上に載せられた被測定物1を検出する重力センサ(図示せず)と、重力センサが検出したとき検出信号を出力する検出信号出力部(図示せず)とを有している。被測定物1は、例えば、メロン、トマト、リンゴ、ナシ、モモなどの青果物である。   The mounting table 11 is configured to place the DUT 1 on the top. The mounting table 11 can transmit the near-infrared transmitted light transmitted through the device under test 1 downward. The mounting table 11 has a gravity sensor (not shown) for detecting the object 1 to be measured placed thereon, and a detection signal output unit (not shown) for outputting a detection signal when the gravity sensor detects it. is doing. The DUT 1 is, for example, fruits and vegetables such as melon, tomato, apple, pear and peach.

回転手段12は、回転台21と回転駆動部22とを有している。回転台21は、載置台11の周囲に設けられ、載置台11を中心として載置台11の周囲に沿って回転可能になっている。回転駆動部22は、回転台21の回転を制御可能になっている。   The rotating means 12 includes a turntable 21 and a rotation drive unit 22. The turntable 21 is provided around the mounting table 11 and is rotatable along the periphery of the mounting table 11 with the mounting table 11 as a center. The rotation drive unit 22 can control the rotation of the turntable 21.

各光源13は、ハロゲンランプから成り、回転台21の上に取り付けられている。各光源13は、回転手段12により、載置台11の上の被測定物1に対しその周囲で相対的に回転可能である。各光源13は、載置台11を間に挟んで向かい合う位置に配置されており、載置台11の上の被測定物1の周囲を、回転手段12による回転方向に等角度の180度で分割している。各光源13は、電源23により電力を供給され、載置台11の上の被測定物1に、同一の強さの近赤外線を照射するようになっている。   Each light source 13 includes a halogen lamp and is mounted on a turntable 21. Each light source 13 can be rotated relative to the object 1 to be measured on the mounting table 11 by the rotating means 12. Each light source 13 is arranged at a position facing each other with the mounting table 11 in between, and the periphery of the object 1 to be measured on the mounting table 11 is divided by 180 degrees at an equal angle in the rotation direction by the rotating means 12. ing. Each light source 13 is supplied with electric power from a power source 23 and irradiates the DUT 1 on the mounting table 11 with near infrared rays having the same intensity.

光電変換部14は、載置台11の下方に設けられ、受光部(図示せず)とバンドパスフィルタ(図示せず)と光電変換素子(図示せず)とを有している。受光部は、載置台11を透過してきた近赤外線の透過光を受ける部材である。バンドパスフィルタは、複数から成ってそれぞれ異なる帯域を有し、受光部で受けた透過光の特定波長の光のみを通過させるようになっている。光電変換素子は、各バンドパスフィルタを通過した複数の特定波長の光を、それぞれ電気信号に変換して出力する部材である。   The photoelectric conversion unit 14 is provided below the mounting table 11 and includes a light receiving unit (not shown), a band pass filter (not shown), and a photoelectric conversion element (not shown). The light receiving unit is a member that receives transmitted light of near infrared light that has passed through the mounting table 11. The band-pass filter has a plurality of different bands and passes only light having a specific wavelength of transmitted light received by the light receiving unit. The photoelectric conversion element is a member that converts light of a plurality of specific wavelengths that have passed through each bandpass filter into an electric signal and outputs the electric signal.

なお、各光源13から照射された近赤外線は、被測定物1を透過するとき、糖度と相関の高い複数の特定波長成分が吸収される。この吸収される複数の特定波長成分の吸光度から糖度を計算するために、各バンドパスフィルタが通過させる特定波長の帯域として、その複数の特定波長を選定する。実際には、予め屈折糖度計により測定した糖度から、糖度と相関の高い特定波長を各バンドパスフィルタの通過波長帯域として選定しておく。   Note that when the near-infrared rays emitted from each light source 13 pass through the DUT 1, a plurality of specific wavelength components having a high correlation with the sugar content are absorbed. In order to calculate the sugar content from the absorbance of the plurality of specific wavelength components that are absorbed, the plurality of specific wavelengths are selected as the band of the specific wavelength that each bandpass filter passes. Actually, a specific wavelength having a high correlation with the sugar content is selected as the pass wavelength band of each bandpass filter from the sugar content measured in advance by a refractometer.

増幅部15は、光電変換部14から出力された電気信号を、各特定波長ごとに増幅する部材である。
制御演算部16は、計算手段(図示せず)と制御部(図示せず)とを有している。計算手段は、増幅部15により増幅された各特定波長の電気信号をアナログ/デジタル変換し、各特定波長ごとに吸光度を計算するようになっている。また、計算手段は、各特定波長ごとに、複数回の光源13の照射に対応して求めた吸光度の平均値を計算可能である。さらに、計算手段は、計算された各特定波長ごとの吸光度または吸光度の平均値から、被測定物1の糖度を求める。
The amplification unit 15 is a member that amplifies the electrical signal output from the photoelectric conversion unit 14 for each specific wavelength.
The control calculation unit 16 includes a calculation unit (not shown) and a control unit (not shown). The calculating means performs analog / digital conversion of the electrical signal of each specific wavelength amplified by the amplifying unit 15 and calculates the absorbance for each specific wavelength. Moreover, the calculation means can calculate the average value of the absorbance determined corresponding to the irradiation of the light source 13 a plurality of times for each specific wavelength. Further, the calculation means obtains the sugar content of the DUT 1 from the calculated absorbance for each specific wavelength or the average value of the absorbance.

制御部は、回転駆動部22と電源23とを制御可能になっている。制御部は、載置台11の検出信号出力部からの検出信号を受信可能であり、その検出信号を受信したとき、回転駆動部22を制御して回転台21を回転させ、同時に電源23を制御して各光源13の照射を開始させるようになっている。また、制御部は、回転手段12が各光源13を被測定物1に対し180度だけ相対的に回転させたとき、回転駆動部22を制御して回転台21を停止させ、同時に電源23を制御して各光源13の照射を停止させるよう構成されている。
表示部17は、計算手段により求められた被測定物1の糖度を表示可能になっている。
The control unit can control the rotation driving unit 22 and the power source 23. The control unit can receive a detection signal from the detection signal output unit of the mounting table 11. When receiving the detection signal, the control unit controls the rotation driving unit 22 to rotate the rotation table 21 and simultaneously controls the power source 23. Then, the irradiation of each light source 13 is started. In addition, when the rotating unit 12 rotates each light source 13 relative to the DUT 1 by 180 degrees, the control unit controls the rotation driving unit 22 to stop the turntable 21 and simultaneously turn the power source 23 on. It is configured to control and stop the irradiation of each light source 13.
The display unit 17 can display the sugar content of the DUT 1 obtained by the calculation means.

非破壊糖度計10により、以下のとおり非破壊糖度測定方法を実施することができる。
まず、載置台11に被測定物1を載せると、重力センサが被測定物1を検出し、検出信号出力部が検出信号を出力する。制御演算部16の制御部が、その検出信号を受信し、回転駆動部22を制御して回転台21を回転させ、同時に電源23を制御して各光源13の照射を開始させる。
With the non-destructive sugar content meter 10, a non-destructive sugar content measurement method can be carried out as follows.
First, when the DUT 1 is placed on the mounting table 11, the gravity sensor detects the DUT 1, and the detection signal output unit outputs a detection signal. The control unit of the control calculation unit 16 receives the detection signal, controls the rotation drive unit 22 to rotate the turntable 21, and simultaneously controls the power source 23 to start irradiation of each light source 13.

回転手段12により被測定物1に対しその周囲で相対的に回転しながら、各光源13が、所定の回転角度毎に断続的に被測定物1に近赤外線を照射する。このとき、被測定物1の特定部位に偏った情報で吸光度を算出するのを防止し、かつ測定精度を向上させるため、できるだけ密に等角度間隔で照射を行う。また、各光源13の照射のタイミングをずらして照射を行う。さらに、被測定物1の表面近傍から中心までの糖度を求めるよう、各光源13の照射エネルギーを変化させて照射を行う。   Each light source 13 intermittently irradiates the device under test 1 with a near infrared ray at every predetermined rotation angle while rotating around the device under test 1 by the rotating means 12. At this time, in order to prevent the absorbance from being calculated based on information biased to a specific part of the DUT 1 and improve the measurement accuracy, the irradiation is performed as densely as possible at equal angular intervals. Further, irradiation is performed by shifting the irradiation timing of each light source 13. Further, irradiation is performed by changing the irradiation energy of each light source 13 so as to obtain the sugar content from the vicinity of the surface of the DUT 1 to the center.

光電変換部14の受光部により、その被測定物1を透過した近赤外線の透過光を受け、各バンドパスフィルタにより、受光部で受けた透過光の各特定波長の光のみを通過させ、光電変換素子により、その各特定波長の光をそれぞれ電気信号に変換して出力する。その出力された電気信号を、増幅部15により各特定波長ごとに増幅する。制御演算部16の計算手段により、その増幅された各特定波長ごとの電気信号をアナログ/デジタル変換し、各特定波長ごとに吸光度を計算する。さらに、計算手段により、その吸光度から被測定物1の糖度を求める。このとき、予め屈折糖度計で測定した糖度との相関により算出した係数と、各特定波長ごとの吸光度との積を求め、その和を求めることにより、糖度を算出する。求められた糖度を、表示部17により表示する。   Near-infrared transmitted light that has passed through the DUT 1 is received by the light receiving unit of the photoelectric conversion unit 14, and each bandpass filter passes only light of each specific wavelength of the transmitted light received by the light receiving unit. The conversion element converts the light of each specific wavelength into an electrical signal and outputs it. The output electrical signal is amplified by the amplification unit 15 for each specific wavelength. The amplified electric signal for each specific wavelength is converted from analog to digital by the calculation means of the control calculation unit 16, and the absorbance is calculated for each specific wavelength. Further, the sugar content of the DUT 1 is obtained from the absorbance by the calculation means. At this time, the sugar content is calculated by obtaining the product of the coefficient calculated by the correlation with the sugar content measured in advance with a refractometer and the absorbance for each specific wavelength, and obtaining the sum thereof. The obtained sugar content is displayed on the display unit 17.

回転手段12が各光源13を被測定物1に対し180度だけ相対的に回転させたとき、制御演算部16の制御部が、回転駆動部22を制御して回転台21を停止させ、同時に電源23を制御して各光源13の照射を停止させる。計算手段により、各特定波長ごとに、回転中の複数回の各光源13の照射に対応して求めた吸光度の平均値を計算し、その吸光度の平均値から被測定物1全体の平均的な糖度を求める。その求められた被測定物1全体の平均的な糖度を、表示部17により表示する。   When the rotating means 12 rotates each light source 13 relative to the DUT 1 by 180 degrees, the control unit of the control calculation unit 16 controls the rotation driving unit 22 to stop the turntable 21, and at the same time The power source 23 is controlled to stop the irradiation of each light source 13. For each specific wavelength, the average value of the absorbance determined corresponding to the irradiation of each rotating light source 13 is calculated for each specific wavelength, and the average of the entire object to be measured 1 is calculated from the average value of the absorbance. Find sugar content. The obtained average sugar content of the entire device under test 1 is displayed on the display unit 17.

このように、本発明の実施の形態の非破壊糖度計10および非破壊糖度測定方法は、被測定物1に対しその周囲で各光源13を相対的に回転させるため、その回転に合わせて各光源13から被測定物1に近赤外線を照射して測定を行うことにより、その回転範囲で被測定物1の糖度を求めることができる。各光源13を相対的に回転させて被測定物1の全周に対して近赤外線を照射して測定を行うため、被測定物1の全周での糖度を求めることができる。   As described above, in the non-destructive sugar content meter 10 and the non-destructive sugar content measurement method according to the embodiment of the present invention, each light source 13 is relatively rotated around the object 1 to be measured. By irradiating near-infrared rays from the light source 13 to the object 1 to be measured, the sugar content of the object 1 can be determined within the rotation range. Since each light source 13 is rotated relatively to irradiate the entire circumference of the DUT 1 with near-infrared rays and the measurement is performed, the sugar content of the DUT 1 can be obtained.

また、被測定物1に対しその周囲で各光源13を相対的に回転させるため、各光源13からの近赤外線の照射が被測定物1の特定部位に集中せず、被測定物1の表面温度の上昇を抑えることができる。このため、被測定物1に影響を与えることなく、光源13のエネルギーを大きくして照射することができ、被測定物1の中心まで近赤外線を到達させることができる。各光源13の照射エネルギーを変化させるため、被測定物1の表面近傍から中心までの糖度を求めることができる。   Further, since each light source 13 is rotated relative to the device under test 1 around it, the near-infrared irradiation from each light source 13 does not concentrate on a specific part of the device under test 1, and the surface of the device under test 1. An increase in temperature can be suppressed. For this reason, the energy of the light source 13 can be increased and irradiated without affecting the device under test 1, and near infrared light can reach the center of the device under test 1. Since the irradiation energy of each light source 13 is changed, the sugar content from the vicinity of the surface of the DUT 1 to the center can be obtained.

こうして、非破壊糖度計10により、被測定物1の表面近傍の特定部位の情報だけでなく、被測定物1の全周および表面から中心までの情報が得られるため、被測定物1全体の糖度を精度良く測定することができる。   Thus, the non-destructive sugar content meter 10 obtains not only information on a specific part near the surface of the object 1 to be measured but also information on the entire circumference and the surface to the center of the object 1 to be measured. The sugar content can be measured with high accuracy.

また、非破壊糖度計10は、各光源13の照射のタイミングをずらすため、各光源13の回転範囲での被測定物1の糖度を同時に求めることができる。このため、被測定物1の全周での糖度を求める場合に、各光源13の配置された角度間隔だけ回転させればよく、測定時間を短縮することができる。被測定物1を載置台11の上に載せるだけで、自動的に被測定物1の糖度の測定を行うことができるため、全数検査などのときに、高精度で効率よく糖度の測定を行うことができる。   Further, since the non-destructive sugar content meter 10 shifts the irradiation timing of each light source 13, the sugar content of the DUT 1 within the rotation range of each light source 13 can be obtained simultaneously. For this reason, when calculating | requiring the sugar content in the perimeter of the to-be-measured object 1, what is necessary is just to rotate only the angular space | interval where each light source 13 is arrange | positioned, and measurement time can be shortened. Since the sugar content of the device under test 1 can be automatically measured simply by placing the device under test 1 on the mounting table 11, the sugar content can be measured with high accuracy and efficiency at the time of 100% inspection or the like. be able to.

なお、光源13は、2つに限らず、1つまたは3つ以上であってもよい。光源13が3つ以上の場合、載置台11の上の被測定物1の周囲を、回転手段12による回転方向に等角度で分割するよう各光源13を配置し、光源13の数と回転台21の回転角度との積が360度以上になるようにする。これにより、被測定物1の全周に対して近赤外線を照射することができる。例えば、光源13が3個の場合、回転台21の回転角度を120度以上とし、光源13が4個の場合、回転台21の回転角度を90度以上とする。   Note that the number of light sources 13 is not limited to two, and may be one or three or more. When there are three or more light sources 13, the light sources 13 are arranged so as to divide the circumference of the DUT 1 on the mounting table 11 at an equal angle in the rotation direction by the rotating means 12. The product of the rotation angle 21 and the rotation angle of 21 is 360 degrees or more. Thereby, near infrared rays can be irradiated to the entire circumference of the DUT 1. For example, when there are three light sources 13, the rotation angle of the turntable 21 is 120 degrees or more, and when there are four light sources 13, the rotation angle of the turntable 21 is 90 degrees or more.

また、回転台21を回転させる代わりに、載置台11を回転台21に対して回転させ、回転駆動部22で載置台11の回転を制御するようになっていてもよい。この場合、載置台11の上の被測定物1に対し、その周囲で光源13が相対的に回転するため、回転台21が回転する構成の場合と同様の効果が得られる。   Further, instead of rotating the turntable 21, the placement table 11 may be rotated with respect to the turntable 21, and the rotation of the placement table 11 may be controlled by the rotation drive unit 22. In this case, since the light source 13 rotates relative to the object to be measured 1 on the mounting table 11, the same effect as in the case where the rotating table 21 rotates can be obtained.

本発明の実施の形態の非破壊糖度計を示すブロック図である。It is a block diagram which shows the nondestructive sugar content meter of embodiment of this invention. 従来の屈折糖度計で測定したメロンの糖度分布を示す(a)縦断面図、(b)横断面図である。It is (a) longitudinal cross-sectional view which shows the sugar content distribution of the melon measured with the conventional refractometer, and (b) is a cross-sectional view.

符号の説明Explanation of symbols

1 被測定物
10 非破壊糖度計
11 載置台
12 回転手段
13 光源
14 光電変換部
15 増幅部
16 制御演算部
17 表示部
21 回転台
22 回転駆動部
23 電源
DESCRIPTION OF SYMBOLS 1 to-be-measured object 10 Nondestructive sugar content meter 11 Mounting stand 12 Rotating means 13 Light source 14 Photoelectric conversion part 15 Amplifying part 16 Control calculating part 17 Display part 21 Turntable 22 Rotation drive part 23 Power supply

Claims (6)

光源から被測定物に近赤外線を照射し、その被測定物を透過した近赤外線の透過光を受光部で受け、前記受光部で受けた透過光の特定波長の吸光度に基づき前記被測定物の糖度を求める非破壊糖度計であって、
被測定物を載せるための台と、
前記台の上の被測定物に対しその周囲で前記光源を相対的に回転させる回転手段とを、
有することを特徴とする非破壊糖度計。
The near-infrared light is irradiated from the light source to the object to be measured, and the near-infrared transmitted light that has passed through the object to be measured is received by the light-receiving unit. A non-destructive sugar content meter for determining sugar content,
A table for placing an object to be measured;
A rotating means for rotating the light source relative to the object to be measured on the table;
A non-destructive sugar content meter characterized by comprising:
前記光源は2つ以上から成り、各光源は被測定物に同一の強さの近赤外線を照射する構成を有し、前記台の上の被測定物の周囲を前記回転手段による回転方向に等角度で分割するよう配置されていることを、特徴とする請求項1記載の非破壊糖度計。   The light source is composed of two or more, each light source has a configuration that irradiates the object to be measured with near-infrared rays having the same intensity, and the periphery of the object to be measured on the table is rotated in the direction of rotation by the rotating means. The nondestructive sugar content meter according to claim 1, wherein the non-destructive sugar content meter is arranged so as to be divided at an angle. 前記受光部で受けた透過光から特定波長の吸光度の平均値を求め、その平均値から前記被測定物の糖度を求める計算手段を有することを、特徴とする請求項1または2記載の非破壊糖度計。   3. The nondestructive device according to claim 1, further comprising a calculation unit that obtains an average value of absorbance at a specific wavelength from transmitted light received by the light receiving unit, and obtains the sugar content of the object to be measured from the average value. Sugar meter. 前記回転手段が回転を開始するとき開始信号を送る開始信号送信部と、
前記回転手段が回転を停止するとき停止信号を送る停止信号送信部と、
前記開始信号送信部からの開始信号により前記光源の照射を開始し、前記停止信号送信部からの停止信号により前記光源の照射を停止する制御部を有することを、
特徴とする請求項1,2または3記載の非破壊糖度計。
A start signal transmitter for sending a start signal when the rotating means starts rotating;
A stop signal transmitter for sending a stop signal when the rotating means stops rotating;
Having a control unit that starts irradiation of the light source by a start signal from the start signal transmission unit and stops irradiation of the light source by a stop signal from the stop signal transmission unit;
The nondestructive sugar content meter according to claim 1, 2, or 3.
前記回転手段が回転を開始するとき開始信号を送る開始信号送信部と、
前記回転手段が前記光源を被測定物に対し前記等角度だけ相対的に回転させたとき回転を停止するとき停止信号を送る停止信号送信部と、
前記開始信号送信部からの開始信号により前記光源の照射を開始し、前記停止信号送信部からの停止信号により前記光源の照射を停止する制御部を有することを、
特徴とする請求項2または3記載の非破壊糖度計。
A start signal transmitter for sending a start signal when the rotating means starts rotating;
A stop signal transmitter for sending a stop signal when the rotation means stops the rotation when the light source is rotated relative to the object to be measured by the equal angle; and
Having a control unit that starts irradiation of the light source by a start signal from the start signal transmission unit and stops irradiation of the light source by a stop signal from the stop signal transmission unit;
The nondestructive sugar content meter according to claim 2 or 3, wherein
光源から被測定物に近赤外線を照射し、その被測定物を透過した近赤外線の透過光を受光部で受け、前記受光部で受けた透過光の特定波長の吸光度に基づき前記被測定物の糖度を求める非破壊糖度測定方法であって、被測定物に対しその周囲で前記光源を相対的に回転させることを特徴とする非破壊糖度測定方法。   The near-infrared light is irradiated from the light source to the object to be measured, and the near-infrared transmitted light that has passed through the object to be measured is received by the light-receiving unit. A non-destructive sugar content measuring method for obtaining a sugar content, wherein the light source is rotated relative to an object to be measured around the non-destructive sugar content measuring method.
JP2005206216A 2005-07-14 2005-07-14 Non-destructive sugar content meter, and non-destructive sugar content measuring method Pending JP2007024651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206216A JP2007024651A (en) 2005-07-14 2005-07-14 Non-destructive sugar content meter, and non-destructive sugar content measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206216A JP2007024651A (en) 2005-07-14 2005-07-14 Non-destructive sugar content meter, and non-destructive sugar content measuring method

Publications (1)

Publication Number Publication Date
JP2007024651A true JP2007024651A (en) 2007-02-01

Family

ID=37785616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206216A Pending JP2007024651A (en) 2005-07-14 2005-07-14 Non-destructive sugar content meter, and non-destructive sugar content measuring method

Country Status (1)

Country Link
JP (1) JP2007024651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038206A1 (en) 2007-09-21 2009-03-26 Suntory Holdings Limited Visible/near-infrared spectrum analyzing method and grape fermenting method
JP2015154727A (en) * 2014-02-20 2015-08-27 パイオニア株式会社 Harvest timing determination device
CN105181636A (en) * 2015-09-02 2015-12-23 北京农业智能装备技术研究中心 Grape sugar degree nondestructive detection apparatus and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038206A1 (en) 2007-09-21 2009-03-26 Suntory Holdings Limited Visible/near-infrared spectrum analyzing method and grape fermenting method
JP2015154727A (en) * 2014-02-20 2015-08-27 パイオニア株式会社 Harvest timing determination device
CN105181636A (en) * 2015-09-02 2015-12-23 北京农业智能装备技术研究中心 Grape sugar degree nondestructive detection apparatus and method thereof

Similar Documents

Publication Publication Date Title
CN101539514B (en) Near infrared spectroscopy portable detection method and device of quality of agricultural and livestock products
JP2009122083A (en) Meter using near-infrared led
JP3792175B2 (en) Internal quality inspection method and apparatus for core fruits and vegetables
RU2738593C2 (en) System and method of detecting acrylamide precursors in raw potatoes and potato-based food products
JP2007024651A (en) Non-destructive sugar content meter, and non-destructive sugar content measuring method
RU2765694C2 (en) Portable device and method for assessing polymer parameter
CN109085125A (en) A kind of the inside quality non-destructive testing device and method of fruit
CA3111619C (en) Optical probe and method for in situ soil analysis
CN102822663A (en) Apparatus and method for detecting skin cancer using THz radiation
JP2008145397A (en) Gas detection device
JP2007271575A (en) Nondestructive measuring device of light scattering body
JP5676688B2 (en) Optical unit and optical analyzer
JP2014240786A (en) Component concentration analyzer using light-emitting diode, and measuring apparatus using light-emitting diode
JP2007198854A (en) Method of inspecting fruit and vegetable, and device therefor
Torricelli et al. Optical coherence tomography (OCT), space-resolved reflectance spectroscopy (SRS) and time-resolved reflectance spectroscopy (TRS): principles and applications to food microstructures
JP2008180597A (en) Light detection device and optical measurement unit
JP2007024652A (en) Non-destructive sugar content meter, and non-destructive sugar content measuring method
JP2003114191A (en) Method and instrument for nondestructively measuring sugar content of vegetable and fruit
WO2016055527A2 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
JP2007278846A5 (en)
JP2021092461A (en) Internal quality inspection device for fruits and vegetables
JP2006098108A (en) Internal quality evaluation device for produce
JPH0763616A (en) Measuring method for temperature of inner section of fruit or vegetable
Sun et al. Spectral pretreatment and wavelength selection for soluble solids content in Gannan navel orange
KR102503469B1 (en) Portable device for non-destructively measuring the internal quality of agricultural products